JP3919692B2 - Far-infrared grain drying equipment - Google Patents

Far-infrared grain drying equipment Download PDF

Info

Publication number
JP3919692B2
JP3919692B2 JP2003097594A JP2003097594A JP3919692B2 JP 3919692 B2 JP3919692 B2 JP 3919692B2 JP 2003097594 A JP2003097594 A JP 2003097594A JP 2003097594 A JP2003097594 A JP 2003097594A JP 3919692 B2 JP3919692 B2 JP 3919692B2
Authority
JP
Japan
Prior art keywords
far
infrared
grain
radiator
infrared radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003097594A
Other languages
Japanese (ja)
Other versions
JP2004301463A (en
Inventor
常雄 金子
智 池田
隆雄 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneko Agricultural Machinery Co Ltd
Original Assignee
Kaneko Agricultural Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneko Agricultural Machinery Co Ltd filed Critical Kaneko Agricultural Machinery Co Ltd
Priority to JP2003097594A priority Critical patent/JP3919692B2/en
Publication of JP2004301463A publication Critical patent/JP2004301463A/en
Application granted granted Critical
Publication of JP3919692B2 publication Critical patent/JP3919692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、穀物を散粒状ないし薄層状に流動させながら遠赤外線を照射することにより穀物を乾燥する、遠赤外線利用の穀物乾燥機に関する。
【0002】
【従来の技術】
穀物乾燥機の本体の上段に穀物貯留槽、中段に通風乾燥部、下段に穀物取出槽をそれぞれ設け、穀物貯留槽に貯留した穀物を通風乾燥、穀物取出槽、穀物貯留槽の経路で循環させながら通風乾燥部で通風乾燥する穀物乾燥機は、特公平5−22834号公報または特開平6−3052号公報に記載されており、この従来の穀物乾燥機においては、通風乾燥部の乾燥通路を流下する穀物に、乾燥通路の側面から乾燥通路を横切るように遠赤外線を照射することにより、遠赤外線による乾燥も併せて施して乾燥の効率を図っている。
【0003】
また、出願人は通風乾燥から穀物が散粒状ないし薄層状に流下する穀物取出槽内に遠赤外線放射体を設けることにより、循環流動する穀物に遠赤外線を均等に照射して乾燥ムラ無く均等に乾燥することが出来る遠赤外線利用穀物乾燥機を提案するに至り(特開平8−14745号公報参照)、しかも通風乾燥部から穀物が散粒状ないし薄層状に流下する穀物取出槽内で穀物に混在する塵埃等が、遠赤外線放射体上面に堆積して起こる火災の防止と、遠赤外線放射体から均一に遠赤を放射させムラ無く穀物を乾燥させるための遠赤外線放射体を回転させる発明、特開平10−82586号公報の遠赤外線利用の穀物乾燥機を提案に至っている。
【0004】
【発明が解決しようとする課題】
穀物を遠赤外線で乾燥するには、穀物に含まれる水分に遠赤外線を有効に吸収させることが重要である。通常水は波長3μmと6μmの遠赤外線を吸収しやすいとされているので、波長3μmから6μmの遠赤外線を放射させるためには遠赤外線放射体の表面温度は、波長3μmで約700℃、波長6μmで約210℃である。
【0005】
遠赤外線放射体は通常ステンレス鋼が多用されているが、乾燥すなわち水に吸収されやすい遠赤外線を放射するための放射体の必要温度、210℃から700℃に遠赤外線放射体を加熱するとステンレス鋼、例えばSUS304の熱膨張係数は18.9×10−6/℃(0〜700℃)であって、遠赤外線放射体の全長を2000mmとすると約25mm放射体自体が膨張してしまう。
【0006】
特に遠赤外線放射体を回転させる構造であっては遠赤外線放射体の全長が伸びることで異音の発生や遠赤外線放射体の両端が側壁に接触しての回転停止、回転駆動装置からの離脱などの不具合が発生してしまう。
【0007】
そこで本発明は、遠赤外線放射体が熱膨張しても遠赤外線放射体の回転停止、異音の発生をなくして、穀物に均等に遠赤外線を照させることで高品質で効率よく乾燥できる遠赤外線利用の穀物乾燥機を提供することを目的としている。
【0008】
【課題を解決するための手段】
前記目的を達成させるために、本発明における遠赤外線利用の穀物乾燥機においては、請求項1ないし請求項に係る遠赤外線利用の穀物乾燥機を提案するものである。
【0009】
即ち、請求項1に係る遠赤外線利用の穀物乾燥装置は、穀物乾燥機の本体の上段に穀物貯留槽、中段に通風乾燥部、下段に穀物取出槽をそれぞれ設け、穀物貯留槽に貯留した穀物を通風乾燥部、穀物取出槽、穀物貯留槽の経路で循環流動させながら通風乾燥部で通風乾燥し、穀物取出槽内に、通風乾燥部から穀物が散粒状ないし薄層状に流下する穀物に遠赤外線を照射する遠赤外線放射体を設けて、この遠赤外線放射体を時間の経過に伴って流動する穀物に対向する面が転換されるように回転するよう構成された遠赤外線利用の穀物乾燥装置であって、遠赤外線放射体の一端は遠赤外線放射体の放射体フランジを基準として軸方向に対し移動しないように軸受装置を構成し、他端は遠赤外線放射体の熱膨張によって生じた伸長のズレを修正する回転駆動部を備えて、遠赤外線放射体が伸長しても、遠赤外線放射体の一端側に取り付けられたバーナと、放射体フランジの距離は常に一定に保つように構成したことを特徴とするものである。
【0010】
請求項2に係わる遠赤外線利用の穀物乾燥機は、請求項1記載の遠赤外線利用の穀物乾燥装置において、遠赤外線放射体の回転動力は、穀物取出槽の繰出ロールから伝達を受けることを特徴とするものである。
【0011】
請求項3に係わる遠赤外線利用の穀物乾燥装置は、請求項1又は請求項2に記載の遠赤外線利用の穀物乾燥装置において、遠赤外線放射体の放射体フランジを基準として軸方向に対し移動しないように構成された軸受装置には、外気吸気口を用いた冷却口を備えたことを特徴とするものである。
【0012】
請求項4に係わる遠赤外線利用の穀物乾燥措置は、請求項1、2又は請求項3のいずれかに記載の遠赤外線利用の穀物乾燥装置において、遠赤外線放射体の両端に設けられた軸受のコロの素材をリン青銅としたことを特徴とするものである。
【0013】
【発明の実施の形態】
図1には本発明の実施の形態に係る遠赤外線利用の穀物乾燥機の断面図。図2には本発明の実施の形態に係る遠赤外線利用の穀物乾燥機の斜視図。図3には本発明の第1の実施を示す遠赤外線利用の穀物乾燥機の遠赤外線放射体部斜視図。図4には本発明の第1の実施を示す遠赤外線放射体の一端の詳細を表した断面図。図5には図4の軸受を表した斜視図。図6は本発明の第1の実施の他例1を示す遠赤外線放射体の一端の詳細断面図。図7は図6の軸受を表した斜視図。図8は本発明の第1の実施の他例2を示す遠赤外線放射体の一端の詳細断面図。図9は図8の斜視図。図10は本発明の実施の形態に係る遠赤外線利用の駆動部と穀物乾燥機の遠赤外線放射体の他端を示す斜視図。図11は本発明の第2の実施の形態を示す遠赤外線放射体の他端の断面図。図12は本発明の第2の実施の形態の動作を示す遠赤外線放射体の他端の断面図。図13は本発明の第2の実施の他例を示す遠赤外線放射体の他端の断面図である。
【0014】
散粒状ないし薄層状に流動する部位の穀物に対向させて遠赤外線放射体15が設けられている。遠赤外線放射体15はその一端に遠赤外線放射体の放射体フランジを基準として軸方向に対し移動しないように軸受装置を構成し、他端は遠赤外線放射体の熱膨張によって生じた伸長のズレを修正する回転駆動部を備えているので、遠赤外線放射体15が熱膨張で軸方向に伸長しても、穀物が散粒状ないし薄層状に流動する穀物の部位に対する面が転換されるように回転するよう構成され、流動する穀物にまんべんなく照射することができる。
【0015】
特に、穀物乾燥機1の本体の上段に穀物貯留槽2、中段に通風乾燥部3、下段に穀物取出槽4をそれぞれ設けられた穀物乾燥機1においては、穀物貯留槽2に貯留した穀物を通風乾燥部3、穀物取出槽4、穀物貯留槽2の経路で循環流動させながら通風乾燥部3で通風乾燥し、穀物取出槽4内に、通風乾燥部3から穀物が散粒状ないし薄層状に流下する穀物に遠赤外線を照射する遠赤外線放射体15を設けていて、この遠赤外線放射体15を時間の経過に伴って流動する穀物に対向する面が転換されるように回転するよう構成された穀物乾燥機1において、遠赤外線放射体15の一端は遠赤外線放射体15の放射体フランジ43を基準として軸方向に対し移動しないように軸受装置を構成し、他端は遠赤外線放射体15の熱膨張によって生じた伸長のズレを修正する回転駆動部を備えているので、遠赤外線放射体15軸方向に対して移動しないよう構成され、遠赤外線放射体が伸長しても、遠赤外線放射体の一端側に取り付けられたバーナと、放射体フランジの距離は常に一定に保つことができるので、温度変化が無く、安定したバーナ17の燃焼と均一な遠赤外線放射が得られ、特に高温となる軸受装置の構造を簡素化し、故障の発生の防止にも役立っている。
【0016】
【実施例】
図1において1は穀物乾燥機である。穀物乾燥機1の本体の上段には穀物貯留槽2が、中段には通風乾燥部3が、さらに下段には穀物取出槽4がそれぞれ設けられている。穀物取出槽4の下部にはその前後方向全長にわたる穀物搬出コンベア5が設けられており、穀物搬出コンベア5と穀物貯留槽2の上方の上部コンベア6間は昇降機7によって連絡されていて、穀物搬出コンベア5、昇降機7および上部コンベア6を介して、穀物貯留槽2、通風乾燥部3、穀物取出槽4、穀物貯留槽槽2の経路で穀物が循環されるように構成されている。
【0017】
前記通風乾燥部3は通気壁により形成された複数の乾燥通路8をなしていて、その乾燥通路8を構成する熱風供給胴は、熱風供給室9に連通し、排風胴は排風室10に連通しており、排風室10には吸引送風機11が備えられている。
【0018】
穀物取出槽4は、その上部両側から穀物搬出コンベア5の搬送樋12にかけて傾斜する流穀板13と両側壁14とで囲まれて形成されている。
【0019】
穀物取出槽4内には、遠赤外線放射体15が配設されており、この遠赤外線放射体15は、穀物取出槽4の前後方向略全長にわたる円筒形のものである。この遠赤外線放射体15から放射される遠赤外線は、通風乾燥部3の乾燥通路8から繰出ロール16の回転により繰り出されて、流穀板13面上を穀物が散粒状ないし薄層状に流下する穀物に照射される。遠赤外線放射体15の一端には、ガンタイプのバーナ17炎熱放射筒18軸心に臨ませてあり、遠赤外線放射体15の他端に排気筒19が軸心に接続されている。この排気筒19は熱風供給室9に導かれていて、その接続部に遠赤外線放射体15側から排気を吸引する吸引圧力調整器20が介在されている。遠赤外線放射体15は、燃料の燃焼により穀物の乾燥に適した波長の遠赤外線を放射するものである。
【0020】
前記遠赤外線放射体15の上方には、反射板21が設けられている。この反射板21は、遠赤外線放射体15から放射される遠赤外線を流穀板13,13の方向に拡散状に反射して、流穀板13の面上を流下する穀物に遠赤外線を均等に照射するためのものである。したがって、その形状および遠赤外線放射体15からの距離等は、流穀板13の面に向けて遠赤外線を均等に照射するのに適した状態に設定される。反射板21はアルミニウム、ステンレススチール等の磨き板で構成される。
【0021】
遠赤外線放射体15は、軸受装置となる軸支部A22と回転駆動部を構成する軸支部B23によって支えられ、それぞれの軸支部は軸受、軸受外メタル、押さえ材から形成されて回転自在であり(図3)、遠赤外線放射体15のスプロケットA30と前記繰出ロール16のスプロケットB39とに懸架したチェーン40により、遠赤外線放射体15は繰出ロール16に連動して低速で連続回転するようになっている(図10)。なお、ガンタイプのバーナ17と排気筒19は遠赤外線放射体15の回転を妨げない構造でそれぞれ接続されている。
【0022】
遠赤外線放射体15の一端の軸受装置の軸支部A22は、乾燥機の両側壁14の外面に取り付けられた大軸受外メタル25と、ガイドプレート34で連結されたリン青銅のコロA33からなる輪状の大軸受A24(図5)と押さえ材A26で構成されており、図4のように大軸受A24の輪内には遠赤外線放射体15の炎熱放射筒18を通し、大軸受A24は大軸受外メタル25に内装され、遠赤外線放射体15の放射体フランジ43を大軸受外メタル25に止められた押さえ材A26によって挟み込んだ構成になっている。
【0023】
この場合、大軸受A24と大軸受外メタル25と放射体フランジ43及び押さえ材A26には若干の隙間があり、遠赤外線放射体15の回転を容易に行なうものであるが、遠赤外線放射体15は穀物乾燥機1の本体の長辺方向に対し、放射体フランジ43を基準にする構成となっている。
【0024】
前記のように構成された図4では、大軸受外メタル25には軸支部A22を包み込むようにバーナベース31が取り付けられ、バーナベース31には遠赤外線放射体15の中心部になるようにバーナ17が取り付けられていて、押さえ材A26とはある程度の間隔を保って取り付けられており、バーナベース31には大軸受A24と大軸受外メタル25の位置に対向するように外気吸引口32が設けられている。またバーナ17は放射体フランジ43のバーナ穴と少しの間隔を保って炎熱放射筒18の内部に達している。
【0025】
図7には前記の実施の他例として、大軸受B35を構成するコロA33といくつかのガイドプレート34の中間にリン青銅からなるコロB36を設けたものである。このコロB36はコロA33の全長より若干径が大きくなっていて、コロA33が大軸受外メタル25と放射体フランジ43との接触を防止するものである。この大軸受B35を装着した軸支部A22を図6に示す。
【0026】
図8には、図7の構成の大軸受B35を大軸受外メタル25に内装して、更に押さえ材C37にリン青銅からなるコロC38を取り付けたものである。放射体フランジ43をコロB36とコロC38で前後を挟み込んでいるので、コロA33が大軸受外メタル25または放射体フランジ43と接触することなく若干の隙間をもって回転することが出来ほか、放射体フランジ43と押さえ材との接触も防止できる。なお、押さえ材C37はコロ38を常に放射体フランジ43に押し付ける弾性体であっても良い。
【0027】
遠赤外線放射体15の他端の回転駆動部を構成する軸支部B23に支えられる、放射体排気筒44の先端にはスプロケットA30が取り付けられ、繰出ロール16に設けられたスプロケットB39とチェーン40で懸架されているので、遠赤外線放射体15は繰出ロール16に連動して低速で連続回転するようになっている(図10)。回転駆動部を構成する軸支部B23は、両側壁14の外側に取り付けられた小軸受外メタル28とそれに内装された小軸受27と、小軸受外メタル28に固定された押さえ材B29とで構成されており、小軸受27は小軸受外メタル28と押さえ材B29に若干の隙間があるように配置され、小軸受27の内輪に接触する放射体排気筒44が容易に回転できる構造になっている。
【0028】
また、軸支部B23の軸受も軸支部A22のようにコロA33とガイドプレート34だけの構成と、コロA33とガイドプレート34とガイドプレート34の中間部にコロB36を用いた軸受であってもよい(図示せず)。
【0029】
軸支部B23側の繰出ロール16の軸は、加熱前の遠赤外線放射体15の放射体排気筒44より放射体加熱中の膨張長さと同等か又はそれ以上の長さであって、繰出ロール16の軸とスプロケットB39の接触面には、スプロケットB39に追従する滑りカラー42があって繰出ロール16の軸を前後方向に容易に移動できるものである。なお、スプロケットB39が前後できる範囲にはキー41があり、空回りを防止するようになっている(図11・12)。
【0030】
また、この滑りカラー42はスプロケットA30と放射体排気筒44の接触面にあって、滑りカラー42がスプロケットA30に追従して前後に移動し、放射体排気筒44と空回りしない構造であっても良い(図13)。
【0031】
以上のように構成された遠赤外線利用の穀物乾燥機において、穀物貯留槽2から通風乾燥部3の乾燥通路8を流下する穀物は、熱風供給室9から熱風供給胴を経て乾燥通路8を横切り排風胴に流通して排風室10に流通する吸引熱風で通風乾燥される。そして、通風乾燥部3で通風乾燥された穀物は、各乾燥通路8の下端にはそれぞれ備えられた繰出ロール16の回転により散粒状ないし薄層状をなして穀物取出槽4内の流穀板13上を流下し、その流下の過程で遠赤外線放射体15から遠赤外線が照射され、遠赤外線による乾燥が施される。
【0032】
遠赤外線放射体15は、繰出ロール16の軸に取り付けられたスプトケットB39に懸架されたチェーン40を連動して遠赤外線放射体15の放射体排気筒44に取り付けたスプロケットA30を介して低速で回転している。
【0033】
軸受装置の軸支部A22では、大軸受外メタル25と大軸受A24(大軸受B35)と、押さえ材A26(押さえ材C37)とで放射体フランジ43が遠赤外線放射体15の軸方向に対して前後方向の移動を固定された構造であっても、容易に遠赤外線放射体15が回転できるようになっていて、バーナ17の燃焼が開始され遠赤外線放射体15の温度が上昇し遠赤外線放射体15が熱膨張しても、放射体フランジ43の位置の変更はない。
【0034】
前述したように、通常遠赤外線利用の穀物乾燥機に使用されている遠赤外線放射体15はステンレス鋼を使用していることが多いので、例えばSUS304の熱膨張係数は18.9×10−6/℃(0〜700℃)であって、遠赤外線放射体15の全長を2000mmとし、遠赤外線放射体15の表面温度を700℃とすると放射体の伸びる長さは約25mmになる。
【0035】
軸支部A22では遠赤外線放射体15の放射体フランジ43が遠赤外線放射体15の軸方向に対して前後方向の移動を固定されているので、この遠赤外線放射体15の伸びは軸支部B23方向のみに請け負わせることとなる。よって図12のように炎熱放射筒18の膨張により放射排気筒44の端部にあるスプロケットA30ごと乾燥機外部方向に移動し、それに伴ってチェーン40が斜めになるので、それを修正しようとスプロケットB39が遠赤外線放射体15の伸びに準じて繰出ロール16の軸上を乾燥機外部方向に移動するものである。
【0036】
また、図13のように滑りカラー42をスプロケットB39に設けた構成であっては、遠赤外線放射体15の伸びをスプロケットB39が放射排気筒44を炎熱放射筒18方向に移動することとなる。
【0037】
なお、遠赤外線放射体15は低速で定回転しているので、バーナ17の燃焼が炎熱放射筒18に対して均等に行われるので膨張の偏りが無いのも特徴といえる。
【0038】
軸支部A22及び軸支部B23のコロA33、コロB36、コロC38の素材はリン青銅からなり、耐熱性、磨耗性を向上させているが、リン青銅自体の耐熱温度が約650℃ほどであるので、遠赤外線放射体15の表面温度を700℃近くにしてしまうと、それぞれの軸受特に軸支部A22のコロは限界点を超えてしまうことになる。軸支部B23のリン青銅のコロにおいては、遠赤外線放射体15の表面温度を700℃近くにしても炎熱放射筒18で遠赤外線としてエネルギーを放射してしまうので、放射体排気筒44に達する頃には温度も500℃ほどになり冷却する必要は無い。
【0039】
しかし軸受装置の軸支部A22に設けられたコロは遠赤外線放射体15の表面温度の上昇と共に温度が上がるので、大軸受A24と大軸受外メタル25の位置に対向するように外気吸引口32から吸引送風機11の吸引効果で外気を若干吸引し、外気吸引口に隣接するリン青銅のコロの限界温度を超えることなく冷却するものである。なお、放射体フランジ43は遠赤外線放射体15自体熱膨張しても設置位置が変わらないので、バーナベース31と放射体フランジ43との隙間距離は変わることなく、取り入れる外気量の変化はない。
【0040】
本実施例では、遠赤外線放射体15の軸方向に対して前後に移動しない面を、軸受装置として軸支部A22《大軸受外メタル25と大軸受A24(大軸受B35)と、押さえ材A26(押さえ材C37)と放射体フランジ43の構成》として、その面にはバーナ17が取り付けられているので,遠赤外線放射体15とバーナ17との距離は常に一定にでき、急激な温度変化が無く安定したバーナ17の燃焼と均一な遠赤放射が期待できる。
【0041】
また、遠赤外線放射体15のバーナ17に近い軸支部A22を遠赤外線放射体15の軸方向に対して前後に移動しない面としたことは、遠赤外線放射体15の特に高温となる軸受け部の構造を簡素化し、故障の発生の防止にも役立っている。
【0042】
【発明の効果】
本発明によれば、遠赤外線放射体の熱膨張に対応した遠赤外線放射体の軸受または遠赤外線放射体の駆動装置を備えたことによって、遠赤外線放射体の回転停止、異音の発生をなくして、穀物に均等に遠赤外線を照射させることで高品質で効率よく乾燥できる遠赤外線利用の穀物乾燥装置を提供することが出来る。
【0043】
また、バーナと遠赤外線放射体の放射体フランジの距離を常に一定にしているので、外気吸引口から吸引する外気の量を一定にして、安定したバーナの燃焼を可能として均一な遠赤外線放射を行うことが出来る。さらに、特に高温となる軸受装置に外気による冷却を行うことが出来るので、高温となる軸受装置の構造を簡素化して、故障の発生を防止する遠赤外線利用の穀物乾燥装置の提供も可能としている。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る遠赤外線利用の穀物乾燥機の断面図である。
【図2】 本発明の実施の形態に係る遠赤外線利用の穀物乾燥機の斜視図である。
【図3】 本発明の第1の実施を示す遠赤外線利用の穀物乾燥機の遠赤外線放射体部斜視図である。
【図4】 本発明の第1の実施を示す遠赤外線放射体の一端の詳細を表した断面図である。
【図5】 図4の軸受部品を表した斜視図である。
【図6】 本発明の第1の実施の他例1を示す遠赤外線放射体の一端の詳細断面図である。
【図7】 図6の軸受部品を表した斜視図である。
【図8】 本発明の第1の実施の他例2を示す遠赤外線放射体の一端の詳細断面図である。
【図9】 図8の斜視図である。
【図10】 本発明の実施の形態に係る遠赤外線利用の駆動部と穀物乾燥機の遠赤外線放射体の他端を示す斜視図である。
【図11】 本発明の第2の実施の形態を示す遠赤外線放射体の他端の断面図である。
【図12】 本発明の第2の実施の形態の動作を示す遠赤外線放射体の他端の断面図である。
【図13】 本発明の第2の実施の他例を示す遠赤外線放射体の他端の断面図である。
【符号の説明】
1 穀物乾燥機
2 穀物貯留槽
3 通風乾燥部
4 穀物取出槽
5 穀物搬出コンベア
6 上部コンベア
7 昇降機
8 乾燥通路
9 熱風供給室
10 排風室
11 吸引送風機
12 搬送樋
13 流穀板
14 両側壁
15 遠赤外線放射体
16 繰出ロール
17 バーナ
18 炎熱放射筒
19 排気筒
20 吸引圧力調整器
21 反射板
22 軸支部A
23 軸支部B
24 大軸受A
25 大軸受外メタル
26 押さえ材A
27 小軸受
28 小軸受外メタル
29 押さえ材B
30 スプロケットA
31 バーナベース
32 外気吸引口
33 コロA
34 ガイドプレート
35 大軸受B
36 コロB
37 押さえ材C
38 コロC
39 スプロケットB
40 チェーン
41 キー
42 滑りカラー
43 放射体フランジ
44 放射体排気筒
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a far-infrared grain dryer for drying grains by irradiating far-infrared rays while flowing the grains in a granular or thin layer.
[0002]
[Prior art]
A grain storage tank is installed in the upper part of the main body of the grain dryer, a ventilation drying section is installed in the middle stage, and a grain take-out tank is installed in the lower stage, and the grains stored in the grain storage tank are circulated through the route of the air drying, grain extraction tank, and grain storage tank However, a grain dryer that performs ventilation drying in the ventilation drying section is described in Japanese Patent Publication No. 5-22834 or Japanese Patent Laid-Open No. 6-3052. In this conventional grain drying machine, the drying passage of the ventilation drying section is provided. By irradiating far-infrared rays to the flowing grain from the side of the drying passage so as to cross the drying passage, drying with far-infrared rays is also performed to improve the efficiency of drying.
[0003]
In addition, by providing a far-infrared radiator in the grain take-out tank in which the grains flow in a granular or thin layer from ventilation drying, the applicant can uniformly irradiate far-infrared rays to the circulating and flowing grains and uniformly dry them. Proposed a far-infrared grain dryer that can be dried (see Japanese Patent Application Laid-Open No. 8-14745), and mixed with grains in a grain take-out tank in which grains flow in a granular or thin layer from the ventilation drying section. An invention that rotates the far-infrared radiator to prevent fires caused by accumulated dust etc. on the upper surface of the far-infrared radiator and to uniformly radiate far-red from the far-infrared radiator and dry the grains evenly. Far-infrared grain dryer disclosed in Kaihei 10-82586 has been proposed.
[0004]
[Problems to be solved by the invention]
In order to dry cereals with far infrared rays, it is important that the moisture contained in the cereals absorbs far infrared rays effectively. Usually, water is supposed to absorb far infrared rays with wavelengths of 3 μm and 6 μm. Therefore, in order to radiate far infrared rays with wavelengths of 3 μm to 6 μm, the surface temperature of the far infrared radiator is about 700 ° C. with a wavelength of 3 μm. It is about 210 ° C. at 6 μm.
[0005]
The far-infrared radiator is usually made of stainless steel, but when the far-infrared radiator is heated from 210 ° C to 700 ° C, the temperature required to radiate far-infrared rays that are dry, that is, easily absorbed by water, is stainless steel. For example, the thermal expansion coefficient of SUS304 is 18.9 × 10 −6 / ° C. (0 to 700 ° C.), and when the total length of the far-infrared radiator is 2000 mm, the radiator itself expands by about 25 mm.
[0006]
Especially in the structure that rotates the far-infrared radiator, the total length of the far-infrared radiator is extended, the noise is generated, the rotation stops when both ends of the far-infrared radiator are in contact with the side wall, and the separation from the rotation drive device. Such problems will occur.
[0007]
Therefore, the present invention eliminates the stop of rotation of the far-infrared radiator and the generation of abnormal noise even when the far-infrared radiator expands thermally, and irradiates the far-infrared with the far-infrared evenly on the grain so that it can be dried with high quality and efficiency. The purpose is to provide an infrared grain dryer.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a far-infrared grain dryer according to the present invention proposes a far-infrared grain dryer according to claims 1 to 4 .
[0009]
That is, the far-infrared grain drying apparatus according to claim 1 is provided with a grain storage tank in the upper stage of the grain dryer body, a ventilation drying section in the middle stage, and a grain take-out tank in the lower stage, and the grains stored in the grain storage tank. While circulating and flowing through the route of the ventilation drying section, grain take-out tank, and grain storage tank, it is ventilated and dried in the ventilation drying section, and in the grain take-out tank, the grain moves away from the ventilation drying section to grains that are scattered in a granular or thin layer. A far-infrared-use grain drying apparatus provided with a far-infrared radiator for irradiating infrared rays and configured to rotate so that the surface facing the flowing grain is changed over time. The far-infrared radiator is configured such that one end of the far-infrared radiator does not move relative to the axial direction with respect to the radiator flange of the far-infrared radiator , and the other end extends due to thermal expansion of the far-infrared radiator. Correct misalignment Includes a rotary drive unit, even when far infrared radiator is extended, a burner that is attached to one end side of the far-infrared radiator, characterized in that the distance of the radiator flange which always configured so as to maintain a constant Is.
[0010]
The far-infrared-use grain dryer according to claim 2 is the far-infrared-use grain drying apparatus according to claim 1, wherein the rotational power of the far-infrared radiator is transmitted from a feed roll of the grain take-out tank. It is what.
[0011]
The far-infrared-use grain drying apparatus according to claim 3 is the far-infrared-use grain drying apparatus according to claim 1 or 2, wherein the far-infrared grain drying apparatus does not move in the axial direction with respect to the radiator flange of the far-infrared radiator. The bearing device configured as described above is provided with a cooling port using an outside air intake port.
[0012]
The far-infrared-use grain drying measure according to claim 4 is the far-infrared-use grain drying apparatus according to any one of claims 1, 2, or 3, wherein the bearings provided at both ends of the far-infrared radiator are used. The roller material is phosphor bronze.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a sectional view of a far-infrared grain dryer according to an embodiment of the present invention. FIG. 2 is a perspective view of a far-infrared grain dryer according to an embodiment of the present invention. FIG. 3 is a perspective view of the far-infrared radiator part of the far-infrared grain dryer showing the first embodiment of the present invention. FIG. 4 is a sectional view showing details of one end of the far-infrared radiator showing the first embodiment of the present invention. FIG. 5 is a perspective view showing the bearing of FIG. FIG. 6 is a detailed sectional view of one end of a far-infrared radiator showing another example 1 of the first embodiment of the present invention. FIG. 7 is a perspective view showing the bearing of FIG. FIG. 8 is a detailed cross-sectional view of one end of a far-infrared radiator showing another example 2 of the first embodiment of the present invention. FIG. 9 is a perspective view of FIG. FIG. 10 is a perspective view showing the far-infrared-use drive unit and the other end of the far-infrared radiator of the grain dryer according to the embodiment of the present invention. FIG. 11 is a cross-sectional view of the other end of the far-infrared radiator showing the second embodiment of the present invention. FIG. 12 is a cross-sectional view of the other end of the far-infrared radiator showing the operation of the second embodiment of the present invention. FIG. 13 is a cross-sectional view of the other end of the far-infrared radiator showing another example of the second embodiment of the present invention.
[0014]
A far-infrared radiator 15 is provided so as to face the grain of the part flowing in a granular or thin layer. The far-infrared radiator 15 is configured such that one end of the far-infrared radiator 15 does not move with respect to the axial direction with respect to the radiator flange of the far-infrared radiator , and the other end has a displacement caused by thermal expansion of the far-infrared radiator. So that even if the far-infrared radiator 15 extends in the axial direction due to thermal expansion, the surface of the grain portion where the grain flows in a granular or thin layer is changed. Constructed to rotate, it can evenly illuminate flowing grain.
[0015]
Particularly, in the grain dryer 1 in which the grain storage tank 2 is provided in the upper stage of the grain dryer 1, the ventilation drying unit 3 is provided in the middle stage, and the grain take-out tank 4 is provided in the lower stage, the grains stored in the grain storage tank 2 are stored. While circulating and flowing through the passage of the ventilation drying unit 3, the grain extraction tank 4, and the grain storage tank 2, the drying is performed by the ventilation drying unit 3, and the grains are scattered from the ventilation drying unit 3 into a granular or thin layer in the grain extraction tank 4. A far-infrared radiator 15 for irradiating far-infrared rays to the falling grain is provided, and the far-infrared radiator 15 is configured to rotate so that a surface facing the flowing grain is changed over time. In the grain dryer 1, the far-infrared radiator 15 is configured such that one end of the far-infrared radiator 15 does not move in the axial direction with respect to the radiator flange 43 of the far-infrared radiator 15 , and the other end of the far-infrared radiator 15. Caused by thermal expansion of Is provided with the rotary drive unit to correct deviation of the elongation, the far infrared radiator 15 is configured so as not to move in the axial direction, even if the far infrared radiator is extended, at one end of the far-infrared radiator Since the distance between the installed burner and the radiator flange can always be kept constant, there is no temperature change, stable combustion of the burner 17 and uniform far-infrared radiation can be obtained, and the structure of the bearing device that is particularly hot. This helps to prevent breakdowns.
[0016]
【Example】
In FIG. 1, 1 is a grain dryer. A grain storage tank 2 is provided in the upper stage of the grain dryer 1, a ventilation drying unit 3 is provided in the middle stage, and a grain take-out tank 4 is provided in the lower stage. A grain carry-out conveyor 5 is provided at the lower part of the grain take-out tank 4 over the entire length in the front-rear direction. The grain carry-out conveyor 5 and the upper conveyor 6 above the grain storage tank 2 are communicated with each other by an elevator 7. Through the conveyor 5, the elevator 7 and the upper conveyor 6, the grain is circulated through the path of the grain storage tank 2, the ventilation drying unit 3, the grain take-out tank 4, and the grain storage tank 2.
[0017]
The ventilation drying section 3 has a plurality of drying passages 8 formed by ventilation walls. A hot air supply cylinder constituting the drying passage 8 communicates with a hot air supply chamber 9, and an exhaust wind cylinder is an exhaust chamber 10. The exhaust fan 10 is provided with a suction fan 11.
[0018]
The grain take-out tank 4 is formed by being surrounded by a drifting grain plate 13 and both side walls 14 which are inclined from both upper sides of the grain take-out tank 4 to the conveying basket 12 of the grain carry-out conveyor 5.
[0019]
A far-infrared radiator 15 is disposed in the grain take-out tank 4, and the far-infrared radiator 15 has a cylindrical shape extending over the entire length of the grain take-out tank 4 in the front-rear direction. The far-infrared rays emitted from the far-infrared radiator 15 are drawn out by the rotation of the feeding roll 16 from the drying passage 8 of the ventilation drying unit 3, and the grains flow down in a granular or thin layer form on the surface of the drifted grain plate 13. Irradiated to the grain. At one end of the far infrared radiator 15, the burner 17 of the gun type Yes to face the axis of the torrid radiation tube 18, the exhaust tube 19 to the other end of the far infrared radiator 15 is connected to the axis. The exhaust cylinder 19 is led to the hot air supply chamber 9, and a suction pressure adjuster 20 for sucking exhaust gas from the far-infrared radiator 15 side is interposed at the connection portion. The far-infrared radiator 15 emits far-infrared rays having a wavelength suitable for drying grains by burning fuel.
[0020]
A reflection plate 21 is provided above the far-infrared radiator 15. The reflecting plate 21 reflects far infrared rays emitted from the far infrared radiator 15 in a diffused manner in the direction of the flowing grain plates 13 and 13 so that the far infrared rays are evenly applied to the grains flowing down the surface of the flowing grain plate 13. For irradiating. Therefore, the shape, the distance from the far-infrared radiator 15, and the like are set to a state suitable for evenly irradiating far-infrared rays toward the surface of the drifted grain board 13. The reflector 21 is made of a polished plate such as aluminum or stainless steel.
[0021]
The far-infrared radiator 15 is supported by a shaft support portion A22 serving as a bearing device and a shaft support portion B23 constituting a rotation drive portion , and each shaft support portion is formed of a bearing, a metal outside the bearing, and a pressing material, and is rotatable ( 3), the chain 40 suspended from the sprocket A30 of the far-infrared radiator 15 and the sprocket B39 of the feeding roll 16 causes the far-infrared radiator 15 to continuously rotate at a low speed in conjunction with the feeding roll 16. (FIG. 10). The gun-type burner 17 and the exhaust cylinder 19 are connected to each other with a structure that does not hinder the rotation of the far-infrared radiator 15.
[0022]
The shaft support portion A22 of the bearing device at one end of the far-infrared radiator 15 is a ring-shaped member composed of a large bearing outer metal 25 attached to the outer surface of the both side walls 14 of the dryer and a phosphor bronze roller A33 connected by a guide plate 34. The large bearing A24 (FIG. 5) and the presser A26 are provided. As shown in FIG. 4, the flame heat radiation cylinder 18 of the far-infrared radiator 15 is passed through the ring of the large bearing A24, and the large bearing A24 is a large bearing. The structure is such that the radiator flange 43 of the far-infrared radiator 15 is sandwiched between pressing members A26 that are secured to the large-bearing outer metal 25.
[0023]
In this case, the large bearing A24, the large bearing outer metal 25, the radiator flange 43, and the pressing member A26 have some gaps, and the far infrared radiator 15 can be easily rotated. Is configured with the radiator flange 43 as a reference with respect to the long side direction of the main body of the grain dryer 1.
[0024]
In FIG. 4 configured as described above, a burner base 31 is attached to the large bearing outer metal 25 so as to wrap the shaft support portion A22, and the burner base 31 is positioned at the center of the far-infrared radiator 15. 17 is attached to the holding member A26 at a certain distance, and the burner base 31 is provided with an outside air suction port 32 so as to face the positions of the large bearing A24 and the large bearing outer metal 25. It has been. The burner 17 reaches the inside of the flame heat radiation cylinder 18 with a slight gap from the burner hole of the radiator flange 43.
[0025]
In FIG. 7, as another example of the above-described embodiment, a roller B36 made of phosphor bronze is provided between a roller A33 constituting the large bearing B35 and some guide plates. The roller B36 has a slightly larger diameter than the entire length of the roller A33, and the roller A33 prevents the large bearing outer metal 25 and the radiator flange 43 from contacting each other. FIG. 6 shows a shaft support A22 on which the large bearing B35 is mounted.
[0026]
In FIG. 8, the large bearing B35 having the configuration shown in FIG. 7 is housed in the large bearing outer metal 25, and a roller C38 made of phosphor bronze is further attached to the pressing member C37. Since the radiator flange 43 is sandwiched between the roller B36 and the roller C38, the roller A33 can rotate with a slight gap without contacting the large bearing outer metal 25 or the radiator flange 43. Contact between 43 and the pressing member can also be prevented. The pressing member C37 may be an elastic body that always presses the roller 38 against the radiator flange 43.
[0027]
A sprocket A30 is attached to the tip of the radiator exhaust tube 44, which is supported by a shaft support B23 that constitutes the rotational drive unit at the other end of the far-infrared radiator 15, and a sprocket B39 and a chain 40 provided on the feeding roll 16 are attached. Since it is suspended, the far-infrared radiator 15 is continuously rotated at a low speed in conjunction with the feeding roll 16 (FIG. 10). The shaft support part B23 constituting the rotation drive part is composed of a small bearing outer metal 28 attached to the outside of the both side walls 14, a small bearing 27 incorporated therein, and a pressing member B29 fixed to the small bearing outer metal 28. The small bearing 27 is arranged so that there is a slight gap between the small bearing outer metal 28 and the pressing member B29, and the radiator exhaust tube 44 contacting the inner ring of the small bearing 27 can be easily rotated. Yes.
[0028]
Further, the bearing of the shaft support portion B23 may be a bearing using only the roller A33 and the guide plate 34 as in the shaft support portion A22, and a roller B36 at the intermediate portion between the roller A33, the guide plate 34 and the guide plate 34. (Not shown).
[0029]
The axis of the feeding roll 16 on the side of the shaft support B23 is equal to or longer than the expansion length during heating of the radiator from the radiator exhaust tube 44 of the far-infrared radiator 15 before heating. There is a sliding collar 42 that follows the sprocket B39 on the contact surface between this shaft and the sprocket B39, and the shaft of the feeding roll 16 can be easily moved in the front-rear direction. A key 41 is provided in a range in which the sprocket B39 can be moved back and forth to prevent idling (FIGS. 11 and 12).
[0030]
Further, the sliding collar 42 is on the contact surface between the sprocket A30 and the radiator exhaust tube 44, and the sliding collar 42 moves back and forth following the sprocket A30 and does not rotate freely with the radiator exhaust tube 44. Good (FIG. 13).
[0031]
In the far-infrared-use grain dryer configured as described above, the grain flowing down from the grain storage tank 2 through the drying passage 8 of the ventilation drying section 3 crosses the drying passage 8 from the hot air supply chamber 9 through the hot air supply cylinder. The air is dried by suction hot air flowing through the wind exhaust drum and flowing into the air exhaust chamber 10. The grains dried by ventilation in the ventilation drying section 3 are formed into a granular or thin layer by rotation of the feeding roll 16 provided at the lower end of each drying passage 8, and the drifted grain plate 13 in the grain extraction tank 4 is formed. In the process of flowing down, far-infrared rays are irradiated from the far-infrared radiator 15 and drying by far-infrared rays is performed.
[0032]
The far-infrared radiator 15 rotates at a low speed via a sprocket A30 attached to the radiator exhaust tube 44 of the far-infrared radiator 15 in conjunction with a chain 40 suspended on a sprocket B39 attached to the shaft of the feeding roll 16. is doing.
[0033]
In the shaft support portion A22 of the bearing device , the radiator flange 43 is formed with respect to the axial direction of the far-infrared radiator 15 by the large bearing outer metal 25, the large bearing A24 (large bearing B35), and the pressing material A26 (pressing material C37). Even in the structure in which the movement in the front-rear direction is fixed, the far-infrared radiator 15 can be easily rotated, the combustion of the burner 17 is started, the temperature of the far-infrared radiator 15 rises, and far-infrared radiation is emitted. Even if the body 15 is thermally expanded, the position of the radiator flange 43 is not changed.
[0034]
As described above, since the far-infrared radiator 15 usually used in the grain dryer using far-infrared rays often uses stainless steel, for example, the thermal expansion coefficient of SUS304 is 18.9 × 10 −6. When the total length of the far-infrared radiator 15 is 2000 mm and the surface temperature of the far-infrared radiator 15 is 700 ° C., the extending length of the radiator is about 25 mm.
[0035]
Since the radiator flange 43 of the far-infrared radiator 15 is fixed in the longitudinal direction relative to the axial direction of the far-infrared radiator 15 at the shaft support A22, the extension of the far-infrared radiator 15 is in the direction of the shaft support B23. It will be contracted only to. Accordingly, as shown in FIG. 12, the expansion of the flame heat radiation cylinder 18 moves the sprocket A30 at the end of the radiation exhaust cylinder 44 toward the outside of the dryer, and the chain 40 is inclined accordingly. B39 moves on the axis of the feeding roll 16 in the direction of the outside of the dryer according to the extension of the far-infrared radiator 15.
[0036]
Further, in the configuration in which the sliding collar 42 is provided on the sprocket B39 as shown in FIG. 13, the sprocket B39 moves the radiant exhaust pipe 44 in the direction of the flame heat radiating cylinder 18 along the extension of the far-infrared radiator 15.
[0037]
In addition, since the far-infrared radiator 15 is rotating at a low speed and constant, the burner 17 is burned evenly with respect to the flame-heat radiation cylinder 18, so that it can be said that there is no expansion bias.
[0038]
The materials of roller A33, roller B36, and roller C38 of shaft support A22 and shaft support B23 are made of phosphor bronze, improving heat resistance and wear resistance, but the heat resistance temperature of phosphor bronze itself is about 650 ° C. If the surface temperature of the far-infrared radiator 15 is close to 700 ° C., the roller of each bearing, particularly the shaft support A22, exceeds the limit point. In the phosphor bronze roller of the shaft support B23, even if the surface temperature of the far-infrared radiator 15 is close to 700 ° C., the flame heat radiation cylinder 18 radiates energy as far infrared rays. In this case, the temperature is about 500 ° C., and cooling is not necessary.
[0039]
However, since the temperature of the roller provided on the shaft support portion A22 of the bearing device increases as the surface temperature of the far-infrared radiator 15 rises, the outer air suction port 32 faces the positions of the large bearing A24 and the large bearing outer metal 25. The suction air blower 11 sucks the outside air slightly and cools it without exceeding the limit temperature of the phosphor bronze roller adjacent to the outside air suction port. In addition, since the installation position of the radiator flange 43 does not change even if the far-infrared radiator 15 itself thermally expands, the gap distance between the burner base 31 and the radiator flange 43 does not change, and the amount of outside air taken in does not change.
[0040]
In this embodiment, the surface of the far-infrared radiator 15 that does not move back and forth with respect to the axial direction is used as a bearing device such as a shaft support portion A22 << large bearing outer metal 25, large bearing A24 (large bearing B35), and pressing material A26 ( Since the burner 17 is attached to the surface of the pressing member C37) and the radiator flange 43, the distance between the far-infrared radiator 15 and the burner 17 can always be constant and there is no rapid temperature change. Stable burner 17 combustion and uniform far-red emission can be expected.
[0041]
Further, the fact that the shaft support portion A22 close to the burner 17 of the far-infrared radiator 15 is a surface that does not move back and forth with respect to the axial direction of the far-infrared radiator 15 is that of the bearing portion of the far-infrared radiator 15 that becomes particularly hot. It simplifies the structure and helps prevent failures.
[0042]
【The invention's effect】
According to the present invention, by providing a far-infrared radiator bearing or a far-infrared radiator driving device corresponding to the thermal expansion of the far-infrared radiator, the rotation of the far-infrared radiator and the generation of abnormal noise are eliminated. Thus, it is possible to provide a far-infrared grain drying apparatus that can efficiently dry high-quality by irradiating the grains with far-infrared rays.
[0043]
In addition, since the distance between the burner and the radiator flange of the far-infrared radiator is always constant, the amount of outside air sucked from the outside air suction port is kept constant, enabling stable burner combustion and uniform far-infrared radiation. Can be done. Furthermore, since the bearing device that is particularly hot can be cooled by outside air, the structure of the bearing device that becomes hot can be simplified, and a far-infrared grain drying device that prevents the occurrence of failure can be provided. .
[Brief description of the drawings]
FIG. 1 is a sectional view of a far-infrared grain dryer according to an embodiment of the present invention.
FIG. 2 is a perspective view of a far-infrared grain dryer according to an embodiment of the present invention.
FIG. 3 is a perspective view of a far-infrared radiator part of a far-infrared grain dryer according to the first embodiment of the present invention.
FIG. 4 is a cross-sectional view showing details of one end of the far-infrared radiator showing the first embodiment of the present invention.
5 is a perspective view showing the bearing component of FIG. 4. FIG.
FIG. 6 is a detailed cross-sectional view of one end of a far-infrared radiator showing another example 1 of the first embodiment of the present invention.
7 is a perspective view showing the bearing component of FIG. 6. FIG.
FIG. 8 is a detailed cross-sectional view of one end of a far-infrared radiator showing another example 2 of the first embodiment of the present invention.
9 is a perspective view of FIG. 8. FIG.
FIG. 10 is a perspective view showing the far-infrared-use drive unit and the other end of the far-infrared radiator of the grain dryer according to the embodiment of the present invention.
FIG. 11 is a cross-sectional view of the other end of the far-infrared radiator showing a second embodiment of the present invention.
FIG. 12 is a cross-sectional view of the other end of the far-infrared radiator showing the operation of the second embodiment of the present invention.
FIG. 13 is a cross-sectional view of the other end of the far-infrared radiator showing another example of the second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Grain dryer 2 Grain storage tank 3 Ventilation drying part 4 Grain extraction tank 5 Grain carry-out conveyor 6 Upper conveyor 7 Elevator 8 Drying passage 9 Hot air supply chamber 10 Ventilation chamber 11 Suction blower 12 Carrying bowl 13 Flowing grain board 14 Both side wall 15 Far-infrared radiator 16 Feeding roll 17 Burner 18 Flame heat radiation cylinder 19 Exhaust cylinder 20 Suction pressure regulator 21 Reflector 22 Shaft support A
23 Shaft support B
24 Large bearing A
25 Large metal outside the bearing 26 Presser material A
27 Small bearing 28 Small bearing outer metal 29 Presser B
30 Sprocket A
31 Burner base 32 Outside air suction port 33 Roller A
34 Guide plate 35 Large bearing B
36 Colo B
37 Presser material C
38 Colo C
39 Sprocket B
40 chain 41 key 42 sliding collar 43 radiator flange 44 radiator exhaust cylinder

Claims (4)

穀物乾燥機の本体の上段に穀物貯留槽、中段に通風乾燥部、下段に穀物取出槽をそれぞれ設け、穀物貯留槽に貯留した穀物を通風乾燥部、穀物取出槽、穀物貯留槽の経路で循環流動させながら通風乾燥部で通風乾燥し、穀物取出槽内に、通風乾燥部から穀物が散粒状ないし薄層状に流下する穀物に遠赤外線を照射する遠赤外線放射体を設けて、この遠赤外線放射体を時間の経過に伴って流動する穀物に対向する面が転換されるように回転するよう構成された遠赤外線利用の穀物乾燥装置であって、遠赤外線放射体の一端は遠赤外線放射体の放射体フランジを基準として軸方向に対し移動しないように軸受装置を構成し、他端は遠赤外線放射体の熱膨張によって生じた伸長のズレを修正する回転駆動部を備えて、遠赤外線放射体が伸長しても、遠赤外線放射体の一端側に取り付けられたバーナと、放射体フランジの距離は常に一定に保つように構成したことを特徴とする遠赤外線利用の穀物乾燥装置。A grain storage tank is installed in the upper part of the grain dryer body, a ventilation drying unit is installed in the middle stage, and a grain take-out tank is installed in the lower stage. A far-infrared radiator that irradiates far-infrared rays to grains in which the grains flow in a granular or thin layer from the ventilation-drying section is provided in the grain take-out tank while flowing, and this far-infrared radiation is provided. A far-infrared grain drying apparatus configured to rotate so that a surface facing a flowing grain changes over time, and one end of the far-infrared radiator is the far-infrared radiator The far-infrared radiator includes a rotation drive unit that configures a bearing device so as not to move in the axial direction with respect to the radiator flange, and the other end includes a rotational drive unit that corrects a shift in elongation caused by thermal expansion of the far-infrared radiator. Even if A burner attached to one end side of the infrared radiator, radiator flange distance is always grain drying apparatus far infrared use, characterized by being configured so as to maintain constant. 遠赤外線放射体の回転動力は、穀物取出槽の繰出ロールから伝達を受けることを特徴とする請求項1記載の遠赤外線利用の穀物乾燥装置。  2. The far-infrared grain drying apparatus according to claim 1, wherein the rotational power of the far-infrared radiator is transmitted from a feeding roll of a grain take-out tank. 遠赤外線放射体の放射体フランジを基準として軸方向に対し移動しないように構成された軸受装置には、外気吸気口を用いた冷却口を備えたことを特徴とする請求項1又は請求項2に記載の遠赤外線利用の穀物乾燥装置。3. The bearing device constructed so as not to move in the axial direction with respect to the radiator flange of the far-infrared radiator is provided with a cooling port using an outside air intake port. A far-infrared grain drying device as described in 1. 赤外線放射体の両端に設けられた軸受のコロの素材をリン青銅としたことを特徴とする請求項1、2又は請求項3のいずれかに記載の遠赤外線利用の穀物乾燥装置。  The grain drying apparatus using far-infrared rays according to any one of claims 1, 2, and 3, wherein the material of the roller of the bearing provided at both ends of the infrared radiator is phosphor bronze.
JP2003097594A 2003-04-01 2003-04-01 Far-infrared grain drying equipment Expired - Fee Related JP3919692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097594A JP3919692B2 (en) 2003-04-01 2003-04-01 Far-infrared grain drying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097594A JP3919692B2 (en) 2003-04-01 2003-04-01 Far-infrared grain drying equipment

Publications (2)

Publication Number Publication Date
JP2004301463A JP2004301463A (en) 2004-10-28
JP3919692B2 true JP3919692B2 (en) 2007-05-30

Family

ID=33409337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097594A Expired - Fee Related JP3919692B2 (en) 2003-04-01 2003-04-01 Far-infrared grain drying equipment

Country Status (1)

Country Link
JP (1) JP3919692B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2480693C2 (en) * 2011-04-05 2013-04-27 Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия (ГОУ ВПО ВГТА) Drier with controlled swirl heat carrier flow

Also Published As

Publication number Publication date
JP2004301463A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP6641425B2 (en) Method of controlling web drying in a dryer by convective and radioactive heat flux
US6256903B1 (en) Coating dryer system
JP3621708B2 (en) High-speed infrared / convection dryer
CA2223308A1 (en) Method and apparatus for heat treating webs
JP3919692B2 (en) Far-infrared grain drying equipment
JP4097094B2 (en) Grain drying equipment
JP4384365B2 (en) Infrared dryer with air purification shutter
JP3833750B2 (en) Far-infrared grain drying equipment
CN101086130A (en) Roller type clothes drying machine and control method thereof
JP4804214B2 (en) Grain drying equipment
JP2001041655A (en) Grain dryer
JP2012107780A (en) Grain drying apparatus
JPS6385577A (en) Cooling roller
JP3608855B2 (en) Far-infrared grain dryer
KR101686185B1 (en) Drier of waste
JP2005114238A (en) Circulation type grain dryer
KR100747072B1 (en) The drier of using near infra red radiation
WO2001031271A1 (en) Coating dryer heating system
JP3870850B2 (en) Grain dryer
JP4874760B2 (en) Far-infrared grain dryer
JP2004301464A (en) Grain drying machine utilizing far-infrared ray
JP2024062680A (en) Clothes Dryer
JP4325091B2 (en) Far infrared grain dryer
KR20050080623A (en) F.i.r. drying system using far infrared rays and preheating and exhaust air
CA1300991C (en) Heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Ref document number: 3919692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees