JP3921973B2 - In-cylinder direct injection gasoline engine - Google Patents

In-cylinder direct injection gasoline engine Download PDF

Info

Publication number
JP3921973B2
JP3921973B2 JP2001236999A JP2001236999A JP3921973B2 JP 3921973 B2 JP3921973 B2 JP 3921973B2 JP 2001236999 A JP2001236999 A JP 2001236999A JP 2001236999 A JP2001236999 A JP 2001236999A JP 3921973 B2 JP3921973 B2 JP 3921973B2
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
injection
gasoline engine
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001236999A
Other languages
Japanese (ja)
Other versions
JP2003049679A (en
Inventor
友則 漆原
浩一 山口
康治 平谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001236999A priority Critical patent/JP3921973B2/en
Publication of JP2003049679A publication Critical patent/JP2003049679A/en
Application granted granted Critical
Publication of JP3921973B2 publication Critical patent/JP3921973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
本発明は、筒内直噴式ガソリン機関に関する。
【0002】
【従来の技術】
燃料噴射弁と点火プラグとを近接配置した筒内直噴式ガソリン機関としては、特開平7−189767号公報に開示されたものが公知である。
この筒内直噴式ガソリン機関では、燃料噴射量が所定量より少ないときは、点火時期近くで燃料噴射を行い、燃料噴射量が所定量より多いときは、クランク角0°の排気上死点近くでの前噴射と、点火時期近くでの後噴射とを行う(前記公報の図7及び図8参照)。
【0003】
燃料噴射弁と点火プラグとを近接配置して、点火時期近くで燃料噴射を行うと、燃料が分散する前に点火が行われるので、燃料噴射量が少なくても(空燃比が大きくても)安定した燃焼が得られる。このため、低負荷運転時(燃料噴射量が少ないとき)に吸入空気量を絞る必要が無くなり、エンジンのポンピングロスを低減することができる。
【0004】
但し、この制御を高負荷運転時(燃料噴射量が多いとき)にも行うと、燃焼に寄与する空気が不足してスモークが発生するので、前記公報に記載の従来技術では、燃料噴射量が多いときは点火時期近くでの後噴射に加えて前噴射を行い、予め燃焼室全体に均一な混合気を作っておくようにしている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来技術の前噴射は、噴射燃料が気筒壁面に当たるのを避けるため、ピストンが排気上死点に近いときに行われるようになっており、この場合、燃料の気筒壁面への付着は回避されるものの、ピストン冠面には多くの燃料が付着することになり、エンジンのHC排出特性を悪化させる要因となる。
【0006】
また、前噴射された燃料は燃焼室全体に広がるため、燃料噴射量によっては均一混合気が希薄になり過ぎて、燃焼が不安定になる可能性がある。すなわち、点火時期近くの燃料噴射だけとするには燃料量が多すぎ、反対に前噴射と後噴射とを行うには燃料量が少なすぎる中間の燃料量が存在する。
本発明は、このような従来の問題点に鑑み、安定した燃焼が得られると共に、HCやスモークの発生を低減でき、また燃費も良好となる筒内直噴式ガソリン機関を提供することを目的とする。
【0007】
【課題を解決するための手段】
このため、請求項1の発明では、燃料噴射弁により形成される燃料噴霧中若しくは該燃料噴霧に近接して点火プラグのスパークギャップを配置した筒内直噴式ガソリン機関において、所定の運転領域において、点火時期近傍にて1度の燃料噴射を行うと共に、この燃料噴射に先立って圧縮行程中に少なくとも1度の燃料噴射を行う。すなわち、前噴射を圧縮行程中に行い、点火時期近傍にて後噴射を行う。そして、点火時期近傍の燃料噴射の噴射量を機関回転速度の増大に応じて増加させることを特徴とする。
【0008】
請求項2の発明では、前記所定の運転領域は、圧縮行程中に燃料噴射を行う成層燃焼運転領域中の高負荷領域であることを特徴とする。
請求項3の発明では、前記所定の運転領域は、圧縮行程中に燃料噴射を行う成層燃焼運転領域中の高負荷及び低回転領域であることを特徴とする。
請求項4の発明では、点火時期近傍の燃料噴射の噴射量を機関回転速度に応じて設定し、機関負荷に応じて要求される総燃料噴射量から、点火時期近傍の燃料噴射の噴射量を除いた燃料量を、点火時期近傍の燃料噴射に先立つ燃料噴射の噴射量とすることを特徴とする。
【0009】
請求項5の発明では、燃料噴射弁噴口とスパークギャップとの距離は概ねシリンダボア径の1/4以下とすることを特徴とする。
請求項6の発明では、点火プラグのスパークギャップが燃料噴霧中に配置される一方、中心電極をグラウンドから絶縁するための絶縁碍子は燃料噴霧外に配置されることを特徴とする。
【0010】
請求項7の発明では、2つの燃料噴射弁を有し、このうち1つが点火プラグに近接して配置され、当該燃料噴射弁により点火時期近傍の燃料噴射がなされることを特徴とする。
請求項8の発明では、2つの点火プラグを有し、このうち1つが燃料噴射弁に近接して配置されることを特徴とする。
【0011】
【発明の効果】
請求項1の発明によれば、前噴射を圧縮行程に行うことで、前噴射の燃料が燃焼室全体に広がる前(但し、十分な気化時間経過後)に、点火時期近傍での後噴射と点火による火炎核が前噴射の噴霧に追いつき、前噴射の燃料を燃焼させる。これにより、適度な空燃比となっているときに前噴射による混合気を燃焼させることが可能となり、安定した燃焼が得られる。また、噴霧とピストンとの衝突も少ないので、HC排出量等も抑制できる。
また、点火時期近傍の燃料噴射の噴射量を回転速度の増大に応じて増加させることで、点火時期近傍の燃料噴射による混合気の形成は、回転速度に比例して空気流動が強くなると、より拡散方向となり、点火プラグ近傍の空燃比が薄くなるのを補うことができ、回転速度の広い範囲にわたって本燃焼コンセプトを実現できる。
