JP3917935B2 - Melting system and method for producing artificial calcite - Google Patents

Melting system and method for producing artificial calcite Download PDF

Info

Publication number
JP3917935B2
JP3917935B2 JP2002366825A JP2002366825A JP3917935B2 JP 3917935 B2 JP3917935 B2 JP 3917935B2 JP 2002366825 A JP2002366825 A JP 2002366825A JP 2002366825 A JP2002366825 A JP 2002366825A JP 3917935 B2 JP3917935 B2 JP 3917935B2
Authority
JP
Japan
Prior art keywords
melting furnace
melting
meat
slag
molten slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002366825A
Other languages
Japanese (ja)
Other versions
JP2004195361A5 (en
JP2004195361A (en
Inventor
季男 吉田
啓一 徳永
勝美 泉田
弘文 工藤
辰男 原
英範 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002366825A priority Critical patent/JP3917935B2/en
Publication of JP2004195361A publication Critical patent/JP2004195361A/en
Publication of JP2004195361A5 publication Critical patent/JP2004195361A5/ja
Application granted granted Critical
Publication of JP3917935B2 publication Critical patent/JP3917935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、汚泥焼却灰、例えば下水汚泥焼却灰などの溶融システムに関する。
【0002】
【従来の技術】
一般に下水汚泥を処理する際には下水汚泥を焼却炉において焼却することにより汚泥焼却灰を生成した後に、この汚泥焼却灰を灰溶融炉において溶融している。図2(a)は例えば特願平11−116196号に示されるような従来技術における灰溶融システムの略図である。図2(a)に示されるように従来技術の灰溶融システム100においては灰ホッパ110に投入された汚泥焼却灰が灰供給器111によって溶融炉120に供給される。下水汚泥から得られた汚泥焼却灰は可燃物をほとんど含んでいないので、化石燃料、例えば重油Aを溶融炉120内に供給する。重油Aを供給することにより汚泥焼却灰を約1400℃から約1600℃で溶融できる。溶融炉120から発生した排ガスは排ガス処理設備170を通過してファンにより煙突180から排出される。また溶融スラグは結晶化コンベヤ190において結晶化され、結晶化スラグとなる。
【0003】
従来技術の灰溶融システム100においては化石燃料、例えば重油Aの消費量を少なくするために塩基度調整設備150を設置して融点を下げることが行われている。塩基度調整設備150は石灰ホッパ151および珪砂ホッパ152を含んでおり、石灰ホッパ151からの石灰(CaO)および珪砂ホッパ152からの珪砂(SiO2)を塩基度調整剤すなわち溶融助剤として溶融炉120に供給している。塩基度(CaO/SiO2)が1程度になるようにCaOおよびSiO2を供給するのが好ましく、それにより溶融炉120内の温度を良好に下げられる。従って、結果的に化石燃料消費量を低減できる。また従来技術の灰溶融システム100は熱回収設備130も有している。熱回収設備130においては空気を溶融炉120からの排ガスの熱(約900℃)により予熱した後に溶融炉120内に供給している。これにより予め加熱された空気を溶融炉120内に供給するので、熱効率を高めることができる。
【0004】
一方、肉骨粉は狂牛病の原因とされるプリオンを含む場合があるので、従来技術において肉骨粉は図2(b)に示すように処理されている。肉骨粉は化石燃料、例えば重油および/または下水汚泥と共に焼却炉200内に供給されて、約850℃で加熱される。次いで廃熱回収設備210において約250℃まで低温された後に、排ガス処理設備220において排ガスと焼却灰とに分離される。図2(b)に示されるように排ガスは煙突230から排出され、焼却灰は埋め立て処分されている。
【0005】
【発明が解決しようとする課題】
しかしながら、例えば特願平11−116196号に示されるような従来技術の灰溶融システムにおいては化石燃料を必要とするので運転費用が増すと共に、化石燃料の燃焼に基づく温室効果ガス、すなわちCO2が大量に排出されるという問題があった。また熱回収設備においては灰溶融システムから排出されうる溶融飛灰は付着性であるので溶融飛灰が熱回収設備を閉塞させる可能性がある。さらに塩基度調整設備からCaOおよびSiO2を灰溶融炉内に投入するので廃棄物の量が投入される焼却灰の量よりも大幅に増大する場合があり、塩基度調整設備により溶融炉内の融点を調整するときにはタイムラグが生じるので融点を迅速に調整するのは困難である。さらにこれら熱回収設備および塩基度調整設備を設置することにより灰溶融システム全体が大型化すると共に、これらの制御を伴うために灰溶融システム全体の制御が複雑になる。
【0006】
一方、肉骨粉を焼却する際には焼却炉内において肉骨粉が浮遊する場合があり、このような場合には肉骨粉内に含まれうるプリオンを完全に死滅させることはできない。また近年の研究ではプリオンに基づく狂牛病の感染力を消滅させるためには肉骨粉を1000℃以上の高温下で加熱する必要があるという報告もなされているが、このような温度条件を通常の焼却炉において形成するのは困難である。さらに、焼却された肉骨粉は通常は単に埋め立てられているが、狂牛病の感染力を消滅させた後に肉骨粉を他の用途に利用できるようにするのが好ましい。
【0007】
本発明はこのような事情に鑑みてなされたものであり、温室効果ガスの量を大幅に低減すると共に肉骨粉内に含まれうるプリオンに基づく狂牛病の感染力を消滅可能でかつ比較的小型の、汚泥焼却灰を溶融する溶融システムを提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1に記載の発明によれば、汚泥焼却灰を溶融する溶融炉と、汚泥を焼却する焼却炉を前記溶融炉とは別途に備えて同焼却炉で生ずる汚泥焼却灰を前記溶融炉内に供給するための焼却灰供給部と、バイオマス燃料として肉骨粉を前記溶融炉内に供給するためのバイオマス燃料供給部としての肉骨粉供給部とを具備し、該バイオマス燃料供給部からのバイオマス燃料を前記溶融炉の燃料として使用することにより前記汚泥焼却灰を溶融するとともに、前記肉骨粉を前記溶融炉内において1000℃以上に加熱することにより、前記肉骨粉内に含まれうるプリオンに基づく狂牛病の感染力を消滅させるようにした溶融システムが提供される。
【0009】
すなわち請求項1に記載の発明によって、汚泥焼却灰を溶融する溶融炉内において肉骨粉を高温で処置できるので、肉骨粉内に含まれうるプリオンに基づく狂牛病の感染力を確実に消滅させられ、結果的に肉骨粉を有効利用可能な状態にすることができる。本願明細書におけるプリオンは反芻動物等由来タンパク質、すなわち牛、鹿、羊、キリンなどの反芻動物とミンクとに由来するタンパク質の一種である。
また、下水汚泥等の汚泥を焼却炉で焼却した汚泥焼却灰は可燃物をほとんど含まず、溶融処理に際し重油等化石燃料を多量に使用する必要があるが、本発明においては溶融炉において肉骨粉を燃料として使用しているので、化石燃料、例えば重油を使用する必要がなくなる。バイオマス燃料、例えば肉骨粉の燃焼時に生ずるCO2は温室効果ガスにはカウントされないので、結果的に温室効果ガスの量を大幅に低減することができる。さらにバイオマス燃料、例えば肉骨粉内に多量に含まれるCaOが、汚泥燃焼灰の融点を下げ化石燃料消費を低減するために従来加えられていた塩基度調整剤としての役目を果たすので、塩基度調整設備のうちの少なくとも石灰ホッパを排除できると共に、溶融炉内温度を高める際には燃料としてのバイオマス燃料を溶融炉内に単に追加投入すれば足りるので熱回収設備を排除することも可能となる。従って、バイオマス燃料として肉骨粉を使用したので、肉骨粉内に含まれうるプリオンに基づく狂牛病の感染力を消滅可能であると共に比較的小型の溶融システムを提供することができる。
【0012】
請求項に記載の発明によれば、さらに、前記溶融炉内に酸素を供給する酸素供給部を具備する。
すなわち請求項に記載の発明によって、溶融炉内に供給されるバイオマス燃料、例えば肉骨粉の量に応じて酸素を溶融炉内に供給できるので、溶融炉内の温度を容易かつ迅速に調整することができる。酸素供給部は一般的なファンでもよく、また酸素を発生できる酸素製造装置であってもよい。
【0013】
請求項に記載の発明によれば、さらに、前記溶融炉において生じる溶融スラグを結晶化するための結晶化コンベヤまたは前記溶融スラグを水砕スラグにするための水槽を具備する。
すなわち請求項に記載の発明によって、バイオマス燃料、すなわち肉骨粉からの溶融スラグを結晶化スラグまたは水砕スラグとして有効利用することができる。結晶化コンベヤを採用する場合には結晶化度を上げられるので結晶化スラグの機械的強度が高まり、路板材として使用することができる。また水槽を採用する場合には水砕スラグをセメント、砂の代替品、人工骨材または生分解性の骨誘導再生膜などに使用することができる。
【0014】
請求項4に記載の発明によれば、さらに、前記溶融炉からの排ガスを冷却するための排ガス冷却部および集塵部を具備する。
すなわち請求項4に記載の発明によって、排ガス冷却部により冷却された排ガスを集塵部において集塵することにより清浄化された排ガスを排出することができる。集塵部により集塵された粉塵は燃焼炉内に再び供給するのが好ましい。
請求項5に記載の発明によれば、請求項1に記載の溶融システムを用い、汚泥焼却灰を溶融炉に供給する第一工程と、前記溶融炉内において前記汚泥焼却灰を溶融スラグとなす第二工程と、前記溶融スラグをコンベヤ上に移送する第三工程と、前記溶融スラグをコンベヤ上で放冷して徐冷スラグまたは空冷スラグを形成し、ぐり石として利用可能とする第四工程とを備えた、人工ぐり石の製造方法が提供される。
請求項6に記載の発明によれば、請求項1に記載の溶融システムを用い、バイオマス燃料を溶融炉に供給する第一工程と、前記溶融炉内において前記バイオマス燃料を溶融スラグとなす第二工程と、前記溶融スラグをコンベヤ上に移送する第三工程と、前記溶融スラグをコンベヤ上で放冷して徐冷スラグまたは空冷スラグを形成し、ぐり石として利用可能とする第四工程とを備えた、人工ぐり石の製造方法が提供される。
請求項7に記載の発明によれば、請求項1に記載の溶融システムを用い、バイオマス燃料と汚泥焼却灰を溶融炉に供給する第一工程と、前記溶融炉内において前記バイオマス燃料を燃焼させ前記バイオマス燃料と前記汚泥焼却灰とを溶融して溶融スラグとなす第二工程と、前記溶融スラグをコンベヤ上に移送する第三工程と、前記溶融スラグをコンベヤ上で放冷して徐冷スラグまたは空冷スラグを形成し、ぐり石として利用可能とする第四工程とを備えた、人工ぐり石の製造方法が提供される。
【0015】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施形態を説明する。以下の図面において同一の部材には同一の参照符号が付けられている。理解を容易にするために、これら図面は縮尺を適宜変更している。
図1は本発明に基づく溶融システムの略図である。図1に示されるように、溶融システム10は二次燃焼室22を備えた溶融炉21を有している。溶融システム10はさらに肉骨粉ホッパ30を有しており、図1内の矢印で示されるように肉骨粉が肉骨粉ホッパ30内に投入される。本出願における肉骨粉は反芻動物等由来タンパク質、すなわち牛、鹿、羊、キリンなどの反芻動物とミンクとに由来するタンパク質、例えばプリオンを含みうる。肉骨粉ホッパ30内の肉骨粉は肉骨粉供給部31によって溶融炉21の供給口24に通されて溶融炉21内に供給される。
【0016】
一方、図1に示されるように下水汚泥が焼却炉11内において約850℃で焼却される。次いで廃熱回収設備12において温度を約250℃に低減化した後に、集塵部を含む排ガス処理設備13において排ガスと焼却灰とが分離する。ここで、廃熱回収設備12としては廃熱ボイラを設置することが好ましい。廃熱ボイラを設置することで、溶融排ガスから廃熱を回収することができる。排ガスはファン18によって煙突19から排出される。焼却灰は灰ホッパ14内に投入され、次いで焼却灰は灰供給部15によって溶融炉21の供給口25に通されて溶融炉21内に供給される。
【0017】
溶融炉21内に供給される焼却灰1kg当たりの熱量がほぼ0Jであるのに対し、肉骨粉1kg当たりの熱量は約20000kJ(約4800kcal)以上であり、また肉骨粉内の可燃分は約86.7%である。従って、化石燃料、例えば重油の代わりに肉骨粉を燃料として使用し、焼却灰を溶融させることができる。例えば溶融炉21内に投入される肉骨粉の重量が焼却灰の重量の半分よりも多い場合には、化石燃料を使用することなしに、自燃させられる。本発明に基づく溶融システム10おいては、肉骨粉を燃料として使用できるので、化石燃料、例えば重油を使用する必要がない。また、バイオマス燃料、例えば肉骨粉の燃焼時に生ずるCO2は温室効果ガスには含まれないので、結果的に温室効果ガスの量を大幅に低減することができる。また肉骨粉は主に約42.2%のCaOと38.0%のP25(酸化物換算)とを含んでいる。溶融炉21内の温度は約1000℃以上、例えば約1400℃から約1800℃であるので、肉骨粉内に含まれうるプリオンに基づく狂牛病の感染力を消滅することができる。また溶融炉21内の温度は、1670℃以上であるのが好ましい。この場合には溶融炉21内の温度がCaとPとから合成されうるリン酸カルシウムの融点よりも高くなるので、肉骨粉を確実に溶融させることができる。
【0018】
図1に示されるように溶融炉21内において溶融スラグとなった焼却灰および肉骨粉は結晶化コンベヤ61上に搬送されて、結晶化される。溶融スラグを結晶化させるためには溶融スラグを800℃以上で保持する必要がある。結晶化コンベヤ61は加熱バーナ(図示しない)を有しており、溶融スラグが800℃以下の温度まで空冷されうる場合には加熱バーナ(図示しない)により溶融スラグを適切に加熱している。結晶化により機械的強度が高まるので、結晶化スラグを路板材として使用することができる。また、結晶化コンベヤ61を排除して、溶融炉21内の溶融スラグを水槽(図示しない)内に投入することにより水砕スラグを形成してもよい。この場合には、水砕スラグをセメント、砂の代替品、人工骨材または生分解性の骨誘導再生膜に使用することができる。さらに結晶化コンベヤ61を排除して、溶融炉21内の溶融スラグをコンベヤ(図示しない)上で1時間から4時間、好ましくは2時間程度放冷し、除冷(または空冷)スラグを形成してもよい。この場合には除冷(または空冷)スラグを石垣裏込砕石、すなわち、ぐり石として利用することができる。
【0019】
また溶融炉21の上方に位置する二次燃焼室22において燃焼した肉骨粉および焼却灰からの排ガスは約900℃の温度でガス冷却塔51まで排出される。ガス冷却塔51内においては冷却水源53からの冷却水が供給されるので、排ガスの温度は約200℃まで低下する。次いで排ガスは集塵部52において集塵された後にファン54により煙突19まで供給され、この煙突19から排出される。当然のことながら、集塵部52により集塵された粉塵を燃焼炉21内に再び供給するようにしてもよい。
【0020】
図1に示されるように本発明に基づく溶融システム10は酸素を発生させる酸素製造部41および/または空気ファン42を含みうる。これら酸素製造部41および空気ファン42はそれぞれ弁を含む圧力調節部43、44を介して溶融炉21および二次燃焼室22に接続されており、酸素を溶融炉21内に供給することができる。これら酸素製造部41および空気ファン42は演算部40、例えばコンピュータに接続されており、さらに演算部40は肉骨粉ホッパ30に接続された供給量制御部32に接続されている。従って、本発明においては溶融炉21内に供給される肉骨粉の量に応じて酸素を溶融炉内に供給でき、これにより溶融炉21内の温度を容易かつ迅速に調整することができる。同様に二次燃焼室に空気を供給するための空気ファン27も溶融炉21に接続されている。さらに図1に示されるように溶融炉21内の温度を計測する温度計を含む温度指示制御部28も演算部40に接続されている。従って、溶融炉21内の温度に応じても肉骨粉ホッパ30からの肉骨粉供給量を調節することができる。また監視カメラ23、例えば赤外カメラを設置することにより、溶融炉内の溶融状態を監視できるようにしても良い。
【0021】
さらに図1に示されるように、二次燃焼室22から流出した排ガスの圧力を測定する圧力計を含む圧力指示制御部57が、集塵部52とファン54との間に位置決めされた弁を含む圧力調節部58に接続されている。従って圧力指示制御部57により検出された圧力に応じて圧力調節部58により弁を調節することができる。さらに集塵部52内に進入する排ガスの温度を計測する温度計を含む温度指示制御部55がガス冷却塔51と集塵部52との間に位置決めされている。この温度指示制御部55は冷却水源53の弁を含む圧力調節部56に接続されており、温度指示制御部55の温度に応じて冷却水の流量を調整できる。
【0022】
前述したように肉骨粉内にはCaOが比較的多量(42.2%)に含まれている。本発明に基づく溶融システム10においてはCaOは塩基度調整剤としての役目を果たすので塩基度調整設備のうちの少なくとも石灰ホッパ(石灰供給部)を排除できる。さらに、本発明に基づく溶融システム10においては、肉骨粉を溶融炉21内に単に追加投入することにより、溶融炉21内の温度を容易に高めることができるので、熱回収設備を設ける必要はない。すなわち予熱されていない空気が溶融炉21または二次燃焼室22内に供給されて溶融炉21または二次燃焼室22内の温度が低下した場合であっても、燃料としての肉骨粉を追加投入すれば温度を容易に高めることができる。従って、本発明によって、比較的小型の溶融システムを提供でき、結果的に溶融システム10全体の制御を簡易にすることができる。
【0024】
当然のことながら、本発明において重油を適宜使用することにより肉骨粉および/または焼却灰の溶融を促進すること、肉骨粉を焼却炉11において焼却灰とした後に溶融炉21内に供給すること、および肉骨粉以外のバイオマス燃料、例えば牛脂および骨油などをさらに使用することが本発明の範囲に含まれるのは明らかである。
【0025】
【発明の効果】
各請求項に記載の発明によれば、汚泥焼却灰を溶融する溶融炉内において肉骨粉を高温で処理できるので、肉骨粉内に含まれうるプリオンに基づく狂牛病の感染力を確実に消滅させられ、結果的に肉骨粉を有効利用可能な状態にすることができるという共通の効果を奏しうる。
【0026】
さらに、請求項1に記載の発明によれば、下水汚泥等の汚泥を焼却炉で焼却した汚泥焼却灰を溶融処理する際に、化石燃料を使用する必要がなくなり、温室効果ガスの量を大幅に低減すると共に、バイオマス燃料、すなわち肉骨粉内に含まれうるプリオンに基づく狂牛病の感染力を消滅可能でかつ比較的小型の溶融システムを提供することができるという効果を奏しうる。
さらに、請求項2に記載の発明によれば、溶融炉内の温度を容易かつ迅速に調整することができるという効果を奏しうる。
さらに、請求項3に記載の発明によれば、バイオマス燃料、すなわち肉骨粉からの溶融スラグを結晶化スラグまたは水砕スラグとして有効利用することができるという効果を奏しうる。
さらに、請求項4に記載の発明によれば、排ガス冷却部により冷却された排ガスを集塵部において集塵することにより清浄化された排ガスを排出することができるという効果を奏しうる。
また、請求項5から請求項7のいずれかに記載の発明によれば、請求項1の発明の効果を奏しつつ、人工ぐり石を製造できる。
【図面の簡単な説明】
【図1】本発明に基づく溶融システムの略図である。
【図2】(a)従来技術における灰溶融システムの略図である。
(b)従来技術の肉骨粉を処理する状態を示す略図である。
【符号の説明】
10…溶融システム
11…焼却炉
12…廃熱回収設備
13…排ガス処理設備
14…灰ホッパ
15…灰供給部
18…ファン
19…煙突
21…溶融炉
22…二次燃焼室
23…監視カメラ
24…供給口
25…供給口
27…空気ファン
28…温度指示制御部
30…肉骨粉ホッパ
31…肉骨粉供給部
32…供給量制御部
40…演算部
41…酸素製造部
42…空気ファン
43…圧力調節部
51…ガス冷却塔
52…集塵部
53…冷却水源
54…ファン
55…温度指示制御部
56…圧力調節部
57…圧力指示制御部
58…圧力調節部
61…結晶化コンベヤ
[0001]
BACKGROUND OF THE INVENTION
The present invention, sludge incineration ash, for example, to melt systems, such as sewage sludge incineration ash.
[0002]
[Prior art]
When processing generally sewage sludge after generating the sludge incineration ash by incineration of sewage sludge in an incinerator, and melting the sludge ash in the ash melting furnace. FIG. 2 (a) is a schematic diagram of an ash melting system in the prior art as shown in Japanese Patent Application No. 11-116196, for example. As shown in FIG. 2 (a), in the ash melting system 100 of the prior art, the sludge incinerated ash charged into the ash hopper 110 is supplied to the melting furnace 120 by the ash feeder 111. Since sludge incineration ash obtained from sewage sludge contains almost no combustible material, fossil fuel, for example, heavy oil A, is supplied into the melting furnace 120. Sludge incineration ash can be melted at about 1400 ° C. to about 1600 ° C. by feeding the heavy oil A. The exhaust gas generated from the melting furnace 120 passes through the exhaust gas treatment facility 170 and is discharged from the chimney 180 by a fan. Further, the molten slag is crystallized in the crystallization conveyor 190 to be crystallized slag.
[0003]
In the ash melting system 100 of the prior art, in order to reduce the consumption of fossil fuel, for example, heavy oil A, the basicity adjusting equipment 150 is installed to lower the melting point. The basicity adjusting equipment 150 includes a lime hopper 151 and a silica sand hopper 152, and the lime (CaO) from the lime hopper 151 and the silica sand (SiO 2 ) from the silica hopper 152 are used as a basicity adjusting agent, that is, a melting aid. 120. It is preferable to supply CaO and SiO 2 so that the basicity (CaO / SiO 2 ) is about 1, whereby the temperature in the melting furnace 120 can be satisfactorily lowered. Therefore, the fossil fuel consumption can be reduced as a result. The prior art ash melting system 100 also has a heat recovery facility 130. In the heat recovery facility 130, air is preheated by the heat of the exhaust gas from the melting furnace 120 (about 900 ° C.) and then supplied into the melting furnace 120. Thereby, since the preheated air is supplied into the melting furnace 120, thermal efficiency can be improved.
[0004]
On the other hand, since meat-and-bone meal may contain prions that cause mad cow disease, meat-and-bone meal is processed as shown in FIG. The meat and bone meal is fed into the incinerator 200 with fossil fuels such as heavy oil and / or sewage sludge and heated at about 850 ° C. Next, after the temperature is reduced to about 250 ° C. in the waste heat recovery facility 210, the exhaust gas treatment facility 220 separates the exhaust gas and the incinerated ash. As shown in FIG. 2B, the exhaust gas is discharged from the chimney 230, and the incineration ash is disposed of in landfill.
[0005]
[Problems to be solved by the invention]
However, in the prior art ash melting system as shown in Japanese Patent Application No. 11-116196, for example, fossil fuel is required, so that the operating cost is increased, and the greenhouse gas based on the combustion of fossil fuel, that is, CO 2 is reduced. There was a problem of being discharged in large quantities. Further, in the heat recovery facility, the molten fly ash that can be discharged from the ash melting system is adherent, so the molten fly ash may block the heat recovery facility. Furthermore, since CaO and SiO 2 are introduced into the ash melting furnace from the basicity adjusting equipment, the amount of waste may be significantly larger than the amount of incinerated ash to be charged. When adjusting the melting point, a time lag occurs, so it is difficult to adjust the melting point quickly. Furthermore, the installation of these heat recovery equipment and basicity adjustment equipment increases the size of the entire ash melting system and complicates the control of the entire ash melting system due to these controls.
[0006]
On the other hand, when incinerating meat-and-bone meal, the meat-and-bone meal may float in the incinerator. In such a case, prions that can be contained in the meat-and-bone meal cannot be completely killed. In recent studies, it has been reported that meat-and-bone meal must be heated at a high temperature of 1000 ° C. or higher in order to eliminate the infectivity of mad cow disease based on prions. It is difficult to form in an incinerator. Furthermore, although the incinerated meat-and-bone meal is usually simply landfilled, it is preferable to make the meat-and-bone meal available for other uses after extinction of the mad cow disease.
[0007]
The present invention has been made in view of such circumstances, can significantly reduce the amount of greenhouse gases, and can eliminate the infectious power of mad cow disease based on prions that can be contained in meat-and-bone meal, and relatively An object of the present invention is to provide a small melting system for melting sludge incineration ash .
[0008]
[Means for Solving the Problems]
According to the invention described in claim 1, a melting furnace for melting sludge incineration ash and an incinerator for incineration of sludge are provided separately from the melting furnace, and sludge incineration ash generated in the incinerator is contained in the melting furnace. An incinerated ash supply unit for supplying the biomass fuel, and a meat and bone powder supply unit as a biomass fuel supply unit for supplying meat and bone powder as biomass fuel into the melting furnace, and the biomass fuel from the biomass fuel supply unit As a fuel for the melting furnace, the sludge incineration ash is melted, and the meat-and-bone meal is heated to 1000 ° C. or higher in the melting furnace, so that A melting system is provided that is designed to extinguish the infectivity of cattle disease.
[0009]
That is, the invention according to claim 1 can treat meat and bone meal at a high temperature in a melting furnace for melting sludge incineration ash, so that the infectivity of mad cow disease based on prions that can be contained in meat and bone meal is surely eliminated. As a result, the meat-and-bone meal can be effectively used. The prion in the present specification is a kind of protein derived from ruminants and the like, that is, proteins derived from ruminants such as cows, deer, sheep and giraffes and mink.
Also, sludge incineration ash and the sludge, such as sewage sludge incinerated in incinerators hardly contains combustible material, it is necessary to use a large amount of heavy oil or the like fossil fuels upon melt processing, meat and bone meal in the melting furnace in the present invention Is used as fuel, so that it is not necessary to use fossil fuels such as heavy oil. Biomass fuels, since for example CO 2 produced during the combustion of the MBM is not counted in the greenhouse gas, it is possible to result in greatly reducing the amount of greenhouse gases. In addition, biomass fuel, such as CaO contained in a large amount in meat and bone meal, serves as a basicity adjuster that has been added to reduce the melting point of sludge combustion ash and reduce fossil fuel consumption. At least the lime hopper of the equipment can be eliminated, and when the temperature in the melting furnace is raised, it is sufficient to simply add biomass fuel as a fuel into the melting furnace, so that the heat recovery equipment can be eliminated. Therefore, since meat-and-bone meal is used as biomass fuel, the infectivity of mad cow disease based on prions that can be contained in meat-and-bone meal can be eliminated and a relatively compact melting system can be provided.
[0012]
According to invention of Claim 2 , the oxygen supply part which supplies oxygen into the said melting furnace is further comprised.
That is, according to the invention described in claim 2 , since oxygen can be supplied into the melting furnace according to the amount of biomass fuel, for example, meat and bone meal supplied into the melting furnace, the temperature in the melting furnace is adjusted easily and quickly. be able to. The oxygen supply unit may be a general fan or an oxygen production apparatus that can generate oxygen.
[0013]
According to the third aspect of the present invention, it further comprises a crystallization conveyor for crystallizing the molten slag generated in the melting furnace or a water tank for converting the molten slag into granulated slag.
That is, according to the invention of claim 3 , biomass fuel, that is , molten slag from meat-and-bone meal can be effectively used as crystallization slag or granulated slag. When the crystallization conveyor is employed, the degree of crystallization can be increased, so that the mechanical strength of the crystallization slag is increased, and it can be used as a road plate material. In the case of adopting a water tank, the granulated slag can be used for cement, a substitute for sand, an artificial aggregate or a biodegradable osteoinductive regenerated membrane.
[0014]
According to the fourth aspect of the present invention, the exhaust gas cooling unit and the dust collection unit for cooling the exhaust gas from the melting furnace are further provided.
That is, according to the fourth aspect of the present invention, the exhaust gas cooled by the exhaust gas cooling unit is collected in the dust collection unit, and the purified exhaust gas can be discharged. It is preferable that the dust collected by the dust collector is supplied again into the combustion furnace.
According to invention of Claim 5, using the melting system of Claim 1, the 1st process of supplying sludge incineration ash to a melting furnace, and making the said sludge incineration ash into molten slag in the said melting furnace A second step, a third step of transferring the molten slag onto a conveyor, and a fourth step of allowing the molten slag to cool on the conveyor to form a slow-cooled slag or an air-cooled slag that can be used as a quarry. A method for producing an artificial calcite is provided.
According to invention of Claim 6, using the melting system of Claim 1, the 1st process which supplies biomass fuel to a melting furnace, and the 2nd which makes the said biomass fuel into molten slag in the said melting furnace A step, a third step of transferring the molten slag onto a conveyor, and a fourth step of allowing the molten slag to cool on the conveyor to form a slow-cooled slag or an air-cooled slag, which can be used as a quarry stone. Provided is a method for manufacturing an artificial calcite.
According to the invention described in claim 7, using the melting system according to claim 1, a first step of supplying biomass fuel and sludge incineration ash to the melting furnace, and burning the biomass fuel in the melting furnace. A second step of melting the biomass fuel and the sludge incineration ash to form molten slag; a third step of transferring the molten slag onto a conveyor; and allowing the molten slag to cool on the conveyor and gradually cooling the slag Alternatively, there is provided a method for producing an artificial calcite, which includes a fourth step of forming an air-cooled slag and making it usable as a calcite.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following drawings, the same members are denoted by the same reference numerals. In order to facilitate understanding, the scales of these drawings are appropriately changed.
