JP3922470B2 - Method for producing light-colored rosin metal salt - Google Patents

Method for producing light-colored rosin metal salt Download PDF

Info

Publication number
JP3922470B2
JP3922470B2 JP17858796A JP17858796A JP3922470B2 JP 3922470 B2 JP3922470 B2 JP 3922470B2 JP 17858796 A JP17858796 A JP 17858796A JP 17858796 A JP17858796 A JP 17858796A JP 3922470 B2 JP3922470 B2 JP 3922470B2
Authority
JP
Japan
Prior art keywords
rosin
metal salt
light
producing
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17858796A
Other languages
Japanese (ja)
Other versions
JPH101641A (en
Inventor
正雄 前田
英介 夏原
寛 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP17858796A priority Critical patent/JP3922470B2/en
Publication of JPH101641A publication Critical patent/JPH101641A/en
Application granted granted Critical
Publication of JP3922470B2 publication Critical patent/JP3922470B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、淡色ロジン金属塩の製造方法に関する。
【0002】
【従来の技術】
従来よりロジン金属塩は、粘接着剤用のタッキファイヤー、ゴム類や各種プラスチック類の改質剤、トラフィックペイント用樹脂、製紙用サイズ剤、合成ゴム用乳化剤、インキ用樹脂、塗料用樹脂等の原料として各種用途に使用されている。しかし、該ロジン金属塩は、その外観が黄色ないし黄褐色に着色しており、しかも臭気や加熱安定性、耐候性(以下、安定性という)等の点で満足しうるものではなかった。
【0003】
このため、該ロジン金属塩の上記欠点を解決するために、未精製のロジンを不均化して熱安定性を改良した不均化ロジンや、未精製のロジンを水素添加してある程度安定性を改良した水添ロジンを、金属化合物と造塩反応させてなるロジン金属塩が市販されているが、いずれも色調、安定性等の点で不充分であった。
【0004】
一方、従来よりロジン金属塩の製造方法としては、ロジンを高温溶融下で金属の酸化物や水酸化物と反応させる方法(メルト法)、ロジンを溶媒に溶解させ金属の酸化物や水酸化物と反応させる方法(溶液法)、ロジンのアルカリ金属塩の水溶液に水溶性金属塩を添加して反応させる方法(複分解法)がある。
【0005】
【発明が解決しようとする課題】
メルト法は工程が単純で収率も高いため、安価に製造できるという特徴はあるが、中和率は通常25%以下となり、中和率を上げようとすると、軟化点の上昇と結晶の析出のため、系の粘度上昇と不均一化が起こり、製造が困難となる。溶液法は高中和品を容易に製造することが出来るが、収率が低く、また溶剤を回収する必要があり、製造コストがかさむ。複分解法は上記2法では製造出来ない溶解性のないロジンの金属塩の製造ができるが、収率は著しく低い。
【0006】
このように、従来のいずれのロジン金属塩も色調、臭気、安定性のすべての性能、中和率および経済性を同時に満足しうるものではないため、斯界において該性能を具備する淡色ロジン金属塩の出現が切望されており、特に安価なメルト法等の反応方法において高中和率の淡色ロジン金属塩を得ることができる淡色ロジン金属塩の製造方法が切望されていた。
【0007】
本発明は、従来公知のロジン金属塩に比べて、色調、臭気、安定性が一層改良され、かつ安価で高中和率のロジン金属塩の製造方法を提供することを目的とする。さらに高中和、低中和にかかわらず、中和効率の良好なロジン金属塩の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題に鑑みて、本発明者は原料ロジン種、精製操作、安定化反応操作、更には金属化合物の種類、添加剤の種類などの各種条件に着目することによって前記諸性能を改良すべく鋭意研究を行なった結果、特定の安定化ロジンを使用し、これを特定の金属化合物と可塑剤の存在下に造塩反応させることにより、本発明の目的に合致する優れた諸性能を有する淡色ロジン金属塩を良好な中和効率で、高収率に収得することができることを見い出した。さらには、メルト法においては従来不可能であった高中和率の淡色ロジン金属塩を、良好な中和効率で、高収率に収得することができることをも見い出した。本発明はかかる知見に基づき完成されたものである。
【0009】
すなわち本発明は、(A)リチウム、ナトリウム、カリウム、マグネシウム、カルシウムおよび亜鉛からなる群から選ばれるいずれか少なくとも1種の金属の金属化合物と、(B)ガードナー色調が1以下の安定化ロジンとを、(C)炭素数6〜30の有機カルボン酸およびその誘導体(ただしロジン酸そのものは除く)ならびに有機リン系化合物からなる群から選ばれる少なくとも1種の化合物を含有してなる可塑剤の存在下に造塩反応させてなる淡色ロジン金属塩の製造方法に係る。
【0010】
【発明の実施の形態】
本発明で用いる(A)金属化合物としては、前記安定化ロジンとの反応性、得られるロジン金属塩の色調、臭気、安定性などを考慮して決定される。具体的にはリチウム、ナトリウム、カリウム、マグネシウム、カルシウムおよび亜鉛からなる群から選ばれるいずれか少なくとも1種の金属化合物である。また、該金属化合物の態様としては、該金属の酢酸塩、炭酸塩、酸化物および水酸化物からなる群から選ばれるいずれか少なくとも1種が好ましい。
【0011】
本発明においては、得られる淡色ロジン金属塩の色調、安定性などの点から、造塩反応に供するロジン物質として(B)ガードナー色調が1以下の安定化ロジンを使用することが必須とされる。該安定化ロジンとは、ガムロジン、ウッドロジンまたはトール油ロジン(以下、これらを未精製ロジンという)を不均化、水素化及び脱水素化からなる群から選ばれる少なくとも1種の安定化反応工程と精製工程とを任意の順序で経由させてなるものである。より具体的には、前記未精製ロジンを水素化し、精製し、ついで脱水素化してなるもの▲1▼;未精製ロジンを水素化し、精製し、ついで水素化してなるもの▲2▼;未精製ロジンを精製し、水素化し、ついで脱水素化してなるもの▲3▼;未精製ロジンを精製し、不均化し、ついで脱水素化してなるもの▲4▼;未精製ロジンを不均化し、精製し、ついで水素化してなるもの▲5▼;未精製ロジンを不均化し、精製し、ついで脱水素化してなるもの▲6▼;未精製ロジンを精製し、ついで脱水素化してなるもの▲7▼;未精製ロジンを水素化し、ついで精製してなるもの▲8▼;未精製ロジンを不均化し、ついで精製してなるもの▲9▼などを例示できる。
【0012】
上記(B)安定化ロジンの中でも、造塩反応に供する安定化ロジンとして、色調、安定性などの点で▲1▼〜▲7▼が好ましく、特に▲6▼が最も好ましい。
【0013】
本発明においては、上記の各安定化反応における条件は特に制限はなく、いずれも公知の条件から適宜選択して採用すれば良い。
【0014】
前記水素化反応は、水素化触媒の存在下に水素加圧下で、未精製ロジンまたは精製ロジンを加熱して行なう。該触媒としては、パラジウムカーボン、ロジウムカーボン、白金カーボンなどの担持触媒、ニッケル、白金等の金属粉末、ヨウ素、ヨウ化鉄等のヨウ化物等の各種公知のものを例示しうる。該触媒の使用量は、該ロジンに対して通常0.01〜5重量%、好ましくは0.01〜1.0重量%であり、水素化圧は50〜200Kg/cm2 であり、反応温度は100〜300℃、好ましくは150〜290℃である。
【0015】
前記不均化反応は、不均化触媒の存在下に水素を供給することなく、未精製ロジンまたは精製ロジンを加熱して行なう。不均化触媒としては、前記水素化触媒と同様のものを使用でき、その使用量も同様である。また反応温度も水素化反応におけるのと同様である。
【0016】
前記脱水素化反応は、該反応に供するロジンを脱水素化触媒の存在下、密閉容器中で水素圧が10Kg/cm2 未満、好ましくは5Kg/cm2 未満、反応温度が100〜300℃、好ましくは200〜280℃の範囲で加熱することにより行う。脱水素化反応であるため実質的には水素は不必要であるが、生成水素を過酸化物の還元に利用する意図から、水素圧を10Kg/cm2 未満としたものであり、生成水素の自圧により、または若干水素を外部より供給することにより圧力調整すれば良い。上記脱水素化触媒としては特に制限なく各種公知のものが使用できるが、好ましくはパラジウム系、ロジウム系、白金系の触媒を例示できる。該触媒は通常シリカ、カーボンなどの担体に担持して使用される。また該触媒の使用量は該精製水素化ロジンに対して通常0.01〜5重量%程度、好ましくは0.02〜2重量%とされる。なお、脱水素化反応に際しては、シクロヘキサン、デカリンなどの脂環族炭化水素や、トルエン、キシレンなどの芳香族炭化水素を溶媒として適宜使用することができる。
【0017】
本発明においては、上述の安定化反応の前後に未精製ロジンまたは未精製の安定化ロジンを精製する。ここで精製とは、該操作に供するロジンに含有される過酸化物から生起したと考えられる高分子量物、及び該ロジンにもともと含まれていた不ケン化物を除去することを意味する。具体的には蒸留、再結晶、抽出等の操作を行なえばよく、工業的には蒸留による精製が好ましい。蒸留による場合は、通常は温度200〜300℃、圧力1〜10mmHgの範囲から蒸留時間を考慮して適宜選択される。再結晶の場合は例えば未精製水素化ロジンを良溶媒に溶解し、ついで溶媒を留去して濃厚な溶液となし、この溶液に貧溶媒を添加することにより行なうことができる。良溶媒としてはベンゼン、トルエン、キシレン、クロロホルム、低級アルコール、アセトン等のケトン類、酢酸エチル等の酢酸エステル類等が挙げられ、貧溶媒としてはn−ヘキサン、n−ヘプタン、シクロヘキサン、イソオクタン等が挙げられる。更に前記精製としては、未精製水素化ロジンをアルカリ水を用いてアルカリ水溶液となし、不溶性の不ケン化物を有機溶媒により抽出したのち水層を中和してもよく、これにより精製水素化ロジンをうることもできる。
【0018】
本発明における(C)可塑剤とは、前記(A)金属化合物と(B)安定化ロジンとに対して可塑性を持つ化合物を含有し、(A)成分および(B)成分を効率よく反応させることができる添加剤のことである。
【0019】
該可塑性を持った化合物としては、炭素数6〜30の有機カルボン酸またはその誘導体を挙げることができる。炭素数6〜30の有機カルボン酸としてはフタル酸、ステアリン酸、アジピン酸、安息香酸およびその置換体を含む安息香酸系化合物、ロジン酸等が例示できるが、ロジン酸そのものを(C)可塑剤としては用いることはできない。ロジン酸そのものを(C)可塑剤として用いることは、(B)安定化ロジンと同様の性質のものを追加するに止まるため、中和率向上の課題を解決しないからである。それゆえロジン酸は、例えばその誘導体を使用することが可能である。有機カルボン酸の誘導体としては金属塩、エステル、アミド、イミド等が例示でき、該有機カルボン酸の金属塩としては前記有機カルボン酸のリチウム、ナトリウム、カリウム、マグネシウム、カルシウムまたは亜鉛金属塩が、該エステルとしては前記有機カルボン酸のメチル、エチル、ブチル、ヘプチル、オクチル、エチルヘキシル、イソノニル、デシル、イソデシル、ベンジル等のエステルが、アミドとしてはステアリン酸アミド、フタル酸アミド等により例示される有機カルボン酸アミドが、イミドとしてはフタルイミド、マレイミド等により例示される有機カルボン酸イミドが例示できる。
【0019】
また、同様に本発明における(C)可塑剤に含有することができる有機リン系化合物としては、リン酸トリブチル、リン酸トリー2−エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、リン酸トリキシレニル、リン酸2,2−メチレンビス(4,6−ジ−t−ブチルフェニル)ナトリウム、トリスノリルフェニルホスファイト、トリス−(2,4−ジ−t−ブチルフェニル)ホスファイト、3,4,5,6−ジベンゾ−1,2−オキサホスフェン−2−オキサイド等が挙げられる。
【0020】
上記にあげた炭素数6〜30の有機カルボン酸またはその誘導体、有機リン系化合物等の化合物は、1種を単独でまたは2種以上を併用して使用することができる。また、これらの化合物の中でもステアリン酸、安息香酸系化合物、リン酸トリクレジル、リン酸トリキシレニルもしくはこれらの金属塩、エステル、アミド、イミド、または3,4,5,6−ジベンゾ−1,2−オキサホスフェン−2−オキサイド等が好ましい。
【0021】
なお、(C)可塑剤としてロジン酸の誘導体を使用する場合には、特にロジン酸の金属塩を用いるのが好ましく、また、最終生成物の色調、臭気および安定性を考慮して、ガードナー1以下の安定化ロジンの誘導体、特にその金属塩を用いるのが好ましい。ガードナー1以下の安定化ロジンとしては、前記(B)成分と同様の反応工程および反応条件により得られたものが挙げられるが、前記安定化ロジンの中でも、造塩反応に供する安定化ロジンとして、色調、安定性などの点で前記▲1▼〜▲7▼が好ましく、特に前記▲6▼が最も好ましい。また、これら前記の態様のうち、(B)成分として選択した安定化ロジンとは安定化反応工程と精製工程の順序が異なるものを(C)成分として選択しても良い。さらに、該(C)安定化ロジンの金属塩としては、前記(A)成分として用いる金属化合物とは異なる金属化合物で中和してなるものが好ましい。また、該金属塩の製造方法は、特に制限されず、メルト法、溶液法等の直接法や複分解法等の公知の方法および本発明における方法を使用できる。
【0022】
(C)可塑剤の添加量は特に制限はされず、最終生成物の目的とする用途に応じて適宜に添加量が決定されるものである。好ましくは(B)安定化ロジンに対し0.1〜30重量%、より好ましくは0.5〜20重量%、さらに好ましくは2.5〜10重量%である。通常、添加量が0.1重量%未満では可塑剤使用の効果は少なく、添加量を増量するほど中和率を上昇させることができるが、20〜30重量%程度添加すれば安定化ロジンはほぼ100%中和することができるので、30重量%を不必要に超える量の添加は単に安定化ロジン金属塩の純度を低下させていくという点で不利である。ただし可塑性を要求される用途を目的とする場合は30重量%以上でも好適に添加できる。
【0023】
本発明の製造方法における反応方法としては、特に制限されず、メルト法、溶液法等の直接法や複分解法等の公知の方法を使用できる。また、反応温度も特に限定はなく、通常は150〜300℃程度、好ましくは200〜250℃の範囲である。(B)安定化ロジンと(A)金属化合物の反応割合は、得られる淡色ロジン金属塩の目的に応じて決定されるが、通常は安定化ロジンのカルボキシル基に対する金属導入量が5〜100当量%、好ましくは10〜100当量%とされる。該反応が終了した後、目的の淡色ロジン金属塩が収得されるが、必要により精製操作を行ってもよい。
【0024】
得られた淡色ロジン金属塩を微粒子化する方法としては、特に制限なく公知の各種の微粒化方法を採用できる。例えば、(1)該ロジン金属塩の固形物に機械的シェアーを加えて湿式または乾式にて粉砕処理する方法、(2)反応が終了した後、有機溶剤を添加し、溶液状態にて水、ならびに必要に応じて界面活性剤および/または水溶性高分子を添加し、ついで機械的シェアーを加えて乳化分散を行った後、水および有機溶剤を留去する方法が例示できる。(2)の方法で使用する界面活性剤および/または水溶性高分子としては特に制限はされず、公知各種のものを使用できる。より具体的には、ノニオン系界面活性剤、アニオン系界面活性剤、ポリビニルアルコール、ポリ(メタ)アクリル酸アルカリ金属塩、(メタ)アクリル酸−アクリルアミド系共重合体、水溶性セルロース、デンプンなどが挙げられる。なお、(2)の方法では、脱溶剤後に、水洗操作などを施し、ロジン金属塩から界面活性剤や水溶性高分子を除去することもできる。
【0025】
なお、本発明の製造法で得られた淡色ロジン金属塩に対し、必要に応じて公知の酸化防止剤を添加しても良く、特に好ましくは有機リン系酸化防止剤である。該酸化防止剤の添加時点は特に限定はなく、造塩反応の前後いずれであっても良い。
【0026】
本発明の製造方法で得られた淡色ロジン金属塩は、その外観がほとんど無色に近い色調(ガードナー2以下)をしており、しかも加熱時の臭気、安定性、相溶性等の諸性能に優れているものである。したがって、各種合成樹脂用の添加剤や改質剤として好適である。
【0027】
【発明の効果】
本発明により、従来公知のロジン金属塩の製造方法に比較して色調、臭気、安定性等の諸性能を顕著に改良し、さらに金属導入量にかかわらず効率よく中和されてなる淡色ロジン金属塩を、高収率かつ安価に提供しうるという効果が奏される。
【0028】
特に、(A)金属化合物と(B)安定化ロジンとを有機溶剤の不存在下に直接反応させる方法(メルト法)において(C)可塑剤を使用することにより、金属導入量が約25当量%以上であっても、均一な高中和率の淡色ロジン金属塩を、高収率かつ良好な中和効率で得ることができる。
【0029】
また、メルト法において金属導入量が約25当量%未満の低中和条件においても中和効率向上および収率向上の効果が得られる。さらにメルト法以外の方法、例えば(A)金属化合物と(B)安定化ロジンとを有機溶剤の存在下において(C)可塑剤の存在下に直接反応させる方法(溶液法)等においても中和効率向上および収率向上の効果が得られる。
【0030】
【実施例】
以下、実施例及び比較例をあげて本発明方法を更に詳しく説明するが、本発明がこれら実施例に限定されないことはもとよりである。なお、特記しない限り%は重量基準である。
【0031】
実施例1
(1)不均化反応
酸価172、軟化点75℃、色調ガードナー6の未精製中国産ガムロジン1000gと不均化触媒として5%パラジウムカーボン(含水率50%)0.3gをを加え、窒素シール下、280℃で4時間撹拌して不均化反応を行ない、酸価160、軟化点78℃、色調ガードナー7の未精製不均化ロジンを得た。
(2)精製
前記未精製不均化ロジンを窒素シール下に3mmHgの減圧下で蒸留し、酸価176.5、軟化点82℃、色調ガードナー3の一般恒数を有する表1に示す主留を精製不均化ロジンとした。
【0032】
【表1】

Figure 0003922470
【0033】
(3)脱水素化反応
前記精製不均化ロジン400gと5%パラジウムカーボン(含水率50%)0.6gを振とう式オートクレーブに仕込み、系内の酸素を除去した後、系内を水素にて0.5Kg/cm2 に加圧し275℃まで昇温し、同温度で3時間脱水素化反応を行ない、本発明における(B)成分として酸価170、軟化点85℃、色調ガードナー1以下(ハーゼンカラー150)の精製不均化ロジンの脱水素化物を得た。
【0034】
(4)金属塩の調製
撹拌機、冷却器付水抜管、温度計、窒素導入管、滴下ロートを備えた反応装置に前記(3)で得られた精製不均化ロジンの脱水素化物292.5gを仕込み、窒素気流下、200℃で撹拌しながらリン酸トリキシレニル7.5g((B)成分に対して2.5%)と酸化マグネシウム7.2g((B)成分に対して40当量%)を添加した後、250℃に昇温し同温度で1時間保温後、減圧度50mmHgで減圧することにより、軟化点120℃、色調ハーゼン250の淡色ロジンの部分マグネシウム塩を得た。
【0035】
実施例2
実施例1(4)において、精製不均化ロジンの脱水化物270g、リン酸トリクレジル30g((B)成分に対して10%)、酸化マグネシウム13.2g((B)成分に対して80当量%)を使用した他は実施例1と同様に行い、軟化点148℃、色調ガードナー1の淡色ロジンの部分マグネシウム塩を得た。
【0036】
実施例3
実施例1(4)において、リン酸トリキシレニルの代わりに3,4,5,6−ジベンゾ−1,2−オキサホスフェン−2−オキサイドを用いた他は実施例1と同様に行い、軟化点115℃、色調ハーゼン150の淡色ロジンの部分マグネシウム塩を得た。
【0037】
実施例4
実施例2において、金属塩の調製時にリン酸トリクレジルの代わりにパラターシャリーブチル安息香酸を使用した他は実施例2と同様に行い、軟化点152℃、色調ガードナー1の淡色ロジンの部分マグネシウム塩を得た。
【0038】
実施例5
(1)可塑剤の調製
実施例1(3)と同様にして得られた精製不均化ロジンの脱水素化物200gの10%イソプロピルアルコール溶液を、実施例1(4)と同様の反応装置に仕込み、水酸化リチウム25gを添加した後、50℃で2時間反応させた。反応後、濃縮、乾燥して精製不均化ロジンの脱水素化物のリチウム塩を得た。
(2)金属塩の調製
実施例1(4)において、金属塩の調製時にリン酸トリキシレニルの代わりに前記(1)の精製不均化ロジンの脱水素化物のリチウム塩を使用した他は実施例1と同様に行い、軟化点125℃、色調ハーゼン220の淡色ロジンの部分マグネシウム塩を得た。
【0039】
実施例6
実施例1(4)と同様の反応装置に、実施例1(3)で得られた精製不均化ロジンの脱水素化物292.5gを仕込み、窒素気流下、200℃で撹拌しながらステアリン酸マグネシウム7.5g((B)成分に対して2.5%)と酸化カルシウム21.8g((B)成分に対して60当量%)を添加した後、250℃に昇温し同温度で1時間保温後、減圧度50mmHgで減圧することにより、軟化点145℃、色調ガードナー1の淡色ロジンの部分カルシウム塩を得た。
【0040】
実施例7
(1)水素化反応
実施例1(2)で得た精製不均化ロジン400gと前記5%パラジウム1gを前記オートクレーブに仕込み、系内の酸素を除去した後、系内を水素にて75Kg/cm2 に加圧し260℃まで昇温し、同温度で3時間水素化反応を行ない、本発明における(B)成分として酸価169、軟化点82℃、色調ハーゼン100の精製不均化ロジンの水素化物を得た。
(2)金属塩の調製
前記(1)で得た精製不均化ロジンの水素化物を用いた他は、実施例1(4)と同様にして造塩反応を行い、軟化点120℃、色調ハーゼン200の淡色ロジンの部分マグネシウム塩を得た。
【0041】
実施例8
(1)水素化反応
3リットルオートクレーブに前記未精製中国産ガムロジン1000gと水素化触媒として5%パラジウムカーボン(含水率50%)2gを仕込み、系内の酸素を除去した後、系内を水素にて100Kg/cm2 に加圧し260℃まで昇温し、同温度で3時間水素化反応を行ない、酸価167、軟化点74℃、色調ガードナー5の未精製水素化ロジンを得た。
(2)精製
前記未精製水素化ロジンを窒素シール下に3mmHgの減圧下で蒸留し、酸価175.2、軟化点83℃、色調ガードナー2の一般恒数を有する表2に示す主留を精製水素化ロジンとした。
【0042】
【表2】
Figure 0003922470
【0043】
(3)脱水素化反応
前記水素化ロジンの精製物400gを実施例1(3)と同一条件で脱水素化反応を行ない、本発明における(B)成分として酸価172.6、軟化点84℃、色調ハーゼン80の精製水素化ロジンの脱水素化物を得た。
(4)金属塩の調製
実施例1(4)と同様の反応装置に、前記(3)で得た精製水素化ロジンの脱水素化物292.5gを仕込み、窒素気流下、200℃で撹拌しながらリン酸トリキシレニル7.5g((B)成分に対して2.5%)と水酸化ナトリウムの48%水溶液30g((B)成分に対して40当量%)を添加した後、250℃に昇温し同温度で1時間保温後、減圧度50mmHgで減圧することにより、軟化点122℃、色調ハーゼン200の淡色ロジンの部分ナトリウム塩を得た。
【0044】
実施例9
(1)再水素化反応
実施例8(2)で得た精製水素化ロジン400gを用いた他は、実施例7(1)と同様にして水素化反応を行ない、本発明における(B)成分として酸価169、軟化点79℃、色調ハーゼン100の精製再水素化ロジンを得た。
(2)金属塩の調製
前記(1)で得た精製再水素化ロジンを用いた他は、実施例8(4)と同様にして造塩反応を行い、軟化点118℃、色調ハーゼン220の淡色ロジンの部分ナトリウム塩を得た。
【0045】
比較例1
実施例1(4)においてリン酸トリキシレニルを添加せずに造塩反応を行なったが、反応途中で結晶が析出し、中和率の一定しない不均一品を得た。
【0046】
比較例2
実施例2においてリン酸トリクレジルを添加せずに造塩反応を行なったが、反応途中で結晶が析出し、中和率の一定しない不均一品を得た。
【0047】
比較例3
実施例6においてステアリン酸マグネシウムを添加せずに造塩反応を行ったが、反応途中で結晶が析出し、中和率の一定しない不均一品を得た。
【0048】
比較例4
ガードナー6の未精製中国産ガムロジンを実施例1(2)記載の条件で精製処理し、ついで実施例1(4)記載の条件で造塩反応を行い、軟化点115℃、色調ガードナー8のロジンの部分マグネシウム塩を得た。
【0049】
諸性能および中和率の測定方法は以下の通りである。結果は表3に示す。
(加熱安定性) 内径1.5cm、高さ15cmの試験管にサンプル10gを入れ、蓋をしないまま200℃の循風乾燥器に静置して経時による色調(ガ−ドナ−)の変化を観察した。
(耐候性) 60〜100メッシュの粒度に揃えた樹脂2.0gを内径5.6cm、高さ1cmの軟膏缶に入れ、400W水銀灯を40cmの距離から15時間照射したときの重量増加(酸素吸収量)及び色調(ガ−ドナ−)の変化を観察した。尚、色調は50%トルエン溶液での評価による。
(中和率) 溶剤に溶かした後、未反応物を除き、金属含有量を原子吸光にて測定した。
【0050】
【表3】
Figure 0003922470
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a light-colored rosin metal salt.
[0002]
[Prior art]
Conventionally, rosin metal salts are tackifiers for adhesives, rubber and various plastic modifiers, traffic paint resins, paper sizing agents, synthetic rubber emulsifiers, ink resins, paint resins, etc. It is used as a raw material for various purposes. However, the appearance of the rosin metal salt is yellow or yellowish brown, and it is not satisfactory in terms of odor, heat stability, weather resistance (hereinafter referred to as stability) and the like.
[0003]
Therefore, in order to solve the above-mentioned drawbacks of the rosin metal salt, the disproportionated rosin is disproportionated to improve the thermal stability, and the disproportionated rosin is hydrogenated to improve the stability to some extent. Although rosin metal salts obtained by subjecting the improved hydrogenated rosin to a salt formation reaction with a metal compound are commercially available, all of them are insufficient in terms of color tone, stability and the like.
[0004]
On the other hand, rosin metal salts are conventionally produced by a method in which rosin is reacted with a metal oxide or hydroxide under high-temperature melting (melt method), and a metal oxide or hydroxide obtained by dissolving rosin in a solvent. And a method of reacting by adding a water-soluble metal salt to an aqueous solution of an alkali metal salt of rosin (metathesis method).
[0005]
[Problems to be solved by the invention]
The melt process is simple and has a high yield, so that it can be manufactured at low cost. However, the neutralization rate is usually 25% or less, and an attempt to increase the neutralization rate raises the softening point and crystal precipitation. As a result, the viscosity of the system increases and becomes non-uniform, making manufacture difficult. The solution method can easily produce a highly neutralized product, but the yield is low, and it is necessary to recover the solvent, which increases the production cost. The metathesis method can produce an insoluble rosin metal salt that cannot be produced by the above two methods, but the yield is extremely low.
[0006]
Thus, since none of the conventional rosin metal salts can satisfy all the performances of color tone, odor and stability, neutralization rate and economy at the same time, the light-colored rosin metal salts having such performance in the field In particular, a method for producing a light-colored rosin metal salt capable of obtaining a light-colored rosin metal salt with a high neutralization rate in an inexpensive reaction method such as a melt method has been desired.
[0007]
An object of the present invention is to provide a method for producing a rosin metal salt which is further improved in color tone, odor and stability as compared with conventionally known rosin metal salts and which is inexpensive and has a high neutralization rate. Furthermore, it aims at providing the manufacturing method of rosin metal salt with favorable neutralization efficiency irrespective of high neutralization and low neutralization.
[0008]
[Means for Solving the Problems]
In view of the above problems, the present inventor has eagerly improved the various performances by paying attention to various conditions such as raw material rosin species, purification operations, stabilization reaction operations, and types of metal compounds and additives. As a result of research, the use of a specific stabilized rosin, and a salt formation reaction in the presence of a specific metal compound and a plasticizer enables light-colored rosin having excellent performance that meets the object of the present invention. It has been found that metal salts can be obtained in good yield with good neutralization efficiency. Furthermore, it has also been found that a light-colored rosin metal salt having a high neutralization rate, which has been impossible in the melt method, can be obtained in a high yield with good neutralization efficiency. The present invention has been completed based on such findings.
[0009]
That is, the present invention comprises (A) a metal compound of at least one metal selected from the group consisting of lithium, sodium, potassium, magnesium, calcium and zinc, and (B) a stabilized rosin having a Gardner color tone of 1 or less. The presence of a plasticizer comprising (C) at least one compound selected from the group consisting of organic carboxylic acids having 6 to 30 carbon atoms and derivatives thereof (excluding rosin acid itself) and organophosphorus compounds The present invention relates to a method for producing a light-colored rosin metal salt obtained by salt formation reaction below.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The (A) metal compound used in the present invention is determined in consideration of the reactivity with the stabilized rosin, the color tone, odor, stability and the like of the obtained rosin metal salt. Specifically, it is at least one metal compound selected from the group consisting of lithium, sodium, potassium, magnesium, calcium and zinc. Moreover, as an aspect of this metal compound, at least 1 sort (s) chosen from the group which consists of acetate, carbonate, an oxide, and a hydroxide of this metal is preferable.
