JP3921317B2 - Piston structure - Google Patents

Piston structure Download PDF

Info

Publication number
JP3921317B2
JP3921317B2 JP32243299A JP32243299A JP3921317B2 JP 3921317 B2 JP3921317 B2 JP 3921317B2 JP 32243299 A JP32243299 A JP 32243299A JP 32243299 A JP32243299 A JP 32243299A JP 3921317 B2 JP3921317 B2 JP 3921317B2
Authority
JP
Japan
Prior art keywords
piston
recess
cylinder
engine
land portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32243299A
Other languages
Japanese (ja)
Other versions
JP2001140695A (en
Inventor
雅彦 久保
節雄 西原
秀樹 宮本
清 波多野
英雄 中井
卓雄 前田
智之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP32243299A priority Critical patent/JP3921317B2/en
Publication of JP2001140695A publication Critical patent/JP2001140695A/en
Application granted granted Critical
Publication of JP3921317B2 publication Critical patent/JP3921317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関のピストン構造、特に、ピストン頂部に燃焼室となる凹部を設けたピストン構造に関する。
【0002】
【従来の技術】
内燃機関はその燃焼室に供給した燃料を燃焼して高温高圧の燃焼ガスを発生させ、その際、ピストンが燃焼ガスより受けたガス圧力をコンロッドを介してクランクシャフトに回転力として伝える。このようなエンジン駆動時に、ピストンはコンロッドに対してピストンピン回りに首振り作動し、その際、ピストン頂部やスカート部を介してシリンダライナーの内壁に側圧を伝えつつ往復摺動する。このため、ピストンは全体として十分な機械的強度を要求され、その上面は高温高圧にさらされることより十分な耐熱性が要求され、特に、ピストン外周壁はシリンダ内壁と摺接することより十分な耐摩耗性を要求され、しかも、高速化に伴い軽量化を図り易く、しかも、熱伝導性がよいことも必要とされ、アルミニウム合金で製造されることが多い。
【0003】
ところで、要求出力に応じてリーン運転とリーン以外の運転を可能とすべく、燃焼室への直接燃料噴射のタイミングを吸気行程あるいは圧縮行程で行うことが出来る筒内噴射型の内燃機関が知られている。この筒内噴射型の内燃機関で用いるピストンは、そのピストン頂部の上面に凹部を形成し、同凹部とシリンダヘッド側の内壁とで比較的小容量の燃焼室を形成でき、同凹部にリーン運転時には燃料噴射を行い、点火プラグで着火し、希薄燃焼を可能としている。
【0004】
【発明が解決しようとする課題】
このような筒内噴射型の内燃機関の場合、凹部はピストン中心から偏位して形成され、凹部周縁の一部がピストン頂部の外周縁を成すランド部に接近配備される。このように、凹部即ち、燃焼室がランド部に接近しているため、経時的に凹部側のランド部上に固くて厚いカーボンが粘着あるいは固着し易くなり、この滞積カーボンはピストンの首振りにより押し固められ、硬い滞積物となり、これがシリンダライナーを擦り、早期に過大摩耗を生じさせることがある。
本発明は、上述の課題に基づき、シリンダライナーの早期摩耗を防止でき、耐久性を向上できるピストン構造を提供することを目的とする。
【0005】
【課題を解決するための手段】
上述の目的を達成するために、請求項1の発明では、ピストン頂部に燃焼室となる凹部を設けたピストン構造において、上記凹部はピストン中心から偏位して形成され、同偏位方向に位置し,上記ピストン頂部の外周縁を成すランド部上の略1 / 3の領域のみに上記偏位方向以外の領域より所定間隔だけ切欠したカットバック部を形成している。
このように、偏位方向に位置する部分にカットバック部を形成し、そこに比較的大きな隙間を形成し、この隙間への火炎の侵入を容易化した。このため、カットバック部に生成されるカーボンを火炎によって容易に燃焼でき、ランド部に滞積カーボンが付着し硬い滞積物が生成されることを防止でき、シリンダライナーの早期摩耗が抑えられ、シリンダライナーの耐久性を向上させることができ、ブローバイガス量の低減を図れる。
【0006】
好ましくは、上記ピストン構造は筒内噴射型の内燃機関に設けられることが良い。この筒内噴射型の内燃機関の場合、リーン運転域以外の運転域で、吸気行程での燃料噴霧がなされ、噴霧燃料がランド部とシリンダライナーとの隙間側に侵入する比率が高いが、偏位方向に位置する部分にカットバック部を形成し、そこに比較的大きな隙間を形成し、この隙間への火炎の侵入を容易化した。このため、カットバックに生成されるカーボンを火炎によって容易に燃焼でき、シリンダライナーの早期摩耗が抑えられ、シリンダライナーの耐久性を向上させることができ、ブローバイガス量の低減をも図れる。
【0007】
【発明の実施の形態】
図1には本発明の一実施形態としてのピストン構造を採用したピストン1を示した。このピストン1は筒内噴射型内燃機関(以下単にエンジン2と記す)に装着される。なお、エンジン2は4サイクル4弁式で直列4気筒であるが、各気筒の構成が同一であり、ここでは1の気筒のピストン1に関して主に説明する。
【0008】
エンジン2はヘッドカバー3付きのシリンダヘッド4と、その下側のシリンダブロック5と、図示しないクランクケース及びクランクカバーをこの順に重ねて一体化して本体外郭部を形成している。エンジン2の本体内部には、シリンダブロック5の一部を成しピストン1を嵌挿したシリンダライナー6と、ピストン1とシリンダヘッド4の内壁401とに挟まれた燃焼室7と、燃焼室7に連通可能な各一対の吸排気ポート8、9(一方側のみ図示した)と、これら吸排気ポートを開閉する各一対の吸排気弁11、12(一方側のみ図示した)と、これらを駆動する図示しない動弁系と、ピストン1の往復動を回転運動に変換する図示しないクランクシャフト及びコンロッド13等が配備される。
【0009】
シリンダヘッド4はシリンダライナー6の中心に沿ったシリンダ軸線Lを含む図示しない縦向き平面を配備したと仮定し、その縦向き平面を挾んで一方側に一対の吸気ポート(手前側のみ図示した)8を他方側に一対の排気ポート9(手前側のみ図示した)をそれぞれ備える。なお、シリンダヘッド4に形成され燃焼室7と対向する内壁401は紙面垂直方向に長い楔状凹部として形成され、その楔状凹部を成す内壁401の左側部位に吸気弁11で開閉される吸気ポート8が、右側部位に排気弁12で開閉される排気ポート9がそれぞれ形成される。更に、楔状凹部を成す内壁401のほぼ中央位置には点火プラグ14が装着され,吸気ポート8のシリンダ外周側部位にはインジェクタ15が装着される。
シリンダライナー6は、図3に示すように、内壁面601がほぼ真円状に形成され、これに嵌着されるピストン1の外周部に設けられたピストンリングr1,r2およびオイルリングr0(図4参照)が摺接する。
【0010】
図1〜図4に示すようにピストン1は燃焼室7と対向するピストン頂部16と、シリンダライナー6に対向するスカート部17と、ピストン頂部16の内側壁である下壁より下方に突設された一対のピンボス部19とを備える。図2に示すように、ピストン頂部16の外周壁には複数のピストンリングr1,r2用のリング溝22、23およびオイルリングr0用のリング溝30がこの順で上下方向に互いに所定間隔を隔てて形成される。なお、符号gはオイル抜き穴を示す。
【0011】
ピストン頂部16はその上面に凹部20及び隆起部21が形成される。凹部20及び隆起部21はほぼシリンダ軸線Lに沿った吸気ポート8を経て降下流動してきた吸気をスムーズに反転し、逆タンブル流TFとして流動させるべく形成される。隆起部21はその上面が楔状凹部を成す内壁401に一様に対向するような楔状突部を成し、吸気ポート12との対向面側に凹部20を偏らせて形成し、排気ポート13との対向面側に傾斜壁面fを形成し、中央にエンジン本体の長手方向A(図3参照)に連続する屈曲峰部eを形成する。なお、屈曲峰部eはその両端部が直状を成し、中間部が凹部20と傾斜壁面fとが交わる湾曲峰部として形成される。このような形状を採ることで、ピストン2が圧縮上死点TDC(図1の実線で示す位置)に移動した際に、傾斜壁面fと楔状凹部を成す内壁401により挟まれたすき間からのエアが峰部eを越えて、凹部20側にスキッシュ流SFとして押し出され、逆タンブル流TFの反転流動を助長できる。
【0012】
図3に示すように、ピストン頂部16はその平面視において、凹部20をシリンダ軸線と一致するピストン中心線L側よりシリンダブロック5の一側壁側である偏位方向Bに偏らせて形成し、しかも、凹部20のピストン中心側周縁を点火プラグ14と対向させる。これにより、凹部20内で逆タンブル流TFと共に流動する燃料を比較的容易に点火プラグ14に導くことができ、着火を容易化できる。
【0013】
図2、図3に示すように、ピストン1のトップランド部d上であって、凹部20の偏位方向Bであるシリンダブロック5の一側面側部位には、それ以外の領域より間隔αだけトップランド部dを切欠したカットバック部Eを形成した。ここでのカットバック部Eはピストン1のトップランド部d上であってその略1/3の領域に形成され、凹部20との相対間隔が比較的狭い領域を全て覆うように構成される。このようなピストン1をシリンダライナー6に嵌挿したことにより、ピストン1のトップランド部dとシリンダライナー6の内壁面601との隙間はカットバック部Eで比較的大きなt2と成り、カットバック部E以外の部位で比較的小さなt1(<t2)となる。
【0014】
このようなエンジン2は吸入行程で吸気ポートより吸気を受け、圧縮行程で吸気を逆タンブル流TFとして旋回させつつ圧縮し、運転域に応じて圧縮行程あるいは吸気行程で筒内に燃料噴霧を行い、ピストン1が圧縮上死点TDC直前で燃焼室7の混合気に点火プラグ14により着火処理がなされ、燃焼行程へと進む。その燃焼行程でピストン頂部16が受けた燃焼ガス圧の合力は各ピンボス部19よりピストンピン24、コンロッド13を介し図示しないクランクシャフト側に回転力として出力される。
【0015】
このようなエンジン2が吸気行程噴射運転域にあると、吸気行程で、即ち、ピストン1が下死点BDC位置側にあって、燃料噴射弁15が凹部20と対向しない運転域にある時、燃料噴霧が成され、この場合、燃料噴霧は燃焼室7のほぼ全域に拡散し、これが逆タンブル流TFにより撹拌され、圧縮行程で圧縮の後、着火処理がなされ、燃焼行程へと進む。この吸気行程噴射運転域では、逆タンブル流TFにより燃料噴霧の一部がトップランド部dとシリンダライナーの内壁面601との隙間に侵入し易く、この場合、トップランド部dに経時的に燃料やカーボンが粘着する傾向にある。
【0016】
更に、エンジン2が圧縮行程噴射運転域にあると、圧縮行程で、即ち、ピストン1が上昇時にあって、燃料噴射弁15が凹部20と対向する運転域にあると、燃料噴霧が成された場合、燃料噴霧の大部分が凹部20と楔状凹部を成す内壁401とで覆われる燃焼室7内で旋回して撹拌され、圧縮行程の後に着火処理がなされ、燃焼行程へと進む。この圧縮行程噴射運転域では、燃料噴射弁15からの燃料噴霧が凹部20内に比較的効率良く噴霧されるが、その一部は、やはり、トップランド部dとシリンダライナーの内壁面601との隙間に侵入し、特に、噴射初期には凹部20の外側に噴霧が飛散しやすく、この場合も経時的にトップランド部dに燃料やカーボンが粘着する傾向にある。
【0017】
しかし、このエンジン2で用いたピストン1では、比較的カーボンが生成され易い位置である、凹部20の偏位方向Bに位置する部分にカットバック部Eを設け、ここに比較的大きな隙間t2を形成した。このため、エンジンの全運転域において、この隙間t2に侵入してきた火炎によって容易にトップランド部dに付着する燃料やカーボンを燃焼でき,トップランド部dに滞積カーボンが付着し硬い滞積物が生成されることを防止できる。
このため、このピストン1を装備するエンジン2は、従来のエンジンのように、稼働時間の経過に比例してシリンダライナーの摩耗が進むことがなく、カットバック部Eを設け硬い滞積物の生成を排除したので、稼働時間の経過によってもシリンダライナーの摩耗が進むことはほとんどない。このため、ピストン1を装備するエンジン2はそのシリンダライナー6の耐久性を向上させることができ、ブローバイガス量の低減を図ることもできる。
【0018】
図1のエンジン2で用いたピストン1は、凹部20の偏位方向B側のトップランド部d上にシリンダ軸線と同一のピストン中心線Lに沿ったカットバック部Eを形成したが、これに代えて、図5(a),(b)に示すように構成しても良い。ここでのピストン1a、1bは図1のピストン1に代えてエンジン2に装着でき、重複部分の説明を略す。
【0019】
図5(a)に示すピストン1aは凹部20(図4参照)の偏位方向B側のトップランド部d上にカットバック部Eを形成するにあたり、それ以外の領域より間隔α1だけ切欠され、円錐面fc状を成すトップランド部dを形成した。この場合、円錐面fc状を成すトップランド部dが火炎の侵入を容易化でき、そこに付着する燃料やカーボンを容易に燃焼でき、しかもピストンリングr1の穴深さの低下を比較的抑えることができる。図5(b)に示すピストン1bはトップランド部dに間隔α2だけ切欠されたカットバック部Eを形成するのに加え、セカンドランド部d2にもカットバック部Eと同じ領域にカットバック部E2を形成した。この場合、セカンドランド部d2側に達した燃料やカーボンを燃焼でき,トップランド部dおよびセカンドランド部d2に滞積カーボンが付着し硬い滞積物が生成されることを防止でき、シリンダライナー6の内壁面601の早期摩耗がより確実に抑えられ、シリンダライナー6の耐久性をより向上させることができ、ブローバイガス量の低減をより確実に図ることができる。
【0020】
図1のピストン1は筒内噴射型内燃機関であるエンジン2に装着されていたが、これに限定されるものではなく、ピストン頂部に外周側に偏位した凹部を設けたその他の各種エンジンにも適用でき、これらの場合も、図1のピストン1と同様の作用効果を得られる。
【0021】
【発明の効果】
以上のように、請求項1の発明は、ピストンのランド部上で、凹部がピストン中心より偏位した偏位方向に位置する部分であってランド部上の略1 / 3の領域のみに上記偏位方向以外の領域より所定間隔だけ切欠したカットバック部を形成し、そこに比較的大きな隙間を形成し、この隙間への火炎の侵入を容易化した。このため、カットバック部に生成されるカーボン等を燃焼でき、ランド部に滞積カーボンが付着し硬い滞積物が生成されることが防止され、シリンダライナーの早期摩耗が抑えられ、シリンダライナーの耐久性を向上させることができ、ブローバイガス量の低減を図れる。
【図面の簡単な説明】
【図1】本発明の一実施形態としてのピストン構造を適用したエンジンの要部概略断面図である。
【図2】図1中のピストンの拡大側面図である。
【図3】図1中のピストンの平面図である。
【図4】図1中のピストンの拡大側断面図である。
【図5】図1のピストンに代えて使用可能なピストンの要部断面図であり、(a)は第1変形例,(b)は第2変形例を示す。
【符号の説明】
1 ピストン
2 エンジン
16 ピストン頂部
7 燃焼室
20 凹部
d トップランド部
B 偏位方向
E カットバック部
L ピストン中心線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piston structure of an internal combustion engine, and more particularly to a piston structure in which a concave portion serving as a combustion chamber is provided at the top of a piston.
[0002]
[Prior art]
The internal combustion engine burns fuel supplied to the combustion chamber to generate high-temperature and high-pressure combustion gas, and at that time, the piston receives the gas pressure received from the combustion gas as a rotational force through the connecting rod to the crankshaft. When such an engine is driven, the piston swings around the piston pin with respect to the connecting rod, and at that time, the piston slides back and forth while transmitting a side pressure to the inner wall of the cylinder liner via the piston top and skirt. For this reason, the piston as a whole is required to have sufficient mechanical strength, and its upper surface is required to have sufficient heat resistance than being exposed to high temperature and pressure, and in particular, the piston outer peripheral wall is more resistant to sliding than the cylinder inner wall. Abrasion is required, and it is easy to reduce the weight as the speed increases, and it is also necessary to have good thermal conductivity, and it is often manufactured from an aluminum alloy.
[0003]
By the way, in order to enable a lean operation and a non-lean operation according to a required output, a cylinder injection type internal combustion engine capable of performing the timing of direct fuel injection into the combustion chamber in the intake stroke or the compression stroke is known. ing. The piston used in this in-cylinder injection type internal combustion engine has a recess formed on the top surface of the piston top, and a relatively small combustion chamber can be formed by the recess and the inner wall on the cylinder head side. Sometimes fuel is injected and ignited with a spark plug to enable lean combustion.
[0004]
[Problems to be solved by the invention]
In the case of such an in-cylinder internal combustion engine, the recess is formed deviating from the center of the piston, and a part of the periphery of the recess is disposed close to a land portion that forms the outer periphery of the top of the piston. In this way, since the recess, that is, the combustion chamber is close to the land portion, the hard and thick carbon tends to stick or adhere to the land portion on the recess side with time. And can be hardened to form a hard deposit that can rub the cylinder liner and cause excessive wear early.
An object of the present invention is to provide a piston structure capable of preventing early wear of a cylinder liner and improving durability based on the above-described problems.
[0005]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, according to the invention of claim 1, in the piston structure in which a concave portion serving as a combustion chamber is provided at the top of the piston, the concave portion is formed by being deviated from the center of the piston. and to form a cutback portion cut away by a predetermined distance than approximately 1/3 of the area only other than the deflection direction region on the land portion forming the outer peripheral edge of the piston crown.
As described above, the cutback portion is formed in the portion located in the deviation direction, and a relatively large gap is formed therein, thereby facilitating the entry of the flame into the gap. For this reason, the carbon generated in the cutback part can be easily burned by the flame, the stagnant carbon is prevented from adhering to the land part, and a hard stagnant product can be prevented, and early wear of the cylinder liner is suppressed, The durability of the cylinder liner can be improved, and the amount of blow-by gas can be reduced.
[0006]
Preferably, the piston structure is provided in a cylinder injection type internal combustion engine. In the case of this in-cylinder injection type internal combustion engine, fuel is sprayed in the intake stroke in an operating region other than the lean operating region, and the ratio of the sprayed fuel entering the gap between the land portion and the cylinder liner is high. A cut-back portion was formed in a portion located in the lateral direction, a relatively large gap was formed therein, and flame entry into the gap was facilitated. For this reason, the carbon generated in the cutback can be easily burned by the flame, the early wear of the cylinder liner can be suppressed, the durability of the cylinder liner can be improved, and the amount of blow-by gas can be reduced.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a piston 1 employing a piston structure as an embodiment of the present invention. The piston 1 is mounted on a direct injection internal combustion engine (hereinafter simply referred to as the engine 2). The engine 2 is a four-cycle, four-valve type, in-line four-cylinder, but the configuration of each cylinder is the same. Here, the piston 1 of one cylinder will be mainly described.
[0008]
The engine 2 includes a cylinder head 4 with a head cover 3, a cylinder block 5 below the cylinder head 5, a crankcase and a crank cover (not shown) that are stacked in this order and integrated to form a main body outline. Inside the main body of the engine 2, a cylinder liner 6 that is part of the cylinder block 5 and in which the piston 1 is inserted, a combustion chamber 7 sandwiched between the piston 1 and the inner wall 401 of the cylinder head 4, and a combustion chamber 7 A pair of intake / exhaust ports 8 and 9 (only one side is shown) capable of communicating with each other, a pair of intake / exhaust valves 11 and 12 (only one side is shown) for opening and closing these intake / exhaust ports, and driving these There are provided a valve system (not shown), a crankshaft (not shown), a connecting rod 13 and the like that convert the reciprocating motion of the piston 1 into a rotational motion.
[0009]
It is assumed that the cylinder head 4 is provided with a vertical plane (not shown) including the cylinder axis L along the center of the cylinder liner 6, and a pair of intake ports (only the front side is shown) on one side of the vertical plane. 8 is provided with a pair of exhaust ports 9 (only the front side is shown) on the other side. An inner wall 401 formed on the cylinder head 4 and opposed to the combustion chamber 7 is formed as a wedge-shaped recess that is long in the direction perpendicular to the paper surface. An intake port 8 that is opened and closed by the intake valve 11 is formed on the left side of the inner wall 401 that forms the wedge-shaped recess. The exhaust port 9 that is opened and closed by the exhaust valve 12 is formed in the right part. Further, a spark plug 14 is mounted at a substantially central position of the inner wall 401 forming the wedge-shaped recess, and an injector 15 is mounted on the cylinder outer peripheral portion of the intake port 8.
As shown in FIG. 3, the cylinder liner 6 has an inner wall surface 601 formed in a substantially circular shape, and piston rings r1 and r2 and an oil ring r0 (see FIG. 3) provided on the outer peripheral portion of the piston 1 fitted thereto. 4) is in sliding contact.
[0010]
As shown in FIGS. 1 to 4, the piston 1 protrudes below a piston top 16 facing the combustion chamber 7, a skirt 17 facing the cylinder liner 6, and a lower wall that is an inner wall of the piston top 16. And a pair of pin boss portions 19. As shown in FIG. 2, a plurality of ring grooves 22 and 23 for piston rings r1 and r2 and a ring groove 30 for oil ring r0 are spaced apart from each other in the vertical direction on the outer peripheral wall of the piston top 16 in this order. Formed. Note that the symbol g indicates an oil drain hole.
[0011]
The piston top 16 has a recess 20 and a raised portion 21 formed on the upper surface thereof. The concave portion 20 and the raised portion 21 are formed so as to smoothly reverse the intake air that has flowed down through the intake port 8 substantially along the cylinder axis L and to flow as a reverse tumble flow TF. The raised portion 21 has a wedge-shaped protrusion whose upper surface uniformly faces the inner wall 401 forming a wedge-shaped recess, and is formed by biasing the recess 20 on the side facing the intake port 12, An inclined wall surface f is formed on the opposite surface side, and a bent ridge portion e continuous in the longitudinal direction A (see FIG. 3) of the engine body is formed in the center. The bent ridge portion e is formed as a curved ridge portion in which both end portions are straight and the intermediate portion intersects the concave portion 20 and the inclined wall surface f. By adopting such a shape, when the piston 2 moves to the compression top dead center TDC (position indicated by the solid line in FIG. 1), air from the gap sandwiched between the inclined wall surface f and the inner wall 401 forming the wedge-shaped recess. Is pushed out as a squish flow SF to the concave portion 20 side beyond the peak portion e, and the reverse flow of the reverse tumble flow TF can be promoted.
[0012]
As shown in FIG. 3, the piston top portion 16 is formed by biasing the concave portion 20 in the displacement direction B that is one side wall side of the cylinder block 5 from the piston center line L side that coincides with the cylinder axis in a plan view. In addition, the piston center side periphery of the recess 20 is opposed to the spark plug 14. Thereby, the fuel which flows with the reverse tumble flow TF in the recess 20 can be guided to the spark plug 14 relatively easily, and ignition can be facilitated.
[0013]
As shown in FIG. 2 and FIG. 3, on the top land portion d of the piston 1 and on one side surface portion of the cylinder block 5 that is the displacement direction B of the recess 20, the space α is more than the other region. A cutback portion E in which the top land portion d was cut out was formed. Here, the cut-back portion E is formed on the top land portion d of the piston 1 in an approximately 略 region thereof, and is configured to cover all regions having a relatively small relative distance from the recess 20. By fitting and inserting such a piston 1 into the cylinder liner 6, the gap between the top land portion d of the piston 1 and the inner wall surface 601 of the cylinder liner 6 becomes a relatively large t2 at the cut back portion E, and the cut back portion A relatively small t1 (<t2) is obtained at a portion other than E.
[0014]
Such an engine 2 receives the intake air from the intake port during the intake stroke, compresses the intake air as a reverse tumble flow TF during the compression stroke, compresses the fuel, and sprays fuel into the cylinder during the compression stroke or the intake stroke depending on the operating range. The piston 1 is ignited by the spark plug 14 immediately before the compression top dead center TDC, and proceeds to the combustion stroke. The resultant force of the combustion gas pressure received by the piston top 16 in the combustion stroke is output as a rotational force from each pin boss portion 19 to the crankshaft (not shown) via the piston pin 24 and the connecting rod 13.
[0015]
When such an engine 2 is in the intake stroke injection operation region, during the intake stroke, that is, when the piston 1 is on the bottom dead center BDC position side and the fuel injection valve 15 is in the operation region not facing the recess 20, A fuel spray is formed, and in this case, the fuel spray is diffused almost over the entire combustion chamber 7, which is stirred by the reverse tumble flow TF, subjected to an ignition process after compression in the compression stroke, and proceeds to the combustion stroke. In this intake stroke injection operation region, a part of the fuel spray easily enters the gap between the top land portion d and the inner wall surface 601 of the cylinder liner due to the reverse tumble flow TF. And carbon tends to stick.
[0016]
Further, when the engine 2 is in the compression stroke injection operation region, fuel spray is formed in the compression stroke, that is, when the piston 1 is at the time of ascent and the fuel injection valve 15 is in the operation region facing the recess 20. In this case, most of the fuel spray is swirled and stirred in the combustion chamber 7 covered with the concave portion 20 and the inner wall 401 forming the wedge-shaped concave portion, and after the compression stroke, an ignition process is performed and proceeds to the combustion stroke. In this compression stroke injection operation region, the fuel spray from the fuel injection valve 15 is sprayed relatively efficiently into the recess 20, but a part of the spray is again formed between the top land portion d and the inner wall surface 601 of the cylinder liner. Particularly, in the initial stage of injection, the spray is likely to be scattered outside the recess 20, and in this case as well, the fuel and carbon tend to adhere to the top land portion d over time.
[0017]
However, in the piston 1 used in the engine 2, a cutback portion E is provided in a portion located in the displacement direction B of the concave portion 20, which is a position where carbon is relatively easily generated, and a relatively large gap t2 is provided here. Formed. For this reason, the fuel and carbon adhering to the top land part d can be easily burned by the flame that has entered the gap t2, and the stagnant carbon adheres to the top land part d in the entire engine operating range. Can be prevented from being generated.
For this reason, the engine 2 equipped with the piston 1 does not progress in wear of the cylinder liner in proportion to the passage of operating time as in the conventional engine, and is provided with a cut-back portion E to generate a hard debris. Therefore, the wear of the cylinder liner hardly progresses even with the passage of operating time. For this reason, the engine 2 equipped with the piston 1 can improve the durability of the cylinder liner 6 and can also reduce the amount of blow-by gas.
[0018]
The piston 1 used in the engine 2 of FIG. 1 has a cut-back portion E along the same piston center line L as the cylinder axis on the top land portion d on the displacement direction B side of the recess 20. Instead, it may be configured as shown in FIGS. The pistons 1a and 1b here can be attached to the engine 2 instead of the piston 1 of FIG.
[0019]
The piston 1a shown in FIG. 5 (a) is cut out by a distance α1 from other regions when forming the cut-back portion E on the top land portion d on the side of the displacement direction B of the concave portion 20 (see FIG. 4). A top land portion d having a conical surface fc shape was formed. In this case, the top land portion d having a conical surface fc shape can facilitate the intrusion of the flame, the fuel and carbon adhering to the top land portion d can be easily burned, and the decrease in the hole depth of the piston ring r1 can be relatively suppressed. Can do. The piston 1b shown in FIG. 5 (b) forms a cutback portion E which is cut out by a distance α2 in the top land portion d, and also in the second land portion d2 in the same region as the cutback portion E. Formed. In this case, the fuel and carbon that have reached the second land portion d2 side can be combusted, and it is possible to prevent stagnant carbon from adhering to the top land portion d and the second land portion d2 to generate hard stagnant deposits. Early wear of the inner wall surface 601 is more reliably suppressed, the durability of the cylinder liner 6 can be further improved, and the amount of blow-by gas can be more reliably reduced.
[0020]
The piston 1 in FIG. 1 was mounted on an engine 2 that is a cylinder injection type internal combustion engine, but is not limited to this, and is not limited to this. In these cases, the same effect as the piston 1 of FIG. 1 can be obtained.
[0021]
【The invention's effect】
As described above, a first aspect of the invention, on the land portion of the piston, the recess is a portion positioned deflection direction displaced from the piston central above only in the region of approximately 1/3 on the land portion A cut-back portion cut out by a predetermined interval from a region other than the deviation direction was formed, and a relatively large gap was formed therein, thereby facilitating the entry of the flame into the gap. For this reason, carbon generated in the cut-back portion can be burned, stagnant carbon is prevented from adhering to the land portion, and hard stagnant deposits are prevented, and early wear of the cylinder liner is suppressed. Durability can be improved and the amount of blow-by gas can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a main part of an engine to which a piston structure as one embodiment of the present invention is applied.
FIG. 2 is an enlarged side view of the piston in FIG.
FIG. 3 is a plan view of the piston in FIG. 1;
4 is an enlarged side sectional view of the piston in FIG. 1. FIG.
5 is a cross-sectional view of a main part of a piston that can be used in place of the piston of FIG. 1. FIG. 5 (a) shows a first modification, and FIG. 5 (b) shows a second modification.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Piston 2 Engine 16 Piston top part 7 Combustion chamber 20 Recess d Top land part B Deflection direction E Cutback part L Piston centerline

Claims (1)

ピストン頂部に燃焼室となる凹部を設けたピストン構造において、
上記凹部はピストン中心から偏位して形成され、同偏位方向であって上記ピストン頂部の外周縁を成すランド部上の略1 / 3の領域のみに上記偏位方向以外の領域より所定間隔だけ切欠したカットバック部を形成したことを特徴とするピストン構造。
In the piston structure provided with a recess that becomes a combustion chamber at the top of the piston,
The recess is formed offset from the piston center, a predetermined distance from approximately 1/3 of the area only other than the deflection direction region on the land portion forming an outer peripheral edge of the piston crown a same deviation direction Piston structure characterized by forming a cut-back part that is notched only.
JP32243299A 1999-11-12 1999-11-12 Piston structure Expired - Fee Related JP3921317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32243299A JP3921317B2 (en) 1999-11-12 1999-11-12 Piston structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32243299A JP3921317B2 (en) 1999-11-12 1999-11-12 Piston structure

Publications (2)

Publication Number Publication Date
JP2001140695A JP2001140695A (en) 2001-05-22
JP3921317B2 true JP3921317B2 (en) 2007-05-30

Family

ID=18143616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32243299A Expired - Fee Related JP3921317B2 (en) 1999-11-12 1999-11-12 Piston structure

Country Status (1)

Country Link
JP (1) JP3921317B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121563A (en) * 2014-12-24 2016-07-07 三菱自動車工業株式会社 Piston for cylinder injection type engine

Also Published As

Publication number Publication date
JP2001140695A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
US5735240A (en) Direct injected engine
EP0875670B1 (en) Direct injection type internal combustion engine
US5709190A (en) Combustion chamber and induction system for engine
US6508226B2 (en) Combustion chamber for direct injection engine
JPH0264220A (en) Combustion chamber of internal combustion engine
US6129065A (en) Piston for a cylinder injection engine
US6910455B2 (en) Spark ignition engine with shallow bowl-in-piston geometry
US6223705B1 (en) Two-stroke internal combustion engine
KR101663345B1 (en) Internal combustion piston engine assembly
US5105795A (en) Fuel injection system for engine
US5970945A (en) Barrier divided combustion chamber for fuel injection two-stroke engine
JP3333298B2 (en) In-cylinder fuel injection type multi-cylinder engine
EP0967370A2 (en) Internal combustion engine
JPH07119592A (en) Engine with twin valve of fuel injection type
US5086734A (en) Cylinder sleeve for two-cycle engine
JP3921317B2 (en) Piston structure
US6708667B2 (en) Combustion chamber structure of in-cylinder fuel injection type engine
US6318311B1 (en) Cylinder-injection type two cycle combustion engine
US6367444B1 (en) Cylinder head for direct injected engine
EP0643206B1 (en) Internal combustion engine
JP2001059422A (en) Structure of spark ignition type four-valve type internal combustion engine
EP1589201A1 (en) Cylinder injection of fuel-type internal combustion engine
JP3573036B2 (en) Piston structure
JP3767200B2 (en) Piston for internal combustion engine
JPH0723538Y2 (en) Reciprocating internal combustion engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040422

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees