JP3921936B2 - Fuel cell gas flow path - Google Patents

Fuel cell gas flow path Download PDF

Info

Publication number
JP3921936B2
JP3921936B2 JP2000342247A JP2000342247A JP3921936B2 JP 3921936 B2 JP3921936 B2 JP 3921936B2 JP 2000342247 A JP2000342247 A JP 2000342247A JP 2000342247 A JP2000342247 A JP 2000342247A JP 3921936 B2 JP3921936 B2 JP 3921936B2
Authority
JP
Japan
Prior art keywords
flow path
gas
gas flow
power generation
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000342247A
Other languages
Japanese (ja)
Other versions
JP2002151120A (en
Inventor
康 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000342247A priority Critical patent/JP3921936B2/en
Publication of JP2002151120A publication Critical patent/JP2002151120A/en
Application granted granted Critical
Publication of JP3921936B2 publication Critical patent/JP3921936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電解質膜の乾燥、湿潤過多を防止した燃料電池のガス流路構造に関する。
【0002】
【従来の技術】
固体高分子電解質型燃料電池は、イオン交換膜からなる電解質膜とこの電解質膜の一面に配置された触媒層および拡散層からなる電極(アノード、燃料極)および電解質膜の他面に配置された触媒層および拡散層からなる電極(カソード、空気極)とからなる膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )と、アノード、カソードに燃料ガス(水素)および酸化ガス(酸素、通常は空気)を供給するための流体通路または冷却媒体を流すための流路を形成するセパレータとからセルを構成し、複数のセルの積層体からモジュールを構成し、モジュールを積層してモジュール群とし、モジュール群のセル積層方向両端に、ターミナル、インシュレータ、エンドプレートを配置してスタックを構成し、スタックをスタックの外側でセル積層体積層方向に延びる締結部材(たとえば、テンションプレート、テンションボルトなど)にて締め付け、固定したものからなる。
固体高分子電解質型燃料電池では、アノード側では、水素を水素イオンと電子にする反応が行われ、水素イオンは電解質膜中をカソード側に移動し、カソード側では酸素と水素イオンおよび電子(隣りのMEAのアノードで生成した電子がセパレータを通してくる)から水を生成する反応が行われる。
アノード側:H2 →2H+ +2e-
カソード側:2H+ +2e- +(1/2)O2 →H2
カソードでは、エアは入口では乾燥しているが水生成反応により通路下流(出口)側では水蒸気分が増加し、エアの飽和水蒸気量を越えると水滴となる。一方、電解質膜中を水素イオンが移動するためには電解質膜が適当に湿潤していることが必要である。電解質膜が乾燥していると膜中のプロトンの移動が阻害され抵抗となるため燃料電池の性能(出力電圧)が低下する。供給エアを加湿することで電解質膜の入口側での乾きは防止できるが、出口で反応生成水による水分過多により通路の水詰まりが生じ、酸素不足になってカソード側での反応が起こりにくくなるという問題が生じる。この問題を軽減するために、ガス流路に対して種々の工夫がなされている。
たとえば、
▲1▼ 特開平6−132038号は、燃料ガス、酸化ガスのそれぞれオフガスと入りガスとの水分交換を行うことを開示しており、
▲2▼ 特開2000−12051号は、燃料電池反応面内で複数に分割した独立ガス流路を有し、スタック端で互いにガス流路同士を連通させることを開示している。
【0003】
【発明が解決しようとする課題】
上記▲1▼、▲2▼の従来技術を組み合わせて、上記▲2▼の構成の最上流と最下流とにてガスの水分交換を行うようにしても、燃料電池の反応面内での水分分布の均一化は達成されないため、燃料電池のセルの安定出力が得られない。
本発明の目的は、ガス流路のドライ部分とそれよりウエットな部分とでガスの水分交換を行うとともに、燃料電池の反応面内での水分分布の均一化もはかることができる、燃料電池のガス流路を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成する本発明はつぎの通りである。
(1) 各セルの発電部のガス流路を発電部では連通しない複数のガス流路セグメントに分け、該ガス流路セグメントを発電部外のガス流路で直列に接続し、前記発電部外のガス流路は発電部外に形成されたガスマニホールドとガスマニホールド同士を連通するガス流路を含んでいる燃料電池のガス流路であって、
前記発電部外に、前記ガスマニホールド同士を連通するガス流路で少なくとも1つのガス流路セグメントを通過した既反応ガスのガス流路とガス流路セグメントに流入する前の未反応ガスのガス流路とを水分透過性のある水交換膜で隔てた構造をもつ水交換部を設けたことを特徴とする燃料電池のガス流路。
(2) 各セルの発電部のガス流路を発電部では連通しない複数のガス流路セグメントに分け、該ガス流路セグメント同士を発電部外のガス流路によって直列に接続した燃料電池のガス流路であって、
前記ガス流路セグメント同士を接続する発電部外のガス流路に、少なくとも1つのガス流路セグメントを通過した既反応ガスのガス流路とガス流路セグメントに流入する前の未反応ガスのガス流路とを水分透過性のある水交換膜で隔てた構造をもつ水交換部を設けたことを特徴とする燃料電池のガス流路。
(3) 各セル内で下流側のガス流路セグメントと上流側のガス流路セグメントとを隣接させた(1)または(2)記載の燃料電池のガス流路。
(4) 各セル内で下流側のガス流路セグメントの通路断面積を上流側のガス流路セグメントの通路断面積より小とした(1)または(2)記載の燃料電池のガス流路。
(5) 前記水交換部を、燃料電池スタックのターミナルより外側の部分に配置した(1)または(2)記載の燃料電池のガス流路。
(6) 前記水交換部の既反応ガスのガス流路が、セルの最下流から2番目のガス流路セグメントを通った後の既反応ガスが流れる既反応ガスのガス流路である(5)記載の燃料電池のガス流路。
(7) スタックを横置きとし、
水交換部をスタックの上側に配置した(2)記載の燃料電池のガス流路。
(8) スタックを横置きとし、
未反応ガスを発電部の下側に位置する未反応ガスのガス流路から発電部に入れ既反応ガスにして発電部の上側に位置する既反応ガスのガス流路に流し、該既反応ガスを前記発電部の上側の既反応ガスのガス流路で1ターンさせて発電部に入れて発電部の下側の既反応ガスのガス流路に流す流路構造とし、
前記発電部の上側の既反応ガスのガス流路を、前記発電部の下側に位置する未反応ガスのガス流路に未反応ガスを送る未反応ガスのガス流路と前記水交換膜を介して隔てた(7)記載の燃料電池のガス流路。
(9) 前記水交換膜を蛇腹状として平面状の場合よりも表面積を大とした(8)記載の燃料電池のガス流路。
(10) 前記発電部の上側の既反応ガスのガス流路の壁に該壁に結露する水分を壁につたわせる傾斜部を設け、該傾斜部の下端部の下方に該傾斜部で集められた水をセル発電部に落下させることなく排除する排除部を設けた(7)記載の燃料電池のガス流路。
【0005】
上記(1)または(2)の燃料電池のガス流路では、少なくとも1つのガス流路セグメントを通過した既反応ガスのガス流路と未反応ガスのガス流路とを水交換膜で隔てたので、既反応ガスの水分が水交換膜を透過して未反応ガスに移行し、電解質膜の下流での湿潤過多と上流での乾燥が共に防止されるとともに、途中部と最上流との水交換もできて燃料電池の反応面内での水分分布の均一化もはかることができる。また、水交換膜が飽和することもないので、半永久的に作動する。また、セル発電部外に水交換部を設けたので、セル面積からの制限を受けることなく、高い効率で既反応ガスから未反応ガスへの水分移行が行われる。
上記()の燃料電池のガス流路では、各セル内で下流側のガス流路セグメントと上流側のガス流路セグメントとを隣接させたので、セパレータ内での水分分布がより均一化される。
上記()の燃料電池のガス流路では、各セル内で下流側のガス流路セグメントの通路断面積を上流側のガス流路セグメントの通路断面積より小としたので、発電反応によりガスが消費されても下流で流速が低下することがなく、下流で液滴が生じても、吹き飛ばされ、電池性能の液滴による低下が防止される。
上記()の燃料電池のガス流路では、水交換部を燃料電池スタックのターミナルより外側の部分に配置したので、水交換部を、各セルの発電部に設ける必要がなく、発電性能を低下させず、また、全セルに対して共通にターミナルより外側の部分に設けることができるので、スペース効率もよい。
上記()の燃料電池のガス流路では、水交換部の既反応ガスのガス流路に流れる既反応ガスは、セルの最下流から2番目のガス流路セグメントを通った後の既反応ガスのため、フラッディング前の最も高い湿度の既反応ガスと未反応ガスとで水交換を行うことができる。
上記()の燃料電池のガス流路では、水交換部をスタックの上側に配置したので、水交換部を、各セルの発電部内に設ける必要がなく、発電性能を低下させることがなく、スペース効率もよい。
上記()の燃料電池のガス流路では、ガスの流れを1ターンさせ湿潤の高い下流側のガス流路ではガスを上から下に流すので、たとえ水滴が生成しても下方に吹き飛ばすことができ、水によるガス通路詰まりが生じない。
上記()の燃料電池のガス流路では、水交換膜を蛇腹状としたので、水交換膜の表面積が増大し、既反応ガスから未反応ガスへの水分透過量を増大できる。
上記(10)の燃料電池のガス流路では、発電部の上側の既反応ガスのガス流路の壁に傾斜部を設け、該傾斜部の下端部の下方に排除部を設けたので、壁に生成した水滴を傾斜部をつたわせて排除部に導き、発電部に落下させずに外部に排除することができる。
【0006】
【発明の実施の形態】
以下に、本発明の燃料電池のガス流路を図1〜図9(ただし、図9は比較例)を参照して、説明する。
図中、図3、図4は本発明の実施例1を示し、図5〜図7は本発明の実施例2を示し、図1、図2、図8は本発明の実施例1、2に共通に適用できる。
本発明の何れの実施例にも共通する部分には、本発明の実施例1、2にわたって同じ符号を付してある。
まず、本発明の何れの実施例にも共通する部分を、たとえば図1〜図4、図8、図9を参照して、説明する。
【0007】
本発明のガス流路が適用される燃料電池は、固体高分子電解質型燃料電池10である。燃料電池10は、たとえば燃料電池自動車に搭載される。ただし、自動車以外に用いられてもよい。
固体高分子電解質型燃料電池10は、図1、図2に示すように、イオン交換膜からなる電解質膜11とこの電解質膜11の一面に配置された触媒層12および拡散層13からなる電極14(アノード、燃料極)および電解質膜11の他面に配置された触媒層15および拡散層16からなる電極17(カソード、空気極)とからなる膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )と、電極14、17に燃料ガス(水素)および酸化ガス(酸素、通常は空気)を供給するための流体通路27および燃料電池冷却用の冷却水が流れる冷却水流路26を形成するセパレータ18とを重ねてセルを形成し、該セルを複数積層してモジュール19を構成し(たとえば、2セルから1モジュールを構成し)、モジュール19を積層してモジュール群とし、モジュール群のセル積層方向(燃料電池積層方向)両端に、ターミナル20、インシュレータ21、エンドプレート22を配置してスタック23を構成し、スタック23を積層方向に締め付けスタック23の外側で燃料電池積層体積層方向に延びる締結部材24(たとえば、テンションプレート、スルーボルトなど)とボルト25またはナットで固定したものからなる。
【0008】
触媒層12、15は白金(Pt)を含むカーボン(C)からなる。拡散層13、16はガス透過性を有しカーボン(C)からなる。
セパレータ18は、ガス、水不透過性で、通常は、カーボン(黒鉛である場合を含む)または金属または導電性樹脂の何れかからなる。図2では、セパレータ18が、カーボン(黒鉛である場合を含む)からなる場合を示すが、これに限るものではない。
【0009】
セパレータ18は、燃料ガスと酸化ガス、燃料ガスと冷却水、酸化ガスと冷却水、の何れかを区画するとともに、隣り合うセルのアノードからカソードに電子が流れる電気の通路を形成している。
冷却水流路26はセル毎に、または複数のセル毎に、設けられる。たとえば、図2に示すように2セルで1モジュールを構成するものでは、モジュール毎(2セル毎)に1つの冷却水流路26が設けられる。
【0010】
セパレータ18は、通常、ほぼ四角形の板である。セパレータ18には、燃料電池を冷却する冷却水流路を形成するとともに反応ガスのガス流路を形成する冷却用セパレータ18Aと、反応ガスのガス流路を形成する反応ガス用セパレータ18Bとの2種類のセパレータがある。
発電部33(電極がある部位)では、冷却用セパレータ18Aの一面に冷却水流路26が形成され他面にガス流路27(燃料ガス流路27aまたは酸化ガス流路27b)が形成されており、冷却用セパレータ18Aは冷却水と反応ガス(燃料ガスまたは酸化ガス)とを隔てる。また、反応ガス用セパレータ18Bの一面に燃料ガス流路27aが形成され、他面に酸化ガス流路27bが形成されており、反応ガス用セパレータ18Bは燃料ガスと酸化ガスとを隔てる。
【0011】
図3、図4に示すように、ガス流路は、発電部33のガス流路27と発電部33の外のガス流路28とからなる。
発電部外のガス流路28は、ガスマニホールド29を有する。発電部外のガス流路28は、さらに、ガスマニホールド29同士を接続するガス流路30と、ガスマニホールド29と外部からのガス入口とを接続するガス流路31と、ガスマニホールド29と外部へのガス出口とを接続するガス流路32とを有していてもよい。
セパレータ18には、発電部33より外側に、ガスマニホールド29、冷却水マニホールド(図示略)が形成されており、発電部33に冷却水流路26および/またはガス流路27が形成されている。
通常、ガスマニホルード29は、燃料ガスマニホールドと酸化ガスマニホールドに分けられ、対向する2辺に酸化ガスマニホールドが形成され、それと直交する方向の対向する2辺に燃料ガスマニホールドが形成される。そして、通常、燃料ガスと酸化ガスとは、反応ガス用セパレータ18Bの表裏で、直交する方向に流れる。
【0012】
図3、図4は、一面に酸化ガス(空気)のガス流路27bが形成され、外周部の対向2辺にガス(酸化ガス)マニホールド29が形成されているセパレータ18を、酸化ガス流路27b側から見た場合を示す。セパレータ18には外周部に酸化ガスマニホールドが形成された2辺と直交する2辺に燃料ガスマニホールドが形成されるが、図3では燃料ガスマニホールドの図示を省略してある。
図3に示すように、セパレータ面内のマニホールド(酸化ガスマニホールド)29は、互いに独立した1個以上(図3、図4では発電部の上と下に3個ずつ、図5〜図7では発電部の下に2個、上に1個)のマニホールドとされている。
【0013】
セパレータの発電部のガス流路(酸化ガス流路、すなわちエア流路)27は、複数のガス流路セグメント(図3、図4の場合はセグメント1、2、3、図5〜図7の場合はセグメント1、2)に分けられている。ガス流路セグメントのガス流路27は、発電部では、互いに連通しない。ガス流路セグメントは、発電部外のガス流路28により、直列に接続されている。
発電部のガス流路は溝状のガス流路から構成されていてもよいし、多数の小突起によってセパレータと電極間に形成されるスペースであってもよい。ガス流路が溝状のガス流路である場合は、各ガス流路セグメントは並行する溝状のガス流路群である。各ガス流路セグメントのガス流路は、各ガス流路セグメントと対応するマニホールド29と連通している。ガス流路セグメントの個数は、図3、図4では3個の場合を示しているが、ガス流路セグメントの個数は1個以上であれば任意である。
【0014】
セパレータ面内にある上流側のガス流路セグメント1のガス流路と下流側のガス流路セグメント(図3、図4の場合はセグメント3、図5〜図7の場合はセグメント2)のガス流路は、互いに隣接するように配置されている。
また、下流側のガス流路セグメント(図3、図4の場合はセグメント3、図5〜図7の場合はセグメント2)のガス流路ではガスが上から下に向かって流れるようにされている。
また、各セル内で下流側のガス流路セグメント(図3、図4の場合はセグメント3、図5〜図7の場合はセグメント2)の通路断面積は上流側のガス流路セグメント1の通路断面積より小とされている。
【0015】
本発明では、発電部33外のガス流路28には、少なくとも1つのガス流路セグメントのガス流路27を通過した既反応ガスのガス流路(たとえば、ガスマニホールド29同士を連通するガス流路30、またはガスマニホールド29)とガス流路セグメントに流入する前の未反応ガスのガス流路(たとえば、ガスマニホールド29と外部からのガス入口とを接続するガス流路31)とを水分透過性のある水交換膜35で隔てた構造をもつ水交換部34が、設けられている。
水交換膜35は、水分透過性のある膜であれば任意の材質の膜であってよい。たとえば、電解質膜11は、水分透過性を有するので、水交換膜35に電解質膜11を用いることができる。
【0016】
上記の本発明の全実施例に共通する部分の作用を、図7、図8を参照して、説明する。
水交換部34では、湿度の高い既反応ガスの水分(水蒸気を含む)が、水交換膜35を透過して、湿度の低い未反応ガス側に移行し、既反応ガスの湿度を下げて発電部33の電解質膜のガス流路27下流側での湿潤過多を防止するとともに、湿度の低い未反応ガスの湿度を上げて発電部33の電解質膜のガス流路27上流側での乾燥を防止する。
【0017】
図8は、図3、図4のセグメント数3の場合において、下流側ガス流路セグメント3に対応する電解質膜11の膜中水分量が低下されて湿潤過多が抑制され、上流側ガス流路セグメント1、または中間のガス流路セグメント2に対応する電解質膜11の膜中水分量が上げられて乾燥防止がはかられる様子を棒グラフで示している。図9は比較例で水交換部34を設けない場合(本発明に含まず)を示している。図9からわかるように、下流側セグメントにいく程、電解質膜11の膜中水分量が増大していき、最下流側でエアの飽和水蒸気量を越えて水滴が出るとともに、最上流側で膜の乾燥が生じやすいことがわかる。
【0018】
本発明では、水交換膜35を利用した、既反応ガスと未反応ガスの水交換により、既反応ガスからの水分吸収を吸収材を用いて行うとともに未反応ガスの加湿を独立に行っていた従来に比べて、既反応ガスから吸収した水分を未反応ガスの加湿に再利用することができること、吸収材の飽和による水分吸収不能がなく半永久的に作動できること、特別な加湿装置が不要となること、等の点で改善される。
【0019】
セパレータ面内にある上流側のガス流路セグメント1のガス流路と下流側のガス流路セグメント(図3、図4の場合はセグメント3、図5〜図7の場合はセグメント2)のガス流路が、互いに隣接するように配置されているので、湿度の高い下流側ガス流路セグメントから、電解質膜および電極を介して湿度の低い上流側ガス流路セグメントに水分が移行して水分分布が均一化に向かう。
【0020】