[0011]
In the present invention, from the viewpoint of the color tone and stability of the light-colored rosin metal salt obtained, it is essential to use (B) a stabilized rosin having a Gardner color tone of 1 or less as a rosin substance to be subjected to a salt-forming reaction. . The stabilized rosin is at least one stabilization reaction step selected from the group consisting of disproportionation, hydrogenation and dehydrogenation of gum rosin, wood rosin or tall oil rosin (hereinafter referred to as unpurified rosin). The purification process is performed in an arbitrary order. More specifically, the raw rosin is hydrogenated, purified and then dehydrogenated (1); the raw rosin is hydrogenated, purified and then hydrogenated (2); unpurified Purified rosin, hydrogenated and then dehydrogenated (3); Unpurified rosin purified, disproportionated and then dehydrogenated (4); Unpurified rosin disproportionated and purified And then hydrogenated (5); disproportionated and purified unpurified rosin; then dehydrogenated (6); purified unpurified rosin and then dehydrogenated (7) ▼: What is obtained by hydrogenating an unpurified rosin and then purifying it (8); What is obtained by disproportionating and then purifying an unpurified rosin (9), etc.
[0012]
Among the above-mentioned (B) stabilized rosins, (1) to (7) are preferable, and (6) is most preferable as the stabilized rosin used for the salt-forming reaction, in terms of color tone and stability.
[0013]
In the present invention, the conditions in each of the above stabilization reactions are not particularly limited, and any of them may be appropriately selected from known conditions.
[0014]
The hydrogenation reaction is performed by heating an unpurified rosin or a purified rosin under hydrogen pressure in the presence of a hydrogenation catalyst. Examples of the catalyst include various known catalysts such as supported catalysts such as palladium carbon, rhodium carbon, and platinum carbon, metal powders such as nickel and platinum, and iodides such as iodine and iron iodide. The amount of the catalyst used is usually 0.01 to 5% by weight, preferably 0.01 to 1.0% by weight, based on the rosin, the hydrogenation pressure is 50 to 200 Kg / cm 2 , and the reaction temperature. Is 100 to 300 ° C, preferably 150 to 290 ° C.
[0015]
The disproportionation reaction is performed by heating unpurified rosin or purified rosin without supplying hydrogen in the presence of a disproportionation catalyst. As the disproportionation catalyst, the same catalyst as the hydrogenation catalyst can be used, and the amount used is also the same. The reaction temperature is the same as in the hydrogenation reaction.
[0016]
The dehydrogenation reaction is carried out in the presence of rosin dehydrogenation catalyst to be subjected to the reaction, less than 2 hydrogen pressure is 10 Kg / cm in a closed vessel, preferably less than 5Kg / cm 2, the reaction temperature is 100 to 300 ° C., Preferably, it is performed by heating in the range of 200 to 280 ° C. Hydrogen is essentially unnecessary because it is a dehydrogenation reaction, but the hydrogen pressure was set to less than 10 kg / cm 2 for the purpose of utilizing the produced hydrogen for the reduction of peroxide. The pressure may be adjusted by self-pressure or by supplying a little hydrogen from the outside. As the dehydrogenation catalyst, various known catalysts can be used without any particular limitation, and palladium-based, rhodium-based, and platinum-based catalysts are preferable. The catalyst is usually used by being supported on a carrier such as silica or carbon. The amount of the catalyst used is usually about 0.01 to 5% by weight, preferably 0.02 to 2% by weight, based on the purified hydrogenated rosin. In the dehydrogenation reaction, alicyclic hydrocarbons such as cyclohexane and decalin, and aromatic hydrocarbons such as toluene and xylene can be appropriately used as a solvent.
[0017]
In the present invention, the unpurified rosin or the unpurified stabilized rosin is purified before and after the above-described stabilization reaction. The term “purification” used herein means removal of a high-molecular-weight product thought to be generated from a peroxide contained in the rosin subjected to the operation and an unsaponified product originally contained in the rosin. Specifically, operations such as distillation, recrystallization and extraction may be performed, and industrial purification is preferred. In the case of distillation, it is usually selected appropriately from the range of temperature 200 to 300 ° C. and pressure 1 to 10 mmHg in consideration of the distillation time. In the case of recrystallization, for example, unpurified hydrogenated rosin is dissolved in a good solvent, and then the solvent is distilled off to form a concentrated solution, and a poor solvent is added to this solution. Examples of good solvents include ketones such as benzene, toluene, xylene, chloroform, lower alcohol, and acetone, and acetates such as ethyl acetate. Examples of poor solvents include n-hexane, n-heptane, cyclohexane, and isooctane. Can be mentioned. Further, as the purification, an unpurified hydrogenated rosin may be made into an alkaline aqueous solution using alkaline water, an insoluble unsaponified product may be extracted with an organic solvent, and then the aqueous layer may be neutralized. Can also be obtained.
[0018]
The (C) plasticizer in the present invention contains a compound having plasticity to the (A) metal compound and (B) the stabilized rosin, and allows the (A) component and the (B) component to react efficiently. An additive that can be used.
[0019]
Examples of the plastic compound include organic carboxylic acids having 6 to 30 carbon atoms or derivatives thereof. Examples of the organic carboxylic acid having 6 to 30 carbon atoms include phthalic acid, stearic acid, adipic acid, benzoic acid and benzoic acid-based compounds including substituted acids thereof, rosin acid, and the like. Cannot be used. This is because the use of rosin acid itself as the plasticizer (C) only adds the same properties as the (B) stabilized rosin, and does not solve the problem of improving the neutralization rate. Therefore, rosin acid can be used, for example, its derivatives. Examples of the organic carboxylic acid derivatives include metal salts, esters, amides, imides, etc., and the organic carboxylic acid metal salts include lithium, sodium, potassium, magnesium, calcium or zinc metal salts of the organic carboxylic acids. Examples of the ester include esters of methyl, ethyl, butyl, heptyl, octyl, ethylhexyl, isononyl, decyl, isodecyl, benzyl, etc., and examples of the amide include organic carboxylic acids exemplified by stearic acid amide, phthalic acid amide, etc. Examples of amides include organic carboxylic acid imides exemplified by phthalimide and maleimide.
[0019]
Similarly, the organophosphorus compound that can be contained in the plasticizer (C) in the present invention includes tributyl phosphate, tri-2-ethylhexyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, phosphorus Acid 2,2-methylenebis (4,6-di-t-butylphenyl) sodium, trisnolylphenyl phosphite, tris- (2,4-di-t-butylphenyl) phosphite, 3,4,5,6 -Dibenzo-1,2-oxaphosphene-2-oxide etc. are mentioned.
[0020]
The above-mentioned compounds such as organic carboxylic acids having 6 to 30 carbon atoms, derivatives thereof, and organic phosphorus compounds can be used alone or in combination of two or more. Among these compounds, stearic acid, benzoic acid compounds, tricresyl phosphate, trixylenyl phosphate or their metal salts, esters, amides, imides, or 3,4,5,6-dibenzo-1,2-oxa Phosphen-2-oxide and the like are preferable.
[0021]
In addition, when using a derivative of rosin acid as the plasticizer (C), it is particularly preferable to use a metal salt of rosin acid, and considering the color tone, odor and stability of the final product, Gardner 1 The following stabilized rosin derivatives, in particular their metal salts, are preferably used. Examples of the stabilized rosin of Gardner 1 or lower include those obtained by the same reaction steps and reaction conditions as the component (B). Among the stabilized rosins, as the stabilized rosin used for the salt formation reaction, From the viewpoint of color tone and stability, the above (1) to (7) are preferable, and the above (6) is most preferable. Moreover, you may select as a (C) component from which the order of a stabilization reaction process and a refinement | purification process differs from the stabilized rosin selected as a (B) component among these said aspects. Furthermore, the metal salt of the (C) stabilized rosin is preferably neutralized with a metal compound different from the metal compound used as the component (A). Moreover, the manufacturing method in particular of this metal salt is not restrict | limited, Well-known methods, such as direct methods, such as a melt method and a solution method, and a double decomposition method, and the method in this invention can be used.
[0022]
(C) The addition amount of the plasticizer is not particularly limited, and the addition amount is appropriately determined according to the intended use of the final product. Preferably it is 0.1-30 weight% with respect to (B) stabilized rosin, More preferably, it is 0.5-20 weight%, More preferably, it is 2.5-10 weight%. Usually, if the addition amount is less than 0.1% by weight, the effect of using the plasticizer is small, and the neutralization rate can be increased as the addition amount is increased. Since almost 100% neutralization is possible, the addition of an amount exceeding 30% by weight is disadvantageous in that it simply reduces the purity of the stabilized rosin metal salt. However, when the purpose is a use requiring plasticity, 30% by weight or more can be suitably added.
[0023]
The reaction method in the production method of the present invention is not particularly limited, and a known method such as a direct method such as a melt method or a solution method or a metathesis method can be used. The reaction temperature is not particularly limited, and is usually about 150 to 300 ° C, preferably 200 to 250 ° C. (B) The reaction ratio of the stabilized rosin and the (A) metal compound is determined according to the purpose of the light-colored rosin metal salt to be obtained. Usually, the amount of metal introduced to the carboxyl group of the stabilized rosin is 5 to 100 equivalents. %, Preferably 10 to 100 equivalent%. After the reaction is completed, the desired light-colored rosin metal salt is obtained, but a purification operation may be performed if necessary.
[0024]
As a method for finely pulverizing the obtained light-colored rosin metal salt, various known atomization methods can be adopted without particular limitation. For example, (1) a method in which a mechanical share is added to the solid of the rosin metal salt and pulverized by a wet method or a dry method, (2) after the reaction is completed, an organic solvent is added, and water is added in a solution state. In addition, there can be exemplified a method in which a surfactant and / or a water-soluble polymer is added as necessary, and then mechanical dispersion is added and emulsified and dispersed, and then water and the organic solvent are distilled off. The surfactant and / or water-soluble polymer used in the method (2) is not particularly limited, and various known ones can be used. More specifically, nonionic surfactants, anionic surfactants, polyvinyl alcohol, poly (meth) acrylic acid alkali metal salts, (meth) acrylic acid-acrylamide copolymers, water-soluble cellulose, starch and the like. Can be mentioned. In the method (2), after removing the solvent, a washing operation or the like can be performed to remove the surfactant or the water-soluble polymer from the rosin metal salt.
[0025]
In addition, you may add a well-known antioxidant to the light-colored rosin metal salt obtained by the manufacturing method of this invention as needed, Especially preferably, it is an organic phosphorus antioxidant. The addition point of the antioxidant is not particularly limited, and may be before or after the salt formation reaction.
[0026]
The light-colored rosin metal salt obtained by the production method of the present invention has an almost colorless appearance (Gardner 2 or less), and is excellent in various performances such as odor, stability and compatibility during heating. It is what. Therefore, it is suitable as an additive or modifier for various synthetic resins.
[0027]
【The invention's effect】
According to the present invention, light-colored rosin metal, which is remarkably improved in performances such as color tone, odor, stability, and the like, compared with a conventionally known rosin metal salt production method, and is neutralized efficiently regardless of the amount of metal introduced. There is an effect that the salt can be provided in a high yield and at a low cost.
[0028]
In particular, by using (C) a plasticizer in a method (melt method) in which (A) a metal compound and (B) a stabilized rosin are directly reacted in the absence of an organic solvent, the amount of introduced metal is about 25 equivalents. Even if it is% or more, a light rosin metal salt having a uniform high neutralization rate can be obtained with high yield and good neutralization efficiency.
[0029]
Moreover, the effect of neutralization efficiency improvement and a yield improvement is acquired also in the low neutralization conditions whose metal introduction amount is less than about 25 equivalent% in a melt method. Furthermore, it is also neutralized by a method other than the melt method, for example, a method (solution method) in which (A) a metal compound and (B) a stabilized rosin are reacted directly in the presence of an organic solvent (C) in the presence of a plasticizer. The effect of improving efficiency and yield is obtained.
[0030]
【Example】
Hereinafter, the method of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Unless otherwise specified,% is based on weight.
[0031]
Example 1
(1) Disproportionation reaction Acid value 172, softening point 75 ° C, color Gardner 6 unpurified Chinese gum rosin 1000g and 5% palladium carbon (water content 50%) 0.3g as a disproportionation catalyst were added, nitrogen Under the seal, the mixture was stirred at 280 ° C. for 4 hours to carry out a disproportionation reaction, whereby an unpurified disproportionated rosin having an acid value of 160, a softening point of 78 ° C., and a color tone Gardner 7 was obtained.
(2) Purification The unpurified disproportionated rosin was distilled under a reduced pressure of 3 mmHg under a nitrogen seal, and the main fraction shown in Table 1 having an acid value of 176.5, a softening point of 82 ° C., and a general constant of the color tone Gardner 3 was obtained. Was purified disproportionated rosin.
[0032]
[Table 1]
Figure 0003922470
[0033]
(3) Dehydrogenation reaction 400 g of the purified disproportionated rosin and 0.6 g of 5% palladium carbon (water content 50%) were charged into a shaking autoclave, and after removing oxygen in the system, the system was converted to hydrogen. The pressure is increased to 0.5 kg / cm 2 , the temperature is raised to 275 ° C., a dehydrogenation reaction is carried out for 3 hours at the same temperature, and the acid value 170, softening point 85 ° C., color tone Gardner 1 or less as component (B) in the present invention A dehydrogenated product of purified disproportionated rosin (Hazen Color 150) was obtained.
[0034]
(4) Preparation of metal salt A dehydrogenated product of the purified disproportionated rosin obtained in (3) above in a reactor equipped with a stirrer, a water drain tube with a condenser, a thermometer, a nitrogen introduction tube, and a dropping funnel 292. 5 g was charged and stirred under nitrogen flow at 200 ° C., 7.5 g of trixylenyl phosphate (2.5% with respect to component (B)) and 7.2 g of magnesium oxide (40 equivalents with respect to component (B)) ) Was added, and the mixture was heated to 250 ° C., kept at the same temperature for 1 hour, and then reduced in pressure at a reduced pressure of 50 mmHg to obtain a light magnesium rosin partial magnesium salt having a softening point of 120 ° C. and a color tone of Hazen 250.
[0035]
Example 2
In Example 1 (4), 270 g of purified disproportionated rosin dehydrated product, 30 g of tricresyl phosphate (10% with respect to component (B)), 13.2 g of magnesium oxide (80 equivalent percent with respect to component (B)) ) Was used in the same manner as in Example 1 to obtain a light magnesium rosin partial magnesium salt having a softening point of 148 ° C. and a color tone Gardner 1.
[0036]
Example 3
The same procedure as in Example 1 was conducted except that 3,4,5,6-dibenzo-1,2-oxaphosphene-2-oxide was used instead of trixylenyl phosphate in Example 1 (4). A partial magnesium salt of a light-colored rosin having a color tone of Hazen 150 at 115 ° C. was obtained.
[0037]
Example 4
In Example 2, except that paratertiary butylbenzoic acid was used instead of tricresyl phosphate at the time of preparation of the metal salt, the same procedure as in Example 2 was performed, and the partial magnesium salt of a light color rosin with a softening point of 152 ° C. and a color tone Gardner 1 Got.
[0038]
Example 5
(1) Preparation of plasticizer A 10% isopropyl alcohol solution of 200 g of a purified deproportionated rosin dehydrogenated product obtained in the same manner as in Example 1 (3) was placed in a reactor similar to that in Example 1 (4). After charging and adding 25 g of lithium hydroxide, the mixture was reacted at 50 ° C. for 2 hours. After the reaction, the product was concentrated and dried to obtain a lithium salt of a purified dehydrogenated rosin dehydrogenation product.
(2) Preparation of metal salt In Example 1 (4), the lithium salt of the dehydrogenated product of the purified disproportionated rosin (1) was used instead of trixylenyl phosphate in the preparation of the metal salt. 1 and a partial magnesium salt of a light-colored rosin having a softening point of 125 ° C. and a color tone of Hazen 220 was obtained.
[0039]
Example 6
In a reactor similar to Example 1 (4), 292.5 g of the dehydrogenated product of the purified disproportionated rosin obtained in Example 1 (3) was charged, and stearic acid was stirred at 200 ° C. in a nitrogen stream. After adding 7.5 g of magnesium (2.5% with respect to the component (B)) and 21.8 g of calcium oxide (60 equivalent percent with respect to the component (B)), the temperature was raised to 250 ° C. and 1 at the same temperature. After maintaining the temperature for a while, the pressure was reduced at a reduced pressure of 50 mmHg to obtain a light calcium rosin partial calcium salt having a softening point of 145 ° C. and a color tone Gardner 1.
[0040]
Example 7
(1) Hydrogenation reaction 400 g of the purified disproportionated rosin obtained in Example 1 (2) and 1 g of 5% palladium were charged into the autoclave to remove oxygen in the system, and then the system was charged with 75 kg / h of hydrogen. the temperature was raised to cm 2 pressurized to 260 ° C., subjected to 3 hours hydrogenation reaction at the same temperature, acid value 169 as the component (B) in the present invention, a softening point of 82 ° C., the color tone Hazen 100 purified disproportionated rosin A hydride was obtained.
(2) Preparation of metal salt A salt formation reaction was carried out in the same manner as in Example 1 (4) except that the purified disproportionated rosin hydride obtained in (1) was used. A light magnesium rosin magnesium salt of Hazen 200 was obtained.
[0041]
Example 8
(1) Hydrogenation reaction Into a 3 liter autoclave was charged 1000 g of the unrefined Chinese gum rosin and 2 g of 5% palladium carbon (water content 50%) as a hydrogenation catalyst. After removing oxygen in the system, the system was converted to hydrogen. The mixture was pressurized to 100 kg / cm 2 , heated to 260 ° C., and hydrogenated at the same temperature for 3 hours to obtain an unpurified hydrogenated rosin having an acid value of 167, a softening point of 74 ° C., and a color tone Gardner 5.
(2) Purification The unpurified hydrogenated rosin was distilled under a reduced pressure of 3 mmHg under a nitrogen seal, and the main fraction shown in Table 2 having an acid number of 175.2, a softening point of 83 ° C., and a general constant of color tone Gardner 2 was obtained. Purified hydrogenated rosin.
[0042]
[Table 2]
Figure 0003922470
[0043]
(3) Dehydrogenation reaction 400 g of the purified product of hydrogenated rosin was subjected to a dehydrogenation reaction under the same conditions as in Example 1 (3), and the acid value 172.6 and the softening point 84 as component (B) in the present invention. A dehydrogenated product of purified hydrogenated rosin having a color tone of Hazen 80 ° C. was obtained.
(4) Preparation of metal salt In a reactor similar to Example 1 (4), 292.5 g of the dehydrogenated product of the purified hydrogenated rosin obtained in (3) above was charged and stirred at 200 ° C. under a nitrogen stream. While adding 7.5 g of trixylenyl phosphate (2.5% with respect to component (B)) and 30 g of a 48% aqueous solution of sodium hydroxide (40 equivalent percent with respect to component (B)), the temperature was raised to 250 ° C. After warming and keeping at the same temperature for 1 hour, the pressure was reduced to 50 mmHg to obtain a partial sodium salt of a light rosin having a softening point of 122 ° C. and a color tone of Hazen 200.
[0044]
Example 9
(1) Rehydrogenation reaction A hydrogenation reaction was carried out in the same manner as in Example 7 (1) except that 400 g of the purified hydrogenated rosin obtained in Example 8 (2) was used. As a result, a purified rehydrogenated rosin having an acid value of 169, a softening point of 79 ° C. and a color tone of Hazen 100 was obtained.
(2) Preparation of metal salt A salt formation reaction was carried out in the same manner as in Example 8 (4) except that the purified rehydrogenated rosin obtained in (1) above was used. A partial sodium salt of pale rosin was obtained.
[0045]
Comparative Example 1
In Example 1 (4), the salt formation reaction was carried out without adding trixylenyl phosphate, but crystals were precipitated during the reaction, and a heterogeneous product with a constant neutralization rate was obtained.
[0046]
Comparative Example 2
In Example 2, the salt formation reaction was carried out without adding tricresyl phosphate, but crystals were precipitated during the reaction, and a heterogeneous product with a constant neutralization rate was obtained.
[0047]
Comparative Example 3
In Example 6, the salt formation reaction was performed without adding magnesium stearate, but crystals were precipitated during the reaction, and a heterogeneous product with a constant neutralization rate was obtained.
[0048]
Comparative Example 4
Gardner 6 unpurified Chinese gum rosin was purified under the conditions described in Example 1 (2), and then subjected to a salt-forming reaction under the conditions described in Example 1 (4). Of partial magnesium salt was obtained.
[0049]
Various performances and methods for measuring the neutralization rate are as follows. The results are shown in Table 3.
(Heating stability) Place 10 g of sample in a test tube with an inner diameter of 1.5 cm and a height of 15 cm, and leave it in a circulating dryer at 200 ° C. without a cover to change the color tone (guard) over time. Observed.
(Weather resistance) An increase in weight (oxygen absorption) when 2.0 g of resin having a particle size of 60 to 100 mesh was placed in an ointment can having an inner diameter of 5.6 cm and a height of 1 cm and a 400 W mercury lamp was irradiated for 15 hours from a distance of 40 cm. Change in color) and color (gadner). The color tone is based on evaluation with a 50% toluene solution.
(Neutralization rate) After dissolving in a solvent, unreacted substances were removed, and the metal content was measured by atomic absorption.
[0050]
[Table 3]
Figure 0003922470

Claims (10)

(A)リチウム、ナトリウム、カリウム、マグネシウム、カルシウムおよび亜鉛からなる群から選ばれるいずれか少なくとも1種の金属の金属化合物と、(B)ガードナー色調が1以下の安定化ロジンとを、(C)炭素数6〜30の有機カルボン酸およびその誘導体(ただしロジン酸そのものは除く)ならびに有機リン系化合物からなる群から選ばれる少なくとも1種の化合物を含有してなる可塑剤の存在下に造塩反応させてなる淡色ロジン金属塩の製造方法。(A) a metal compound of at least one metal selected from the group consisting of lithium, sodium, potassium, magnesium, calcium and zinc, and (B) a stabilized rosin having a Gardner color tone of 1 or less, (C) Salt formation reaction in the presence of a plasticizer comprising at least one compound selected from the group consisting of organic carboxylic acids having 6 to 30 carbon atoms and derivatives thereof (excluding rosin acid itself) and organic phosphorus compounds A process for producing a light-colored rosin metal salt. (C)可塑剤が、ステアリン酸、安息香酸系化合物、リン酸トリクレジル、リン酸トリキシレニルおよびこれらの誘導体、ならびに3,4,5,6−ジベンゾ−1,2−オキサホスフェン−2−オキサイドからなる群より選ばれるいずれか少なくとも1種の化合物を含有してなる請求項1記載の淡色ロジン金属塩の製造方法。(C) the plasticizer is selected from stearic acid, benzoic acid compounds, tricresyl phosphate, trixylenyl phosphate and derivatives thereof, and 3,4,5,6-dibenzo-1,2-oxaphosphene-2-oxide The method for producing a light-colored rosin metal salt according to claim 1, comprising at least one compound selected from the group consisting of: (C)可塑剤が、ガードナー色調が1以下の安定化ロジン金属塩を含有してなる請求項1記載の淡色ロジン金属塩の製造方法。The method for producing a light-colored rosin metal salt according to claim 1, wherein the plasticizer contains a stabilized rosin metal salt having a Gardner color tone of 1 or less. (B)安定化ロジンに対する(C)可塑剤の添加量が0.1〜30重量%である請求項1〜3のいずれかに記載の淡色ロジン金属塩の製造方法。The method for producing a light-colored rosin metal salt according to any one of claims 1 to 3, wherein the amount of (C) the plasticizer added to (B) the stabilized rosin is 0.1 to 30% by weight. 安定化ロジンのカルボキシル基に対する金属導入量が5〜100当量%である請求項1〜4のいずれかに記載の淡色ロジン金属塩の製造方法。The method for producing a light-colored rosin metal salt according to any one of claims 1 to 4, wherein the amount of metal introduced to the carboxyl group of the stabilized rosin is 5 to 100 equivalent%. (A)金属化合物が、該金属または該金属の酢酸塩、炭酸塩、酸化物および水酸化物からなる群から選ばれるいずれか少なくとも1種である請求項1〜5のいずれかに記載の淡色ロジン金属塩の製造方法。The light color according to any one of claims 1 to 5, wherein the metal compound (A) is at least one selected from the group consisting of the metal or acetate, carbonate, oxide and hydroxide of the metal. A method for producing a rosin metal salt. (B)安定化ロジンが、ガムロジン、ウッドロジンまたはトール油ロジンを、不均化、水素化及び脱水素化からなる群から選ばれる少なくとも1種の安定化反応工程と、精製工程とを任意の順序で経由させたものである請求項1〜6のいずれかに記載の淡色ロジン金属塩の製造方法。(B) Stabilized rosin is gum rosin, wood rosin or tall oil rosin, in any order, at least one stabilization reaction step selected from the group consisting of disproportionation, hydrogenation and dehydrogenation, and purification step The method for producing a light-colored rosin metal salt according to any one of claims 1 to 6. (B)安定化ロジンが、精製した不均化ロジンを脱水素化触媒存在下に脱水素化反応させたものである請求項7記載の淡色ロジン金属塩の製造方法。(B) The method for producing a light-colored rosin metal salt according to claim 7, wherein the stabilized rosin is obtained by dehydrogenating a purified disproportionated rosin in the presence of a dehydrogenation catalyst. 淡色ロジン金属塩のガードナー色調が2以下である請求項1〜8のいずれかに記載の淡色ロジン金属塩の製造方法。The method for producing a light-colored rosin metal salt according to any one of claims 1 to 8, wherein the light-colored rosin metal salt has a Gardner color tone of 2 or less. 造塩反応をメルト法にて行う請求項1〜9のいずれかに記載の淡色ロジン金属塩の製造方法。The method for producing a light-colored rosin metal salt according to any one of claims 1 to 9, wherein the salt-forming reaction is performed by a melt method.
JP17858796A 1996-06-18 1996-06-18 Method for producing light-colored rosin metal salt Expired - Lifetime JP3922470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17858796A JP3922470B2 (en) 1996-06-18 1996-06-18 Method for producing light-colored rosin metal salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17858796A JP3922470B2 (en) 1996-06-18 1996-06-18 Method for producing light-colored rosin metal salt

Publications (2)

Publication Number Publication Date
JPH101641A JPH101641A (en) 1998-01-06
JP3922470B2 true JP3922470B2 (en) 2007-05-30

Family

ID=16051086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17858796A Expired - Lifetime JP3922470B2 (en) 1996-06-18 1996-06-18 Method for producing light-colored rosin metal salt

Country Status (1)

Country Link
JP (1) JP3922470B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284628A (en) * 2006-04-20 2007-11-01 Arakawa Chem Ind Co Ltd Metal soap, method for producing the same and oil-absorbing material
EP2039732A1 (en) 2007-09-20 2009-03-25 Hexion Specialty Chemicals Research Belgium S.A. Waterbased dimerized rosins and the process to make them

Also Published As

Publication number Publication date
JPH101641A (en) 1998-01-06

Similar Documents

Publication Publication Date Title
JP2539811B2 (en) Method for producing rosin ester
Brook Thermal rearrangements of organosilicon and organogermanium compounds1
JP2666651B2 (en) Colorless rosin derivative and production method thereof
JP3371982B2 (en) Method for producing colorless rosin
US3386978A (en) Preparation of hydrolyzed ethylene/vinyl acetate copolymer
Blossey et al. Polymer protected reagents:(II) Esterifications with P-AlCl3
JP3922470B2 (en) Method for producing light-colored rosin metal salt
JPH1135512A (en) Production of cyclohexanones by hydrogenation of corresponding phenols(ii)
JP2539851B2 (en) Method for producing colorless rosin
JP2795018B2 (en) Rosin ester production method
JP2953187B2 (en) Method for producing colorless rosin
JP3371985B2 (en) Method for producing colorless rosin ester
EP0579666A1 (en) Selective hydroxylation of phenol or phenolic ethers.
JP3902268B2 (en) Production method of light colored rosin metal salt
JPH08277364A (en) Production of pale mixture comprising stabilized rosin metal salt and stabilized rosin ester
JP4793520B2 (en) Method for producing colorless polymerized rosin ester
US4906733A (en) Process for preparing colorless rosin
JPH08170053A (en) Production of light-colored metal salt of rosin
JP2001316330A (en) Method for producing colorless rosin ester
US3153067A (en) Substituted octahydroanthracenes
JPH08259897A (en) Production of light-color rosin metal salt
JP3371972B2 (en) Rosin ester production method
JPH08253688A (en) Production of pale colored mixture consisting of stabilized rosin metal salt and stabilized rosin ester
CN100582118C (en) Method for preparing 7-dehydrogenation cholesterol
KR910009635A (en) Glutaric acid derivatives and processes for their preparation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term