JP3922985B2 - Drying method of air-dried seed tobacco - Google Patents

Drying method of air-dried seed tobacco Download PDF

Info

Publication number
JP3922985B2
JP3922985B2 JP2002242092A JP2002242092A JP3922985B2 JP 3922985 B2 JP3922985 B2 JP 3922985B2 JP 2002242092 A JP2002242092 A JP 2002242092A JP 2002242092 A JP2002242092 A JP 2002242092A JP 3922985 B2 JP3922985 B2 JP 3922985B2
Authority
JP
Japan
Prior art keywords
drying
air
tobacco
period
dried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002242092A
Other languages
Japanese (ja)
Other versions
JP2004073152A (en
Inventor
聡 勝屋
義弘 石渡
斉藤  均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc filed Critical Japan Tobacco Inc
Priority to JP2002242092A priority Critical patent/JP3922985B2/en
Publication of JP2004073152A publication Critical patent/JP2004073152A/en
Application granted granted Critical
Publication of JP3922985B2 publication Critical patent/JP3922985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Tobacco Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バーレー種等の空気乾燥種葉たばこを乾燥させるに際し、その香喫味を損なうことなく、しかも亜硝酸態窒素および/またはニトロソアミンの生成を抑制することのできる空気乾燥種葉たばこの乾燥方法に関する。
【0002】
【関連する背景技術】
在来種やバーレー種等の空気乾燥種葉たばこは、その収穫後、黄変期、褐変期、そして中骨乾燥期を経て乾燥される。ちなみに葉たばこの乾燥に必要な日数は、葉たばこの着葉位置により異なるが、一般的には中葉系の葉たばこの場合には20〜30日程度、また本葉系の葉たばこの場合には30〜40日程度である。
【0003】
ちなみに空気乾燥種葉たばこの葉色は、図1に示すように緑色から黄色に変化し、更には褐色に変化する。即ち、緑色の収穫葉は、その乾燥によって葉たばこに含まれるクロロフィルが分解し、葉中に存在していたカロチノイド系色素が現れて黄変する。この黄変は、葉たばこの植物細胞が生きている間の呼吸作用を伴いながら酵素の作用を受けて進行する。その後、葉たばこの乾燥が進むと、酵素の作用により上記カロチノイド系色素が分解し、新たに褐色色素が生成されて褐変する。尚、葉たばこが褐変した後にその乾燥が進まない場合には、残存する水分によって葉たばこはむれて黒褐色となり、更には黒変して腐敗する。
【0004】
ところで葉たばこの乾燥は、単に葉中の水分を脱水して葉を乾かすものではなく、脱水と並行して葉中に含まれる内容成分を変化させることで、葉たばこに特有な色と香喫味を持たせる処理からなる。これ故、葉たばこの乾燥は適当な温湿度条件下で穏やかに脱水させ、葉中の酵素作用により香喫味に悪い影響を与える成分を分解・消失させ、逆に良い香りや味に関与する成分を生成・増加させるように行われる。概念的には図2に示すようにたばこ葉の乾燥が進められ、先ず葉たばこの内容成分を変化させた後(キュアリング)、脱水して葉を乾固させる(ドライイング)。尚、実際的にはキュアリングの過程においてもドライイングが進むので、キュアリングとドライイングとを明確に区別することは難しい。
【0005】
【発明が解決しようとする課題】
ところで最近、乾燥した葉たばこに含まれる有害物質である、たばこ特異的ニトロソアミン(TSNA;Tobacco Specific Nitrosamine)の含有量を低減することが種々試みられている。尚、TSNAは、代表的にはN'-ニトロソノルニコチン(NNN),N'-ニトロソアナタビン(NAT),N'-ニトロソアナバシン(NAB),および4-(N'-ニトロソメチルアミノ)-4-(3-ピリジル)-1-ブタノン(NNK)等からなる。
【0006】
このようなTSNAは、収穫直後の葉たばこ(緑色の生葉)には殆ど含まれることはない。しかしその後の乾燥期間や貯蔵期間において、葉たばこ中に存在する硝酸(硝酸態窒素)が葉たばこの葉面に存在する硝酸還元菌によって亜硝酸(亜硝酸態窒素)となり、この亜硝酸(亜硝酸態窒素)が葉たばこ中に存在するアルカロイドと反応することによってTSNAが生成されるものと考えられる。
【0007】
そこでこのようなTSNAの生成を抑制するべく、特表2001−503247号公報には、乾燥途中の葉たばこにマイクロ波を照射することが開示されている。しかしこの手法は、TSNAの生成が少ない黄変期の葉たばこをマイクロ波を用いて急激に脱水してその乾燥を終了させるので、前述したキュアリングを十分に行うことができず、葉たばこの香喫味を確保する上で問題がある。
【0008】
またWO 00/15056号公報には、乾燥前の葉たばこ(収穫したばかりの、相対的に多くの水分を含んだ生で緑のたばこ)、好ましくは黄色くなり始めた葉たばこをTSNAの生成を抑制し得る環境に、TSNAの生成を抑制し得る時間だけ晒せば、TSNAの生成を抑制し得る旨が開示される。尚、上記環境とは湿度、温度、温度の変化速度、空気の流量等を制御し得る環境であると定義されている。しかしこの手法においては、葉たばこの香喫味を確保する上で重要なキュアリング(熟成)が行われないので、葉たばことしての品質を確保する上で問題がある。
【0009】
尚、特開昭50−70599号公報には、黄変が完了した葉たばこを温度35〜40℃、湿度70〜90%の条件において褐変が8〜9割進むまで風火力を用いて乾燥させ、更に温度40〜45℃、湿度60〜80%の条件において葉肉を乾固させ、引き続き温度55〜60℃の条件にて葉脈を乾固させる乾燥方法が開示される。しかしながらこの乾燥方法は、葉たばこの酵素活性を十分に保ちながらその内容成分の分解を促進させると共に、その乾燥に要する時間を短縮することを目的とするものであり、TSNAの生成とその抑制については何等配慮していない。
【0010】
また第49回たばこ化学者研究会議(1995-9-24〜27)のシンポジウム議事録「IMPACT OF PLANT MANIPULATION and POST HARVEST PHENOMENA on LEAFE COMPOSITION Symposium Proceeding 49th Meeting Tobacco Chemists' Research Conference (September 24-27,1995) Lexington, Kentucky, USA」における論文「空気乾燥がたばこの化学構成に与える影響」には、本葉中の細胞の無欠性が失われた後に、黒たばこに熱(70℃)を加えると、ラミナと中骨中の亜硝酸レベルとTSNAの蓄積が減らせること、また乾燥段階で葉たばこを急速乾燥すると、周囲温度での低速乾燥中に発生する微生物の働きが少なくなり、葉たばこの品質が低下することが開示される。
【0011】
また上記論文には、ポーランドでのスクロニオウスキーたばこの伝統的な乾燥方法は2段階の乾燥手順からなり、最初にたばこを自然乾燥し、ラミナが黄化または褐変したとき、中骨を乾燥する為にたばこを65℃で2日間加熱することが開示される。そしてこのようにして乾燥させた葉たばこによれば、亜硝酸塩とTSNAの双方の値が小さくなることが報告されている。またこの現象は、それ以上の細菌の成長を許さない急速加熱によって説明し得ることが開示される。しかしこの論文を参酌しても、葉たばこの香喫味(品質)を維持しながら、如何にしてTSNA含有量を少なくするかと言う点で問題が残る。
【0012】
本発明はこのような事情を考慮してなされたもので、その目的は、葉たばこの香喫味を十分に確保しながら、比較的簡単に亜硝酸の生成および/またはTSNAの生成を効果的に抑制することのできる空気乾燥種葉たばこの乾燥方法を提供することにある。
即ち、本発明は、葉たばこが持つ香喫味を維持し、その乾燥時に生成される亜硝酸および/またはTSNAを抑制することができ、TSNA含有量が少なく、しかも香喫味の豊かな高品質な葉たばこを容易に得ることのできる空気乾燥種葉たばこの乾燥方法を提供することを目的としている。
【0013】
【課題を解決するための手段】
上述した目的を達成すべく本発明に係る空気乾燥種葉たばこの乾燥方法は、収穫した空気乾燥種葉たばこを空気乾燥するに際して、自然条件下で温度および湿度を管理して前記空気乾燥種葉たばこを自然乾燥する自然乾燥工程と、温度および湿度を強制的に制御した環境条件下で前記空気乾燥種葉たばこを予め設定した一定期間に亘って制御乾燥する制御乾燥工程を含み、
特に前記制御乾燥工程を行う一定期間を、前記空気乾燥種葉たばこの褐変期,中骨乾燥期の前期および中骨乾燥期の全期間の中から選択した1つまたは2つの期間とし、前記制御乾燥を、温度を25〜35℃の範囲において設定し、且つ湿度を65〜85%の範囲において設定して実行し、これによって前記空気乾燥種葉たばこの褐変期以降における亜硝酸態窒素および/またはニトロソアミンの生成を抑制してなることを特徴としている。
【0014】
ち、本発明に係る葉たばこの乾燥方法は、収穫した空気乾燥種葉たばこに対する一般的な乾燥方法である自然乾燥(キュアリング)を行うに際して、上述した条件にてその乾燥期間中の一定期間を温度および湿度を強制的に制御可能な乾燥室に収容し、予め設定した一定の温度・湿度条件下で制御乾燥するもので、この制御乾燥により褐変期以降に生成される亜硝酸および/またはTSNAを抑制してニトロソアミンの含有量の少ない乾燥葉たばこを得ることを特徴としている。
【0015】
尚、上記制御乾燥工程以外の空気乾燥は、パイプハウスや木造乾燥室において昼夜間の温度・湿度の日変化に応じた自然環境条件下で、所定の範囲内で乾燥管理して行われる(自然乾燥工程)。また前記制御乾燥は、加熱送風設備が設けられた乾燥室において、例えばその温度および湿度を一定に保ち、具体的には25〜35℃の範囲において設定された一定の温度、および65〜85%の範囲において設定された一定の湿度の環境下で行うことが望ましい。
【0016】
特に本発明に係る空気乾燥種葉たばこの乾燥方法は、収穫した空気乾燥種葉たばこを、その黄変期を経た褐変初期時まで自然乾燥させ(初期乾燥工程)、この初期乾燥工程を経て褐変し始めた空気乾燥種葉たばこを一定期間に亘って一定の温度・湿度条件下で乾燥させ(強制乾燥工程)、その後、この強制乾燥工程を経た空気乾燥種葉たばこを再び自然乾燥させる(最終乾燥工程)ことで、前記葉たばこの褐変期以降における亜硝酸態窒素および/またはニトロソアミンの生成を抑制することを特徴としている。
【0017】
即ち、収穫した空気乾燥種葉たばこをその褐変初期時まで自然乾燥させることでキュアリングし、その後、褐変し始めた空気乾燥種葉たばこを一定期間に亘って乾燥室に収容して一定の温度・湿度条件下で強制乾燥させることで亜硝酸態窒素および/またはニトロソアミンの生成を抑制しながらドライイングし、その後、再び上記空気乾燥種葉たばこを自然乾燥させることでその内容成分の安定化を図り、これによって葉たばこの香喫味を犠牲にすることなく、亜硝酸態窒素および/またはニトロソアミンの含有量の少ない乾燥葉たばこを得ることを特徴としている。尚、葉たばこの強制乾燥は、少なくとも葉たばこの表面全域が褐色となるまで行うことが望ましい。
【0018】
【発明の実施の形態】
以下、図面を参照しながら本発明に係る空気乾燥種葉たばこの乾燥方法について説明する。
葉たばこの乾燥の基本となる自然乾燥(空気乾燥)は、基本的には図3に示すように昼間・夜間の日変化に対応させてその温度・湿度条件を変化させる管理を行いながら、徐々に乾燥を進めることにより行われる。この自然乾燥は、例えばビニール等で覆われたパイプハウスに葉たばこを吊すことで雨水の侵入を防ぐと共に遮光幕を用いて日射量を調整し、更にはパイプハウスの妻窓・裾部・肩部の開け閉めにより、その温度と湿度、また空気の流入を調整しながら行われる。
【0019】
具体的には上記葉たばこの自然乾燥における管理は、例えば日中の高温時には温度が30℃、湿度が70〜75%程度となるように、また夜間の低温時には温度が20℃、湿度が90〜95%程度となるように、パイプハウス内の温湿度を調整して行われる。このような日々の自然環境に即した乾燥条件下における葉たばこの自然乾燥によって葉たばこの吸放湿が繰り返され、葉たばこの乾燥が徐々に進行して香喫味や色択が形成される。
【0020】
本発明はこのような葉たばこの自然乾燥を、先ずその収穫時から黄変期または褐変期まで、標準的には乾燥開始から3〜5日(黄変終了)または6〜10日(褐変終了)まで実施する。その後,黄変終了または褐変終了した葉たばこを温湿度の制御が可能な乾燥室に移し替え、一定期間に亘ってその温湿度を一定に制御した条件下で制御乾燥(強制乾燥)する。この制御乾燥は、例えば温度条件を25〜35℃の範囲、好ましくは30℃に設定し、また湿度範囲を65〜85%の範囲、好ましくは70〜80%に設定して実行される。この制御乾燥は3〜20日程度、好ましくは3〜10日間程度に亘って行われる。
【0021】
ちなみにこの制御乾燥で使用する乾燥室については、例えば特開平8−154647号公報や特開平6−327451号公報にそれぞれ記載の乾燥装置のように、温度・湿度および送風量を制御できる加熱送風設備を備えたものであることが望ましい。しかし温度および湿度を一定の環境下に制御できるものであれば、必ずしも上述した乾燥室を用いる必要はない。
【0022】
その後,乾燥が進行した葉たばこを、例えば再度前述したパイプハウスに移し替え、中骨が乾固するまで自然乾燥させてその乾燥処理を終了する。尚、褐変が終了した葉たばこを、その中骨が乾固するまで上述した制御乾燥だけにより乾燥処理することも可能である。具体的には図4に示すように、下記(a)〜(e)にそれぞれ示すような乾燥工程を経て葉たばこを乾燥するようにすれば良い。
(a) 黄変期までを自然乾燥し、その後、褐変期については制御乾燥した後、中骨乾燥期においては再び自然乾燥する。
(b) 黄変期までを自然乾燥し、その後、褐変期と中骨乾燥期の前期に亘って制御乾燥した後、中骨乾燥期の後期においては再び自然乾燥する。
(c) 黄変期までを自然乾燥し、その後、褐変期と中骨乾燥期に亘って制御乾燥する。
(d) 黄変期と褐変期に亘って自然乾燥し、その後、中骨乾燥期の前期において制御乾燥した後、中骨乾燥期の後期においては再び自然乾燥する。
(e) 黄変期と褐変期に亘って自然乾燥し、その後、中骨乾燥期において制御乾燥する。
【0023】
制御乾燥の温度・湿度条件については前述した図3に示す範囲の昼間の温度・湿度条件に類似する範囲で、例えば日中の高温・低湿、夜間の低温・高湿の繰り返しによる自然乾燥に代えて、上記日中の高温・低湿条件に維持する等して行われる。
尚、本発明は上述した乾燥形態に限定されるものではない。例えば低湿条件において葉たばこの乾燥を制御する時期およびその期間については、葉たばこの種類や収穫時期・乾燥経過等を勘案して定めれば良いものである。またここで葉たばこをパイプハウス内に収容して乾燥するものとして説明したが、その他の構造物からなる乾燥室に収容して乾燥しても良いことは言うまでもない。このような乾燥工程を経て葉たばこを乾燥することで、葉たばこの香喫味を損なうことなく、しかもTSNAの生成を抑制してその含有量の低減が図られる。
【0024】
以下の実施例により本発明に係る乾燥方法を詳細に説明する。空気乾燥種葉たばこ乾燥に要する日数は、葉たばこの着位(着葉位置)、葉の素質、天候等の条件によって変化する。しかしここでは一般的な日数として、葉全体が収穫直後の緑色から黄色になるまで(黄変終了)の黄変期が5日間、黄変した葉が褐色になるまで(褐変終了)の褐変期が5日間、その後、葉の中骨が乾固するまでの中骨乾燥期が20日間であり、その乾燥に要する期間が計30日であると看做した。そして各乾燥時期での温度および湿度条件をそれぞれ異ならせて乾燥を行い、その温湿度がTSNAの生成に与える影響を調査した。尚、上記期間は一応の目安であり、実際に葉たばこの乾燥に要する日数は、前述したようにその経過によって変化する。
【0025】
〈実験例1〉
先ず乾燥条件の主要因である温度および湿度のTSNA生成に対する影響を明らかにするため、空気乾燥種葉たばことして代表的なバーレー種である“バーレー21”の中葉を用い、温度・湿度条件を異ならせた条件で乾燥を行った。
先ずパイプハウス内において5日間、即ち黄変終了まで自然乾燥を行い、その後、温湿度条件を異ならせた6台の乾燥室に移し替えてそれぞれ乾燥終了までの25日間に亘って乾燥を行った。上記の温湿度条件は、夜間と日中の温度を想定して22℃および30℃の2水準,湿度についてはパイプハウス内の状況を想定して70%,80%,90%の3水準とし、これらを組み合わせた6水準の温湿度条件に制御した乾燥室により乾燥を行った。その後、各温湿度条件により乾燥させた葉たばこのラミナ(葉身)を凍結乾燥し、ラミナ中に含まれるTSNAの量を測定した。また比較例として、パイプハウス内において全期間に亘って空気乾燥した葉たばこのラミナ中に含まれるTSNA量を測定した。
【0026】
尚、TSNAの測定は以下の方法で行った。
TSNAの4成分(NNN,NAT,NABおよびNNK)は、文献「Spiegelhalder B., Kubacki S. and Fischer S. (1989) Beitr. Tabakforsch. Int., 14 (3), 135-143」,「 Fischer S. and Spiegelhalder B. (1989) Beitr. Tabakforsch. Int., 14 (3), 145-153」に紹介される「スピーゲルハルダーの方法」に準じたガスクロマトグラフィによって定量した。即ち、葉たばこを粉砕した各粉末試料をそれぞれ2.5gずつ100mL容三角フラスコに秤取り、抽出液(Thimerosal 100μg/1mL含有の0.01M NaOH溶液)を50mLを添加し、室温で2時間振とうした。得られた粗抽出液をろ紙(ADVANTEC No.5C)を用いて濾過し、各ろ液10mLをキーゼルグール(粒径60〜160mm,MERCK社製)およびアスコルビン酸を充填したカラムに添加した。更に蒸留水10mL添加した後、ジクロロメタンを用いて必要な画分を転容して分取し、これをTSNA定量用試料とした。得られた試料中のTSNA各成分をカラムDB−17(J&W社製),検出器TEA−543(Thermedics社製)を装備したガスクロマトグラフィHP5890(Hewlett Packerd社製)を用いて分析した。
【0027】
尚、自然乾燥に使用したパイプハウスの大きさは床面積40.5m2(間口4.5m×長さ9.0m),高さ3.2mで黒寒冷紗を用いて日射量の調整を行った。温湿度を制御する乾燥室は木原製作所製で、内形寸法が床面積0.75m2(間口0.90m×奥行0.84m),高さ1.80mであり,ダンパーの閉開,電気ヒーターおよび超音波加湿器により温湿度を制御し、風量は20cm/secとした。装置内部の側面にはスチールハンガーを保持できるようスチール製の吊り枠を設けた。
【0028】
図5は、上述した測定法により求められた各試料(葉たばこ)に含まれるTSNA含量の測定結果を示している。この図5の測定結果に示されるように、乾燥室を用いて乾燥時の温湿度条件を一定に制御した場合、22℃および30℃のいずれの温度条件であっても、湿度を70%または80%と低湿条件で乾燥した方がパイプハウス内において葉たばこを自然乾燥した場合よりもTSNAの生成を抑制することが確認できた。また90%と高湿条件で乾燥した場合には、パイプハウス内において葉たばこを自然乾燥した場合よりもTSNAの生成量が増加することが確認できた。この結果、乾燥条件の主要因である温度および湿度がTSNAの生成に及ぼす影響は、温度よりもむしろ湿度の影響が大きいことが明らかとなった。
【0029】
〈実験例2〉
次に上記の解析結果を踏まえて、低湿条件での乾燥がTSNA生成に与える影響を調査するため、TSNAが主に生成されると考えられる褐変期以降の一定期間だけ温度を30℃,湿度を70%に設定した乾燥室に葉たばこをそれぞれ収容して制御乾燥を行った。具体的にはTSNAは収穫直後の葉たばこ(緑色の生葉)には殆ど存在せず、主に褐変期以降に生成されることから、葉たばこを上述した低湿条件(70%)において乾燥させる期間を、褐変期,中骨乾燥期の前期,および中骨乾燥期の全期間として乾燥を行った。尚、上述した温度30℃,湿度70%に制御した乾燥室を用いた乾燥期間以外は、パイプハウスにおいて自然乾燥するものとした。
【0030】
乾燥実験にはバーレー種である“きたかみ1号”の中葉を供試した。各乾燥区分毎に乾燥終了した葉たばこのラミナ(葉身)を凍結乾燥し,ラミナ中のTSNAの含量を測定した。尚、この実験も前述した乾燥施設を用いて葉たばこを乾燥処理し、また前述した測定法によりTSNA量を測定した。図6は、その測定結果を示している。
【0031】
この図6に示される結果から明らかなように、低湿条件下(70%)で乾燥を行った時期によって、その葉たばこに含まれるTSNAの量に差異がみられた。しかし褐変期,中骨乾燥期の前期だけ,或いは中骨乾燥期の全期間に亘って低湿条件で乾燥を行った場合、いずれもパイプハウスで単に自然乾燥したものよりもTSNA含量は低かった。以上のことから褐変期以降の所定期間において葉たばこを70%の低湿条件下において乾燥させれば、パイプハウス内において空気乾燥させるよりもTSNAの生成を抑制し得ることが確認できた。
【0032】
〈実験例3〉
一方、TSNAが主に生成されると考えられる黄変期以降の一定期間だけ湿度を70%とした低湿条件,および湿度を93%とした高湿条件の乾燥室に葉たばこをそれぞれ収容し、どのような乾燥条件(湿度条件とその時期)がTSNAの生成に大きく寄与するかを調べた。尚、葉たばこを上述した低湿条件(70%)、または高湿条件(93%)において乾燥させる期間については、実験例2と同様に褐変期、中骨乾燥期の前期、および中骨乾燥期の全期間とした。また上述した一定の温度・湿度で制御した乾燥室を用いた乾燥期間以外は、パイプハウスにおいて自然乾燥するものとした。
【0033】
この乾燥実験においては、バーレー種である“きたかみ1号”の本葉を供試した。またここでは乾燥期間中における葉たばこ中のTSNA含量の推移を調査するべく、各乾燥条件下で乾燥を実施しながら、その乾燥途中にある葉たばこを随時採取し、その葉たばこのラミナおよび中骨にそれぞれ含まれるTSNAの量を測定した。また同時にTSNAの生成の原因となる前駆体である亜硝酸含量についても調査した。
【0034】
尚、亜硝酸態窒素含量の定量については、以下の方法で行った。
即ち、各粉末試料をそれぞれ0.5gずつ50mL容遠沈管に秤取り、抽出液(1%塩化カリウム,0.5%スルファニルアミド,0.1%トリトンX-100)25mLを添加して室温で30分間振とうした。得られた抽出液をろ紙(ADVANTEC No.1)を用いて濾過した後、各濾液10mLを50mL容遠沈管に採取し、活性炭0.5gを添加して室温で15分間振とうした。
【0035】
その後、ろ紙(ADVANTEC No.5C)を用いて濾過し、活性炭を除去して得られた濾液を亜硝酸態窒素定量用試料とした。得られた抽出液中の亜硝酸態窒素含量はオートアナライザーAACS-II(BRAN+LUEBBE社製)を用いて550nmのフィルター透過率から換算した。尚,亜硝酸態窒素の発色には1%のスルファニルアミドと0.1%のN-ナフチルエチレンジアミン二塩酸塩を使用した。図7〜10は、これらの測定結果をそれぞれ示している。
【0036】
図7(a)〜(c)に示すようにラミナでのTSNA含量は、低湿乾燥条件(70%)および高湿乾燥条件(93%)下における制御乾燥を行った時期によって、その葉たばこに含まれるTSNAの含量に差異がみられる。しかし各区ともその含量は[低湿乾燥<パイプハウス乾燥(自然乾燥)<高湿乾燥]の順となっていた。
【0037】
ここで図7(a)に示すTSNA含量の推移に着目すると、褐変期に低湿乾燥をした直後のTSNA含量は、低湿乾燥することなく自然乾燥した葉たばこに比較して低い。また低湿乾燥した葉たばこを自然乾燥する過程においても、最初から自然乾燥を行っている葉たばこに比較してTSNAの生成が抑制されていることが認められる。
【0038】
また図7(b)に示すTSNA含量の推移に着目しても、中骨乾燥期前期に低湿乾燥をした場合、低湿乾燥直後およびその後の自然乾燥過程のTSNAの生成は最初から自然乾燥を行っている葉たばこに比較し抑制されていることが認められる。これらの結果から、褐変期および中骨乾燥期前期の低湿乾燥(制御乾燥)により、その後の自然乾燥期間においてもTSNAの生成が抑制されることが明らかとなった。
【0039】
また図8(a)〜(c)に示すようにTSNAの前駆体である亜硝酸の含量の推移についてもTSNA含量の推移と同様の傾向を示すことが明らかとなった。以上の結果から、自然乾燥により黄変した、または褐変した葉たばこを、その後の褐変期または中骨乾燥期の一定期間に亘って低湿乾燥(制御乾燥)することにより、TSNAおよびその前駆体である亜硝酸の生成を効果的に抑制し、その含量を低減することが確認できた。
【0040】
また図9(a)〜(c)に示すように中骨のTSNA含量は、図7(a)〜(c)に示したラミナにおけるTSNA含量と同様に[低湿乾燥<パイプハウス乾燥(自然乾燥)<高湿乾燥]の順となっていた。そして図9(a)に示すTSNA含量の推移に着目すると、褐変期に低湿乾燥(制御乾燥)した場合,最初から自然乾燥を行っている葉たばこと比較して、その後の自然乾燥過程においてTSNAの生成が抑制されていることが認められた。また図9(b)に示す実験結果からは、中骨乾燥期前期に低湿乾燥をした場合、低湿乾燥直後およびその後の自然乾燥過程におけるTSNAの生成は、最初から自然乾燥を行っている葉たばこに比較し抑制されていることが認められた。
【0041】
更に図10(a)〜(c)に示すように中骨での亜硝酸含量の推移は、TSNA含量の推移と同様の傾向を示していることが明らかとなった。
以上の実験結果により、中骨においてのTSNA含量および亜硝酸含量ともラミナでの含量と同じ傾向を示していることが確認できた。このことから中骨においてもラミナと同様に自然乾燥により黄変した、或いは褐変した葉たばこをその後の褐変期または中骨乾燥期の一定期間のみを低湿条件下で乾燥することにより、TSNAおよびその前駆体である亜硝酸の生成を効果的に抑制し、その含量を低減できることが裏付けられた。
【0042】
しかしながらラミナと比較してTSNAおよび亜硝酸含量が多いことが認められる。このことは、中骨には硝酸が集積するといわれていることから、葉たばこの葉面に存在する硝酸還元菌の作用により亜硝酸に変化する量がラミナでの量より多く、これが中骨中のアルカロイドと反応してTSNAの生成が多いものと推測される。
【0043】
かくして上述した実験結果を踏まえれば、空気乾燥種葉たばこを黄変まで、或いは褐変まで自然乾燥し、その後の一定期間、即ち、TSNAが生成されると考えられている時期に上記空気乾燥種葉たばこを低湿条件下において制御乾燥する本発明に係る乾燥方法によれば、亜硝酸の生成およびTSNAの生成を効果的に抑制することができる。しかも上記低湿条件は、自然乾燥における温度・湿度の範囲での乾燥条件であるから、葉たばこの品質に悪影響を及ぼすことなく、その乾燥を行い得ると言える。また葉たばこのキュアリング時期である黄変期または黄変期から褐変期の時期については自然乾燥を行い、しかも一定期間の制御乾燥以外は自然乾燥を行うので、葉たばこが持つ香喫味や色択を十分に引き出すことができる。
【0044】
ここで上述した乾燥条件を異ならせてそれぞれ乾燥処理した葉たばこの香喫味(味・香り等)について官能検査を実施したところ次のような結果が得られた。
【0045】
【表1】

Figure 0003922985
【0046】
この表1に示す官能検査の結果に示されるように本発明によれば、葉たばこが黄変または褐変するまでの期間、上記葉たばこを自然乾燥させているのでそのキュアリングを充分に進行させることできる。そしてその後の低湿条件下での温度・湿度の制御においても、自然乾燥に適した温湿度条件の範囲内での一定期間の乾燥であることから、全期間自然乾燥を行った葉たばこと同等の香喫味を引き出し得ることが確認できた。その上、本発明の主目的であるTSNAの生成を抑制することも確認できた。
【0047】
従って本発明によれば、前述したように葉たばこを空気乾燥するに際し、その一定期間に亘って制御された低湿度条件下で強制乾燥を行うので、葉たばこの本来有する香喫味を維持しながら、TSNAの生成を効果的に抑制することができる。しかも黄変または褐変した葉たばこを、その後の一定期間に亘って低湿乾燥(制御乾燥)するだけと言う簡単な手法により、TSNAの生成を効果的に抑制することができるのでその実用的利点が多大である。
【0048】
尚、実際的には、葉たばこが持つ香喫味を十分に引き出しながら、TSNAの生成を抑制するには、褐変期から中骨乾燥の前期に亘る所定の期間だけを制御乾燥し、その後、再び自然乾燥に戻すことが好ましい。即ち、葉たばこの自然乾燥を、先ずその収穫時から黄変期を経て褐変が始まる褐変初期時まで、或いは褐変が終了するまでの期間に亘って、標準的には3〜10日間に亘って実施する(初期乾燥プロセス)。その後、褐変し始めた、或いは褐変した葉たばこを乾燥室に移し替え、TSNAが生成すると見込まれる一定期間に亘って、例えば70%の低湿度環境下で強制的に乾燥させる(強制乾燥プロセス)。この強制乾燥は、略3〜10日間程度に亘って行われる。しかる後、上記強制乾燥工程を経た葉たばこをパイプハウスに移し替え、その中骨が乾燥するまで自然乾燥させて(最終乾燥プロセス)、その乾燥処理を終了する。そして上述した3段階の乾燥プロセスを経て葉たばこを乾燥させるれば、葉たばこの香喫味を損なうことなく、しかもTSNAやその前駆体である亜硝酸態窒素の生成を抑えてその含有量の低減を図ることが可能となる。
【0049】
即ち、本発明の好ましい実施態様によれば、自然乾燥によって褐変し始めた、或いは褐変した葉たばこを低湿度乾燥(強制乾燥)するだけであり、それまでの期間においては自然乾燥させているので、葉たばこの黄変や褐変を緩やかに進行させることができる。換言すれば収穫した葉たばこが黄変し、または褐変するまで自然乾燥させることでキュァリングを徐々に進行させ、これによって葉たばこが持つ香喫味と色沢とを引き出すことができる。その後、黄変した、或いは褐変した葉たばこを乾燥室に移し替えて低湿度乾燥(制御乾燥)させるので、亜硝酸態窒素の生成、更にはTSNAの生成を効果的に抑えながら葉たばこをドライイングすることができる。
【0050】
特に葉たばこは農産物であり、その収穫から乾燥までの処理作業が、専ら、農家にて実施される。従って上述した如く葉たばこを、その黄変期または褐変期以降の一定期間だけ低湿度乾燥する場合には、例えばパイプハウス自体を締め切り、一定期間に亘って強制的に低湿度環境に設定する等して実施することができるので、農家にとってさほど大きな負担となることがない。特に特表2001−503247号公報に開示されているようにマイクロ波を照射するような手法と異なり、葉たばこ生産農家において容易に実施することができるので、その実用的利点が多大である。
【0051】
尚、本発明は上述した実施形態に限定されるものではない。例えば低湿度環境において葉たばこを強制乾燥する時期やその期間については、葉たばこの種類やその収穫時期等に応じて定めれば良いものである。また経験的には温度条件を25〜35℃の範囲に設定し、湿度を65〜85%の範囲に設定して低湿度乾燥を行えば、TSNAの生成を十分に低く抑え得ると考えられる。好ましくは湿度を70〜80%に設定すれば、黄変時のキュアリングによって生成した香喫味に悪影響を及ぼすことのない低湿度乾燥を行い得ると考えられる。
【0052】
またここでは葉たばこをパイプハウス内に収容して乾燥するものとして説明したが、その他の構造物からなる乾燥室に収容して乾燥しても良いことは言うまでもない。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。
【0053】
【発明の効果】
以上説明したように本発明によれば、葉たばこを黄変または褐変するまで空気乾燥することによりキュアリングを充分に進行させ、その後の低湿条件下での強制乾燥については、空気乾燥に適した温湿度条件の範囲内においてその温度・湿度を制御するだけなので、全期間に亘って空気乾燥を行った葉たばこに比較して同等の香喫味を引き出しながら、TSNAの生成を抑制することができる。しかも黄変または褐変した葉たばこのその後の一定期間を低湿乾燥するだけの簡単な手法でTSNAを効果的に抑制することができるので、その実用的利点が多大である。
【図面の簡単な説明】
【図1】空気乾燥種葉たばこの乾燥過程を示す図。
【図2】空気乾燥種葉たばこの乾燥によるキュアリングとドライイングの概念を示す図。
【図3】葉たばこの自然乾燥条件を示す図。
【図4】本発明の一実施形態に係る空気乾燥種葉たばこの乾燥プロセスを示す図。
【図5】温湿度条件の異なる環境下で乾燥処理された葉たばこにそれぞれ含まれるTSNA含量を対比して示す図。
【図6】乾燥期間を異ならせて低湿度乾燥した葉たばこにそれぞれ含まれるTSNA含量を対比して示す図。
【図7】乾燥条件と乾燥期間を異ならせて葉たばこを乾燥させたときのラミナにおけるTSNA含量の推移を対比して示す図。
【図8】乾燥条件と乾燥期間を異ならせて葉たばこを乾燥させたときのラミナにおける亜硝酸態窒素含量の推移を対比して示す図。
【図9】乾燥条件と乾燥期間を異ならせて葉たばこを乾燥させたときの中骨におけるTSNA含量の推移を対比して示す図。
【図10】乾燥条件と乾燥期間を異ならせて葉たばこを乾燥させたときの中骨における亜硝酸態窒素含量の推移を対比して示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for drying air-dried seed leaf tobacco which can suppress the production of nitrite nitrogen and / or nitrosamine without impairing the flavor when drying air-dried seed leaf tobacco such as Burley seed. .
[0002]
[Related technology]
Air-dried leaf tobacco such as native species and Burley species are dried after the yellowing period, browning period, and middle bone drying period after harvest. Incidentally, the number of days required for drying the leaf tobacco differs depending on the leaf tobacco landing position, but in general, it is about 20 to 30 days in the case of mesophyll leaf tobacco, and 30 to 40 in the case of true leaf leaf tobacco. About a day.
[0003]
Incidentally, the leaf color of air-dried seed leaf tobacco changes from green to yellow as shown in FIG. 1, and further changes to brown. That is, the chlorophyll contained in the leaf tobacco is decomposed by the drying of the green harvested leaves, and the carotenoid pigments present in the leaves appear and turn yellow. This yellowing progresses under the action of an enzyme with a respiratory action during the life of leaf tobacco plant cells. Thereafter, when the tobacco leaves are dried, the carotenoid pigment is decomposed by the action of the enzyme, and a brown pigment is newly generated and browned. In addition, when the drying of the leaf tobacco does not proceed after browning, the leaf tobacco is peeled off by the remaining water to become black brown, and further, the leaf tobacco turns black and rots.
[0004]
By the way, the drying of leaf tobacco does not simply dehydrate the water in the leaves and dry the leaves, but by changing the content components contained in the leaves in parallel with the dehydration, it has a color and flavor unique to leaf tobacco. Process. Therefore, dry tobacco leaves are gently dehydrated under appropriate temperature and humidity conditions, and the components that adversely affect the flavor are degraded and disappeared by the enzyme action in the leaves. Generated and increased. Conceptually, the tobacco leaves are dried as shown in FIG. 2. First, the content components of the leaf tobacco are changed (curing), and then dehydrated to dry the leaves (drying). Actually, since the drying proceeds in the process of curing, it is difficult to clearly distinguish between curing and drying.
[0005]
[Problems to be solved by the invention]
Recently, various attempts have been made to reduce the content of Tobacco Specific Nitrosamine (TSNA), which is a harmful substance contained in dried leaf tobacco. TSNA is typically N′-nitrosonornicotine (NNN), N′-nitrosoanatabine (NAT), N′-nitrosoanabasin (NAB), and 4- (N′-nitrosomethylamino). It consists of -4- (3-pyridyl) -1-butanone (NNK) and the like.
[0006]
Such TSNA is hardly contained in leaf tobacco (green fresh leaves) immediately after harvesting. However, during the subsequent drying and storage periods, nitrate (nitrate nitrogen) present in leaf tobacco becomes nitrite (nitrite nitrogen) by nitrate-reducing bacteria present on the leaf surface of the leaf tobacco, and this nitrite (nitrite form) It is thought that TSNA is produced by the reaction of nitrogen) with alkaloids present in leaf tobacco.
[0007]
Therefore, in order to suppress the generation of such TSNA, JP-T-2001-503247 discloses that microwaves are applied to leaf tobacco during drying. However, in this method, since the tobacco leaves with little TSNA production are rapidly dehydrated using microwaves and the drying is finished, the above-mentioned curing cannot be performed sufficiently, and the flavor of leaf tobacco is not sufficient. There is a problem in securing.
[0008]
Also, WO 00/15056 discloses that leaf tobacco before drying (freshly harvested fresh green tobacco with relatively much moisture), preferably leaf tobacco that has begun to turn yellow, is inhibited from producing TSNA. It is disclosed that the generation of TSNA can be suppressed if it is exposed to the environment to be obtained for a time that can suppress the generation of TSNA. The environment is defined as an environment in which humidity, temperature, temperature change rate, air flow rate, and the like can be controlled. However, this method has a problem in ensuring the quality of leaf tobacco because important curing (aging) is not performed in order to ensure the flavor of leaf tobacco.
[0009]
In JP-A-50-70599, leaf tobacco that has undergone yellowing is dried using wind-fired power until browning progresses by 80 to 90% at a temperature of 35 to 40 ° C. and a humidity of 70 to 90%. Furthermore, a drying method is disclosed in which the mesophyll is dried under conditions of a temperature of 40 to 45 ° C. and a humidity of 60 to 80%, and then the veins are dried under a temperature of 55 to 60 ° C. However, the purpose of this drying method is to promote the decomposition of the content components while maintaining sufficient enzyme activity of leaf tobacco, and to shorten the time required for the drying. No consideration is given.
[0010]
The 49th Tobacco Chemists' Research Conference (September 24-27, 1995) ) Lexington, Kentucky, USA "paper" Effect of air drying on the chemical composition of cigarettes ", when heat (70 ° C) is applied to black tobacco after loss of integrity of cells in the true leaf Reduced nitrite levels and TSNA accumulation in lamina and midbone, and rapid drying of leaf tobacco during the drying phase reduces the activity of microorganisms generated during slow drying at ambient temperatures, reducing leaf tobacco quality To be disclosed.
[0011]
The above paper also shows that the traditional method of drying skronioski cigarettes in Poland consists of a two-step drying procedure, where the cigarettes are first naturally dried, and the lamina is dried when the lamina is yellowed or browned. To this end, it is disclosed to heat tobacco at 65 ° C. for 2 days. And it has been reported that the value of both nitrite and TSNA becomes small according to the leaf tobacco dried in this way. It is also disclosed that this phenomenon can be explained by rapid heating that does not allow further bacterial growth. However, even if this paper is taken into consideration, there remains a problem in how to reduce the TSNA content while maintaining the flavor (quality) of leaf tobacco.
[0012]
The present invention has been made in view of such circumstances, and its purpose is to effectively suppress the production of nitrous acid and / or TSNA relatively easily while sufficiently securing the flavor of leaf tobacco. An object of the present invention is to provide a method for drying air-dried seed tobacco that can be used.
That is, the present invention maintains the flavor of leaf tobacco, can suppress nitrous acid and / or TSNA produced during drying, has a low TSNA content, and is rich in flavor and has high quality. It is an object of the present invention to provide a method for drying air-dried seed tobacco that can be easily obtained.
[0013]
[Means for Solving the Problems]
  In order to achieve the above-described object, the method for drying air-dried seed leaf tobacco according to the present invention, when air-drying harvested air-dried seed leaf tobacco,A natural drying step of controlling the temperature and humidity under natural conditions to naturally dry the air-dried seed leaf tobacco;Under environmental conditions with forced control of temperature and humidityControl-drying the air-dried seed tobacco for a predetermined period of timeControlled drying processIncluding
  In particular, the controlled drying step is one or two periods selected from the browning period, the early period of the intermediate bone drying period and the entire period of the intermediate bone drying period of the air-dried seed tobacco, and the controlled drying. Is performed with the temperature set in the range of 25-35 ° C. and the humidity set in the range of 65-85%, therebyIt is characterized by suppressing the production of nitrite nitrogen and / or nitrosamine after the browning period of the air-dried seed leaf tobacco.
[0014]
ImmediatelyThe leaf tobacco drying method according to the present invention is a natural drying method that is a general drying method for harvested air-dried seed leaf tobacco.(Curing)When doingUnder the conditions described aboveA certain period during the drying period is housed in a drying chamber in which temperature and humidity can be controlled forcibly,PresetControlled drying under constant temperature and humidity conditions. This controlled drying suppresses nitrous acid and / or TSNA produced after the browning period and is characterized by obtaining dry leaf tobacco with low nitrosamine content. .
[0015]
In addition, air drying other than the above controlled drying process is performed in a pipe house or a wooden drying room under dry environment within a predetermined range under natural environmental conditions according to day and night temperature and humidity changes (natural drying). Process). In addition, the controlled drying is performed in a drying chamber provided with a heating and blowing facility, for example, keeping the temperature and humidity constant, specifically, a constant temperature set in a range of 25 to 35 ° C., and 65 to 85%. It is desirable to carry out in the environment of the fixed humidity set in the range.
[0016]
In particular, the method for drying air-dried seed leaf tobacco according to the present invention is such that the harvested air-dried seed leaf tobacco is naturally dried until the initial stage of browning after the yellowing period (initial drying step), and then begins to brown through this initial drying step. Air-dried seed tobacco is dried under a constant temperature and humidity condition for a certain period (forced drying process), and then air-dried seed leaf tobacco that has undergone this forced drying process is again naturally dried (final drying process) Thus, the production of nitrite nitrogen and / or nitrosamine after the browning period of the leaf tobacco is suppressed.
[0017]
That is, harvested air-dried seed tobacco is cured by natural drying until the early browning stage, and then air-dried seed tobacco that has begun to brown is stored in a drying room for a certain period of time, with constant temperature and humidity. Drying while suppressing the production of nitrite nitrogen and / or nitrosamine by forced drying under the conditions, and then air-drying the above-mentioned air-dried seed tobacco again to stabilize its content components. Is characterized by obtaining dry leaf tobacco with low nitrite nitrogen and / or nitrosamine content without sacrificing the flavor of the tobacco. The forced drying of the leaf tobacco is desirably performed until at least the entire surface of the leaf tobacco is brown.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The method for drying air-dried seed tobacco according to the present invention will be described below with reference to the drawings.
Natural drying (air drying), which is the basis for drying tobacco leaves, is basically performed as shown in Fig. 3, while gradually changing the temperature and humidity conditions in response to daytime and nighttime changes. This is done by proceeding with drying. In this natural drying, for example, hanging tobacco leaves in a pipe house covered with vinyl or the like prevents rainwater from entering, adjusts the amount of solar radiation using a shading curtain, and opens the pipe house's wife window, hem and shoulders. Closing is performed while adjusting the temperature and humidity and the inflow of air.
[0019]
Specifically, the management of the natural drying of the leaf tobacco is, for example, such that the temperature is about 30 ° C. and the humidity is about 70 to 75% at high temperature during the day, and the temperature is 20 ° C. and the humidity is 90 to 90 at low temperature at night. It is performed by adjusting the temperature and humidity in the pipe house so as to be about 95%. The natural drying of leaf tobacco under dry conditions in accordance with the daily natural environment repeats the moisture absorption and release of the leaf tobacco, and the drying of the leaf tobacco gradually proceeds to form a flavor and color choice.
[0020]
In the present invention, natural drying of such leaf tobacco is first performed from the time of harvesting to the yellowing or browning period, and typically 3 to 5 days (end of yellowing) or 6 to 10 days (end of browning) from the start of drying. It carries out until. Thereafter, the leaf tobacco that has finished yellowing or browning is transferred to a drying chamber in which the temperature and humidity can be controlled, and controlled drying (forced drying) under a condition in which the temperature and humidity are controlled to be constant over a certain period. This controlled drying is performed, for example, by setting the temperature condition in the range of 25 to 35 ° C., preferably 30 ° C., and the humidity range in the range of 65 to 85%, preferably 70 to 80%. This controlled drying is performed for about 3 to 20 days, preferably for about 3 to 10 days.
[0021]
Incidentally, with regard to the drying chamber used in this controlled drying, for example, as in the drying devices described in JP-A-8-154647 and JP-A-6-327451, a heated air blowing facility capable of controlling the temperature / humidity and air flow rate, respectively. It is desirable to have However, if the temperature and humidity can be controlled in a certain environment, the above-described drying chamber is not necessarily used.
[0022]
Thereafter, the leaf tobacco that has been dried is transferred to, for example, the above-described pipe house again, and is naturally dried until the inner bone is dried to complete the drying process. In addition, it is also possible to dry-process the leaf tobacco which complete | finished browning only by the controlled drying mentioned above until the inner bone becomes dry. Specifically, as shown in FIG. 4, the leaf tobacco may be dried through the drying steps shown in the following (a) to (e).
(a) After the yellowing period, it is naturally dried, then after the browning period it is controlled and then dried again in the middle bone drying period.
(b) After the yellowing period, it is air-dried, and after that, it is controlled-dried over the first period of the browning period and the middle bone drying period, and then dried again in the latter period of the middle bone drying period.
(c) Naturally dry until the yellowing period, and then control dry over the browning period and the middle bone drying period.
(d) It is naturally dried over the yellowing period and the browning period, and then controlled and dried in the first stage of the middle bone drying period, and then again in the latter stage of the middle bone drying period.
(e) It is naturally dried over the yellowing period and the browning period, and then controlled and dried in the middle bone drying period.
[0023]
The temperature / humidity conditions for controlled drying are similar to the daytime temperature / humidity conditions shown in FIG. 3 described above. For example, instead of natural drying by repeated high / low humidity during the day and low / high humidity during the night Thus, it is carried out by maintaining the high temperature and low humidity conditions during the day.
In addition, this invention is not limited to the dry form mentioned above. For example, the timing for controlling the drying of leaf tobacco under low humidity conditions and the period thereof may be determined in consideration of the type of leaf tobacco, the harvest time, the drying process, and the like. In addition, the leaf tobacco has been described as being housed and dried in the pipe house, but it goes without saying that it may be housed and dried in a drying chamber made of other structures. By drying the leaf tobacco through such a drying step, it is possible to suppress the production of TSNA and to reduce the content thereof without impairing the flavor of the leaf tobacco.
[0024]
The drying method according to the present invention will be described in detail by the following examples. The number of days required for air-drying seed tobacco drying varies depending on conditions such as leaf tobacco placement (leaf placement position), leaf quality, and weather. However, here, as a general number of days, the yellowing period until the entire leaf turns green to yellow immediately after harvesting (end of yellowing) is 5 days, and the browning period until the yellowed leaves turn brown (end of browning) However, it was considered that the dry period of the middle bone was 20 days until the inner bone of the leaf was dried, and the total time required for the drying was 30 days. Then, drying was performed by varying the temperature and humidity conditions at each drying time, and the influence of the temperature and humidity on the generation of TSNA was investigated. In addition, the said period is a temporary standard, and the number of days actually required for drying a leaf tobacco changes with the progress as mentioned above.
[0025]
<Experimental example 1>
First, in order to clarify the effects of temperature and humidity, which are the main factors of drying conditions, on TSNA production, air-dried leaves and the middle leaves of “Burley 21”, a typical Burley species, are used to vary the temperature and humidity conditions. The drying was performed under the conditions.
First, natural drying was performed in a pipe house for 5 days, that is, until the yellowing was completed, and then the drying was performed for 25 days until the drying was completed by transferring to six drying chambers with different temperature and humidity conditions. The above temperature and humidity conditions are 2 levels of 22 ° C and 30 ° C, assuming nighttime and daytime temperatures, and 3 levels of 70%, 80%, and 90%, assuming the conditions in the pipe house. Drying was performed in a drying chamber controlled to six levels of temperature and humidity conditions combining these. Thereafter, the lamina (leaf blade) of leaf tobacco dried under each temperature and humidity condition was freeze-dried, and the amount of TSNA contained in the lamina was measured. As a comparative example, the amount of TSNA contained in the lamina of leaf tobacco that was air-dried over the entire period in the pipe house was measured.
[0026]
TSNA was measured by the following method.
The four components of TSNA (NNN, NAT, NAB and NNK) are described in the literature “Spiegelhalder B., Kubacki S. and Fischer S. (1989) Beitr. Tabakforsch. Int., 14 (3), 135-143”, “Fischer. S. and Spiegelhalder B. (1989) Beitr. Tabakforsch. Int., 14 (3), 145-153 ”was quantified by gas chromatography according to the“ Spiegelhalder method ”. That is, 2.5 g of each powder sample obtained by pulverizing leaf tobacco was weighed into a 100 mL Erlenmeyer flask, 50 mL of an extract (Thimerosal 100 μg / 1 mL-containing 0.01 M NaOH solution) was added, and the mixture was shaken at room temperature for 2 hours. did. The obtained crude extract was filtered using filter paper (ADVANTEC No. 5C), and 10 mL of each filtrate was added to a column filled with kieselguhr (particle size 60 to 160 mm, manufactured by MERCK) and ascorbic acid. Furthermore, after adding 10 mL of distilled water, the required fraction was transferred and fractionated using dichloromethane, and this was used as a sample for TSNA determination. Each component of TSNA in the obtained sample was analyzed using gas chromatography HP5890 (manufactured by Hewlett Packerd) equipped with column DB-17 (manufactured by J & W) and detector TEA-543 (manufactured by Thermedics).
[0027]
The size of the pipe house used for natural drying is 40.5m in floor area.2The amount of solar radiation was adjusted using a black-and-white cold tub at a frontage of 4.5 m × length of 9.0 m and a height of 3.2 m. The drying room that controls temperature and humidity is made by Kihara Seisakusho, and the inner dimensions are 0.75m in floor area.2(Frontage 0.90m x depth 0.84m), height 1.80m, temperature and humidity were controlled by closing and opening the damper, electric heater and ultrasonic humidifier, and the air volume was 20cm / sec. A steel hanging frame was provided on the side surface inside the device to hold the steel hanger.
[0028]
FIG. 5 shows the measurement results of the TSNA content contained in each sample (leaf tobacco) obtained by the measurement method described above. As shown in the measurement results of FIG. 5, when the temperature and humidity conditions at the time of drying are controlled to be constant using a drying chamber, the humidity is set to 70% at any temperature conditions of 22 ° C. and 30 ° C. It was confirmed that the TSNA production was suppressed more when dried under the low humidity condition of 80% than when the leaf tobacco was naturally dried in the pipe house. In addition, it was confirmed that the amount of TSNA produced increased when dried under a high humidity condition of 90%, compared to when the leaf tobacco was naturally dried in the pipe house. As a result, it has been clarified that the influence of temperature and humidity, which are the main factors of the drying conditions, on the production of TSNA is larger than the temperature rather than the temperature.
[0029]
<Experimental example 2>
Next, based on the above analysis results, in order to investigate the effect of drying under low humidity conditions on TSNA generation, the temperature was set to 30 ° C. and humidity only for a certain period after the browning period where TSNA is considered to be mainly generated. Each leaf tobacco was housed in a drying chamber set to 70% for controlled drying. Specifically, TSNA is hardly present in leaf tobacco (green fresh leaves) immediately after harvesting, and is mainly produced after the browning period. Therefore, the period for drying leaf tobacco under the low humidity condition (70%) described above is Drying was performed during the browning period, the first period of the intermediate bone dry period, and the entire period of the intermediate bone dry period. It should be noted that, except for the drying period using the drying chamber controlled to a temperature of 30 ° C. and a humidity of 70%, the pipe house was naturally dried.
[0030]
In the drying experiment, the middle leaf of “Kitakami No. 1”, a Burley species, was used. Lamina (leaf blade) of leaf tobacco that had been dried for each dry section was freeze-dried, and the content of TSNA in the lamina was measured. In this experiment, the leaf tobacco was dried using the drying facility described above, and the TSNA amount was measured by the measurement method described above. FIG. 6 shows the measurement results.
[0031]
As is clear from the results shown in FIG. 6, there was a difference in the amount of TSNA contained in the leaf tobacco depending on the time of drying under low humidity conditions (70%). However, when drying was performed under low humidity conditions only during the browning period, the first period of the middle bone drying period, or over the entire period of the middle bone drying period, the TSNA content was lower than that obtained by simply natural drying in the pipe house. From the above, it was confirmed that if leaf tobacco was dried under a low humidity condition of 70% in a predetermined period after the browning period, the production of TSNA could be suppressed rather than air drying in a pipe house.
[0032]
<Experimental example 3>
On the other hand, leaf tobacco is accommodated in drying chambers with a low humidity condition of 70% humidity and a high humidity condition of 93% for a certain period after the yellowing period, where TSNA is thought to be mainly produced. It was investigated whether such drying conditions (humidity conditions and timing) greatly contributed to the generation of TSNA. In addition, about the period during which leaf tobacco is dried under the low humidity condition (70%) or the high humidity condition (93%) described above, as in Experimental Example 2, the browning period, the first period of the middle bone drying period, and the middle bone drying period The whole period. In addition, the pipe house was naturally dried except for the drying period using the drying chamber controlled at the constant temperature and humidity described above.
[0033]
In this drying experiment, the true leaf of “Kitakami No. 1”, a Burley species, was used. Also, here, in order to investigate the transition of TSNA content in leaf tobacco during the drying period, leaf tobacco in the middle of drying is collected as needed while drying under each drying condition, and the leaf tobacco in the lamina and middle bone are respectively collected. The amount of TSNA contained was measured. At the same time, the content of nitrite, which is a precursor causing TSNA generation, was also investigated.
[0034]
The nitrite nitrogen content was determined by the following method.
That is, 0.5 g of each powder sample was weighed in a 50 mL centrifuge tube, and 25 mL of an extract (1% potassium chloride, 0.5% sulfanilamide, 0.1% Triton X-100) was added at room temperature. Shake for 30 minutes. The obtained extract was filtered using filter paper (ADVANTEC No. 1), 10 mL of each filtrate was collected in a 50 mL centrifuge tube, 0.5 g of activated carbon was added, and the mixture was shaken at room temperature for 15 minutes.
[0035]
Then, it filtered using filter paper (ADVANTEC No.5C), and the filtrate obtained by removing activated carbon was used as the sample for nitrite nitrogen determination. The nitrite nitrogen content in the obtained extract was converted from the filter transmittance at 550 nm using an autoanalyzer AACS-II (manufactured by BRAN + LUEBBE). In addition, 1% sulfanilamide and 0.1% N-naphthylethylenediamine dihydrochloride were used for color development of nitrite nitrogen. 7 to 10 show the measurement results, respectively.
[0036]
As shown in FIGS. 7 (a) to 7 (c), the TSNA content in lamina is included in leaf tobacco depending on the time of controlled drying under low humidity drying conditions (70%) and high humidity drying conditions (93%). There is a difference in the TSNA content. However, the content of each section was [low humidity drying <pipe house drying (natural drying) <high humidity drying].
[0037]
Here, paying attention to the transition of the TSNA content shown in FIG. 7 (a), the TSNA content immediately after low-humidity drying during the browning period is lower than leaf tobacco that has been naturally dried without being dried at low humidity. In addition, in the process of naturally drying low-humidity dried tobacco leaves, it can be seen that the production of TSNA is suppressed compared to leaf tobacco that has been naturally dried from the beginning.
[0038]
Also, focusing on the transition of TSNA content shown in Fig. 7 (b), when low-humidity drying was performed in the first half of the middle bone drying period, TSNA was generated from the beginning immediately after low-humidity drying and thereafter in the natural drying process. It is recognized that it is suppressed compared to the tobacco that is being used. From these results, it became clear that the low-humidity drying (controlled drying) in the browning period and the first period of the middle bone drying period suppresses the generation of TSNA during the subsequent natural drying period.
[0039]
Further, as shown in FIGS. 8A to 8C, it has been clarified that the transition of the content of nitrous acid as a precursor of TSNA shows the same tendency as the transition of TSNA content. Based on the above results, TSNA and its precursors are obtained by low-humidity drying (controlled drying) of leaf tobacco that has been yellowed or browned by natural drying over a certain period of time during the subsequent browning or middle bone drying period. It was confirmed that the production of nitrous acid was effectively suppressed and the content thereof was reduced.
[0040]
Further, as shown in FIGS. 9A to 9C, the TSNA content of the middle bone is similar to the TSNA content in the lamina shown in FIGS. 7A to 7C [low humidity drying <pipe house drying (natural drying) The order was <high humidity drying>. And when paying attention to the transition of TSNA content shown in Fig. 9 (a), when low-humidity drying (controlled drying) is performed during the browning period, it is compared with leaf tobacco that has been naturally dried from the beginning. It was observed that production was suppressed. Also, from the experimental results shown in FIG. 9B, when low-humidity drying was performed in the first half of the middle bone drying period, TSNA generation immediately after low-humidity drying and in the subsequent natural drying process was performed on leaf tobacco that had been naturally dried from the beginning. In comparison, it was found to be suppressed.
[0041]
Further, as shown in FIGS. 10 (a) to 10 (c), it has been clarified that the transition of the nitrite content in the middle bone shows the same tendency as the transition of the TSNA content.
From the above experimental results, it was confirmed that the TSNA content and nitrite content in the middle bone showed the same tendency as the content in lamina. Therefore, TSNA and its precursor are also obtained by drying leaf cigarettes that have been yellowed or browned by natural drying in the low-humidity condition for a certain period of the subsequent browning period or intermediate bone drying period. It was proved that the production of nitrous acid as a body can be effectively suppressed and the content thereof can be reduced.
[0042]
However, it can be seen that TSNA and nitrite content is higher compared to lamina. This is because it is said that nitrate accumulates in the middle bone, so the amount of nitrite changed by the action of nitrate reducing bacteria present on the leaf surface of leaf tobacco is greater than that in lamina, which is It is presumed that TSNA is produced in large amounts by reacting with alkaloids.
[0043]
Thus, based on the experimental results described above, air-dried seed tobacco is naturally dried until yellowing or browning, and then the air-dried seed tobacco is used for a certain period of time, that is, when TSNA is considered to be produced. According to the drying method according to the present invention which performs controlled drying under low humidity conditions, the production of nitrous acid and the production of TSNA can be effectively suppressed. Moreover, since the low humidity condition is a drying condition in the range of temperature and humidity in natural drying, it can be said that the drying can be performed without adversely affecting the quality of the leaf tobacco. The leaf tobacco is cured during the yellowing period or the yellowing period to the browning period, and it is dried naturally except for controlled drying for a certain period of time. It can be pulled out sufficiently.
[0044]
Here, the following results were obtained when a sensory test was performed on the flavors (taste, fragrance, etc.) of the tobacco leaves that had been subjected to drying treatment under different drying conditions.
[0045]
[Table 1]
Figure 0003922985
[0046]
As shown in the results of the sensory test shown in Table 1, according to the present invention, the leaf tobacco is naturally dried during the period until the leaf tobacco turns yellow or brown, so that the curing can be sufficiently advanced. . And in the subsequent control of temperature and humidity under low humidity conditions, it is drying for a certain period within the range of temperature and humidity conditions suitable for natural drying. It was confirmed that the taste could be brought out. In addition, it was confirmed that the production of TSNA, which is the main object of the present invention, was suppressed.
[0047]
Therefore, according to the present invention, when the leaf tobacco is air-dried as described above, forced drying is performed under a controlled low humidity condition over a certain period of time, so that TSNA is maintained while maintaining the original flavor of the leaf tobacco. Can be effectively suppressed. Moreover, the production of TSNA can be effectively suppressed by a simple method of simply drying the leaf tobacco that has been yellowed or browned over a certain period of time with low humidity drying (controlled drying), and thus has great practical advantages. It is.
[0048]
In practice, in order to suppress the production of TSNA while sufficiently extracting the flavor of leaf tobacco, controlled drying is performed only for a predetermined period from the browning period to the first period of dry bone, and then natural It is preferable to return to dryness. That is, the natural drying of leaf tobacco is first carried out from the time of harvesting through the yellowing period to the beginning of browning, or until the end of browning, typically for 3 to 10 days. (Initial drying process) Thereafter, the leaf tobacco that has begun to brown or has been browned is transferred to a drying chamber, and is forcibly dried in a low humidity environment of 70%, for example, over a certain period of time when TSNA is expected to be generated (forced drying process). This forced drying is performed for about 3 to 10 days. Thereafter, the leaf tobacco that has undergone the forced drying step is transferred to a pipe house, and is naturally dried until the inner bone is dried (final drying process), and the drying process is terminated. If the leaf tobacco is dried through the three-stage drying process described above, the content of the leaf tobacco is reduced without impairing the flavor of the leaf tobacco and suppressing the generation of TSNA and its precursor nitrite nitrogen. It becomes possible.
[0049]
That is, according to a preferred embodiment of the present invention, leaf tobacco that has begun to brown due to natural drying or browned is only dried at low humidity (forced drying), and is naturally dried in the period up to that time. The yellowing and browning of leaf tobacco can be allowed to proceed slowly. In other words, the cured leaf tobacco is naturally dried until it is yellowed or browned, whereby the curing is gradually advanced, whereby the flavor and color of the leaf tobacco can be extracted. After that, yellowed or browned leaf tobacco is transferred to a drying room and dried at low humidity (controlled drying), so leaf tobacco is dried while effectively suppressing generation of nitrite nitrogen and further TSNA. be able to.
[0050]
In particular, leaf tobacco is an agricultural product, and processing operations from harvesting to drying are performed exclusively by farmers. Therefore, when leaf tobacco is dried at a low humidity for a certain period after the yellowing period or the browning period as described above, for example, the pipe house itself is closed and forcibly set to a low humidity environment for a certain period. Since it can be implemented, it does not become a big burden for farmers. In particular, unlike the technique of irradiating microwaves as disclosed in JP-T-2001-503247, it can be easily carried out in leaf tobacco producing farmers, and its practical advantages are great.
[0051]
The present invention is not limited to the embodiment described above. For example, the time for forcibly drying leaf tobacco in a low-humidity environment and the period thereof may be determined according to the type of leaf tobacco, the harvest time, and the like. Further, from experience, it is considered that the generation of TSNA can be sufficiently suppressed by setting the temperature condition in a range of 25 to 35 ° C. and setting the humidity in a range of 65 to 85% and performing low humidity drying. Preferably, if the humidity is set to 70 to 80%, it is considered that low humidity drying can be performed without adversely affecting the flavor produced by curing during yellowing.
[0052]
In addition, the leaf tobacco has been described as being housed and dried in the pipe house, but it goes without saying that it may be housed and dried in a drying chamber made of other structures. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.
[0053]
【The invention's effect】
As described above, according to the present invention, curing is sufficiently performed by air drying until the tobacco leaves are yellowed or browned, and the forced drying under the low humidity condition thereafter is a temperature suitable for air drying. Since only the temperature and humidity are controlled within the range of humidity conditions, the production of TSNA can be suppressed while extracting an equivalent flavor as compared with leaf tobacco that has been air-dried over the entire period. Moreover, since the TSNA can be effectively suppressed by a simple technique of simply drying at low humidity for a certain period after the yellowed or browned leaf tobacco, its practical advantages are great.
[Brief description of the drawings]
FIG. 1 is a diagram showing a drying process of air-dried seed tobacco.
FIG. 2 is a diagram showing the concept of curing and drying by drying air-dried seed tobacco.
FIG. 3 is a view showing natural drying conditions of leaf tobacco.
FIG. 4 is a diagram showing a drying process of air-dried seed tobacco according to an embodiment of the present invention.
FIG. 5 is a diagram showing a comparison of TSNA contents contained in leaf tobacco that has been dried under different temperature and humidity conditions.
FIG. 6 is a graph showing a comparison of TSNA contents contained in leaf tobacco dried at low humidity with different drying periods.
FIG. 7 is a graph showing a comparison of changes in TSNA content in lamina when leaf tobacco is dried under different drying conditions and drying periods.
FIG. 8 is a diagram showing a comparison of changes in nitrite nitrogen content in lamina when leaf tobacco is dried under different drying conditions and drying periods.
FIG. 9 is a graph showing a change in TSNA content in the middle bone when leaf tobacco is dried under different drying conditions and drying periods.
FIG. 10 is a graph showing the transition of nitrite nitrogen content in the middle bone when leaf tobacco is dried under different drying conditions and drying periods.

Claims (4)

収穫した空気乾燥種葉たばこを空気乾燥して黄変、褐変を経て中骨乾燥するに際し、
自然条件下で温度および湿度を管理して前記空気乾燥種葉たばこを自然乾燥する自然乾燥工程と、温度および湿度を強制的に制御した一定の環境条件下で前記空気乾燥種葉たばこを予め設定した一定期間に亘って制御乾燥する制御乾燥工程とを含み、
前記制御乾燥工程を行う一定期間は、前記空気乾燥種葉たばこの褐変期,中骨乾燥期の前期および中骨乾燥期の全期間の中から選択した1つまたは2つの期間からなり、
前記制御乾燥は、温度を25〜35℃の範囲において設定し、且つ湿度を65〜85%の範囲において設定して実行し、前記空気乾燥種葉たばこの褐変期以降における亜硝酸態窒素および/またはニトロソアミンの生成を抑制してなることを特徴とする空気乾燥種葉たばこの乾燥方法。
When air-drying the harvested air-dried seed leaf tobacco, yellowing, browning, and drying the bones
A natural drying process in which the temperature and humidity are controlled under natural conditions to naturally dry the air-dried seed tobacco, and the air-dried seed tobacco is set in advance under certain environmental conditions in which the temperature and humidity are forcibly controlled. A controlled drying process for controlled drying over a period of time ,
The predetermined period for performing the controlled drying step is composed of one or two periods selected from the browning period, the first period of the intermediate bone drying period and the entire period of the intermediate bone drying period of the air-dried seed tobacco.
The controlled drying is carried out by setting the temperature in a range of 25 to 35 ° C. and setting the humidity in a range of 65 to 85%, and nitrite nitrogen after the browning period of the air-dried seed tobacco and / or A method for drying air-dried seed tobacco, which is characterized by suppressing the production of nitrosamines.
前記空気乾燥種葉たばこを空気乾燥するに際し、前記制御乾燥工程以外の期間は、前記空気乾燥種葉たばこを自然乾燥する自然乾燥工程を行う請求項1に記載の空気乾燥種葉たばこの乾燥方法。 Upon the air dry seed leaf tobacco to air dry, a period other than the control drying step, the drying method of an air drying type tobacco according to claim 1 for natural drying process of natural drying the air-dried seed leaf tobacco. 収穫した空気乾燥種葉たばこを、自然条件下で温度および湿度を管理してその褐変初期時まで自然乾燥させる初期乾燥工程と、
この初期乾燥工程を経て褐変し始めた空気乾燥種葉たばこを、温度を25〜35℃の範囲において設定し、且つ湿度を65〜85%の範囲において設定した一定の温度・湿度条件下で一定期間に亘って乾燥させる強制乾燥工程と、
この強制乾燥工程を経た空気乾燥種葉たばこを再び自然条件下で温度および湿度を管理して自然乾燥させる最終乾燥工程とからなり、
前記空気乾燥種葉たばこの褐変期以降における亜硝酸態窒素および/またはニトロソアミンの生成を抑制してなることを特徴とする空気乾燥種葉たばこの乾燥方法。
An initial drying process in which the harvested air-dried seed leaf tobacco is naturally dried to the initial browning state under temperature and humidity control under natural conditions ;
Air-dried seed leaf tobacco that has started to brown through this initial drying step is set for a certain period of time under a certain temperature and humidity condition in which the temperature is set in the range of 25 to 35 ° C. and the humidity is set in the range of 65 to 85%. A forced drying step of drying over
It consists of a final drying process in which the air-dried seed tobacco that has undergone this forced drying process is dried again under natural conditions by controlling temperature and humidity under natural conditions ,
A method for drying air-dried seed tobacco, comprising suppressing generation of nitrite nitrogen and / or nitrosamine after the browning period of the air-dried seed tobacco.
前記空気乾燥種葉たばこの強制乾燥は、少なくとも空気乾燥種葉たばこの全面が褐色となるまで行われるものである請求項3に記載の空気乾燥種葉たばこの乾燥方法。The method for drying air-dried seed tobacco according to claim 3 , wherein the forced drying of the air-dried seed tobacco is performed until at least the entire surface of the air-dried seed tobacco is brown.
JP2002242092A 2002-08-22 2002-08-22 Drying method of air-dried seed tobacco Expired - Lifetime JP3922985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242092A JP3922985B2 (en) 2002-08-22 2002-08-22 Drying method of air-dried seed tobacco

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242092A JP3922985B2 (en) 2002-08-22 2002-08-22 Drying method of air-dried seed tobacco

Publications (2)

Publication Number Publication Date
JP2004073152A JP2004073152A (en) 2004-03-11
JP3922985B2 true JP3922985B2 (en) 2007-05-30

Family

ID=32024380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242092A Expired - Lifetime JP3922985B2 (en) 2002-08-22 2002-08-22 Drying method of air-dried seed tobacco

Country Status (1)

Country Link
JP (1) JP3922985B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156431A1 (en) 2013-03-27 2014-10-02 日本たばこ産業株式会社 Oral tobacco product
US10405570B2 (en) 2014-09-18 2019-09-10 Japan Tobacco Inc. Method of manufacturing tobacco raw material and oral tobacco product

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038558A1 (en) * 2004-10-01 2006-04-13 Japan Tobacco Inc. Method of drying barley tobacco leaves and barley tobacco leaves dried thereby
CN102871208B (en) * 2011-07-15 2016-02-10 湖南华望熏蒸消毒有限公司 A kind of tobacco leaf rapid oxygen reduction disinsection method
CN108851169B (en) * 2018-07-27 2020-05-22 河南省农业科学院烟草研究所 Yuyan No. 9 green-removing, black-preventing and yellow-keeping special baking method
CN115669976B (en) * 2022-11-11 2023-07-07 湖北省烟草科学研究院 Cigar coating tobacco leaf airing method taking moisture management as center

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224630A (en) * 1996-02-28 1997-09-02 Japan Tobacco Inc Drying of burley leaf tobacco
US6135121A (en) * 1996-06-28 2000-10-24 Regent Court Technologies Tobacco products having reduced nitrosamine content
HUP0002532A3 (en) * 1997-06-20 2001-03-28 Regent Court Technologies Ches Method of treating tobacco to reduce nitrosamine content, and products produced thereby
ATE246457T1 (en) * 1998-01-09 2003-08-15 British American Tobacco Co DEVICE FOR DRYING TOBACCO

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156431A1 (en) 2013-03-27 2014-10-02 日本たばこ産業株式会社 Oral tobacco product
US10405570B2 (en) 2014-09-18 2019-09-10 Japan Tobacco Inc. Method of manufacturing tobacco raw material and oral tobacco product

Also Published As

Publication number Publication date
JP2004073152A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
CA2748321C (en) Tobacco curing method
KR100458420B1 (en) Method of treating tobacco to reduce nitrosamine content, and products produced thereby
US6202649B1 (en) Method of treating tobacco to reduce nitrosamine content, and products produced thereby
JP5976690B2 (en) Dried tobacco and dry treatment method
WO1998005226A9 (en) Method of treating tobacco to reduce nitrosamine content, and products produced thereby
CN104273643B (en) A kind of modulator approach that can be effectively improved famous sun-cured tobaccos quality
CN102715632B (en) Mixing process capable of reducing harmful components of burley tobacco
JP3922985B2 (en) Drying method of air-dried seed tobacco
WO2000015056A1 (en) Improved method of treating tobacco to reduce nitrosamine content, and products produced thereby
CN110833207B (en) Air-cured tobacco style transformation method
CN106418646B (en) A kind of upper smoke picking and roasting technique for growing special flue-cured tobacco
WO2001035770A1 (en) A method for reduction of tobacco specific nitrosamines
CN110786542B (en) Method for reducing TSNAs of cigar tobacco leaves by using strains
Staaf et al. Formation of tobacco-specific nitrosamines (TSNA) during air-curing: conditions and control
KR100583887B1 (en) Method of highly Extracting Ester from tobacco, Tobacco flavoring stuff and Flavored cigarette with the extract
CN113854618A (en) Blending method for improving tobacco leaf quality of heating cigarette soil tobacco raw material by manual control
WO2006038558A1 (en) Method of drying barley tobacco leaves and barley tobacco leaves dried thereby
JP4160868B2 (en) Method for reducing nitrosamine content in tobacco.
CN106723292B (en) Add the method that nano silicon dioxide reduces content of nitrosamines in tobacco storage
JP2006238766A (en) Method for drying stalk of leaf tobacco
JPH09224630A (en) Drying of burley leaf tobacco
WO2023213954A1 (en) Apparatus and method for curing plants
CN114747783A (en) Method for increasing content of soluble sugar in upper leaves
CN115813004A (en) Modulation method for improving quality of yellow tobacco leaves exposed in rainy and poor weather

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070220

R150 Certificate of patent or registration of utility model

Ref document number: 3922985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term