また、下流側のガス流路セグメント3のガス流路ではガスが上から下に向かって流れるようにされているので、下流側のガス流路セグメント(図3、図4の場合はセグメント3、図5〜図7の場合はセグメント2)のガス流路に水滴が生じてもガス流により下方に吹き飛ばされ、ガス流路の水詰まりおよび反応ガス供給不足を防止できる。
【0021】
また、各セル内で下流側のガス流路セグメント(図3、図4の場合はセグメント3、図5〜図7の場合はセグメント2)の通路断面積が上流側のガス流路セグメント1の通路断面積より小とされているので、酸素(燃料ガス流路では水素)の消費によるガス流速が低下を、通路断面積を下流程小とすることによりガス流速の増大により相殺でき、水滴が生成した場合の吹き飛ばし作用が維持される。
【0022】
つぎに、本発明の各実施例に特有な構成、作用を説明する。
本発明の実施例1では、図3、図4に示すように、スタック23は横置きで車両に搭載され、水交換部34が、燃料電池スタック23の一端部のターミナル20より外側の部分に配置されている。
水交換部34は、スタック23の一端部のエンドプレート22とインシュレータ21の内部に形成されており、水交換膜35はエンドプレート22とインシュレータ21に挟まれている。
水交換部34は、エンドプレート22に形成された未反応ガスガス流路31と、インシュレータ21に形成された既反応ガスガス流路30と、未反応ガスガス流路31と既反応ガスガス流路30とを隔てる水交換膜35とからなる。
【0023】
発電部33のガス流路セグメントの個数は、たとえば3個(ただし、2個以上であれば、個数は任意)である。ガス流路セグメント1、2、3は、発電部外のガス流路28により、直列に接続されている。上流側ガス流路セグメント1の両側に、ガス流路セグメント2、3が位置している。ガス流路セグメント1、2、3のガス流れ方向は、図3の例では同じ方向としてあるが、上流側セグメント1と下流側セグメント3の流れ方向は互いに逆方向としてもよい。逆方向とすることにより、湿度の高い部分と湿度の低い部分とを隣接させることができ、湿度分布均一化に寄与できる。
【0024】
図3、図4では、ガス入口から入ったガスは、各セルのガス流路セグメント1の入口側ガスマニホールド29からガス流路セグメント1のガス流路27に入り、ガス流路セグメント1の出口側マニホールド29に出て該マニホールドを通ってスタック端部内(エンドプレートおよび/またはインシュレータ内に形成したガス流路30)に至り、スタック端部内のガス流路セグメント1の出口側マニホールドからスタック端部内のセグメント2の入口側マニホールドに流れる。
同じことをガス流路セグメント2に対して繰り返す。すなわち、スタック端部内のガス流路セグメント2の入口側マニホールドに流れたガスは、各セルのガス流路セグメント2の入口側マニホールド29からガス流路セグメント2のガス流路に入り、ガス流路セグメント2の出口側マニホールド29に出て該マニホールドを通ってスタック端部内(エンドプレートおよび/またはインシュレータ内に形成した通路30)に至り、スタック端部内のガス流路セグメント2の出口側マニホールドからスタック端部内のガス流路セグメント3の入口側マニホールドに流れる。
上記を順次、ガス流路セグメント2、3と繰り返して、最後はスタック端部内のガス流路セグメント3の出口側マニホールドから外部に出ていく。
水交換部34の既反応ガスのガス流路30は、セルの最下流から2番目のガス流路セグメント2を通った後の既反応ガスが流れる既反応ガスのガス流路30とされている。
【0025】
本発明の実施例1の作用はつぎの通りである。
水交換部34を燃料電池スタック23のターミナル20より外側の部分に配置したので、水交換部34を、各セルの発電部33に設ける必要がなく、水交換部を発電部に設けた場合に発電部面積が少なくなって燃料電池の発電性能が低下するという問題を生じることがなく、また、水交換部34を全セルに対して共通にターミナル20より外側の部分に設けることができるので、スペース効率がよい。
【0026】
また、水交換部の既反応ガスのガス流路30に流れる既反応ガスは、セルの最下流から2番目のガス流路セグメント2を通った後の既反応ガスのため、フラッディング前の最も高い湿度の既反応ガスと未反応ガスとで水交換を行うことができる。そのため、フラッディング防止と膜乾燥防止を効率的にはかることができる。
【0027】
本発明の実施例2では、図5〜図7に示すように、スタック23は横置きで車両に搭載され、水交換部34がスタック23の上側に配置されている。
また、発電部33のガス流路セグメントの個数はたとえば2個である。ガス流路セグメント1、2は、発電部33外の発電部上部のガスマニホールド29により、直列に接続されている。
図5に示すように、未反応ガスは発電部33の下側に位置するガス流路28(未反応ガスのガスマニホールド29)から発電部33のガス流路セグメント1のガス流路27に入り、既反応ガスになって発電部33の上側に位置するガス流路28(既反応ガスのガスマニホールド29)に流れ、該既反応ガスは発電部33の上側のガス流路28(既反応ガスのガスマニホールド29)で1ターンさせて発電部33のガス流路セグメント2のガス流路27に入り、発電部33の下側のガス流路28(既反応ガスのガスマニホールド29)に流れる。
【0028】
図6または図7に示すように、発電部33の上側のガス流路28(既反応ガスのガスマニホールド29)は、発電部33の下側に位置するガス流路28(未反応ガスのガスマニホールド29)に未反応ガスを送る未反応ガスのガス流路31と水交換膜35を介して隔てられている。
図6では、未反応ガスのガス流路31と既反応ガスのガスマニホールド29とを別室にして水交換膜35で仕切った構造としてある。水交換膜35は蛇腹状とされ平面状の場合よりも表面積を大としてある。
図7では、発電部33の上側の既反応ガスのガス流路28(既反応ガスのガスマニホールド29)の壁に該壁に結露する水分を壁につたわせる傾斜部36を設け、傾斜部36の下端部の下方に、傾斜部36で集められた水をセル発電部33に落下させることなく排除する排除部37が設けられている。
【0029】
本発明の実施例2の作用はつぎの通りである。
水交換部34をスタック23の上側に配置したので、水交換部34を、各セルの発電部33内に設ける必要がなく、発電性能を低下させることがなく、スペース効率もよい。
また、ガスの流れを1ターンさせ湿潤の高い下流側のガス流路2ではガスを上から下に流すので、たとえ水滴が生成しても下方に吹き飛ばすことができ、水によるガス通路詰まりが生じない。
また、図6では、水交換膜35を蛇腹状としたので、水交換膜35の表面積が増大し、既反応ガスから未反応ガスへの水分透過量を増大できる。
また、図7では、発電部の上側の既反応ガスのガス流路の壁に傾斜部36を設け、傾斜部36の下端部の下方に排除部37を設けたので、ガスマニホールド29の壁に生成した水滴を傾斜部36をつたわせて排除部37に導き、発電部33に落下させずに外部に排除することができる。
【0030】
【発明の効果】
請求項1または請求項2の燃料電池のガス流路によれば、少なくとも1つのガス流路セグメントを通過した既反応ガスのガス流路と未反応ガスのガス流路とを水交換膜で隔てたので、既反応ガスの水分が水交換膜を透過して未反応ガスに移行し、電解質膜の下流での湿潤過多と上流での乾燥が共に防止されるとともに、途中部と最上流との水交換もできて燃料電池の反応面内での水分分布の均一化もはかることができる。また、水交換膜が飽和することもないので、半永久的に作動する。また、セル発電部外に水交換部を設けたので、セル面積からの制限を受けることなく、高い効率で既反応ガスから未反応ガスへの水分移行を行わせることができる。
請求項の燃料電池のガス流路によれば、各セル内で下流側のガス流路セグメントと上流側のガス流路セグメントとを隣接させたので、セパレータ内での水分分布を、隣接させない場合に比べてより一層均一化できる。
請求項の燃料電池のガス流路によれば、各セル内で下流側のガス流路セグメントの通路断面積を上流側のガス流路セグメントの通路断面積より小としたので、下流での流速低下を防止でき、下流で液滴が生じても、吹き飛ばすことができ、液滴による電池性能の低下を防止できる。
請求項の燃料電池のガス流路によれば、水交換部を燃料電池スタックのターミナルより外側の部分に配置したので、水交換部を、各セルの発電部に設ける必要がなく、発電性能を低下させない。また、水交換部を全セルに対して共通にターミナルより外側の部分に設けることができるので、スペース効率がよい。
請求項の燃料電池のガス流路によれば、水交換部の既反応ガスのガス流路に流れる既反応ガスを、セルの最下流から2番目のガス流路セグメントを通った後の既反応ガスとしたため、フラッディング前の最も高い湿度の既反応ガスと未反応ガスとで効率良く水交換を行わせることができる。
請求項の燃料電池のガス流路によれば、水交換部をスタックの上側に配置したので、水交換部を、各セルの発電部内に設ける必要がなく、発電性能を低下させることがなく、スペース効率もよい。
請求項の燃料電池のガス流路によれば、ガスの流れを1ターンさせ湿潤の高い下流側のガス流路ではガスを上から下に流すので、たとえ水滴が生成しても下方に吹き飛ばすことができ、水によるガス通路詰まりを防止できる。
請求項の燃料電池のガス流路によれば、水交換膜を蛇腹状としたので、水交換膜の表面積を増大でき、既反応ガスから未反応ガスへの水分透過量を増大できる。
請求項10の燃料電池のガス流路によれば、発電部の上側の既反応ガスのガス流路の壁に傾斜部を設け、該傾斜部の下端部の下方に排除部を設けたので、壁に生成した水滴を傾斜部をつたわせて排除部に導き、発電部に落下させずに外部に排除することができる。
【図面の簡単な説明】
【図1】本発明の実施例1、2の燃料電池のガス流路を備えた燃料電池の全体概略図である。
【図2】図1の燃料電池のモジュールの端部とその近傍の断面図である。
【図3】本発明の実施例1の燃料電池のガス流路の、セパレータの酸化ガス流路側から見た、概略斜視図である。
【図4】図3のスタック端部の断面図である。
【図5】本発明の実施例2の燃料電池のガス流路の、セパレータの酸化ガス流路側から見た、概略正面図である。
【図6】本発明の実施例2の、水交換部を具備する燃料電池のガス流路の、セパレータの酸化ガス流路側から見た、概略正面図である。
【図7】本発明の実施例2の、図6とは別構造の水交換部を具備する燃料電池のガス流路の、セパレータの酸化ガス流路側から見た、概略正面図である。
【図8】本発明の実施例1、2の燃料電池のガス流路におけるセパレータ内ガス流路セグメント間での水分のやりとりとその前後における膜中水分量を棒グラフである。
【図9】従来の燃料電池のガス流路の問題を模式化して示した、各ガス流路セグメントでの膜中水分量の棒グラフである。
【符号の説明】
1、2、3 ガス流路セグメント(単にセグメントともいう)
10 (固体高分子電解質型)燃料電池
11 電解質膜
12 触媒層
13 拡散層
14 電極(アノード、燃料極)
15 触媒層
16 拡散層
17 電極(カソード、空気極)
18 セパレータ
18A 冷却用セパレータ
18B 反応ガス用セパレータ
19 モジュール
20 ターミナル
21 インシュレータ
22 エンドプレート
23 スタック
24 締結部材(テンションプレート)
25 ボルトまたはナット
26 冷却水流路
27 ガス流路(発電部のガス流路)
27a 燃料ガス流路
27b 酸化ガス流路
28 ガス流路(発電部外のガス流路)
29 ガスマニホールド
30 ガスマニホールド同士を接続するガス流路
31 ガス入口からガスマニホールドに未反応ガスを流すガス流路
32 ガスマニホールドからガス出口に既反応ガスを流すガス流路
33 発電部(電極に対応する部分)
34 水交換部
35 水交換膜
36 傾斜部
37 排除部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas flow path structure of a fuel cell in which excessive drying and wetting of an electrolyte membrane is prevented.
[0002]
[Prior art]
The solid polymer electrolyte fuel cell is arranged on the other side of the electrolyte membrane, which is an electrolyte membrane made of an ion exchange membrane, an electrode (anode, fuel electrode) made of a catalyst layer and a diffusion layer arranged on one side of the electrolyte membrane, and the electrolyte membrane. Membrane-Electrode Assembly (MEA) consisting of an electrode (cathode, air electrode) consisting of a catalyst layer and a diffusion layer, and fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) at the anode and cathode A cell is formed from a fluid passage for supplying a liquid or a separator that forms a flow path for flowing a cooling medium, a module is formed from a stack of a plurality of cells, and the modules are stacked to form a module group. A stack is formed by arranging terminals, insulators, and end plates at both ends of the cell stacking direction. It consists of what was fastened and fixed by the fastening member (for example, tension plate, tension bolt, etc.) extended in a layered body lamination direction.
In a solid polymer electrolyte fuel cell, a reaction for converting hydrogen into hydrogen ions and electrons is performed on the anode side, the hydrogen ions move through the electrolyte membrane to the cathode side, and oxygen, hydrogen ions and electrons (adjacent to the cathode side). The electrons produced at the anode of the MEA come through the separator) to produce water.
Anode side: H2→ 2H++ 2e-
Cathode side: 2H++ 2e-+ (1/2) O2→ H2O
At the cathode, air is dried at the inlet, but the water vapor increases on the downstream (outlet) side of the passage due to the water generation reaction, and when the amount of saturated water vapor of the air is exceeded, water droplets are formed. On the other hand, in order for hydrogen ions to move through the electrolyte membrane, the electrolyte membrane needs to be appropriately wet. When the electrolyte membrane is dry, the movement of protons in the membrane is inhibited and becomes a resistance, so that the performance (output voltage) of the fuel cell is lowered. Humidification of the supply air can prevent the electrolyte membrane from drying on the inlet side, but excess water from the reaction product water at the outlet causes clogging of the passage, resulting in insufficient oxygen and less reaction on the cathode side. The problem arises. In order to reduce this problem, various ideas have been made on the gas flow path.
For example,
(1) Japanese Patent Laid-Open No. 6-132038 discloses performing water exchange between an off-gas and an incoming gas of a fuel gas and an oxidizing gas,
{Circle around (2)} Japanese Patent Laid-Open No. 2000-12051 discloses that an independent gas flow path divided into a plurality in the fuel cell reaction surface is provided and the gas flow paths communicate with each other at the stack end.
[0003]
[Problems to be solved by the invention]
Even if the moisture exchange of the gas is performed in the uppermost stream and the lowermost stream of the configuration of (2) by combining the conventional techniques (1) and (2), the moisture in the reaction surface of the fuel cell Since uniform distribution is not achieved, a stable output of the cells of the fuel cell cannot be obtained.
An object of the present invention is to perform a moisture exchange of gas between a dry part of a gas flow path and a wet part of the gas flow path, and to achieve a uniform moisture distribution in the reaction surface of the fuel cell. It is to provide a gas flow path.
[0004]
[Means for Solving the Problems]
  The present invention for achieving the above object is as follows.
(1) The gas flow path of the power generation section of each cell is divided into a plurality of gas flow path segments that do not communicate with each other in the power generation section, and the gas flow path segments are connected in series with a gas flow path outside the power generation section. The gas flow path of the fuel cell includes a gas manifold formed outside the power generation unit and a gas flow path communicating the gas manifolds,
The gas flow path of the reacted gas that has passed through at least one gas flow path segment in the gas flow path communicating with the gas manifolds outside the power generation unit and the gas flow of the unreacted gas before flowing into the gas flow path segment A gas flow path of a fuel cell, characterized in that a water exchange part having a structure in which a path is separated by a water exchange membrane having moisture permeability is provided.
(2) Gas of a fuel cell in which the gas flow path of the power generation section of each cell is divided into a plurality of gas flow path segments that do not communicate with each other in the power generation section, and the gas flow path segments are connected in series by gas flow paths outside the power generation section A flow path,
The gas channel of the already reacted gas that has passed through at least one gas channel segment and the gas of the unreacted gas before flowing into the gas channel segment to the gas channel outside the power generation unit that connects the gas channel segments to each other A gas flow path of a fuel cell, characterized in that a water exchange section having a structure in which the flow path is separated by a water-permeable water exchange membrane is provided.
(3) The gas flow path of the fuel cell according to (1) or (2), wherein the downstream gas flow path segment and the upstream gas flow path segment are adjacent to each other in each cell.
(4) The gas flow path of the fuel cell according to (1) or (2), wherein a passage sectional area of the downstream gas passage segment in each cell is smaller than a passage sectional area of the upstream gas passage segment.
(5) The gas flow path of the fuel cell according to (1) or (2), wherein the water exchange part is arranged in a portion outside the terminal of the fuel cell stack.
(6) The gas channel of the already-reacted gas in the water exchange part is a gas channel of the already-reacted gas through which the already-reacted gas flows after passing through the second gas channel segment from the most downstream of the cell (5 ) Gas flow path of the fuel cell as described.
(7) Place the stack horizontally,
  The water exchange part was placed at the top of the stack(2)The gas flow path of the described fuel cell.
(8) Place the stack horizontally,
  The unreacted gas is put into the power generation section from the gas flow path of the unreacted gas located on the lower side of the power generation section and is made to flow into the gas flow path of the existing reaction gas located on the upper side of the power generation section. Is made into a flow path structure that flows into the gas flow path of the reacted gas below the power generation section by making one turn in the gas flow path of the reacted gas on the upper side of the power generation section,
  An unreacted gas flow path for sending an unreacted gas to an unreacted gas flow path located below the power generation section, an unreacted gas flow path on the upper side of the power generation section, and the water exchange membrane. The gas flow path of the fuel cell according to (7), which is separated by a gap.
(9) The gas flow path of the fuel cell according to (8), wherein the water exchange membrane has a bellows shape and has a larger surface area than a planar shape.
(10) An inclined portion is provided on the wall of the gas flow path of the already-reacted gas on the upper side of the power generation portion to allow moisture condensed on the wall to be collected by the inclined portion below the lower end portion of the inclined portion. (7) The fuel cell gas flow path according to (7), wherein an exclusion unit that eliminates the water without dropping into the cell power generation unit is provided.
[0005]
  Above (1)Or (2)In the gas flow path of the fuel cell, since the gas flow path of the already-reacted gas that has passed through at least one gas flow path segment and the gas flow path of the unreacted gas are separated by a water exchange membrane, It passes through the water exchange membrane and shifts to unreacted gas, preventing both excessive wetting downstream of the electrolyte membrane and drying upstream, and also allows water exchange between the middle part and the uppermost stream to react with the fuel cell. In-plane moisture distribution can also be made uniform. Moreover, since the water exchange membrane is not saturated, it operates semipermanently. In addition, since the water exchange unit is provided outside the cell power generation unit, moisture transfer from the already reacted gas to the unreacted gas is performed with high efficiency without being limited by the cell area.
  the above(3In the gas flow path of the fuel cell of FIG. 2, the downstream gas flow path segment and the upstream gas flow path segment are adjacent to each other in each cell, so that the moisture distribution in the separator is made more uniform.
  the above(4In the gas flow path of the fuel cell in (2), the passage cross-sectional area of the downstream gas flow path segment in each cell is smaller than the passage cross-sectional area of the upstream gas flow path segment, so that gas is consumed by the power generation reaction. However, the flow velocity does not decrease downstream, and even if droplets are generated downstream, they are blown away, and the deterioration of the battery performance due to the droplets is prevented.
  the above(5) In the gas flow path of the fuel cell, since the water exchange part is arranged outside the terminal of the fuel cell stack, it is not necessary to provide the water exchange part in the power generation part of each cell, and the power generation performance is not deteriorated. Moreover, since it can be provided in a portion outside the terminal in common for all cells, space efficiency is also good.
  the above(6In the gas flow path of the fuel cell in (1), the pre-reacted gas flowing in the gas flow path of the pre-reacted gas in the water exchange section is the pre-reacted gas after passing through the second gas flow path segment from the most downstream of the cell. The water exchange can be performed between the already reacted gas and the unreacted gas having the highest humidity before flooding.
  the above(7In the gas flow path of the fuel cell), the water exchange part is arranged on the upper side of the stack, so there is no need to provide the water exchange part in the power generation part of each cell, the power generation performance is not lowered, and the space efficiency is also improved. Good.
  the above(8In the gas flow path of the fuel cell of (1), the gas flow is turned one turn, and in the highly humid downstream gas flow path, the gas flows from top to bottom, so even if water droplets are generated, it can be blown downward. The gas passage is not clogged with water.
  the above(9In the gas flow path of the fuel cell, the water exchange membrane has a bellows shape, so that the surface area of the water exchange membrane increases and the amount of moisture permeation from the already reacted gas to the unreacted gas can be increased.
  the above(10In the gas flow path of the fuel cell of), since the inclined portion is provided in the wall of the gas flow path of the already-reacted gas on the upper side of the power generation portion, and the exclusion portion is provided below the lower end portion of the inclined portion, it is generated on the wall. The water droplets can be guided to the exclusion portion by connecting the inclined portion, and can be excluded outside without being dropped on the power generation portion.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Below, the gas flow path of the fuel cell of this invention is demonstrated with reference to FIGS. 1-9 (however, FIG. 9 is a comparative example).
3 and 4 show the first embodiment of the present invention, FIGS. 5 to 7 show the second embodiment of the present invention, and FIGS. 1, 2 and 8 show the first and second embodiments of the present invention. Applicable to all.
Portions common to all the embodiments of the present invention are denoted by the same reference numerals throughout the first and second embodiments of the present invention.
First, parts common to any of the embodiments of the present invention will be described with reference to FIGS. 1 to 4, 8, and 9, for example.
[0007]
The fuel cell to which the gas flow path of the present invention is applied is a solid polymer electrolyte fuel cell 10. The fuel cell 10 is mounted on, for example, a fuel cell vehicle. However, it may be used other than an automobile.
As shown in FIGS. 1 and 2, the solid polymer electrolyte fuel cell 10 includes an electrolyte membrane 11 made of an ion exchange membrane, and an electrode 14 made up of a catalyst layer 12 and a diffusion layer 13 disposed on one surface of the electrolyte membrane 11. (Anode, fuel electrode) and a membrane-electrode assembly (MEA) comprising an electrode 17 (cathode, air electrode) comprising a catalyst layer 15 and a diffusion layer 16 disposed on the other surface of the electrolyte membrane 11; A separator 18 that forms a fluid passage 27 for supplying a fuel gas (hydrogen) and an oxidizing gas (oxygen, usually air) to the electrodes 14 and 17 and a cooling water passage 26 through which cooling water for cooling the fuel cell flows. A module is formed by stacking a plurality of cells to form a module 19 (for example, one module is formed from two cells), and the module 19 is stacked to form a module group. The stack 20 is configured by disposing the terminal 20, the insulator 21, and the end plate 22 at both ends of the module group in the cell stacking direction (fuel cell stacking direction). The stack 23 is clamped in the stacking direction, and the fuel cell is formed outside the stack 23. It consists of a fastening member 24 (for example, a tension plate, a through bolt, etc.) extending in the stacking direction of the laminate and a bolt 25 or a nut.
[0008]
The catalyst layers 12 and 15 are made of carbon (C) containing platinum (Pt). The diffusion layers 13 and 16 have gas permeability and are made of carbon (C).
The separator 18 is impermeable to gas and water, and is usually made of either carbon (including the case of graphite), metal, or conductive resin. Although FIG. 2 shows the case where the separator 18 is made of carbon (including the case of being graphite), it is not limited to this.
[0009]
The separator 18 partitions any one of the fuel gas and the oxidizing gas, the fuel gas and the cooling water, and the oxidizing gas and the cooling water, and forms an electrical passage through which electrons flow from the anode of the adjacent cell to the cathode.
The cooling water channel 26 is provided for each cell or for each of a plurality of cells. For example, as shown in FIG. 2, in the case where one module is constituted by two cells, one cooling water flow path 26 is provided for each module (every two cells).
[0010]
The separator 18 is usually a substantially square plate. The separator 18 has two types, a cooling separator 18A that forms a cooling water flow path for cooling the fuel cell and a reaction gas flow path, and a reaction gas separator 18B that forms a reaction gas flow path. There are separators.
In the power generation unit 33 (the portion where the electrode is provided), the cooling water channel 26 is formed on one surface of the cooling separator 18A, and the gas channel 27 (fuel gas channel 27a or oxidizing gas channel 27b) is formed on the other surface. The cooling separator 18A separates the cooling water and the reactive gas (fuel gas or oxidizing gas). A fuel gas flow path 27a is formed on one surface of the reaction gas separator 18B, and an oxidation gas flow path 27b is formed on the other surface. The reaction gas separator 18B separates the fuel gas and the oxidation gas.
[0011]
As shown in FIGS. 3 and 4, the gas flow path includes a gas flow path 27 of the power generation unit 33 and a gas flow path 28 outside the power generation unit 33.
The gas flow path 28 outside the power generation unit has a gas manifold 29. The gas flow path 28 outside the power generation unit further includes a gas flow path 30 that connects the gas manifolds 29, a gas flow path 31 that connects the gas manifold 29 and an external gas inlet, and the gas manifold 29 and the outside. It may have a gas flow path 32 that connects the gas outlet.
In the separator 18, a gas manifold 29 and a cooling water manifold (not shown) are formed outside the power generation unit 33, and a cooling water channel 26 and / or a gas channel 27 are formed in the power generation unit 33.
Normally, the gas manifold 29 is divided into a fuel gas manifold and an oxidant gas manifold. An oxidant gas manifold is formed on two opposite sides, and a fuel gas manifold is formed on two opposite sides in a direction orthogonal thereto. In general, the fuel gas and the oxidizing gas flow in directions orthogonal to each other on the front and back of the reactive gas separator 18B.
[0012]
3 and 4, the oxidizing gas (air) gas flow path 27b is formed on one surface, and the separator 18 having the gas (oxidizing gas) manifold 29 formed on two opposite sides of the outer peripheral portion is connected to the oxidizing gas flow path. The case seen from the 27b side is shown. The separator 18 is formed with a fuel gas manifold on two sides orthogonal to the two sides on which the oxidizing gas manifold is formed on the outer periphery, but the fuel gas manifold is not shown in FIG.
As shown in FIG. 3, one or more manifolds (oxidizing gas manifolds) 29 in the separator surface are independent from each other (three above and below the power generation unit in FIGS. 3 and 4, and the power generation unit in FIGS. 5 to 7). 2 manifolds below and 1 manifold above).
[0013]
The gas flow path (oxidizing gas flow path, that is, the air flow path) 27 of the power generation unit of the separator has a plurality of gas flow path segments (in the case of FIGS. 3 and 4, the segments 1, 2, 3, and FIGS. 5 to 7). The case is divided into segments 1, 2). The gas flow paths 27 of the gas flow path segments do not communicate with each other in the power generation unit. The gas flow path segments are connected in series by a gas flow path 28 outside the power generation unit.
The gas flow path of the power generation unit may be constituted by a groove-shaped gas flow path, or may be a space formed between the separator and the electrode by a large number of small protrusions. When the gas flow path is a groove-shaped gas flow path, each gas flow path segment is a parallel groove-shaped gas flow path group. The gas channel of each gas channel segment communicates with the manifold 29 corresponding to each gas channel segment. The number of gas flow path segments is shown in FIG. 3 and FIG. 4 as three, but the number of gas flow path segments is arbitrary as long as it is one or more.
[0014]
Gas of the upstream gas passage segment 1 and the downstream gas passage segment (segment 3 in the case of FIGS. 3 and 4, segment 2 in the case of FIGS. 5 to 7) in the separator surface The flow paths are arranged adjacent to each other.
Further, in the gas flow path of the downstream gas flow path segment (segment 3 in the case of FIGS. 3 and 4, segment 2 in the case of FIGS. 5 to 7), the gas flows from the top to the bottom. Yes.
Further, the passage cross-sectional area of the downstream gas flow path segment (segment 3 in the case of FIGS. 3 and 4, segment 2 in FIGS. 5 to 7) in each cell is the same as that of the upstream gas flow path segment 1. It is smaller than the passage cross-sectional area.
[0015]
In the present invention, the gas flow path outside the power generation unit 33 has a gas flow path of the already reacted gas that has passed through the gas flow path 27 of at least one gas flow path segment (for example, a gas flow that communicates between the gas manifolds 29). The passage 30 or the gas manifold 29) and the gas flow path of the unreacted gas before flowing into the gas flow path segment (for example, the gas flow path 31 connecting the gas manifold 29 and the gas inlet from the outside) permeate moisture. A water exchanging part 34 having a structure separated by a water exchange membrane 35 having a characteristic is provided.
The water exchange membrane 35 may be a membrane of any material as long as it is a moisture permeable membrane. For example, since the electrolyte membrane 11 has moisture permeability, the electrolyte membrane 11 can be used for the water exchange membrane 35.
[0016]
The operation of the parts common to all the embodiments of the present invention will be described with reference to FIGS.
In the water exchanging unit 34, moisture (including water vapor) of the already-reacted gas having a high humidity passes through the water-exchange membrane 35 and moves to the unreacted gas side having a low humidity. In addition to preventing excessive wetting of the electrolyte membrane of the portion 33 on the downstream side of the gas flow path 27, the humidity of the unreacted gas having low humidity is increased to prevent drying of the electrolyte membrane of the power generation section 33 on the upstream side of the gas flow passage 27. To do.
[0017]
FIG. 8 shows the case where the number of segments is 3 in FIGS. 3 and 4, the amount of moisture in the electrolyte membrane 11 corresponding to the downstream gas flow channel segment 3 is reduced and excessive wetting is suppressed, and the upstream gas flow channel is suppressed. The bar graph shows how the moisture content in the electrolyte membrane 11 corresponding to the segment 1 or the intermediate gas flow path segment 2 is increased to prevent drying. FIG. 9 shows a case where the water exchange part 34 is not provided (not included in the present invention) in the comparative example. As can be seen from FIG. 9, the water content in the membrane of the electrolyte membrane 11 increases as it goes to the downstream segment, and water droplets are generated exceeding the saturated water vapor amount of air on the most downstream side, and the membrane on the most upstream side. It turns out that the drying of this occurs easily.
[0018]
In the present invention, the water exchange between the already-reacted gas and the unreacted gas using the water exchange membrane 35 is performed to absorb moisture from the already-reacted gas using the absorbent and to humidify the unreacted gas independently. Compared to the conventional case, the moisture absorbed from the already reacted gas can be reused for humidifying the unreacted gas, the moisture cannot be absorbed due to the saturation of the absorbent material, can be operated semipermanently, and no special humidifier is required. It is improved in terms of that.
[0019]
Gas of the upstream gas passage segment 1 and the downstream gas passage segment (segment 3 in the case of FIGS. 3 and 4, segment 2 in the case of FIGS. 5 to 7) in the separator surface Since the flow paths are arranged so as to be adjacent to each other, moisture moves from the high-humidity downstream gas flow-path segment to the low-humidity upstream gas flow-path segment via the electrolyte membrane and the electrode, thereby distributing moisture. Is going to be uniform.
[0020]
Further, since the gas flows in the gas flow path of the downstream gas flow path segment 3 from the top to the bottom, the downstream gas flow path segment (in the case of FIGS. 3 and 4, segment 3, In the case of FIGS. 5 to 7, even if water droplets are generated in the gas flow path of the segment 2), they are blown down by the gas flow, and it is possible to prevent water clogging in the gas flow path and insufficient supply of reaction gas.
[0021]
In each cell, the downstream gas flow path segment (segment 3 in the case of FIGS. 3 and 4, segment 2 in FIGS. 5 to 7) has a cross-sectional area of the upstream gas flow path segment 1. Since it is smaller than the cross-sectional area of the passage, the decrease in the gas flow rate due to the consumption of oxygen (hydrogen in the fuel gas flow path) can be offset by the increase in the gas flow rate by reducing the passage cross-sectional area downstream. The blowing action when generated is maintained.
[0022]
Next, the configuration and operation unique to each embodiment of the present invention will be described.
In the first embodiment of the present invention, as shown in FIGS. 3 and 4, the stack 23 is horizontally mounted on the vehicle, and the water exchanging portion 34 is provided at a portion outside the terminal 20 at one end of the fuel cell stack 23. Has been placed.
The water exchange part 34 is formed inside the end plate 22 and the insulator 21 at one end of the stack 23, and the water exchange membrane 35 is sandwiched between the end plate 22 and the insulator 21.
The water exchange unit 34 includes an unreacted gas gas channel 31 formed in the end plate 22, an already reacted gas gas channel 30 formed in the insulator 21, an unreacted gas gas channel 31, and an already reacted gas gas channel 30. It consists of the water exchange membrane 35 which separates.
[0023]
The number of gas flow path segments of the power generation unit 33 is, for example, three (however, the number is arbitrary if it is two or more). The gas flow path segments 1, 2, and 3 are connected in series by a gas flow path 28 outside the power generation unit. The gas flow path segments 2 and 3 are located on both sides of the upstream gas flow path segment 1. The gas flow directions of the gas flow path segments 1, 2, and 3 are the same in the example of FIG. 3, but the flow directions of the upstream segment 1 and the downstream segment 3 may be opposite to each other. By setting it as the reverse direction, a part with high humidity and a part with low humidity can be adjoined, and it can contribute to uniform humidity distribution.
[0024]
3 and 4, the gas that has entered from the gas inlet enters the gas passage 27 of the gas passage segment 1 from the inlet side gas manifold 29 of the gas passage segment 1 of each cell, and exits from the gas passage segment 1. It exits to the side manifold 29, reaches the inside of the stack end (the gas flow path 30 formed in the end plate and / or the insulator) through the manifold, and enters the stack end from the outlet side manifold of the gas flow path segment 1 in the stack end. Flow to the inlet side manifold of the segment 2 of FIG.
The same is repeated for gas flow path segment 2. That is, the gas that has flowed to the inlet side manifold of the gas flow path segment 2 in the stack end portion enters the gas flow path of the gas flow path segment 2 from the inlet side manifold 29 of the gas flow path segment 2 of each cell. It exits from the outlet side manifold 29 of the segment 2 and reaches the inside of the stack end (passage 30 formed in the end plate and / or the insulator) through the manifold, and stacks from the outlet side manifold of the gas flow path segment 2 in the stack end. It flows to the inlet side manifold of the gas flow path segment 3 in the end.
The above is sequentially repeated with the gas flow path segments 2 and 3, and finally, the gas flow path segment 3 in the stack end portion exits to the outside.
The gas channel 30 of the already-reacted gas in the water exchange unit 34 is a gas channel 30 of the already-reacted gas through which the already-reacted gas after passing through the second gas channel segment 2 from the most downstream of the cell flows. .
[0025]
The operation of the first embodiment of the present invention is as follows.
Since the water exchange part 34 is arranged in the part outside the terminal 20 of the fuel cell stack 23, it is not necessary to provide the water exchange part 34 in the power generation part 33 of each cell, and when the water exchange part is provided in the power generation part There is no problem that the power generation section area is reduced and the power generation performance of the fuel cell is lowered, and the water exchange section 34 can be provided in a portion outside the terminal 20 in common for all cells. Space efficient.
[0026]
In addition, the already-reacted gas flowing in the gas channel 30 of the already-reacted gas in the water exchange section is the highest before the flooding because it is the already-reacted gas after passing through the second gas channel segment 2 from the most downstream of the cell. Water exchange can be performed between the existing and unreacted gas in humidity. Therefore, flooding prevention and film drying prevention can be efficiently achieved.
[0027]
In the second embodiment of the present invention, as shown in FIGS. 5 to 7, the stack 23 is horizontally mounted on the vehicle, and the water exchanging unit 34 is disposed on the upper side of the stack 23.
Further, the number of gas flow path segments of the power generation unit 33 is, for example, two. The gas flow path segments 1 and 2 are connected in series by a gas manifold 29 located above the power generation unit outside the power generation unit 33.
As shown in FIG. 5, the unreacted gas enters the gas flow path 27 of the gas flow path segment 1 of the power generation section 33 from the gas flow path 28 (unreacted gas gas manifold 29) located below the power generation section 33. Then, it becomes a pre-reacted gas and flows to the gas flow path 28 (the gas manifold 29 of the pre-reacted gas) positioned above the power generation unit 33, and the pre-reacted gas flows to the gas flow path 28 (the pre-reacted gas) The gas manifold 29) of the power generation unit 33 makes one turn and enters the gas flow path 27 of the gas flow path segment 2 of the power generation unit 33 and flows to the gas flow path 28 (the gas manifold 29 of the already reacted gas) on the lower side of the power generation unit 33.
[0028]
As shown in FIG. 6 or FIG. 7, the gas flow path 28 (the gas manifold 29 of the already reacted gas) on the upper side of the power generation section 33 is the gas flow path 28 (the gas of the unreacted gas) located on the lower side of the power generation section 33. The unreacted gas flow path 31 for sending the unreacted gas to the manifold 29) is separated from the water exchange membrane 35.
6 shows a structure in which a gas flow path 31 of unreacted gas and a gas manifold 29 of already-reacted gas are separated from each other by a water exchange membrane 35. The water exchange membrane 35 has a bellows shape and has a larger surface area than the planar shape.
In FIG. 7, an inclined portion 36 is provided on the wall of the gas channel 28 (reacted gas gas manifold 29) of the already-reacted gas on the upper side of the power generation unit 33 so that moisture condensed on the wall is connected to the wall. An excluding portion 37 is provided below the lower end portion of the water to remove water collected by the inclined portion 36 without dropping it to the cell power generation portion 33.
[0029]
The operation of the second embodiment of the present invention is as follows.
Since the water exchanging part 34 is arranged on the upper side of the stack 23, it is not necessary to provide the water exchanging part 34 in the power generation part 33 of each cell, the power generation performance is not lowered, and the space efficiency is good.
In addition, since the gas flow is made to flow downward from the top in the highly humid downstream gas flow path 2 by making the gas flow one turn, even if water droplets are generated, they can be blown down, and the gas passage is clogged with water. Absent.
In FIG. 6, since the water exchange membrane 35 has a bellows shape, the surface area of the water exchange membrane 35 is increased, and the amount of moisture permeation from the already reacted gas to the unreacted gas can be increased.
In FIG. 7, the inclined portion 36 is provided on the wall of the gas flow path of the already reacted gas on the upper side of the power generation portion, and the exclusion portion 37 is provided below the lower end portion of the inclined portion 36. The generated water droplets can be guided to the exclusion unit 37 with the inclined portion 36 attached, and excluded outside without being dropped on the power generation unit 33.
[0030]
【The invention's effect】
  Claim 1Or claim 2According to the gas flow path of the fuel cell, since the gas flow path of the already reacted gas that has passed through at least one gas flow path segment and the gas flow path of the unreacted gas are separated by the water exchange membrane, Moisture permeates the water exchange membrane and moves to unreacted gas, preventing both excessive wetting downstream of the electrolyte membrane and drying upstream, and also allows water exchange between the middle part and the most upstream fuel cell. The water distribution in the reaction surface can be made uniform. Moreover, since the water exchange membrane is not saturated, it operates semipermanently. In addition, since the water exchange unit is provided outside the cell power generation unit, moisture can be transferred from the already reacted gas to the unreacted gas with high efficiency without being limited by the cell area.
  Claim3According to the gas flow path of the fuel cell, since the downstream gas flow path segment and the upstream gas flow path segment are adjacent to each other in each cell, the moisture distribution in the separator is compared with the case of not adjacent to each other. Can be made even more uniform.
  Claim4According to the gas flow path of the fuel cell, the flow cross-sectional area of the downstream gas flow path segment in each cell is made smaller than the cross-sectional area of the upstream gas flow path segment. Even if a droplet is generated downstream, it can be blown off, and the battery performance can be prevented from being deteriorated by the droplet.
  Claim5According to the gas flow path of the fuel cell, since the water exchange part is arranged outside the terminal of the fuel cell stack, it is not necessary to provide the water exchange part in the power generation part of each cell, and the power generation performance is not deteriorated. . Moreover, since the water exchange part can be provided in the part outside the terminal in common for all the cells, the space efficiency is good.
  Claim6According to the gas flow path of the fuel cell, the pre-reacted gas flowing in the gas flow path of the pre-reacted gas in the water exchange section is separated from the pre-reacted gas after passing through the second gas flow path segment from the most downstream of the cell. Therefore, water can be efficiently exchanged between the already reacted gas and the unreacted gas having the highest humidity before flooding.
  Claim7According to the gas flow path of the fuel cell, since the water exchange part is arranged on the upper side of the stack, it is not necessary to provide the water exchange part in the power generation part of each cell, the power generation performance is not deteriorated, and the space efficiency Also good.
  Claim8According to the gas flow path of the fuel cell, since the gas flow is turned one turn and the gas flow flows from the top to the bottom in the highly humid downstream gas flow path, even if water droplets are generated, they can be blown downward. The gas passage clogging due to water can be prevented.
  Claim9According to the gas flow path of the fuel cell, since the water exchange membrane has a bellows shape, the surface area of the water exchange membrane can be increased, and the moisture permeation amount from the already reacted gas to the unreacted gas can be increased.
  Claim10According to the gas flow path of the fuel cell, an inclined portion is provided on the wall of the gas flow path of the existing reaction gas above the power generation portion, and an exclusion portion is provided below the lower end portion of the inclined portion. It is possible to guide the water droplets to the exclusion part by connecting the inclined part, and to exclude it outside without dropping it on the power generation part.
[Brief description of the drawings]
FIG. 1 is an overall schematic view of a fuel cell provided with gas flow paths of fuel cells of Examples 1 and 2 of the present invention.
FIG. 2 is a cross-sectional view of an end portion of the module of the fuel cell of FIG. 1 and its vicinity.
FIG. 3 is a schematic perspective view of the gas flow path of the fuel cell according to the first embodiment of the present invention as viewed from the oxidizing gas flow path side of the separator.
4 is a cross-sectional view of the stack end portion of FIG. 3;
FIG. 5 is a schematic front view of a gas flow path of a fuel cell according to a second embodiment of the present invention, as viewed from the oxidizing gas flow path side of a separator.
6 is a schematic front view of a gas flow path of a fuel cell having a water exchange part, as viewed from the oxidizing gas flow path side of a separator, in Example 2 of the present invention. FIG.
7 is a schematic front view of Example 2 of the present invention, as viewed from the oxidizing gas channel side of a separator, of a gas channel of a fuel cell including a water exchange part having a structure different from that of FIG. 6; FIG.
FIG. 8 is a bar graph showing the exchange of moisture between gas channel segments in the separator and the amount of moisture in the membrane before and after the gas channel of the fuel cell of Examples 1 and 2 of the present invention.
FIG. 9 is a bar graph of the amount of moisture in the film in each gas flow path segment, schematically showing the problem of the gas flow path of a conventional fuel cell.
[Explanation of symbols]
1, 2, 3 Gas flow path segment (also called segment)
10 (Solid polymer electrolyte type) Fuel cell
11 Electrolyte membrane
12 Catalyst layer
13 Diffusion layer
14 electrodes (anode, fuel electrode)
15 Catalyst layer
16 Diffusion layer
17 electrodes (cathode, air electrode)
18 Separator
18A Cooling separator
18B Reactor gas separator
19 modules
20 terminal
21 Insulator
22 End plate
23 stacks
24 Fastening member (tension plate)
25 bolts or nuts
26 Cooling water flow path
27 Gas flow path (gas flow path of power generation section)
27a Fuel gas flow path
27b Oxidizing gas flow path
28 Gas flow path (gas flow path outside the power generation unit)
29 Gas manifold
30 Gas flow path connecting gas manifolds
31 Gas flow path for flowing unreacted gas from gas inlet to gas manifold
32 Gas flow path for flowing the reaction gas from the gas manifold to the gas outlet
33 Power generation part (part corresponding to electrode)
34 Water exchange section
35 Water exchange membrane
36 Inclined part
37 Exclusion

Claims (10)

各セルの発電部のガス流路を発電部では連通しない複数のガス流路セグメントに分け、該ガス流路セグメントを発電部外のガス流路で直列に接続し、前記発電部外のガス流路は発電部外に形成されたガスマニホールドとガスマニホールド同士を連通するガス流路を含んでいる燃料電池のガス流路であって、
前記発電部外に、前記ガスマニホールド同士を連通するガス流路で少なくとも1つのガス流路セグメントを通過した既反応ガスのガス流路とガス流路セグメントに流入する前の未反応ガスのガス流路とを水分透過性のある水交換膜で隔てた構造をもつ水交換部を設けたことを特徴とする燃料電池のガス流路。
The gas flow path of the power generation section of each cell is divided into a plurality of gas flow path segments that do not communicate with each other in the power generation section, and the gas flow path segments are connected in series with a gas flow path outside the power generation section. The path is a gas flow path of the fuel cell including a gas flow path that connects the gas manifold and the gas manifold formed outside the power generation unit,
The gas flow path of the reacted gas that has passed through at least one gas flow path segment in the gas flow path communicating with the gas manifolds outside the power generation unit and the gas flow of the unreacted gas before flowing into the gas flow path segment A gas flow path of a fuel cell, characterized in that a water exchange part having a structure in which a path is separated by a water exchange membrane having moisture permeability is provided.
各セルの発電部のガス流路を発電部では連通しない複数のガス流路セグメントに分け、該ガス流路セグメント同士を発電部外のガス流路によって直列に接続した燃料電池のガス流路であって、
前記ガス流路セグメント同士を接続する発電部外のガス流路に、少なくとも1つのガス流路セグメントを通過した既反応ガスのガス流路とガス流路セグメントに流入する前の未反応ガスのガス流路とを水分透過性のある水交換膜で隔てた構造をもつ水交換部を設けたことを特徴とする燃料電池のガス流路。
A gas flow path of a fuel cell in which the gas flow path of the power generation section of each cell is divided into a plurality of gas flow path segments that do not communicate with each other in the power generation section, and the gas flow path segments are connected in series by gas flow paths outside the power generation section. There,
The gas channel of the already reacted gas that has passed through at least one gas channel segment and the gas of the unreacted gas before flowing into the gas channel segment to the gas channel outside the power generation unit that connects the gas channel segments to each other A gas flow path of a fuel cell, characterized in that a water exchange section having a structure in which the flow path is separated by a water-permeable water exchange membrane is provided.
各セル内で下流側のガス流路セグメントと上流側のガス流路セグメントとを隣接させた請求項1または請求項2記載の燃料電池のガス流路。  The gas flow path of the fuel cell according to claim 1 or 2, wherein a downstream gas flow path segment and an upstream gas flow path segment are adjacent to each other in each cell. 各セル内で下流側のガス流路セグメントの通路断面積を上流側のガス流路セグメントの通路断面積より小とした請求項1または請求項2記載の燃料電池のガス流路。  The gas flow path of the fuel cell according to claim 1 or 2, wherein a passage sectional area of the downstream gas passage segment in each cell is smaller than a passage sectional area of the upstream gas passage segment. 前記水交換部を、燃料電池スタックのターミナルより外側の部分に配置した請求項1または請求項2記載の燃料電池のガス流路。  The gas flow path of the fuel cell according to claim 1 or 2, wherein the water exchange part is arranged at a portion outside the terminal of the fuel cell stack. 前記水交換部の既反応ガスのガス流路が、セルの最下流から2番目のガス流路セグメントを通った後の既反応ガスが流れる既反応ガスのガス流路である請求項5記載の燃料電池のガス流路。  The gas flow path of the already-reacted gas in the water exchange section is a gas flow path of the already-reacted gas through which the already-reacted gas flows after passing through the second gas path segment from the most downstream of the cell. Fuel cell gas flow path. スタックを横置きとし、
水交換部をスタックの上側に配置した請求項2記載の燃料電池のガス流路。
Set the stack horizontally,
The gas flow path of the fuel cell according to claim 2, wherein the water exchange part is arranged on the upper side of the stack.
スタックを横置きとし、
未反応ガスを発電部の下側に位置する未反応ガスのガス流路から発電部に入れ既反応ガスにして発電部の上側に位置する既反応ガスのガス流路に流し、該既反応ガスを前記発電部の上側の既反応ガスのガス流路で1ターンさせて発電部に入れて発電部の下側の既反応ガスのガス流路に流す流路構造とし、
前記発電部の上側の既反応ガスのガス流路を、前記発電部の下側に位置する未反応ガスのガス流路に未反応ガスを送る未反応ガスのガス流路と前記水交換膜を介して隔てた請求項7記載の燃料電池のガス流路。
Set the stack horizontally,
The unreacted gas is put into the power generation section from the gas flow path of the unreacted gas located on the lower side of the power generation section and is made to flow into the gas flow path of the existing reaction gas located on the upper side of the power generation section. Is made into a flow path structure that flows into the gas flow path of the reacted gas below the power generation section by making one turn in the gas flow path of the reacted gas on the upper side of the power generation section,
An unreacted gas flow path for sending an unreacted gas to an unreacted gas flow path located below the power generation section, an unreacted gas flow path on the upper side of the power generation section, and the water exchange membrane. The gas flow path of the fuel cell according to claim 7, separated by a gap.
前記水交換膜を蛇腹状として平面状の場合よりも表面積を大とした請求項8記載の燃料電池のガス流路。  9. The gas flow path of a fuel cell according to claim 8, wherein the water exchange membrane has a bellows shape and has a larger surface area than a planar shape. 前記発電部の上側の既反応ガスのガス流路の壁に該壁に結露する水分を壁につたわせる傾斜部を設け、該傾斜部の下端部の下方に該傾斜部で集められた水をセル発電部に落下させることなく排除する排除部を設けた請求項7記載の燃料電池のガス流路。  Provided on the wall of the gas flow path of the already reacted gas on the upper side of the power generation section is an inclined portion for connecting moisture condensing on the wall to the wall, and the water collected by the inclined portion is below the lower end portion of the inclined portion. 8. The gas flow path of a fuel cell according to claim 7, further comprising an exclusion unit that eliminates the cell power generation unit without dropping it.
JP2000342247A 2000-11-09 2000-11-09 Fuel cell gas flow path Expired - Fee Related JP3921936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000342247A JP3921936B2 (en) 2000-11-09 2000-11-09 Fuel cell gas flow path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000342247A JP3921936B2 (en) 2000-11-09 2000-11-09 Fuel cell gas flow path

Publications (2)

Publication Number Publication Date
JP2002151120A JP2002151120A (en) 2002-05-24
JP3921936B2 true JP3921936B2 (en) 2007-05-30

Family

ID=18816839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000342247A Expired - Fee Related JP3921936B2 (en) 2000-11-09 2000-11-09 Fuel cell gas flow path

Country Status (1)

Country Link
JP (1) JP3921936B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1551073B1 (en) 2002-06-28 2010-08-18 Toyota Jidosha Kabushiki Kaisha Fuel battery
DE10232871A1 (en) * 2002-07-19 2004-02-05 Daimlerchrysler Ag Fuel cell with internal gas regulation has distributor structure for feed channels for reagents of anode and/or cathode divided into at least two fields, each with input and output ports for reagents
KR100539649B1 (en) 2002-12-02 2005-12-29 산요덴키가부시키가이샤 Separator for fuel cell and fuel cell using the same
JP4790964B2 (en) * 2002-12-24 2011-10-12 本田技研工業株式会社 Fuel cell with dehumidifying device
JP2006164606A (en) * 2004-12-03 2006-06-22 Mitsubishi Electric Corp Separator for fuel cell, and fuel cell stack
JP2007194070A (en) * 2006-01-19 2007-08-02 Toyota Motor Corp Humidifier for fuel cell
DE102018200687A1 (en) 2018-01-17 2019-07-18 Audi Ag Cascaded fuel cell stack and fuel cell system

Also Published As

Publication number Publication date
JP2002151120A (en) 2002-05-24

Similar Documents

Publication Publication Date Title
JP4037698B2 (en) Solid polymer cell assembly
US5382478A (en) Electrochemical fuel cell stack with humidification section located upstream from the electrochemically active section
US5773160A (en) Electrochemical fuel cell stack with concurrent flow of coolant and oxidant streams and countercurrent flow of fuel and oxidant streams
AU687211B2 (en) Electrochemical fuel cell stack with concurrently flowing coolant and oxidant streams
US8557466B2 (en) Fuel cell including separator with gas flow channels
JP3801096B2 (en) Fuel cell having a stack structure
JPH08273687A (en) Supply gas humidifier of fuel cell
JP3971969B2 (en) Polymer electrolyte fuel cell
JP4880836B2 (en) Fuel cell stack and reaction gas supply method
JP2008103241A (en) Fuel cell
JP4383605B2 (en) Solid polymer electrolyte fuel cell
JPH11135132A (en) Solid polymer electrolyte fuel cell
JP3921936B2 (en) Fuel cell gas flow path
CA2616650C (en) Modified fuel cells with internal humidification and/or temperature control systems
US20080217795A1 (en) Humidifier device for fuel cell
JP4612977B2 (en) Fuel cell stack and reaction gas supply method thereof
JP2000277128A (en) Solid polymer type fuel cell
EP1422775B1 (en) Fuel cell with separator plates having comb-shaped gas passages
JP4886128B2 (en) Fuel cell stack
JP4739880B2 (en) Polymer electrolyte fuel cell
JP3963716B2 (en) Fuel cell stack
JP4085668B2 (en) Fuel cell
JP3945136B2 (en) Solid polymer electrolyte fuel cell having gas flow path
JP4599804B2 (en) Fuel cell
JP4032633B2 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

LAPS Cancellation because of no payment of annual fees