FIG. 1 is a schematic diagram of a melting system according to the present invention. As shown in FIG. 1, the melting system 10 has a melting furnace 21 having a secondary combustion chamber 22. The melting system 10 further includes a meat-and-bone meal hopper 30, and the meat-and-bone meal is charged into the meat-and-bone meal hopper 30 as indicated by the arrows in FIG. 1. The meat-and-bone meal in the present application may contain proteins derived from ruminants and the like, that is, proteins derived from ruminants such as cows, deer, sheep and giraffes and mink, such as prions. The meat-and-bone meal in the meat-and-bone meal hopper 30 is passed through the supply port 24 of the melting furnace 21 by the meat-and-bone meal supply unit 31 and supplied into the melting furnace 21.
[0016]
On the other hand, as shown in FIG. 1, sewage sludge is incinerated at about 850 ° C. in the incinerator 11. Next, after the temperature is reduced to about 250 ° C. in the waste heat recovery facility 12, the exhaust gas and the incinerated ash are separated in the exhaust gas treatment facility 13 including the dust collection portion. Here, it is preferable to install a waste heat boiler as the waste heat recovery facility 12. By installing the waste heat boiler, waste heat can be recovered from the molten exhaust gas. The exhaust gas is discharged from the chimney 19 by the fan 18. The incineration ash is put into the ash hopper 14, and then the incineration ash is passed through the supply port 25 of the melting furnace 21 by the ash supply unit 15 and supplied into the melting furnace 21.
[0017]
The amount of heat per kg of incinerated ash supplied into the melting furnace 21 is almost 0 J, whereas the amount of heat per kg of meat and bone powder is about 20000 kJ (about 4800 kcal) or more, and the combustible amount in the meat and bone powder is about 86. 0.7%. Therefore, meat and bone meal can be used as fuel instead of fossil fuel, for example, heavy oil, and incineration ash can be melted. For example, when the weight of the meat-and-bone powder put into the melting furnace 21 is more than half of the weight of the incinerated ash, it is burned without using fossil fuel. In the melting system 10 according to the present invention, it is not necessary to use fossil fuel, such as heavy oil, because meat and bone meal can be used as fuel. Further, since CO 2 generated during combustion of biomass fuel, for example, meat-and-bone meal is not included in the greenhouse gas, the amount of the greenhouse gas can be greatly reduced as a result. The MBM contains primarily and about 42.2% of CaO and 38.0% of P 2 O 5 (as oxide). Since the temperature in the melting furnace 21 is about 1000 ° C. or higher, for example, about 1400 ° C. to about 1800 ° C., the infectivity of mad cow disease based on prions that can be contained in meat-and-bone meal can be eliminated. Moreover, it is preferable that the temperature in the melting furnace 21 is 1670 degreeC or more. In this case, since the temperature in the melting furnace 21 becomes higher than the melting point of calcium phosphate that can be synthesized from Ca and P, the meat-and-bone meal can be reliably melted.
[0018]
As shown in FIG. 1, the incinerated ash and meat-and-bone meal that have become molten slag in the melting furnace 21 are conveyed onto the crystallization conveyor 61 and crystallized. In order to crystallize the molten slag, it is necessary to maintain the molten slag at 800 ° C. or higher. The crystallization conveyor 61 has a heating burner (not shown), and when the molten slag can be air-cooled to a temperature of 800 ° C. or lower, the molten slag is appropriately heated by the heating burner (not shown). Since mechanical strength increases by crystallization, crystallization slag can be used as a road board material. Alternatively, the granulated slag may be formed by removing the crystallization conveyor 61 and putting the molten slag in the melting furnace 21 into a water tank (not shown). In this case, the granulated slag can be used for cement, sand substitute, artificial aggregate or biodegradable osteoinductive regenerated membrane. Further, the crystallization conveyor 61 is excluded, and the molten slag in the melting furnace 21 is allowed to cool on the conveyor (not shown) for 1 to 4 hours, preferably about 2 hours, to form a cooled (or air-cooled) slag. May be. In this case, the cold-removal (or air-cooled) slag can be used as a stone wall-backed crushed stone, that is, a quarry stone.
[0019]
Further, flue and bone powder combusted in the secondary combustion chamber 22 located above the melting furnace 21 and exhaust gas from the incineration ash are discharged to the gas cooling tower 51 at a temperature of about 900 ° C. Since the cooling water from the cooling water source 53 is supplied in the gas cooling tower 51, the temperature of the exhaust gas is lowered to about 200 ° C. Next, the exhaust gas is collected in the dust collecting section 52, supplied to the chimney 19 by the fan 54, and discharged from the chimney 19. As a matter of course, the dust collected by the dust collector 52 may be supplied again into the combustion furnace 21.
[0020]
As shown in FIG. 1, the melting system 10 according to the present invention may include an oxygen production unit 41 and / or an air fan 42 for generating oxygen. The oxygen production unit 41 and the air fan 42 are connected to the melting furnace 21 and the secondary combustion chamber 22 via pressure control units 43 and 44 including valves, respectively, and can supply oxygen into the melting furnace 21. . The oxygen production unit 41 and the air fan 42 are connected to a calculation unit 40, for example, a computer, and the calculation unit 40 is further connected to a supply amount control unit 32 connected to the meat-and-bone meal hopper 30. Therefore, in the present invention, oxygen can be supplied into the melting furnace in accordance with the amount of meat-and-bone meal supplied into the melting furnace 21, whereby the temperature in the melting furnace 21 can be adjusted easily and quickly. Similarly, an air fan 27 for supplying air to the secondary combustion chamber is also connected to the melting furnace 21. Further, as shown in FIG. 1, a temperature instruction control unit 28 including a thermometer for measuring the temperature in the melting furnace 21 is also connected to the calculation unit 40. Therefore, the amount of meat-and-bone meal supplied from the meat-and-bone meal hopper 30 can be adjusted according to the temperature in the melting furnace 21. Moreover, you may enable it to monitor the melting state in a melting furnace by installing the monitoring camera 23, for example, an infrared camera.
[0021]
Further, as shown in FIG. 1, the pressure indication control unit 57 including a pressure gauge for measuring the pressure of the exhaust gas flowing out from the secondary combustion chamber 22 has a valve positioned between the dust collection unit 52 and the fan 54. It is connected to the pressure adjustment part 58 including. Accordingly, the valve can be adjusted by the pressure adjusting unit 58 in accordance with the pressure detected by the pressure instruction control unit 57. Further, a temperature instruction control unit 55 including a thermometer for measuring the temperature of exhaust gas entering the dust collection unit 52 is positioned between the gas cooling tower 51 and the dust collection unit 52. The temperature instruction control unit 55 is connected to a pressure adjustment unit 56 including a valve of the cooling water source 53, and can adjust the flow rate of the cooling water according to the temperature of the temperature instruction control unit 55.
[0022]
As described above, the meat-and-bone meal contains a relatively large amount of CaO (42.2%). In the melting system 10 according to the present invention, CaO serves as a basicity adjusting agent, so that at least the lime hopper (lime supply part) in the basicity adjusting equipment can be eliminated. Furthermore, in the melting system 10 according to the present invention, the temperature in the melting furnace 21 can be easily increased by simply adding the meat-and-bone meal into the melting furnace 21, so there is no need to provide a heat recovery facility. . That is, even when air that has not been preheated is supplied into the melting furnace 21 or the secondary combustion chamber 22 and the temperature in the melting furnace 21 or the secondary combustion chamber 22 is lowered, additional meat-and-bone meal as fuel is added. Then, the temperature can be easily increased. Therefore, according to the present invention, a relatively small melting system can be provided, and as a result, control of the entire melting system 10 can be simplified.
[0024]
Naturally, by appropriately using heavy oil in the present invention, the melting of meat-and-bone meal and / or incineration ash is promoted, the meat-and-bone meal is converted into incineration ash in the incinerator 11, and then supplied into the melting furnace 21. It is clear that further use of biomass fuels other than meat and bone meal, such as beef tallow and bone oil, is within the scope of the present invention.
[0025]
【The invention's effect】
According to the invention described in each claim, since meat-and-bone meal can be processed at a high temperature in a melting furnace for melting sludge incineration ash, the infectivity of mad cow disease based on prions that can be contained in meat-and-bone meal is surely eliminated. As a result, it is possible to achieve a common effect that meat-and-bone meal can be effectively used.
[0026]
Further, according to the invention described in claim 1, the sludge such as sewage sludge when melt processing the sludge incineration ash was burned in an incinerator, it is not necessary to use fossil fuels, the amount of greenhouse gases significantly In addition, it is possible to provide a relatively small melting system that can eliminate the infectivity of mad cow disease based on biomass fuel, that is, prions that can be contained in meat-and-bone meal.
Furthermore, according to the second aspect of the present invention, the temperature in the melting furnace can be adjusted easily and quickly.
Furthermore, according to invention of Claim 3, the effect that biomass fuel, ie, the molten slag from meat-and-bone meal, can be effectively utilized as crystallization slag or granulated slag can be produced.
Furthermore, according to the fourth aspect of the invention, it is possible to produce an effect that exhaust gas purified by the exhaust gas cooling unit can be discharged by collecting the exhaust gas in the dust collection unit.
Moreover, according to the invention in any one of Claims 5-7, the artificial calcite can be manufactured, producing the effect of the invention in Claim 1.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a melting system according to the present invention.
FIG. 2 (a) is a schematic diagram of an ash melting system in the prior art.
(B) It is the schematic which shows the state which processes the meat-and-bone meal of a prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Melting system 11 ... Incinerator 12 ... Waste heat recovery equipment 13 ... Exhaust gas processing equipment 14 ... Ash hopper 15 ... Ash supply part 18 ... Fan 19 ... Chimney 21 ... Melting furnace 22 ... Secondary combustion chamber 23 ... Monitoring camera 24 ... Supply port 25 ... Supply port 27 ... Air fan 28 ... Temperature instruction control unit 30 ... Meat and bone meal hopper 31 ... Meat and bone meal supply unit 32 ... Supply amount control unit 40 ... Calculation unit 41 ... Oxygen production unit 42 ... Air fan 43 ... Pressure adjustment Unit 51 ... Gas cooling tower 52 ... Dust collecting part 53 ... Cooling water source 54 ... Fan 55 ... Temperature instruction control part 56 ... Pressure adjustment part 57 ... Pressure instruction control part 58 ... Pressure adjustment part 61 ... Crystallization conveyor

Claims (7)

汚泥焼却灰を溶融する溶融炉と、汚泥を焼却する焼却炉を前記溶融炉とは別途に備えて同焼却炉で生ずる汚泥焼却灰を前記溶融炉内に供給するための焼却灰供給部と、バイオマス燃料として肉骨粉を前記溶融炉内に供給するためのバイオマス燃料供給部としての肉骨粉供給部とを具備し、該バイオマス燃料供給部からのバイオマス燃料を前記溶融炉の燃料として使用することにより前記汚泥焼却灰を溶融するとともに、前記肉骨粉を前記溶融炉内において1000℃以上に加熱することにより、前記肉骨粉内に含まれうるプリオンに基づく狂牛病の感染力を消滅させるようにした溶融システム。A melting furnace for melting the sludge incineration ash, and the ash supply unit for supplying sludge incineration ash resulting incinerators for incinerating sludge comprising separately from said melting furnace at the same incinerator to the melting furnace, A meat-and-bone meal supply unit as a biomass-fuel supply unit for supplying meat-and-bone meal as biomass fuel into the melting furnace, and using the biomass fuel from the biomass-fuel supply unit as fuel for the melting furnace In addition to melting the sludge incineration ash, the meat-and-bone meal is heated to 1000 ° C. or higher in the melting furnace, thereby eliminating the infectious power of mad cow disease based on prions that can be contained in the meat-and-bone meal. Melting system. さらに、前記溶融炉内に酸素を供給する酸素供給部を具備する請求項1に記載の溶融システム。  The melting system according to claim 1, further comprising an oxygen supply unit that supplies oxygen into the melting furnace. さらに、前記溶融炉において生じる溶融スラグを結晶化するための結晶化コンベヤまたは前記溶融スラグを水砕スラグにするための水槽を具備する請求項1または請求項2に記載の溶融システム。  The melting system according to claim 1 or 2, further comprising a crystallization conveyor for crystallizing the molten slag generated in the melting furnace or a water tank for converting the molten slag into granulated slag. さらに、前記溶融炉からの排ガスを冷却するための排ガス冷却部および集塵部を具備する請求項1ないし請求項3のいずれか一項に記載の溶融システム。  The melting system according to any one of claims 1 to 3, further comprising an exhaust gas cooling unit and a dust collecting unit for cooling the exhaust gas from the melting furnace. 請求項1に記載の溶融システムを用い、
汚泥焼却灰を溶融炉に供給する第一工程と、
前記溶融炉内において前記汚泥焼却灰を溶融スラグとなす第二工程と、
前記溶融スラグをコンベヤ上に移送する第三工程と、
前記溶融スラグをコンベヤ上で放冷して徐冷スラグまたは空冷スラグを形成し、ぐり石として利用可能とする第四工程とを備えた、人工ぐり石の製造方法。
Using the melting system of claim 1,
A first step of supplying sludge incineration ash to the melting furnace;
A second step of making the sludge incineration ash into molten slag in the melting furnace;
A third step of transferring the molten slag onto a conveyor;
A method for producing an artificial calcite, comprising a fourth step of allowing the molten slag to cool on a conveyor to form a slow-cooled slag or an air-cooled slag and making it usable as a quarrystone.
請求項1に記載の溶融システムを用い、
バイオマス燃料を溶融炉に供給する第一工程と、
前記溶融炉内において前記バイオマス燃料を溶融スラグとなす第二工程と、
前記溶融スラグをコンベヤ上に移送する第三工程と、
前記溶融スラグをコンベヤ上で放冷して徐冷スラグまたは空冷スラグを形成し、ぐり石として利用可能とする第四工程とを備えた、人工ぐり石の製造方法。
Using the melting system of claim 1,
A first step of supplying biomass fuel to the melting furnace;
A second step of making the biomass fuel into molten slag in the melting furnace;
A third step of transferring the molten slag onto a conveyor;
A method for producing an artificial calcite, comprising a fourth step of allowing the molten slag to cool on a conveyor to form a slow-cooled slag or an air-cooled slag and making it usable as a quarrystone.
請求項1に記載の溶融システムを用い、
バイオマス燃料と汚泥焼却灰を溶融炉に供給する第一工程と、
前記溶融炉内において前記バイオマス燃料を燃焼させ前記バイオマス燃料と前記汚泥焼却灰とを溶融して溶融スラグとなす第二工程と、
前記溶融スラグをコンベヤ上に移送する第三工程と、
前記溶融スラグをコンベヤ上で放冷して徐冷スラグまたは空冷スラグを形成し、ぐり石として利用可能とする第四工程とを備えた、人工ぐり石の製造方法。
Using the melting system of claim 1,
A first step of supplying biomass fuel and sludge incineration ash to a melting furnace;
A second step of burning the biomass fuel in the melting furnace to melt the biomass fuel and the sludge incineration ash to form molten slag;
A third step of transferring the molten slag onto a conveyor;
A method for producing an artificial calcite, comprising a fourth step of allowing the molten slag to cool on a conveyor to form a slow-cooled slag or an air-cooled slag and making it usable as a quarrystone.
JP2002366825A 2002-12-18 2002-12-18 Melting system and method for producing artificial calcite Expired - Lifetime JP3917935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366825A JP3917935B2 (en) 2002-12-18 2002-12-18 Melting system and method for producing artificial calcite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366825A JP3917935B2 (en) 2002-12-18 2002-12-18 Melting system and method for producing artificial calcite

Publications (3)

Publication Number Publication Date
JP2004195361A JP2004195361A (en) 2004-07-15
JP2004195361A5 JP2004195361A5 (en) 2005-10-27
JP3917935B2 true JP3917935B2 (en) 2007-05-23

Family

ID=32763909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366825A Expired - Lifetime JP3917935B2 (en) 2002-12-18 2002-12-18 Melting system and method for producing artificial calcite

Country Status (1)

Country Link
JP (1) JP3917935B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2534471T3 (en) 2006-10-27 2015-04-23 E.I. Du Pont De Nemours And Company Prion Decontamination Method

Also Published As

Publication number Publication date
JP2004195361A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
JP2001153347A (en) Waste heat recovery boiler and facility for treating waste
JP3917935B2 (en) Melting system and method for producing artificial calcite
JP2002276925A (en) Method for treating exhaust gas of gasifying furnace and exhaust gas treating facility
JP2007127355A (en) Rubbish incinerating/melting method and device therefor
JP2001317715A (en) Method and device for incineration disposal of solid waste
JP3027694B2 (en) Combustion control method for waste melting furnace
JP3969846B2 (en) Pyrolysis reactor
JPH08110021A (en) Produced gas processing apparatus for waste melting furnace
JP2008000655A (en) Method for preventing elution of heavy metals in collected dust ash
JP2003254516A (en) Garbage burning power generation equipment
JP4240498B2 (en) Method for producing high quality aggregate from incinerated ash generated from circulating fluidized furnace
JPH07138054A (en) Method for treating dioxin-containing dust treating device therefor
JP3993802B2 (en) Method of processing dewatered sludge and ash
JP2004278819A (en) Method for efficiently recovering refuse waste heat
CN115597064A (en) Low-cost garbage fly ash melting treatment process
JP2006105431A (en) Stoker type incinerator
JP4336743B2 (en) High-temperature smelting reduction gasification method for waste livestock products and their discharge
JPH11118138A (en) Melting treatment equipment
JPH11248124A (en) Cooler and cooling method for exhaust gas
JP2000171019A (en) Refuse processing system
JP2004195361A5 (en)
JP2962483B2 (en) Waste treatment method
KR20060017963A (en) The second gas feedback system for the waste incinerating apparatus
JP2005114255A (en) Waste treatment system and waste treatment method
JP2003340496A (en) Drying and carbonization furnace and multi-kind recycled product manufacturing system provided with drying and carbonation furnace

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3917935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term