【0012】
請求項2の発明によれば、圧縮行程中に燃料噴射を行う成層燃焼運転領域中の高負荷領域にて行うことで、当該領域での燃焼安定性と排気特性向上を図ることができる。
請求項3の発明によれば、圧縮行程中に燃料噴射を行う成層燃焼運転領域中の高負荷及び低回転領域にて行うことで、当該領域での燃焼安定性と排気特性向上を図ることができる。
【0013】
請求項4の発明によれば、点火時期近傍の燃料噴射の噴射量を機関回転速度に応じて設定し、機関負荷に応じて要求される総燃料噴射量から、点火時期近傍の燃料噴射の噴射量を除いた燃料量を、点火時期近傍の燃料噴射に先立つ燃料噴射の噴射量とすることで、すなわち、点火時期近傍の噴射量は点火プラグによる着火に必要な最小限の一定量を基本として機関回転速度に応じて設定し、それを除いた燃料量を前噴射して、必要十分に気化させることで、負荷によらず安定した燃焼が得られる。
【0015】
請求項5の発明によれば、燃料噴射弁噴口とスパークギャップとの距離を概ねシリンダボア径の1/4以下とすることで、燃料噴射弁と点火プラグとが近接している筒内直噴式ガソリン機関の基本特性である着火安定性を確保できる。
請求項6の発明によれば、点火プラグのスパークギャップが燃料噴霧中に配置されことで、燃料噴霧に直接点火する際の燃焼安定性が向上する一方、絶縁碍子は燃料噴霧外に配置されることで、絶縁碍子の絶縁性が良好に保持され、点火プラグが耐くすぶり性が向上する。
【0016】
請求項7の発明によれば、2つの燃料噴射弁を有し、このうち1つが点火プラグに近接して配置され、当該燃料噴射弁により点火時期近傍の燃料噴射がなされるので、他の燃料噴射弁、すなわち主たる噴霧を噴射する燃料噴射弁を水平に近く傾けて配置することができ、これにより主たる噴霧がピストンを濡らしにくくして、燃焼効率をより高めることができる。
【0017】
請求項8の発明によれば、2つの点火プラグを有し、このうち1つが燃料噴射弁に近接して配置されるので、他の点火プラグを均質燃焼運転時の点火用とすれば、燃料噴射弁を比較的温度が低いシリンダ周辺に配置することが可能で、燃料噴射弁の耐久性を高めることができる。
【0018】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の第1実施形態を示す筒内直噴式ガソリン機関の概略図である。この図において、1は燃焼室、2はピストンである。3は燃料噴射弁、31は燃料噴射弁3より噴射される燃料噴霧(噴霧円錐)である。4は点火プラグ、41はスパークギャップ、42は絶縁碍子である。
【0019】
ここで、燃料噴射弁3はシリンダヘッドの中央部に垂直に取付けて、その噴口を燃焼室1内に臨ませる一方、点火プラグ4はシリンダヘッドに斜めに取付けて、その先端部を燃焼室1内に突出させることで、燃料噴射弁3により形成される燃料噴霧(噴霧円錐)31に近接して点火プラグ4のスパークギャップ41を配置してある。尚、燃料噴射弁3の噴口と点火プラグ4のスパークギャップ41との距離は、概ねシリンダボア径の1/4以下とする。
【0020】
図2は同上実施形態における燃料噴射と点火のタイミングを示す図である。
所定の運転領域(比較的低回転低負荷領域に設定される成層燃焼運転領域)において、この図に示すように、圧縮行程での点火時期近傍にて1度の燃料噴射(第2の噴射)を行うと共に、この燃料噴射に先立って圧縮行程中に少なくとも1度の燃料噴射(第1の噴射)を行う。言い換えれば、圧縮行程中に前噴射として第1の噴射を行い、点火時期近傍にて後噴射として第2の噴射を行う。
【0021】
次に作用を説明する。
まず筒内直噴式ガソリン機関の性能に大きな影響を与える2つの要素
(1)燃料噴射弁から点火プラグまでの距離の大小
(2)燃料噴霧が点火プラグに到達する経路におけるピストンボールなどの壁の介在の有無
について説明する。
【0022】
(1)燃料噴射弁から点火プラグまでの距離の大小
・距離が小の時、燃料噴射から点火までの時間が短く、燃料の気化が不十分となり、高負荷においてスモークが多くなる問題がある。反面、スパークギャップヘの燃料集中が容易となり、希薄燃焼時の燃焼安定性が得易い。
・距離が大の時、燃料噴射から点火までの時間が長くなるため、燃料の気化が十分得られ、高負荷においてもスモークが発生しない。反面、スパークギャップヘの燃料集中が難しく、希薄燃焼時の燃焼安定性が悪い。
【0023】
(2)燃料噴霧が点火プラグに到達する経路におけるピストンボールなどの壁の介在の有無
・壁が介在する時、噴霧が壁面に沿って運動するため、壁面からの熱の授受により燃料の気化が促進される。また、壁付近では流動のサイクル変動が少ないことから、燃料混合気のサイクル変動が抑制されるため、気化促進効果と合わせて希薄燃焼時の燃焼安定性が得られる。他方、壁面付近に混合気が偏在するため、クエンチにより燃焼効率が低下し易く、大きな燃費向上代が得にくい。
【0024】
・壁が介在しない時、燃料の気化が空気との熱の授受のみによって行われること、及び、燃料混合気の運動がサイクル変動を持ちやすいことにより、希薄燃焼時の燃焼安定性が得にくい。他方、壁面から離れて混合気が存在するため、クエンチによる燃焼効率低下が起きにくく、大きな燃費向上代を得易い。
以上を表にまとめたものが図3である。結果として4つに分類される筒内直噴式ガソリン機関のいずれをとっても、燃焼安定性、スモーク、燃費、HCの全てを満足させることはできていない。
【0025】
本発明は、大きな燃費向上代が得られる噴霧経路に壁が介在しない燃焼方式において、燃料噴射弁・点火プラグ間距離が大の時の長所、すなわちスモークの発生が無いことと、燃料噴射弁・点火プラグ間距離が小の時の長所、すなわち良好な燃焼安定性と、を同時に得るための方策に関するものであり、燃焼安定性、スモーク、燃費、HCの全てを満足させることができるものである。
【0026】
以下、図4に基づいて作用を説明する。
圧縮行程において第1の噴射により最初に噴射された噴霧(以下第1の噴霧という)31は時間の経過と共に燃焼室内で拡散しながら気化し、徐々に完全燃焼に適した混合気状態になって行く。
さらに、第1の噴射から時間をおいて、第2の噴射として、少量の噴霧(以下第2の噴霧という)32を噴射する。
【0027】
この第2の噴射の直後に、近接して配置された点火プラグで火花点火を行い、第2の噴霧32を燃焼させる。この時、燃料噴射弁と点火プラグとが近接した筒内直噴式ガソリン機関の基本特性に従い、着火は安定している。また、第2の噴霧32は極少量であるために、スモークの発生はわずかであり、その後の燃焼行程で再燃焼する。
【0028】
その後、第2の噴霧32は燃焼しながら噴霧軸線上を移動し、やがて最初に噴射された第1の噴霧31に追いつき、そこで第1の噴霧31を燃焼させる。この時、第1の噴霧31は噴射から時間が経過していることによって気化と拡散が進んでおり、スモークを発生しない。
尚、第2の噴霧32が第1の噴霧31に追いつくのは、図5に示すように、第1の噴霧31が引き起こす後流(空気流動)によって、第2の噴霧32の進行速度が第1の噴霧31の進行速度より早くなるからである。。
【0029】
図6は、横軸を第1の噴射開始からの時間、縦軸を噴口から噴霧先端までの距離として、噴霧の進行と点火のタイミングを模式的に示したものである。
図7は、機関負荷に対する第1及び第2の噴射の噴射分担の関係を示したものである。第2の噴射量は点火プラグによる着火に必要な最小限の一定量を基本とし(但し、後述するように機関回転速度に応じて補正)、それを除いた燃料量を第1の噴射量として噴射する。
【0030】
但し、燃料噴射弁の特性として極少量の燃料噴射を行うとしても燃料噴射パルス幅との線形性が保たれないため、使用できる最小のパルス幅が存在する。従って、成層燃焼運転中の低負荷領域では、全体の燃料噴射量が少ないため、燃料噴射を2回に分けて行うことができない。
そこで、図8に示すように、成層燃焼運転領域中の高負荷領域では、第1の噴射と第2の噴射とを行うが、成層燃焼運転領域中の低負荷領域では、第2の噴射、すなわち点火時期近傍での燃料噴射のみを行う。
【0031】
図9は機関負荷と燃料噴射時期との関係を示したものである。第1の噴射により形成される混合気はNOxの発生を防ぐために着火可能な限り薄い混合気であることが望ましい。このためには燃料噴射量の増大に伴い燃料拡散範囲を広くする必要があり、第1の噴射時期を負荷の増大に伴い早めて行くことが妥当であると考えられる。
【0032】
図10には、回転速度と噴射分担との関係を示す。
これからわかるように、機関回転速度の増大に応じて、点火時期近傍での第2の燃料噴射量を増大させる。
シリンダ内の空気流動は機関回転速度に比例して大きくなる。第2の燃料噴射による混合気の形成は空気流動が強くなるとより拡散方向となり、点火プラグ近傍の空燃比は薄くなる。これを補うためには、図10に示すように、機関回転速度の増大に従い、第2の燃料噴射量を増大させる必要がある。
【0033】
このとき、先に述べた理由により、成層燃焼運転領域中の第1及び第2の噴射を行う領域と第2の噴射のみを行う領域と図11に示すようにすることができ、成層燃焼運転領域中の高負荷かつ低回転領域(低回転側ほどより低負荷まで)で第1及び第2の噴射(2度噴射)を行うことができる。これにより、機関回転速度の広い範囲にわたって本燃焼コンセプトを実現できる。
【0034】
図12には、本発明の第2の実施形態を示す。
この実施形態では、点火プラグ4のスパークギャップ41が燃料噴霧(噴霧円錐)31中に配置されており、燃料噴霧に直接点火する際の燃焼安定性が優れていると共に、中心電極をグラウンドから絶縁するための絶縁碍子42は燃料噴霧(噴霧円錐)31外に配置されており、絶縁碍子42の絶縁性が良好に保持され、点火プラグ4がくすぶることがない。従って、燃焼安定性と点火プラグの耐くすぶり性とを両立できる。
【0035】
図13には、本発明の第3の実施形態を示す。
この実施形態では、2つの燃料噴射弁3A、3Bを有し、このうち1つの燃料噴射弁3Bが点火プラグ4に近接して配置され、当該燃料噴射弁3Bにより点火時期近傍での第2の噴射がなされるようになっている。他方の燃料噴射弁3Aは第1の噴射を行うためのものであり、シリンダヘッド周辺部より斜めに燃焼室内を指向させている。
【0036】
従って、燃料噴射弁3Aより第1の噴射がなされ、この後、点火時期近傍にて燃料噴射弁3Bより第2の噴射がなされ、燃料噴射弁3Bより噴射された燃料噴霧32は点火プラグ4で点火された後燃焼し、先に燃料噴射弁3Aから噴射された噴霧31に衝突し、該噴霧31を燃焼させる。
この構成によれば、主たる噴霧を噴射する燃料噴射弁3Aを水平に近く傾けて配置することができるので、噴霧がピストンを濡らしにくく、燃焼効率をより高めることができる。
【0037】
図14には、本発明の第4の実施形態を示す。
この実施形態では、2つの点火プラグ4A、4Bを有し、このうち1つの点火プラグ4Bが燃料噴射弁3に近接して配置されるものである。この場合、燃料噴射弁3は、シリンダヘッド周辺部より斜めに燃焼室内を指向しており、これに近接して点火プラグ4Bが設けられる。他方の点火プラグ4Aはシリンダヘッド中央部に位置し、均質燃焼運転時の点火はこの点火プラグ4Bにより行われる。
【0038】
この構成によれば、燃料噴射弁3を比較的温度が低いシリンダ周辺に配置することが可能で、燃料噴射弁3の耐久性を高めることができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態を示す筒内直噴式ガソリン機関の概略図
【図2】 同上実施形態における燃料噴射と点火のタイミングを示す図
【図3】 筒内直噴式ガソリン機関の分類と各方式の得失を示す図
【図4】 同上実施形態における燃焼室内の混合気の動作状態を示す図
【図5】 同上実施形態における噴霧回りの空気流動を示す図
【図6】 同上実施形態における噴霧先端位置の時間変化を示す図
【図7】 同上実施形態における負荷と噴射分担との関係を示す図
【図8】 同上実施形態における第1及び第2の噴射を行う領域を示す図
【図9】 同上実施形態における負荷と燃料噴射時期との関係を示す図
【図10】 同上実施形態における回転速度と噴射分担との関係を示す図
【図11】 第1及び第2の噴射を行う領域の変形例を示す図
【図12】 第2の実施形態を示す筒内直噴式ガソリン機関の概略図
【図13】 第3の実施形態を示す筒内直噴式ガソリン機関の概略図
【図14】 第4の実施形態を示す筒内直噴式ガソリン機関の概略図
【符号の説明】
1 燃焼室
2 ピストン
3、3A、3B 燃料噴射弁
31、32 燃料噴霧
4、4A、4B 点火プラグ
41 スパークギャップ
42 絶縁碍子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an in-cylinder direct injection gasoline engine.
[0002]
[Prior art]
As an in-cylinder direct injection gasoline engine in which a fuel injection valve and a spark plug are arranged close to each other, those disclosed in JP-A-7-189767 are well known.
In this direct injection gasoline engine, when the fuel injection amount is smaller than a predetermined amount, fuel is injected near the ignition timing, and when the fuel injection amount is larger than the predetermined amount, near the exhaust top dead center at a crank angle of 0 °. Pre-injection and post-injection near the ignition timing are performed (see FIGS. 7 and 8 of the publication).
[0003]
If fuel injection valves and spark plugs are placed close to each other and fuel injection is performed near the ignition timing, ignition is performed before the fuel is dispersed, so even if the fuel injection amount is small (even if the air-fuel ratio is large) Stable combustion is obtained. For this reason, it is not necessary to reduce the intake air amount during low load operation (when the fuel injection amount is small), and the pumping loss of the engine can be reduced.
[0004]
However, if this control is performed even during high-load operation (when the fuel injection amount is large), air that contributes to combustion is insufficient and smoke is generated. When there are many, pre-injection is performed in addition to post-injection near the ignition timing, and a uniform air-fuel mixture is created in advance in the entire combustion chamber.
[0005]
[Problems to be solved by the invention]
However, the pre-injection of the above prior art is performed when the piston is close to exhaust top dead center in order to prevent the injected fuel from hitting the cylinder wall surface. In this case, the fuel adheres to the cylinder wall surface. Although it is avoided, a lot of fuel adheres to the piston crown surface, which causes deterioration of the HC emission characteristics of the engine.
[0006]
In addition, since the pre-injected fuel spreads over the entire combustion chamber, depending on the fuel injection amount, the uniform air-fuel mixture becomes too lean, and combustion may become unstable. That is, there is an intermediate fuel amount that is too large for fuel injection near the ignition timing, and on the contrary, that is too small for pre-injection and post-injection.
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide an in-cylinder direct injection gasoline engine that can achieve stable combustion, reduce generation of HC and smoke, and improve fuel efficiency. To do.
[0007]
[Means for Solving the Problems]
Therefore, in the first aspect of the present invention, in the direct injection gasoline engine in which the spark gap of the spark plug is arranged in the fuel spray formed by the fuel injection valve or in the vicinity of the fuel spray, in a predetermined operation region, A single fuel injection is performed near the ignition timing, and at least one fuel injection is performed during the compression stroke prior to the fuel injection . That is, pre-injection is performed during the compression stroke, and post-injection is performed in the vicinity of the ignition timing . The fuel injection amount in the vicinity of the ignition timing is increased as the engine speed increases.
[0008]
According to a second aspect of the present invention, the predetermined operation region is a high load region in a stratified charge combustion operation region in which fuel injection is performed during a compression stroke.
The invention according to claim 3 is characterized in that the predetermined operation region is a high load and low rotation region in a stratified combustion operation region in which fuel injection is performed during a compression stroke.
In the invention of claim 4, the fuel injection amount near the ignition timing is set according to the engine speed, and the fuel injection amount near the ignition timing is calculated from the total fuel injection amount required according to the engine load. The removed fuel amount is set as an injection amount of fuel injection prior to fuel injection in the vicinity of the ignition timing .
[0009]
The invention according to claim 5 is characterized in that the distance between the fuel injection nozzle orifice and the spark gap is approximately ¼ or less of the cylinder bore diameter.
The invention of claim 6 is characterized in that the spark gap of the spark plug is disposed during fuel spray, while the insulator for insulating the center electrode from the ground is disposed outside the fuel spray.
[0010]
The invention according to claim 7 has two fuel injection valves, one of which is disposed close to the spark plug, and fuel injection near the ignition timing is performed by the fuel injection valve.
The invention of claim 8 has two spark plugs, one of which is arranged close to the fuel injection valve.
[0011]
【The invention's effect】
According to the invention of claim 1, by performing the pre-injection in the compression stroke, before the fuel of the pre-injection spreads over the entire combustion chamber (however, after a sufficient vaporization time has passed) The flame kernel caused by the ignition catches up with the spray of the pre-injection and burns the fuel of the pre-injection. As a result, the air-fuel mixture obtained by the pre-injection can be burned when the air-fuel ratio is moderate, and stable combustion can be obtained. In addition, since the collision between the spray and the piston is small, the HC discharge amount and the like can be suppressed.
Further, by increasing the injection amount of the fuel injection near the ignition timing in accordance with the increase in the rotational speed, the formation of the air-fuel mixture by the fuel injection near the ignition timing becomes stronger when the air flow becomes stronger in proportion to the rotational speed. It becomes a diffusion direction, and it can compensate for the air-fuel ratio in the vicinity of the spark plug becoming thin, and this combustion concept can be realized over a wide range of rotational speed.
[0012]
According to the second aspect of the invention, the combustion stability and the exhaust characteristics can be improved in the high load region in the stratified combustion operation region in which fuel injection is performed during the compression stroke.
According to the invention of claim 3, by performing the fuel injection in the stratified combustion operation region in which fuel injection is performed during the compression stroke, the combustion stability and the exhaust characteristics in the region can be improved. it can.
[0013]
According to the invention of claim 4, the injection amount of fuel injection near the ignition timing is set according to the engine speed, and the fuel injection injection near the ignition timing is determined from the total fuel injection amount required according to the engine load. The fuel amount excluding the amount is used as the fuel injection amount prior to the fuel injection near the ignition timing, that is, the injection amount near the ignition timing is based on the minimum fixed amount necessary for ignition by the spark plug. Thus, by setting the fuel according to the engine speed and pre-injecting the fuel amount excluding the engine speed to vaporize it sufficiently, stable combustion can be obtained regardless of the load.
[0015]
According to the fifth aspect of the present invention, the in-cylinder direct injection type gasoline in which the fuel injection valve and the spark plug are close to each other by setting the distance between the fuel injection valve nozzle and the spark gap to be approximately 1/4 or less of the cylinder bore diameter. The ignition stability, which is a basic characteristic of the engine, can be secured.
According to the invention of claim 6 , the spark gap of the spark plug is arranged in the fuel spray, so that the combustion stability when directly igniting the fuel spray is improved, while the insulator is arranged outside the fuel spray. As a result, the insulation of the insulator is maintained well, and the spark plug has improved smoldering resistance.
[0016]
According to the invention of claim 7 , there are two fuel injection valves, one of which is arranged close to the spark plug, and fuel injection near the ignition timing is made by the fuel injection valve. The injection valve, that is, the fuel injection valve for injecting the main spray, can be disposed so as to be inclined near the horizontal, thereby making it difficult for the main spray to wet the piston and further improving the combustion efficiency.
[0017]
According to the invention of claim 8 , since there are two spark plugs, one of which is disposed close to the fuel injection valve, if the other spark plug is used for ignition during homogeneous combustion operation, the fuel The injection valve can be arranged around the cylinder having a relatively low temperature, and the durability of the fuel injection valve can be improved.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic view of an in-cylinder direct injection gasoline engine showing a first embodiment of the present invention. In this figure, 1 is a combustion chamber and 2 is a piston. 3 is a fuel injection valve, and 31 is a fuel spray (spray cone) injected from the fuel injection valve 3. 4 is a spark plug, 41 is a spark gap, and 42 is an insulator.
[0019]
Here, the fuel injection valve 3 is vertically attached to the center portion of the cylinder head so that its injection port faces the combustion chamber 1, while the spark plug 4 is obliquely attached to the cylinder head and its tip is attached to the combustion chamber 1. The spark gap 41 of the spark plug 4 is disposed in the vicinity of the fuel spray (spray cone) 31 formed by the fuel injection valve 3 by projecting inward. The distance between the injection port of the fuel injection valve 3 and the spark gap 41 of the spark plug 4 is approximately ¼ or less of the cylinder bore diameter.
[0020]
FIG. 2 is a diagram showing the timing of fuel injection and ignition in the same embodiment.
In a predetermined operation region (stratified combustion operation region set in a relatively low rotation / low load region), as shown in this figure, one fuel injection (second injection) is performed in the vicinity of the ignition timing in the compression stroke. And at least one fuel injection (first injection) is performed during the compression stroke prior to the fuel injection. In other words, during the compression stroke, the first injection is performed as the pre-injection, and the second injection is performed as the post-injection near the ignition timing.
[0021]
Next, the operation will be described.
First, there are two factors that greatly affect the performance of the direct injection gasoline engine (1) The distance from the fuel injection valve to the spark plug (2) The wall of the piston ball or the like in the path where the fuel spray reaches the spark plug The presence or absence of intervention will be described.
[0022]
(1) When the distance from the fuel injection valve to the spark plug is small or small, the time from fuel injection to ignition is short, fuel vaporization is insufficient, and there is a problem that smoke increases at high loads. On the other hand, it is easy to concentrate the fuel in the spark gap, and it is easy to obtain combustion stability during lean combustion.
-Since the time from fuel injection to ignition becomes longer when the distance is large, sufficient fuel vaporization is obtained and smoke does not occur even at high loads. On the other hand, it is difficult to concentrate the fuel in the spark gap, and the combustion stability during lean combustion is poor.
[0023]
(2) The presence or absence of a wall such as a piston ball in the path where the fuel spray reaches the spark plug. When the wall is present, the spray moves along the wall surface. Promoted. In addition, since the flow cycle fluctuation in the vicinity of the wall is small, the cycle fluctuation of the fuel mixture is suppressed, so that combustion stability during lean combustion can be obtained together with the vaporization promoting effect. On the other hand, since the air-fuel mixture is unevenly distributed in the vicinity of the wall surface, the combustion efficiency is likely to be reduced by quenching, and it is difficult to obtain a large fuel consumption improvement margin.
[0024]
-When there is no wall, fuel vaporization is performed only by transferring heat with air, and the movement of the fuel mixture tends to have cycle fluctuations, so that it is difficult to obtain combustion stability during lean combustion. On the other hand, since the air-fuel mixture exists away from the wall surface, it is difficult for the combustion efficiency to decrease due to quenching, and it is easy to obtain a large fuel cost improvement.
FIG. 3 summarizes the above in a table. As a result, none of the in-cylinder direct injection gasoline engines classified into four can satisfy all of combustion stability, smoke, fuel consumption, and HC.
[0025]
The present invention is a combustion system in which a wall is not interposed in the spray path for obtaining a large fuel economy improvement allowance when the distance between the fuel injection valve and the spark plug is large, that is, there is no occurrence of smoke, It relates to the measures to obtain the advantages when the distance between the spark plugs is small, that is, good combustion stability at the same time, and can satisfy all of combustion stability, smoke, fuel consumption, and HC. .
[0026]
Hereinafter, the operation will be described with reference to FIG.
In the compression stroke, the spray 31 (hereinafter referred to as the first spray) first injected by the first injection is vaporized while diffusing in the combustion chamber as time passes, and gradually becomes a mixture state suitable for complete combustion. go.
Further, a small amount of spray (hereinafter referred to as second spray) 32 is sprayed as the second spray at a time interval from the first spray.
[0027]
Immediately after the second injection, spark ignition is performed by a spark plug disposed in proximity to burn the second spray 32. At this time, the ignition is stable in accordance with the basic characteristics of the direct injection gasoline engine in the cylinder in which the fuel injection valve and the ignition plug are close to each other. In addition, since the second spray 32 is extremely small, the generation of smoke is slight, and the second spray 32 is reburned in the subsequent combustion stroke.
[0028]
Thereafter, the second spray 32 moves on the spray axis while burning, and eventually catches up with the first spray 31 injected first, where the first spray 31 is burned. At this time, the first spray 31 is vaporized and diffused as time elapses from the injection, and does not generate smoke.
Note that the second spray 32 catches up with the first spray 31 as shown in FIG. 5 due to the wake (air flow) caused by the first spray 31 and the traveling speed of the second spray 32 being the first. This is because the traveling speed of one spray 31 is faster. .
[0029]
FIG. 6 schematically shows the progress of spraying and the timing of ignition with the horizontal axis as the time from the start of the first injection and the vertical axis as the distance from the nozzle to the tip of the spray.
FIG. 7 shows the relationship of the injection sharing of the first and second injections with respect to the engine load. The second injection amount is based on the minimum fixed amount necessary for ignition by the spark plug (however , it is corrected according to the engine rotational speed as will be described later) , and the fuel amount other than that is used as the first injection amount. Spray.
[0030]
However, even if a very small amount of fuel is injected as a characteristic of the fuel injection valve, linearity with the fuel injection pulse width is not maintained, and therefore there is a minimum pulse width that can be used. Therefore, in the low load region during the stratified charge combustion operation, since the entire fuel injection amount is small, the fuel injection cannot be performed twice.
Therefore, as shown in FIG. 8, the first injection and the second injection are performed in the high load region in the stratified combustion operation region, while the second injection is performed in the low load region in the stratified combustion operation region. That is, only fuel injection near the ignition timing is performed.
[0031]
FIG. 9 shows the relationship between engine load and fuel injection timing. It is desirable that the air-fuel mixture formed by the first injection is as thin as possible to ignite in order to prevent the generation of NOx. For this purpose, it is necessary to widen the fuel diffusion range as the fuel injection amount increases, and it is considered appropriate to advance the first injection timing as the load increases.
[0032]
FIG. 10 shows the relationship between the rotational speed and the injection share .
As can be seen , the second fuel injection amount in the vicinity of the ignition timing is increased in accordance with the increase in the engine speed .
The air flow in the cylinder increases in proportion to the engine speed. Forming mixture by the second fuel injection, the air flow is increased, it becomes more diffuse direction, the air-fuel ratio in the vicinity of the spark plug becomes thinner. In order to compensate for this, as shown in FIG. 10, it is necessary to increase the second fuel injection amount as the engine speed increases.
[0033]
At this time, for the reasons described above, the region in which the first and second injections are performed and the region in which only the second injection is performed in the stratified combustion operation region can be as shown in FIG. The first and second injections (two-degree injection) can be performed in a high load and low rotation region (up to a lower load on the low rotation side) in the operation region . Thereby, this combustion concept is realizable over a wide range of engine speed.
[0034]
FIG. 12 shows a second embodiment of the present invention.
In this embodiment, the spark gap 41 of the spark plug 4 is disposed in the fuel spray (spray cone) 31 and has excellent combustion stability when directly igniting the fuel spray, and the center electrode is insulated from the ground. The insulator 42 for this purpose is disposed outside the fuel spray (spray cone) 31 so that the insulation of the insulator 42 is well maintained and the spark plug 4 does not smolder. Therefore, both combustion stability and smoldering resistance of the spark plug can be achieved.
[0035]
FIG. 13 shows a third embodiment of the present invention.
In this embodiment, there are two fuel injection valves 3A, 3B, and one of these fuel injection valves 3B is disposed close to the ignition plug 4, and the second fuel injection valve 3B near the ignition timing is provided. Injection is made. The other fuel injection valve 3A is for performing the first injection, and is directed obliquely into the combustion chamber from the periphery of the cylinder head.
[0036]
Accordingly, the first injection is performed from the fuel injection valve 3A, and then the second injection is performed from the fuel injection valve 3B in the vicinity of the ignition timing. The fuel spray 32 injected from the fuel injection valve 3B is generated by the ignition plug 4. It burns after being ignited, collides with the spray 31 previously injected from the fuel injection valve 3A, and burns the spray 31.
According to this configuration, the fuel injection valve 3A for injecting the main spray can be disposed so as to be inclined in the horizontal direction, so that the spray hardly wets the piston, and the combustion efficiency can be further improved.
[0037]
FIG. 14 shows a fourth embodiment of the present invention.
In this embodiment, there are two spark plugs 4A, 4B, and one of these spark plugs 4B is disposed close to the fuel injection valve 3. In this case, the fuel injection valve 3 is oriented in the combustion chamber at an angle from the periphery of the cylinder head, and a spark plug 4B is provided in the vicinity thereof. The other spark plug 4A is located in the center of the cylinder head, and ignition during the homogeneous combustion operation is performed by this spark plug 4B.
[0038]
According to this configuration, the fuel injection valve 3 can be disposed around the cylinder having a relatively low temperature, and the durability of the fuel injection valve 3 can be enhanced.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a direct injection gasoline engine in a cylinder showing a first embodiment of the present invention. FIG. 2 is a diagram showing the timing of fuel injection and ignition in the same embodiment. Fig. 4 shows the advantages and disadvantages of each method. Fig. 4 shows the operating state of the air-fuel mixture in the combustion chamber in the embodiment. Fig. 5 shows the air flow around the spray in the embodiment. The figure which shows the time change of the spray tip position in a form. [FIG. 7] The figure which shows the relationship between the load and injection share in embodiment same as the above. FIG. FIG. 9 is a diagram showing the relationship between the load and the fuel injection timing in the embodiment . FIG. 10 is a diagram showing the relationship between the rotation speed and the injection share in the embodiment. FIG. 11 shows the first and second injections. diagram showing a modification of the area to be Figure 12 shows a second schematic diagram Figure 13 is a schematic view of a cylinder direct injection gasoline engine according to a third embodiment of an in-cylinder direct-injection gasoline engine showing an embodiment [14] Fourth Embodiment Schematic diagram of in-cylinder direct injection gasoline engine [Explanation of symbols]
1 Combustion chamber
2 piston
3, 3A, 3B Fuel injection valve
31, 32 Fuel spray
4, 4A, 4B Spark plug
41 Spark Gap
42 Insulator

Claims (8)

燃料噴射弁により形成される燃料噴霧中若しくは該燃料噴霧に近接して点火プラグのスパークギャップを配置した筒内直噴式ガソリン機関において、
所定の運転領域において、点火時期近傍にて1度の燃料噴射を行うと共に、この燃料噴射に先立って圧縮行程中に少なくとも1度の燃料噴射を行い、点火時期近傍の燃料噴射の噴射量を機関回転速度の増大に応じて増加させることを特徴とする筒内直噴式ガソリン機関。
In the cylinder direct injection gasoline engine in which the spark gap of the spark plug is arranged in the fuel spray formed by the fuel injection valve or close to the fuel spray,
In predetermined operating region, performs fuel injection once in the vicinity of the spark timing, have rows of fuel injection at least once during the compression stroke prior to the fuel injection, the injection quantity of fuel injected in the vicinity of the ignition timing An in-cylinder direct injection gasoline engine characterized by increasing in accordance with an increase in engine rotation speed .
前記所定の運転領域は、圧縮行程中に燃料噴射を行う成層燃焼運転領域中の高負荷領域であることを特徴とする請求項1記載の筒内直噴式ガソリン機関。  The in-cylinder direct injection gasoline engine according to claim 1, wherein the predetermined operation region is a high load region in a stratified charge combustion operation region in which fuel injection is performed during a compression stroke. 前記所定の運転領域は、圧縮行程中に燃料噴射を行う成層燃焼運転領域中の高負荷及び低回転領域であることを特徴とする請求項1記載の筒内直噴式ガソリン機関。  The in-cylinder direct injection gasoline engine according to claim 1, wherein the predetermined operation region is a high load and low rotation region in a stratified charge combustion operation region in which fuel is injected during a compression stroke. 点火時期近傍の燃料噴射の噴射量を機関回転速度に応じて設定し、機関負荷に応じて要求される総燃料噴射量から、点火時期近傍の燃料噴射の噴射量を除いた燃料量を、点火時期近傍の燃料噴射に先立つ燃料噴射の噴射量とすることを特徴とする請求項1〜請求項3のいずれか1つに記載の筒内直噴式ガソリン機関。 The fuel injection amount near the ignition timing is set according to the engine speed, and the fuel amount obtained by subtracting the fuel injection amount near the ignition timing from the total fuel injection amount required according to the engine load is ignited. The in-cylinder direct injection gasoline engine according to any one of claims 1 to 3, wherein an injection amount of fuel injection prior to fuel injection in the vicinity of the timing is used . 燃料噴射弁噴口とスパークギャップとの距離は概ねシリンダボア径の1/4以下とすることを特徴とする請求項1〜請求項4のいずれか1つに記載の筒内直噴式ガソリン機関。The in-cylinder direct injection gasoline engine according to any one of claims 1 to 4 , wherein a distance between the fuel injection valve nozzle and the spark gap is approximately ¼ or less of a cylinder bore diameter. 点火プラグのスパークギャップが燃料噴霧中に配置される一方、中心電極をグラウンドから絶縁するための絶縁碍子は燃料噴霧外に配置されることを特徴とする請求項1〜請求項5のいずれか1つに記載の筒内直噴式ガソリン機関。While spark gap of the spark plug is arranged in the fuel spray, either the insulator for insulating the center electrode from the ground of claims 1 to 5, characterized in that it is disposed outside the fuel spray 1 In-cylinder direct-injection gasoline engine. 2つの燃料噴射弁を有し、このうち1つが点火プラグに近接して配置され、当該燃料噴射弁により点火時期近傍の燃料噴射がなされることを特徴とする請求項1〜請求項6のいずれか1つに記載の筒内直噴式ガソリン機関。It has two fuel injection valves, of which one is disposed in proximity to the spark plug, any of claims 1 to 6, characterized in that the fuel injection in the vicinity of the ignition timing by the fuel injection valve is made An in-cylinder direct injection gasoline engine according to claim 1. 2つの点火プラグを有し、このうち1つが燃料噴射弁に近接して配置されることを特徴とする請求項1〜請求項6のいずれか1つに記載の筒内直噴式ガソリン機関。The in-cylinder direct injection gasoline engine according to any one of claims 1 to 6 , further comprising two spark plugs, one of which is disposed close to the fuel injection valve.
JP2001236999A 2001-08-03 2001-08-03 In-cylinder direct injection gasoline engine Expired - Fee Related JP3921973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001236999A JP3921973B2 (en) 2001-08-03 2001-08-03 In-cylinder direct injection gasoline engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001236999A JP3921973B2 (en) 2001-08-03 2001-08-03 In-cylinder direct injection gasoline engine

Publications (2)

Publication Number Publication Date
JP2003049679A JP2003049679A (en) 2003-02-21
JP3921973B2 true JP3921973B2 (en) 2007-05-30

Family

ID=19068157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001236999A Expired - Fee Related JP3921973B2 (en) 2001-08-03 2001-08-03 In-cylinder direct injection gasoline engine

Country Status (1)

Country Link
JP (1) JP3921973B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604829B2 (en) * 2005-05-13 2011-01-05 日産自動車株式会社 In-cylinder injection internal combustion engine
JP4329860B2 (en) 2005-11-30 2009-09-09 トヨタ自動車株式会社 In-cylinder injection spark ignition internal combustion engine
JP4924842B2 (en) * 2008-06-03 2012-04-25 三菱自動車工業株式会社 In-cylinder injection type spark ignition internal combustion engine
EP3779154A4 (en) * 2018-04-10 2021-04-14 Nissan Motor Co., Ltd. Internal combustion engine control method and internal combustion engine

Also Published As

Publication number Publication date
JP2003049679A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
JP3325232B2 (en) In-cylinder injection engine
US7926463B2 (en) Cylinder injection type spark ignition internal combustion engine
JP2006291839A (en) Cylinder direct fuel injection type engine and its control method, and piston and fuel injection valve to be used for the same
JP6056895B2 (en) Fuel injection control device for direct injection engine
JP2002188447A (en) Internal combustion engine of direct in cylinder fuel injection
JP4258935B2 (en) Spark ignition type reciprocating engine
JP3921732B2 (en) In-cylinder injection type spark ignition engine
JP3680629B2 (en) Compression ignition internal combustion engine
JP3921973B2 (en) In-cylinder direct injection gasoline engine
JP2008157197A (en) Cylinder injection type spark ignition internal combustion engine
JP3952710B2 (en) Compression self-ignition internal combustion engine
JP3873560B2 (en) Combustion control device for internal combustion engine
JP4026784B2 (en) In-cylinder injection engine
JP3627546B2 (en) Direct cylinder injection spark ignition engine
JP3781537B2 (en) Combustion chamber structure of in-cylinder injection engine
JP2002285844A (en) Compression self-ignition type internal combustion engine
JP3978965B2 (en) Combustion control device for internal combustion engine
JP4055292B2 (en) Direct injection spark ignition internal combustion engine fuel injection control device
JP3175611B2 (en) In-cylinder injection spark ignition engine
JP2006258008A (en) Internal combustion engine
JP2569919B2 (en) In-cylinder direct injection spark ignition engine
JP4026197B2 (en) Fuel injection control device for in-cylinder direct injection internal combustion engine
JPH085306Y2 (en) In-cylinder injection spark ignition engine
JP2882041B2 (en) In-cylinder direct injection spark ignition engine
JP2521900B2 (en) Spark ignition internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees