JP3924046B2 - Internal combustion engine plant with denitration equipment - Google Patents

Internal combustion engine plant with denitration equipment Download PDF

Info

Publication number
JP3924046B2
JP3924046B2 JP12034997A JP12034997A JP3924046B2 JP 3924046 B2 JP3924046 B2 JP 3924046B2 JP 12034997 A JP12034997 A JP 12034997A JP 12034997 A JP12034997 A JP 12034997A JP 3924046 B2 JP3924046 B2 JP 3924046B2
Authority
JP
Japan
Prior art keywords
exhaust
denitration device
scr
engine
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12034997A
Other languages
Japanese (ja)
Other versions
JPH10299461A (en
Inventor
和由 浜口
哲郎 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12034997A priority Critical patent/JP3924046B2/en
Publication of JPH10299461A publication Critical patent/JPH10299461A/en
Application granted granted Critical
Publication of JP3924046B2 publication Critical patent/JP3924046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は機関出口と排気タ−ボ過給機との間の排気管路に脱硝装置を装備した脱硝装置付き内燃機関プラントに関する。
【0002】
【従来の技術】
発電用プラント等の定置用ディ−ゼル機関プラントにおいては、NOx(窒素酸化物)浄化用の脱硝装置を、排気ガス温度及び圧力の高い排気タ−ボ過給機(以下過給機という)の上流側の排気管路に設置して脱硝効率を高めている。
【0003】
図5は、かかる脱硝装置を備えた発電用ディ−ゼル機関プラントの従来技術の1例を示す。
図5において、1はディ−ゼル機関、4は過給機、3は脱硝装置(以下SCRと略称する)であり、該脱硝装置(SCR)3は前記ディ−ゼル機関1の排気ガス出口と過給機4の入口との間の排気管路つまり、機関出口排気管2と過給機入口排気管21との間に設けられている。
【0004】
5は排気消音器、22は前記過給機4の出口と前記排気消音器5とを接続する排気管である。
また6は電動式の補助ブロワであり、機関1の低速時等の過給機4の排気エネルギが小さいときに機関1へ給気を圧送するものである。
【0005】
かかる構成からなる脱硝装置付きディ−ゼル機関プラントの運転時においては、機関1より排出された排気ガスは機関出口排気管2を通ってSCR3に入り、そこで脱硝触媒によってNOxが低減せしめられた後、過給機入口に排気管21を通って過給機4に達し、該過給機4の排気タ−ビン(図示省略)を駆動する。そして該排気タ−ビン駆動による膨張仕事をなした排気ガスは排気管22を通り、排気消音器5にて音圧を低下(消音)せしめられた後、大気に排出される。
【0006】
一方前記過給機4の排気タ−ビンの駆動によって該排気タ−ビンと同軸のコンプレッサ(図示省略)が回転駆動され、該コンプレッサは燃焼用空気を圧縮して機関1に送る。
機関1の起動時、低負荷時のような過給機4への排気ガスの排気エネルギが小さいときには、補助ブロワ6が運転され、該補助ブロワ6によって空気を圧縮し機関1に送給する。
【0007】
図5に示す脱硝装置付きディ−ゼル機関プラントにおいては、前記のように機関出口排気管2と過給機4との間にSCR3を装備しているので、機関出口の高温高圧の排気ガスが脱硝装置3の脱硝触媒に作用することとなるので、高い脱硝効率が得られ、SCR3も小型化される。
【発明が解決しようとする課題】
【0008】
しかしながら、かかる従来技術による脱硝装置付きディ−ゼル機関プラントにおいては、次のような解決すべき課題がある。
【0009】
(1)前記SCR3は熱容量が大きく、これが過給機4の上流側排気管路に設けられているため、負荷上昇時において、機関1からの排気ガスのエネルギがSCR3の暖機に消費され、該SCR3の出入口の排気ガス温度が同等になる迄の間、過給機4に充分なエネルギ量の排気ガスが供給されなくなる。
このため、過給機4による過給効果が損なうので空気量不足となり、機関1の出力不足が発生し、機関負荷の上昇に時間を要することとなる。
【0010】
(2)機関の低負荷域での補助ブロワ6の使用から過給機4の自立運転への移行時において、排気管路に設けられた熱容量の大なるSCR3が熱的な抵抗となって応答遅れが発生する。このため、上記運転移行時における過給機4の追従がスム−ズになされず、補助ブロワ6にハンチングの発生をみる。
【0011】
(3)SCR3の熱容量が大きく加熱に時間を要するため、SCR3の反応温度になるまでの時間は、NOxが浄化されない排気ガスがそのまま排出されてしまう。
【0012】
本発明はかかる従来技術の課題に鑑み、熱容量の大きいSCRの設定に伴なう過給機の排気エネルギ不足、補助ブロワ運転から過給機自立運転への移行時における補助ブロワのハンチング、及びSCRの加熱立ち上がり時における未浄化排気ガスの排出の発生を防止して、SCRの稼動への立ち上がり時間が短縮され、脱硝効率の向上がなされた脱硝装置付きディ−ゼル機関プラントを提供することを目的とする。
【課題を解決するための手段】
【0013】
本発明はかかる課題を解決するため、内燃機関の排気出口と過給機の排気タービンとの間の排気管路に脱硝装置を設置してなる内燃機関プラントにおいて、前記脱硝装置全体および該脱硝装置の出入口の排気管を加熱するように設けられたヒータと、前記機関起動時に接となって前記ヒータを作動して前記脱硝装置の脱硝触媒の反応温度まで加熱せしめる温度スイッチと、前記機関出口の排気ガス温度を検出する排気温度検出器と、前記排気管路の前記脱硝装置の上流から分岐されて該脱硝装置をバイパスし、該脱硝装置の出口と過給機の間の排気管路に合流するバイパスラインと、該バイパスラインを開閉するバイパス弁と、前記脱硝装置入口の排気管路を開閉する第1の開閉弁と、前記脱硝装置出口の排気管路を開閉する第2の開閉弁と、前記排気温度検出器から脱硝装置上流の排気ガス温度の検出信号が入力され、該排気ガス温度が前記脱硝装置の脱硝触媒の反応温度に達していないとき前記バイパス弁を開き、前記第1の開閉弁及び第2の開閉弁を閉じる操作信号を出力するコントローラと、さらに機関低速時に機関へ給気を圧送する補助ブロワとを備えたことを特徴とする脱硝装置付き内燃機関プラントを提案する。
【0014】
かかる発明によれば起動後の脱硝装置の立ち上がり時には温度スイッチを接とし、ヒ−タによって脱硝装置を予熱する。これによって脱硝装置は迅速に反応温度まで上昇し、NOx低減による排気ガスの浄化が迅速になされる。
【0015】
また脱硝装置入口の排気ガス温度が脱硝装置に達しない起動時及び低負荷運転時には、コントロ−ラは排気ガス温度の検出器値に基づきバイパス弁を開くとともに前記第1の開閉弁及び第2の開閉弁を閉じるように制御する。
これにより、機関からの排気ガス脱硝装置をバイパスしてバイパス管を流れ、脱硝装置の下流側の排気管路に合流し、過給機に供給される。
従って前記起動時や低速運転時には、排気ガスは熱容量が大きく熱抵抗も大きい脱硝装置を通ことなく、これをバイパスして、過給機への排気管路に合流する。
【0016】
よって、起動時及び低負荷運転時において、過給機は脱硝装置の熱抵抗及び流動抵抗の影響を受けることなく、迅速な回転数の立ち上がりがスム−スになされ、過給機による過給効果が損なわれて空気量不足となり、機関の出力低下を来すという不具合の発生が防止される。
【0017】
また、前記低速運転時において、補助ブロワの使用から過給機の自立運転への移行時に、脱硝装置が熱的な抵抗となって応答遅れが発生することが防止される。
これによってかかる運転移行時における補助ブロワのハンチングの発生が防止される。
【0018】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施形態を例示的に詳しく説明する。但しこの実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がないかぎりは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例にすぎない。
【0019】
図1は本発明の実施形態に係る脱硝装置付きディ−ゼル機関プラントの構成図、図2は脱硝装置(SCR)近傍の拡大構成図、図4は作用効果の比較線図である。
図1において、1はディ−ゼル機関、4は過給機、3は脱硝装置(以下SCRと略称する)であり、該脱硝装置(SCR)3は前記ディ−ゼル機関1の排気ガス出口と過給機4の入口との間の排気管路つまり、機関出口排気管2と過給機入口排気管21との間に設けられている。5は排気消音器、22は前記過給機4の出口と前記排気消音器5とを接続する排気管である。
また6は電動式の補助ブロワであり、機関1の低速時等の過給機4の排気エネルギが小さいときに機関1へ給気を圧送するものである。
以上の基本構成は図5に示す従来技術に係るディ−ゼル機関プラントと同様である。
【0020】
本発明の実施形態においては、脱硝装置及びこれの近傍の排気管路を加熱するヒ−タを設けるとともに、排気ガスSCRをバイパスして流れる手段を設けている。
即ち図1及び図2において、前記SCR3には、その外側から(内側からでも可)該SCR3を加熱するヒ−タ8が設けられている。
また、図2に示すように前記SCR3の加熱用電熱ヒ−タ8は該SCR3全体を均一に加熱可能なように該SCR3の外殻部に巻装されるとともに、該ヒ−タ8の外周には保温材23が巻装され、断熱効果をなさしめている。
【0021】
さらに、前記SCR3の入口側排気管(機関出口排気管)2及び出口側排気管(過給機入口排気管)21にも、ヒ−タ81、82、83及びヒ−タ84が夫々巻装されてSCR3出入口近傍においても温度レベルを高く保持するようにしている。
【0022】
図1において14は温度スイッチであり、該温度スイッチ14の接断によって前記SCR3用のヒ−タ8及び排気管のヒ−タ81、82、83、及び84の作動と不作動とが切り換えられている。
また7はバイパスラインで、前記機関出口排気管2のSCR上流と過給機入口排気管21のSCR下流とを接続している。
11は該バイパスライン7に設けられてこの管路を開閉するバイパス弁である。
9はSCR入口弁で前記機関出口排気管2のSCR入口、つまり、該排気管2の前記バイパスライン7の分岐部とSCR3との間に設けられ、この管路を開閉する。また10はSCR出口弁で、前記過給機入口排気管21のSCR出口、つまり該排気管21のバイパスライン7の合流部とSCR3との間に設けられ、この管路を開閉する。
【0023】
12は機関出口排気管2の機関出口寄りの部位に取付けられた排気温度センサで、機関出口の排気ガス温度を検出する。
13はコントロ−ラで前記排気温度センサ12から機関出口排気ガス温度の検出信号が入力され、前記バイパス弁11、SCR入口弁9及びSCR出口弁10に開閉制御信号を出力する。
【0024】
かかる構成からなる脱硝装置付きディ−ゼル機関プラントの通常の負荷運転時には、コントロ−ラ13は、SCR入口弁9及びSCR出口弁10を開くとともにバイパス弁を閉じる制御信号を前記各弁9、10、11に送る。
かかる運転時には、機関1より排出された排気ガスは機関出口排気管2及びSCR入口弁9を通ってSCR3に入り、そこで脱硝触媒によってNOxが低減せしめられた後、過給機入口排気管21及びSCR出口弁10を通って過給機4に達し、該過給機4の排気タ−ビン(図示省略)を駆動する。そして該排気タ−ビン駆動による膨張仕事をなした排気ガスは排気管22を通り、排気消音器5にて音圧を低下(消音)せしめられた後、大気に排出される。
【0025】
機関1の起動時には、温度スイッチ14を接としてSCR3の電熱ヒ−タ8及びSCR出入口排気管の電熱ヒ−タ81、82、83、及び84に通電し、SCR3及びこれの出入口排気管をSCR3の温度が、触媒の反応温度(約350℃)に達するまで加熱する。
これによりSCR3はその反応温度まで迅速に温度上昇がなされ、起動後の触媒の浄化作用が速やかになされ、排気ガスが浄化されないままに排出されてしまうような不具合の発生は無い。
【0026】
そして前記起動時には、コントロ−ラ13はバイパス弁11を開とするとともに、SCR入口弁9及びSCR出口弁10を閉とせしめる。
これによって機関1からの排気ガスは機関出口排気管2からSCR3をバイパスして過給機入口排気管21に流動可能となる。
従って起動時には排気ガスは、大きな熱容量を有するSCR3をバイパスして直接過給機4に導かれるので、過給機4の回転の立ち上がりは迅速になされる。
【0027】
機関1の起動後における動作を図3に示すブロック図により説明すると、排気温度センサ12により検出された機関出口の排気ガス温度つまりSCR3入口の排気ガス温度Tsはコントロ−ラ13の排気温度比較部131に入力される。
132は排気温度設定部であり、前記SCR3の反応温度TR が設定されている。
前記排気温度比較部131においては、前記検出排気温度Tsと設定排気温度TR とを比較する。
この比較信号即ちΔT=Ts−TR は、弁開閉制御部133に入力される。
【0028】
該弁開閉制御部133においては、前記検出排気ガス温度TsがSCR3の反応温度TR に達していないとき、つまりTs<TR のときには、バイパス弁11を開、SCR入口9及びSCR出口弁10を閉とする操作信号を上記各弁11、9、10に出力する。
これによって、SCRが反応温度TR に達しない起動後の立ち上がり時には、排気ガスは熱容量の大なるSCR3をバイパスし、バイパス管7を通って過給機4に直接流入する。
従って過給機4はSCR3の熱抵抗及び流動抵抗の影響を受けることなく迅速な回転数の立ち上がりがなされる。
【0029】
また前記起動時及び起動後においては、補助ブロワ6が運転されているが、かかる運転状態においては、前記のように検出排気ガス温度TsがSCR3の反応温度TR に達してなく(Ts<TR の状態)、前記のように排気ガスはSCR3をバイパスしてバイパスライン7を流れ過給機4に直接供給されるので、補助ブロワ6の使用から過給機4の自立運転への移行時にSCR3が熱的な抵抗となって応答遅れが発生することが回避され、上記運転移行時における過給機4の追従は迅速になされる。これによりかかる運転移行時における補助ブロワ6のハンチングの発生が防止される。
【0030】
また、前記弁開閉制御部133は、前記排気温度比較部131からの出力が前記Ts=TR 、つまり過給機4が通常の負荷運転に検出排気ガス温度Tsが設定された反応温度TR に達すると、前記SCR入口弁9及びSCR出口弁10を徐々に開放して排気管路内の熱バランスを保てる。
【0031】
そして前記SCR入口弁9及びSCR出口弁10が全開になると、前記弁開閉制御部133はバイパス弁11を閉じる。これによってSCR3が完全に稼動する脱硝運転に入り、該SCR3によってNOxが低減された排気ガスは過給機入口排気管21を通って過給機4の排気タ−ビンを駆動する。
【0032】
図4には、本発明と従来のものとの作動性能の1例を示す。図4に示すように本発明(B)においてはSCR3の反応温度t2 への上昇が、(A)に示される従来例のものt1 よりも大幅に迅速化されるとともに、NOx低減量も大幅に低減される。
【0033】
【発明の効果】
以上の記載のごとく本発明によれば、起動時や低速運転時には、排気ガスは熱容量が大きく熱抵抗も大きい脱硝装置を通ることなくバイパスラインを経て、過給機に導入される。
これにより過給機は脱硝装置の熱抵抗及び流動抵抗の影響を受けることなく、迅速な回転数の立ち上がりがスム−ズになされ、従来技術のように、過給機による過給効果が損なわれて空気量不足となり、機関の出力低下を来たすという不具合の発生を防止することができる。
【0034】
また、起動後の脱硝装置の立ち上がり時には、温度スイッチを接とし、ヒ−タにて脱硝装置を予熱する事によって、脱硝装置は迅速に反応温度まで上昇せしめられるので、NOx低減による排気ガスの浄化作用への立ち上がり時間を短縮することができ、脱硝効率が向上する。
【0035】
さらに、起動時及び低負荷運転時における補助ブロワの使用から過給機の自立運転への移行時に、脱硝装置が熱的な抵抗となって応答遅れが発生することがなく、これによってかかる運転移行時における補助ブロワのハンチングの発生を防止することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る脱硝装置付きディ−ゼル機関プラントの構成図である。
【図2】上記実施形態とおける脱硝装置まわりの拡大構成図である。
【図3】上記実施形態におけるコントロ−ラの制御ブロック図である。
【図4】上記実施形態における脱硝装置の性能比較線図である。
【図5】従来技術に係る脱硝装置付きディ−ゼル機関プラントの構成図である。
【符号の説明】
1 ディ−ゼル機関
2 機関出口排気管
3 脱硝装置(SCR)
4 過給機
6 補助ブロワ
7 バイパスライン
8、81、82、83、84 電熱ヒ−タ
9 SCR入口弁
10 SCR出口弁
11 バイパス弁
12 排気温度センサ
13 コントロ−ラ
14 温度スイッチ
21 過給機入口排気管
23 保温材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal combustion engine plant with a denitration device in which a denitration device is provided in an exhaust pipe line between an engine outlet and an exhaust turbocharger.
[0002]
[Prior art]
In stationary diesel engine plants such as power generation plants, NOx (nitrogen oxide) purification denitration devices are used for exhaust turbochargers (hereinafter referred to as superchargers) with high exhaust gas temperature and pressure. It is installed in the upstream exhaust pipe to increase the denitration efficiency.
[0003]
FIG. 5 shows an example of the prior art of a power generation diesel engine plant equipped with such a denitration device.
In FIG. 5, 1 is a diesel engine, 4 is a supercharger, 3 is a denitration device (hereinafter abbreviated as SCR), and the denitration device (SCR) 3 is connected to an exhaust gas outlet of the diesel engine 1. An exhaust pipe line between the inlet of the supercharger 4, that is, between the engine outlet exhaust pipe 2 and the supercharger inlet exhaust pipe 21 is provided.
[0004]
An exhaust silencer 5 and an exhaust pipe 22 connect the outlet of the supercharger 4 and the exhaust silencer 5.
Reference numeral 6 denotes an electric auxiliary blower that pumps the supply air to the engine 1 when the exhaust energy of the supercharger 4 is low, such as when the engine 1 is at a low speed.
[0005]
During operation of the diesel engine plant with a denitration device having such a configuration, exhaust gas discharged from the engine 1 enters the SCR 3 through the engine outlet exhaust pipe 2, where NOx is reduced by the denitration catalyst. The supercharger 4 reaches the supercharger 4 through the exhaust pipe 21 and drives an exhaust turbine (not shown) of the supercharger 4. Then, the exhaust gas that has performed expansion work by driving the exhaust turbine passes through the exhaust pipe 22, and after the sound pressure is reduced (silenced) by the exhaust silencer 5, it is discharged to the atmosphere.
[0006]
On the other hand, by driving the exhaust turbine of the supercharger 4, a compressor (not shown) coaxial with the exhaust turbine is driven to rotate, and the compressor compresses the combustion air and sends it to the engine 1.
When the exhaust energy of the exhaust gas to the supercharger 4 is small, such as when the engine 1 is started and when the load is low, the auxiliary blower 6 is operated, and air is compressed by the auxiliary blower 6 and supplied to the engine 1.
[0007]
In the diesel engine plant with the denitration device shown in FIG. 5, since the SCR 3 is provided between the engine outlet exhaust pipe 2 and the supercharger 4 as described above, the high-temperature and high-pressure exhaust gas at the engine outlet is Since it acts on the denitration catalyst of the denitration apparatus 3, high denitration efficiency is obtained and the SCR 3 is also downsized.
[Problems to be solved by the invention]
[0008]
However, the conventional diesel engine plant with a denitration device has the following problems to be solved.
[0009]
(1) Since the SCR 3 has a large heat capacity and is provided in the exhaust pipe upstream of the turbocharger 4, when the load increases, the energy of the exhaust gas from the engine 1 is consumed for warming up the SCR 3, Until the exhaust gas temperature at the inlet / outlet of the SCR 3 becomes equal, the exhaust gas having a sufficient energy amount is not supplied to the supercharger 4.
For this reason, since the supercharging effect by the supercharger 4 is impaired, the air amount becomes insufficient, the output of the engine 1 becomes insufficient, and it takes time to increase the engine load.
[0010]
(2) At the time of transition from the use of the auxiliary blower 6 in the low load range of the engine to the self-sustained operation of the supercharger 4, the SCR 3 having a large heat capacity provided in the exhaust pipe becomes a thermal resistance and responds. Delay occurs. For this reason, the follow-up of the supercharger 4 at the time of the above operation transition is not made smooth, and the occurrence of hunting in the auxiliary blower 6 is observed.
[0011]
(3) Since the heat capacity of the SCR 3 is large and heating is required, the exhaust gas from which NOx is not purified is discharged as it is until the reaction temperature of the SCR 3 is reached.
[0012]
In view of the problems of the prior art, the present invention provides a shortage of exhaust energy of the supercharger accompanying the setting of the SCR having a large heat capacity, hunting of the auxiliary blower at the time of transition from the auxiliary blower operation to the supercharger independent operation, and the SCR. The purpose of the present invention is to provide a diesel engine plant with a denitration device that prevents the generation of unpurified exhaust gas at the start of heating, reduces the rise time for SCR operation, and improves the denitration efficiency. And
[Means for Solving the Problems]
[0013]
Since the present invention is to solve the above problems, an internal combustion engine plant comprising installing a denitration apparatus in an exhaust conduit between the exhaust turbine of the exhaust outlet and the turbocharger of the internal combustion engine, the NOx removal system overall and the denitrator A heater provided to heat the exhaust pipe of the inlet / outlet of the engine , a temperature switch that is brought into contact with the engine when it is started to operate the heater to the reaction temperature of the denitration catalyst of the denitration device , An exhaust gas temperature detector for detecting the exhaust gas temperature and a branch from the exhaust pipe upstream of the denitration device bypass the denitration device and join the exhaust pipe between the outlet of the denitration device and the supercharger a bypass line for a bypass valve for opening and closing the bypass line, a first on-off valve for opening and closing the exhaust passage of the denitration device inlet, a second on-off valve for opening and closing the exhaust passage of the denitration device outlet The detected signal of the exhaust gas temperature of the denitration device upstream from the exhaust temperature detector input, when the exhaust gas temperature has not reached the reaction temperature of the denitration catalyst of the denitration device opens the bypass valve, the first opening The present invention proposes an internal combustion engine plant equipped with a denitration device , comprising a controller that outputs an operation signal for closing the valve and the second on-off valve, and an auxiliary blower that pumps supply air to the engine at a low engine speed .
[0014]
According to this invention, when the denitration apparatus starts up after startup, the temperature switch is in contact, and the denitration apparatus is preheated by the heater. As a result, the denitration apparatus quickly rises to the reaction temperature, and the exhaust gas is quickly purified by reducing NOx.
[0015]
Further, at the time of start-up and low-load operation where the exhaust gas temperature at the inlet of the denitration device does not reach the denitration device, the controller opens the bypass valve based on the detector value of the exhaust gas temperature, and the first on-off valve and the second on-off valve. Control to close the on-off valve.
As a result, the exhaust gas denitration device from the engine is bypassed, flows through the bypass pipe, joins the exhaust pipe downstream of the denitration device, and is supplied to the supercharger.
Therefore, at the time of start-up or low-speed operation, the exhaust gas bypasses the denitration device having a large heat capacity and a large thermal resistance, and bypasses the denitration device to join the exhaust pipe to the supercharger.
[0016]
Therefore, at the time of start-up and low-load operation, the turbocharger is not affected by the thermal resistance and flow resistance of the denitration device, and the rapid rise of the rotational speed is made smooth. The occurrence of the problem that the air quantity is insufficient and the engine output is reduced is prevented.
[0017]
Further, during the low-speed operation, when the auxiliary blower is used to shift to the self-sustained operation of the supercharger, it is possible to prevent the denitration device from becoming a thermal resistance and causing a response delay.
This prevents occurrence of hunting of the auxiliary blower at the time of such operation transition.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Only.
[0019]
FIG. 1 is a configuration diagram of a diesel engine plant with a denitration device according to an embodiment of the present invention, FIG. 2 is an enlarged configuration diagram in the vicinity of a denitration device (SCR), and FIG. 4 is a comparison diagram of operational effects.
In FIG. 1, 1 is a diesel engine, 4 is a supercharger, 3 is a denitration device (hereinafter abbreviated as SCR), and the denitration device (SCR) 3 is connected to an exhaust gas outlet of the diesel engine 1. An exhaust pipe line between the inlet of the supercharger 4, that is, between the engine outlet exhaust pipe 2 and the supercharger inlet exhaust pipe 21 is provided. An exhaust silencer 5 and an exhaust pipe 22 connect the outlet of the supercharger 4 and the exhaust silencer 5.
Reference numeral 6 denotes an electric auxiliary blower that pumps the supply air to the engine 1 when the exhaust energy of the supercharger 4 is low, such as when the engine 1 is at a low speed.
The above basic configuration is the same as that of the diesel engine plant according to the prior art shown in FIG.
[0020]
In the embodiment of the present invention, a heater for heating the denitration device and the exhaust pipe line in the vicinity thereof is provided, and means for bypassing the exhaust gas SCR is provided.
That is, in FIGS. 1 and 2, the SCR 3 is provided with a heater 8 for heating the SCR 3 from the outside (or from the inside).
In addition, as shown in FIG. 2, the heating heater 8 for heating the SCR 3 is wound around the outer shell of the SCR 3 so that the entire SCR 3 can be heated uniformly, and the outer periphery of the heater 8 A heat insulating material 23 is wound around the wall to provide a heat insulating effect.
[0021]
Further, the heaters 81, 82, 83 and the heater 84 are also wound around the inlet side exhaust pipe (engine outlet exhaust pipe) 2 and the outlet side exhaust pipe (supercharger inlet exhaust pipe) 21 of the SCR 3, respectively. Thus, the temperature level is kept high even in the vicinity of the SCR 3 entrance.
[0022]
In FIG. 1, reference numeral 14 denotes a temperature switch, and the operation and non-operation of the heater 8 for the SCR 3 and the heaters 81, 82, 83, and 84 of the exhaust pipe are switched by the connection / disconnection of the temperature switch 14. ing.
A bypass line 7 connects the SCR upstream of the engine outlet exhaust pipe 2 and the SCR downstream of the supercharger inlet exhaust pipe 21.
A bypass valve 11 is provided in the bypass line 7 to open and close the pipe.
An SCR inlet valve 9 is provided at the SCR inlet of the engine outlet exhaust pipe 2, that is, between the branch portion of the bypass line 7 of the exhaust pipe 2 and the SCR 3, and opens and closes this pipe line. An SCR outlet valve 10 is provided between the SCR outlet of the supercharger inlet exhaust pipe 21, that is, between the junction of the bypass line 7 of the exhaust pipe 21 and the SCR 3, and opens and closes this pipe line.
[0023]
Reference numeral 12 denotes an exhaust temperature sensor attached to a portion of the engine outlet exhaust pipe 2 near the engine outlet, which detects the exhaust gas temperature at the engine outlet.
A controller 13 receives a detection signal of the engine outlet exhaust gas temperature from the exhaust temperature sensor 12 and outputs an open / close control signal to the bypass valve 11, the SCR inlet valve 9 and the SCR outlet valve 10.
[0024]
During normal load operation of a diesel engine plant with a denitration device having such a configuration, the controller 13 sends a control signal for opening the SCR inlet valve 9 and the SCR outlet valve 10 and closing the bypass valve to each of the valves 9, 10. , Send to 11.
During such operation, the exhaust gas discharged from the engine 1 enters the SCR 3 through the engine outlet exhaust pipe 2 and the SCR inlet valve 9, where NOx is reduced by the denitration catalyst, and then the supercharger inlet exhaust pipe 21 and The supercharger 4 is reached through the SCR outlet valve 10 and the exhaust turbine (not shown) of the supercharger 4 is driven. Then, the exhaust gas that has performed expansion work by driving the exhaust turbine passes through the exhaust pipe 22, and after the sound pressure is reduced (silenced) by the exhaust silencer 5, it is discharged to the atmosphere.
[0025]
When the engine 1 is started, the temperature switch 14 is in contact with the electric heater 8 of the SCR 3 and the electric heaters 81, 82, 83 and 84 of the SCR inlet / outlet exhaust pipe, and the SCR 3 and its inlet / outlet exhaust pipe are connected to the SCR 3 Until the temperature of the catalyst reaches the reaction temperature of the catalyst (about 350 ° C.).
As a result, the temperature of the SCR 3 is rapidly increased to the reaction temperature, the catalyst is purified quickly after activation, and there is no problem that exhaust gas is discharged without being purified.
[0026]
At the time of startup, the controller 13 opens the bypass valve 11 and closes the SCR inlet valve 9 and the SCR outlet valve 10.
As a result, the exhaust gas from the engine 1 can flow from the engine outlet exhaust pipe 2 to the supercharger inlet exhaust pipe 21 by bypassing the SCR 3.
Therefore, at the time of start-up, the exhaust gas bypasses the SCR 3 having a large heat capacity and is directly guided to the supercharger 4, so that the rotation of the supercharger 4 is quickly started.
[0027]
The operation after the engine 1 is started will be described with reference to the block diagram shown in FIG. 3. The exhaust gas temperature at the engine outlet detected by the exhaust temperature sensor 12, that is, the exhaust gas temperature Ts at the SCR 3 inlet is the exhaust temperature comparison unit of the controller 13. 131 is input.
Reference numeral 132 denotes an exhaust gas temperature setting unit, in which the reaction temperature TR of the SCR 3 is set.
Wherein the exhaust gas temperature comparing section 131 compares the set exhaust temperature T R and the detection exhaust temperature Ts.
This comparison signal, that is, ΔT = Ts−T R is input to the valve opening / closing control unit 133.
[0028]
In the valve opening / closing control unit 133, when the detected exhaust gas temperature Ts does not reach the reaction temperature T R of SCR 3, that is, when Ts <T R , the bypass valve 11 is opened, the SCR inlet 9 and the SCR outlet valve 10 are opened. An operation signal for closing is output to the valves 11, 9 and 10.
Thus, when the SCR rises after startup does not reach the reaction temperature T R, the exhaust gas bypasses a large becomes SCR3 heat capacity, flows directly through the bypass pipe 7 in supercharger 4.
Accordingly, the turbocharger 4 can be quickly started up without being affected by the thermal resistance and flow resistance of the SCR 3.
[0029]
In the start-up and after startup, the auxiliary blowers 6 are operated, in such operating condition, detected exhaust gas temperature Ts as described above without reaching SCR3 reaction temperature T R (Ts <T R state), as described above, the exhaust gas bypasses the SCR 3 and flows through the bypass line 7 and is directly supplied to the supercharger 4. Therefore, when the auxiliary blower 6 is used and the turbocharger 4 is shifted to the self-sustained operation. It is avoided that the SCR 3 becomes a thermal resistance and a response delay occurs, and the supercharger 4 can be quickly followed at the time of the transition to the operation. Thereby, the occurrence of hunting of the auxiliary blower 6 at the time of such operation transition is prevented.
[0030]
Further, the valve opening / closing control unit 133 has an output from the exhaust temperature comparison unit 131 of Ts = T R , that is, a reaction temperature T R at which the detected exhaust gas temperature Ts is set when the turbocharger 4 is in a normal load operation. , The SCR inlet valve 9 and the SCR outlet valve 10 are gradually opened to maintain the heat balance in the exhaust pipe.
[0031]
When the SCR inlet valve 9 and the SCR outlet valve 10 are fully opened, the valve opening / closing control unit 133 closes the bypass valve 11. Thus, the denitration operation in which the SCR 3 is completely operated is entered, and the exhaust gas whose NOx is reduced by the SCR 3 drives the exhaust turbine of the supercharger 4 through the supercharger inlet exhaust pipe 21.
[0032]
FIG. 4 shows an example of the operating performance of the present invention and the conventional one. As shown in FIG. 4, in the present invention (B), the increase of the SCR 3 to the reaction temperature t 2 is significantly faster than that of the conventional example t 1 shown in FIG. It is greatly reduced.
[0033]
【The invention's effect】
As described above, according to the present invention, the exhaust gas is introduced into the supercharger via the bypass line without passing through the denitration device having a large heat capacity and a large thermal resistance at the time of start-up and low-speed operation.
As a result, the turbocharger is smoothly affected by the thermal resistance and flow resistance of the denitration device, and the rapid rotation of the rotational speed is made smooth, and the supercharging effect by the supercharger is impaired as in the prior art. Therefore, it is possible to prevent the occurrence of a problem that the air amount becomes insufficient and the engine output is reduced.
[0034]
Also, when the denitration device starts up after startup, the denitration device can be quickly raised to the reaction temperature by connecting the temperature switch and preheating the denitration device with a heater, so the exhaust gas can be purified by reducing NOx. The rise time to the action can be shortened, and the denitration efficiency is improved.
[0035]
In addition, when the auxiliary blower is used during start-up and low-load operation, and when the turbocharger shifts to self-sustained operation, the denitration device does not become a thermal resistance, causing a delay in response. Occurrence of hunting of the auxiliary blower at the time can be prevented.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a diesel engine plant with a denitration apparatus according to an embodiment of the present invention.
FIG. 2 is an enlarged configuration diagram around a denitration apparatus in the embodiment.
FIG. 3 is a control block diagram of a controller in the embodiment.
FIG. 4 is a performance comparison diagram of the denitration apparatus in the embodiment.
FIG. 5 is a configuration diagram of a diesel engine plant with a denitration device according to the prior art.
[Explanation of symbols]
1 Diesel Engine 2 Engine Outlet Exhaust Pipe 3 Denitration Equipment (SCR)
4 Supercharger 6 Auxiliary blower 7 Bypass line 8, 81, 82, 83, 84 Electric heating heater 9 SCR inlet valve 10 SCR outlet valve 11 Bypass valve 12 Exhaust temperature sensor 13 Controller 14 Temperature switch 21 Supercharger inlet Exhaust pipe 23 insulation

Claims (1)

内燃機関の排気出口と過給機の排気タービンとの間の排気管路に脱硝装置を設置してなる内燃機関プラントにおいて、
前記脱硝装置全体および該脱硝装置の出入口の排気管を加熱するように設けられたヒータと、
前記機関起動時に接となって前記ヒータを作動して前記脱硝装置の脱硝触媒の反応温度まで加熱せしめる温度スイッチと、
前記機関出口の排気ガス温度を検出する排気温度検出器と、
前記排気管路の前記脱硝装置の上流から分岐されて該脱硝装置をバイパスし、該脱硝装置の出口と過給機の間の排気管路に合流するバイパスラインと、
該バイパスラインを開閉するバイパス弁と、
前記脱硝装置入口の排気管路を開閉する第1の開閉弁と、
前記脱硝装置出口の排気管路を開閉する第2の開閉弁と、
前記排気温度検出器から脱硝装置上流の排気ガス温度の検出信号が入力され、該排気ガス温度が前記脱硝装置の脱硝触媒の反応温度に達していないとき前記バイパス弁を開き、前記第1の開閉弁及び第2の開閉弁を閉じる操作信号を出力するコントローラと、さらに機関低速時に機関へ給気を圧送する補助ブロワとを備えたことを特徴とする脱硝装置付き内燃機関プラント。
In an internal combustion engine plant in which a denitration device is installed in an exhaust pipe line between an exhaust outlet of an internal combustion engine and an exhaust turbine of a supercharger,
A heater provided to heat the entire denitration device and an exhaust pipe at the inlet / outlet of the denitration device ;
A temperature switch that is brought into contact when the engine is started to heat the heater to the reaction temperature of the denitration catalyst of the denitration device ;
An exhaust gas temperature detector for detecting the exhaust gas temperature at the engine outlet;
A bypass line branched from upstream of the denitration device of the exhaust pipe to bypass the denitration device, and merged into an exhaust line between the outlet of the denitration device and a supercharger;
A bypass valve for opening and closing the bypass line;
A first on-off valve for opening and closing an exhaust pipe at the inlet of the denitration device;
A second on-off valve that opens and closes the exhaust pipe at the outlet of the denitration device;
When an exhaust gas temperature detection signal upstream of the denitration device is input from the exhaust temperature detector and the exhaust gas temperature has not reached the reaction temperature of the denitration catalyst of the denitration device, the bypass valve is opened, and the first opening / closing is performed. An internal combustion engine plant with a denitration device , comprising: a controller that outputs an operation signal for closing the valve and the second on-off valve; and an auxiliary blower that pumps air supply to the engine at a low engine speed .
JP12034997A 1997-04-23 1997-04-23 Internal combustion engine plant with denitration equipment Expired - Fee Related JP3924046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12034997A JP3924046B2 (en) 1997-04-23 1997-04-23 Internal combustion engine plant with denitration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12034997A JP3924046B2 (en) 1997-04-23 1997-04-23 Internal combustion engine plant with denitration equipment

Publications (2)

Publication Number Publication Date
JPH10299461A JPH10299461A (en) 1998-11-10
JP3924046B2 true JP3924046B2 (en) 2007-06-06

Family

ID=14784039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12034997A Expired - Fee Related JP3924046B2 (en) 1997-04-23 1997-04-23 Internal combustion engine plant with denitration equipment

Country Status (1)

Country Link
JP (1) JP3924046B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160032865A (en) * 2014-09-17 2016-03-25 현대중공업 주식회사 Exhaust System for Corrosion of SCR Chamber

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7818960B2 (en) 2007-03-14 2010-10-26 Gm Global Technology Operations, Inc. SCR cold start heating system for a diesel exhaust
JP4786632B2 (en) * 2007-11-09 2011-10-05 中国電力株式会社 Control device and control method for denitration apparatus
JP5609795B2 (en) 2011-07-12 2014-10-22 株式会社デンソー Supercharger for vehicle
KR101300706B1 (en) * 2011-07-27 2013-08-26 대우조선해양 주식회사 Exhaust gas cleaning apparatus and method in ship or marine structure
KR101366898B1 (en) * 2012-04-24 2014-02-24 두산엔진주식회사 Selective catalytic reuction system for internal combustion engine
CN111636951A (en) * 2020-04-28 2020-09-08 江苏峰业科技环保集团股份有限公司 Marine diesel engine tail gas SCR deNOx systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160032865A (en) * 2014-09-17 2016-03-25 현대중공업 주식회사 Exhaust System for Corrosion of SCR Chamber
KR102024398B1 (en) * 2014-09-17 2019-09-23 한국조선해양 주식회사 Exhaust System for Corrosion of SCR Chamber

Also Published As

Publication number Publication date
JPH10299461A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
US5709081A (en) Exhaust gas system for a combustion engine with exhaust driven turbo charge
US8511066B2 (en) Multi-stage turbocharging system with thermal bypass
US20100139269A1 (en) Turbocharged internal combustion engine and method
US8677751B2 (en) Rich fuel mixture super-turbocharged engine system
US20100139267A1 (en) Secondary air system for a combustion engine breathing system
EP2261479B1 (en) Warm-up method and warm-up system for catalytic converter for purifying exhaust gas
US6131553A (en) Internal combustion engine having combustion heater
JP2004100694A (en) Supercharger for internal-combustion engine and internal-combustion engine provided with such supercharger
GB2414691A (en) An emission control apparatus for an engine
JP2001289058A (en) Steam injection type gas turbine device
WO2021015613A1 (en) Air flow heater assist by e-turbo
JP3924046B2 (en) Internal combustion engine plant with denitration equipment
JP2010209735A (en) Control device for internal combustion engine
JP3735169B2 (en) Diesel engine with denitration equipment
JP4202583B2 (en) Denitration control method and apparatus for combined cycle power plant
JPH0396612A (en) Method and apparatus for processing exhaust gas
JP2001514719A (en) Apparatus and method for reducing emissions in a catalytic converter exhaust system
JPH09256814A (en) Diesel engine plant
JP4136262B2 (en) Turbocharger system
JP2003003836A (en) Exhaust bypass device for turbocharger
JPH0587242U (en) Gas turbine engine
JPH07661Y2 (en) Exhaust sensor mounting structure for turbocharged engine
CN113738500A (en) Turbocharger for an internal combustion engine
JPH04103817A (en) Exhaust supplying method and device of supercharger of automobile
JPH01202515A (en) Heating device for vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees