JP3917842B2 - How to treat CFCs - Google Patents

How to treat CFCs Download PDF

Info

Publication number
JP3917842B2
JP3917842B2 JP2001334542A JP2001334542A JP3917842B2 JP 3917842 B2 JP3917842 B2 JP 3917842B2 JP 2001334542 A JP2001334542 A JP 2001334542A JP 2001334542 A JP2001334542 A JP 2001334542A JP 3917842 B2 JP3917842 B2 JP 3917842B2
Authority
JP
Japan
Prior art keywords
converter
wet dust
chlorofluorocarbon
dust collection
flon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001334542A
Other languages
Japanese (ja)
Other versions
JP2003138310A (en
Inventor
一雄 大貫
忠司 真鍋
安幸 中尾
隆史 辻
隆彦 大黒
渉 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001334542A priority Critical patent/JP3917842B2/en
Publication of JP2003138310A publication Critical patent/JP2003138310A/en
Application granted granted Critical
Publication of JP3917842B2 publication Critical patent/JP3917842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Chimneys And Flues (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フロンの無害化処理方法に関するものである。
【0002】
【従来の技術】
フロンは主に炭素・フッ素・塩素から構成される物質であり、一般に冷蔵庫の冷媒や発泡ウレタンに代表される断熱材の起泡材として使用されている。
【0003】
フロンの処理方法はこれまでに様々な方法が報告されている。特に、焼却法が一般的であり、ロータリーキルン方式では約900℃で2秒間で分解すること、ダイオキシン類再合成を回避するため、850℃のガスを冷却塔で70℃へ急冷することが推奨されている。
特許公報においても、例えば、特開平11−6612号公報では、フロンの分解システムとして、産業廃棄物処理設備を利用して、上記と同様な分解と冷却の原理でフロンを無害化する方法が開示されている。
【0004】
【発明が解決しようとする課題】
本発明は、転炉を用いたフロンの無害化の方法を提供すること、ならびに、この無害化の方法を利用することで転炉操業自体の操業コスト削減や耐火物寿命延長が図れる等、格別の効果について提供するものである。
【0005】
【課題を解決するための手段】
本発明の骨子は以下の通りである。
(1) 湿式集塵を有する転炉製鋼法において、転炉の冷却用ガスとしてフロンを当該転炉内に供給することで、当該フロンを分解し湿式集塵することを特徴とするフロンの処理方法。
(2) 湿式集塵を有する転炉製鋼法において、転炉の底吹き羽口冷却用のガスとしてフロンを当該転炉内に供給することで、当該フロンを分解し湿式集塵することを特徴とするフロンの処理方法。
(3) 湿式集塵を有する転炉製鋼法において、転炉の炉内二次燃焼帯の冷却用ガスとしてフロンを当該転炉内に供給することで、当該フロンを分解し湿式集塵することを特徴とするフロンの処理方法。
(4) 湿式集塵を有する転炉製鋼法において、転炉の溶鉄排出口周辺近傍の耐火物保護用ガスとしてフロンを当該転炉内に供給することで、当該フロンを分解し湿式集塵することを特徴とするフロンの処理方法。
(5) 湿式集塵を有する転炉製鋼法において、転炉から発生する排ガスの顕熱を回収する改質用ガスとしてフロンを当該転炉内に供給することで、当該フロンを分解し湿式集塵することを特徴とするフロンの処理方法。
【0006】
【発明の実施の形態】
本願発明におけるフロンとは、一般にオゾン層を破壊すると言われるフロンガス、具体的には、特定フロンといわれる、フロン11(CCl3F)、フロン12(CCl22)、フロン113(C2Cl33)、フロン22(CHClF2)等のことをいうが、これらに限定されるものではない。このようにフロンは主に炭素・フッ素・塩素から構成される物質であり、一般に冷蔵庫の冷媒(冷媒フロン)や発泡ウレタンに代表される断熱材の起泡材(断熱フロン)として使用されており、これらも本願発明範囲である。
【0007】
通常の転炉設備の概要を図1に示す。底吹きノズル1が設置され、ノズルから酸素、炭酸ガス等の撹拌目的あるいは精錬目的のガスが吹き込まれる。特に、酸素を吹き込むときには、冷却用ガスとして高価なLPGを使用することが一般的である。転炉2内では主ランス3から純酸素を溶鉄面に吹き付け脱炭精錬等を実施する。この際に発生するガスはダストとともにOG方式の湿式集塵装置4にて回収される。
【0008】
炉内では二次燃焼が起こっており、この度合いが大きいと転炉内耐火物、とくに傾斜部のレンガが損耗する。また、溶鉄の排出口(出鋼口)5の耐火物も損耗しやすい。
【0009】
転炉から発生する排ガスは1000℃を超えており、OG設備の熱負荷はもちろんのこと、熱効率上でも排ガス顕熱は欠点となっている。
【0010】
本発明の実施の形態の一例を示すプロセスフローを図2から図5に示す。
【0011】
本願発明者らは、上記の図1に示す転炉を用いて、フロンを用いる実験を行ったところ、転炉炉内が1000℃を超える高温で、かつ、湿式集塵方式であることから、フロンは確実に分解され、かつダイオキシン類の生成が無いことが判明した。
【0012】
このフロンを転炉の底吹き羽口冷却用のガスの代替として使用することが可能で、通常使用しているLPGよりも分解熱が3.5倍と大きいことから、LPGに比べ少量の使用で済み、かつ、高価なLPGの購入費用も削減できるという特徴がある。
【0013】
また、フロンを転炉の炉内二次燃焼帯の冷却用ガスとして、サブランス6や炉口部に供給すれば、分解熱とCO2+C=2COの反応にともなう吸熱によって、炉内二次燃焼帯の雰囲気温度を低減することが出来た。この吸熱作用によって、炉口近傍の炉内耐火物寿命の延長にも寄与する。
【0014】
さらに、フロンを転炉の溶鉄排出口5の周辺近傍の耐火物保護用ガスとして用いることも可能である。特に、転炉を利用した含鉄冷材の溶解方法では、上記の溶鉄排出口の損耗が大きかったが、フロンを外側から炉内側へ導入することによって、この溶鉄排出口の損耗が大幅に減少した。
【0015】
前述の、二次燃焼帯の冷却と同様な作用で、フロンを転炉から発生する排ガス顕熱の回収を目的に、炉口から煙道にかけてする改質用ガスとして用いることもできる。フロンの分解熱とCO2+C=2COの反応にともなう吸熱によって、排ガス顕熱を低減すると共に、COガスが生成して、排ガスの潜熱(発熱量)が増大する作用を有する。したがって、転炉回収ガス(LDG)の価値が向上し、製鉄所で購入するエネルギー(例えば、重油)削減に寄与する。
【0016】
【実施例1】
110トン規模の上底吹き転炉を用いて、溶銑110トンを脱炭吹錬した。上吹き酸素流量19000Nm3/hr、底吹き酸素流量1000Nm3/hr、底吹き酸素ノズルの周囲のスリットからフロン20Nm3/hrをそれぞれ供給した。吹錬時間は15分であり、底吹きノズル周辺に異常は見られなかった。このことにより、LPG使用量が15分間の吹錬1回あたり20Nm3削減できた。また、湿式集塵を行っているので、燃料ガス中のダイオキシン濃度は問題のない0.1ng/Nm3未満であった。
【0017】
【実施例2】
種湯、種溶滓の存在する200ton規模の溶解専用転炉に含鉄冷材、副材、炭材、酸素を供給して含鉄冷材を加炭(浸炭)溶解し高炭素溶鉄と溶滓を得、倒炉による出湯時に上記高炭素溶鉄の一部を炉内に残し、次回の含鉄冷材加炭溶解操業の種湯として使用すると共に、出湯に引き続く反出湯側への倒炉による排滓時に上記溶滓の一部を炉内に残し、次回の含鉄冷材加炭溶解操業の種溶滓、鉄ダスト飛散抑制溶滓として使用する連続残湯残滓方式の含鉄冷材の溶解方法において、原燃料の含鉄冷材として、スクラップ58ton使用し、燃料の炭材として、微粉炭11500Kg使用して溶解操業を実施した。この操業における種湯(残湯)、種溶滓(残溶滓)、出湯量は、各々84ton、10ton、55tonとした。また副剤として石灰(CaO)1070Kg、マグネシア(MgO)390 Kg、アルミ灰ブリケット 160Kgを含鉄冷材の溶解完了時の溶滓組成調整のために供給した。酸素は9350Nm3供給した。
【0018】
この際に、フロンを転炉の溶鉄排出口の外側から炉内へ向けて100Nm3/hrの流量で供給した。
【0019】
上記操業を繰り返して、フロンを使用しない操業方法と本実施例とを比較したところ、溶鉄排出口の損耗が45%減少した。また、湿式集塵を行っているので、燃料ガス中のダイオキシン濃度は問題のない0.1ng/Nm3未満であった。
【0020】
【発明の効果】
本願発明は、単にフロンを無害化する処理を提供するのみではなく、高価な炭化水素ガスの代替、炉耐火物の寿命延長、回収ガスの品位向上など、鉄製造コスト削減に大いに寄与する方法を提供でき、工業的に優れた特徴を有している。
【図面の簡単な説明】
【図1】通常の転炉設備を示す図である。
【図2】本発明の実施の形態の一例を示すプロセスフローである。
【図3】本発明の実施の形態の一例を示すプロセスフローである。
【図4】本発明の実施の形態の一例を示すプロセスフローである。
【図5】
本発明の実施の形態の一例を示すプロセスフローである。
【符号の説明】
1 底吹きノズル
2 転炉
3 上吹きランス
4 湿式集塵設備(OG)
5 溶鉄排出口
6 サブランス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluorocarbon detoxification method.
[0002]
[Prior art]
Fluorocarbon is a substance mainly composed of carbon, fluorine, and chlorine, and is generally used as a foaming material for heat insulating materials typified by refrigerator refrigerant and urethane foam.
[0003]
Various methods for treating chlorofluorocarbon have been reported so far. In particular, the incineration method is common. In the rotary kiln method, it is recommended to decompose at about 900 ° C. in 2 seconds, and to rapidly cool the gas at 850 ° C. to 70 ° C. in order to avoid resynthesis of dioxins. ing.
Also in the patent gazette, for example, Japanese Patent Laid-Open No. 11-6612 discloses a method for detoxifying chlorofluorocarbons by using the industrial waste treatment facility as a chlorofluorocarbon decomposition system by the same decomposition and cooling principle as described above. Has been.
[0004]
[Problems to be solved by the invention]
The present invention provides a method for detoxifying chlorofluorocarbons using a converter, and by using this detoxification method, the operation cost of the converter operation itself can be reduced and the life of the refractory can be extended. It provides about the effect of.
[0005]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) In a converter steelmaking method having wet dust collection , supplying flon as a cooling gas for the converter into the converter to decompose the flon and collect wet dust. Method.
(2) In the converter steelmaking method with wet dust collection, the flon is decomposed and wet dust is collected by supplying flon into the converter as a gas for cooling the bottom blowing tuyeres of the converter. And chlorofluorocarbon processing method.
(3) In converter steelmaking with wet dust collection, dissociating the flon and collecting wet dust by supplying flon into the converter as a cooling gas for the secondary combustion zone in the converter A method for treating chlorofluorocarbon.
(4) In the converter steelmaking process with wet dust collection , by supplying chlorofluorocarbon into the converter as a refractory protection gas in the vicinity of the molten iron discharge port of the converter, the chlorofluorocarbon is decomposed and wet dust collection is performed. A method for treating CFCs.
(5) In converter steelmaking with wet dust collection , by supplying chlorofluorocarbon into the converter as a reforming gas for recovering the sensible heat of the exhaust gas generated from the converter , the chlorofluorocarbon is decomposed and wet collection is performed. A method for treating CFCs, characterized by dusting .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The chlorofluorocarbon in the present invention is chlorofluorocarbon gas that is generally said to destroy the ozone layer, specifically, chlorofluorocarbon 11 (CCl 3 F), chlorofluorocarbon 12 (CCl 2 F 2 ), and chlorofluorocarbon 113 (C 2 Cl). 3 F 3 ), CFC 22 (CHClF 2 ) and the like, but not limited thereto. In this way, chlorofluorocarbons are substances mainly composed of carbon, fluorine, and chlorine, and are generally used as refrigerants (refrigerant chlorofluorocarbons) in refrigerators and foaming materials (heat-insulating chlorofluorocarbons) for heat insulation typified by foamed urethane. These are also within the scope of the present invention.
[0007]
An outline of a normal converter is shown in FIG. A bottom blowing nozzle 1 is installed, and gas for stirring or refining purposes such as oxygen and carbon dioxide gas is blown from the nozzle. In particular, when oxygen is blown, expensive LPG is generally used as a cooling gas. In the converter 2, pure oxygen is sprayed from the main lance 3 onto the surface of the molten iron and decarburization refining is performed. The gas generated at this time is collected together with dust by the OG type wet dust collector 4.
[0008]
Secondary combustion occurs in the furnace, and if this degree is large, the refractories in the converter, particularly the bricks in the inclined part, are worn out. Moreover, the refractory material at the discharge port (outlet port) 5 for molten iron is also easily worn.
[0009]
The exhaust gas generated from the converter exceeds 1000 ° C., and the sensible heat of the exhaust gas is a drawback in terms of thermal efficiency as well as the heat load of the OG equipment.
[0010]
A process flow showing an example of the embodiment of the present invention is shown in FIGS.
[0011]
The inventors of the present application conducted an experiment using chlorofluorocarbon using the converter shown in FIG. 1 above, and the converter furnace was at a high temperature exceeding 1000 ° C. and was a wet dust collection system. It was found that chlorofluorocarbons were reliably decomposed and dioxins were not produced.
[0012]
This chlorofluorocarbon can be used as an alternative to the bottom blower tuyerium cooling gas of the converter, and its heat of decomposition is 3.5 times larger than that of LPG that is normally used. The cost of purchasing expensive LPG can be reduced.
[0013]
In addition, if chlorofluorocarbon is supplied to the sublance 6 and the furnace port as a cooling gas for the in-furnace secondary combustion zone of the converter, the secondary combustion in the furnace is caused by the heat absorbed by the reaction between the decomposition heat and CO 2 + C = 2CO. The belt ambient temperature could be reduced. This endothermic action contributes to the extension of the refractory life in the furnace near the furnace port.
[0014]
Furthermore, it is also possible to use chlorofluorocarbon as a refractory protecting gas in the vicinity of the molten iron discharge port 5 of the converter. In particular, in the melting method of iron-containing cold material using a converter, the above-mentioned molten iron discharge port was greatly worn, but by introducing Freon from the outside to the inside of the furnace, the wear of this molten iron discharge port was greatly reduced. .
[0015]
It can also be used as a reforming gas from the furnace port to the flue for the purpose of recovering sensible heat of the exhaust gas generated from the converter by the same action as the cooling of the secondary combustion zone described above. The endothermic heat associated with the reaction of CFC decomposition and CO 2 + C = 2CO reduces the sensible heat of the exhaust gas, generates CO gas, and increases the latent heat (heat generation amount) of the exhaust gas. Therefore, the value of the converter recovered gas (LDG) is improved and it contributes to the reduction of energy (for example, heavy oil) purchased at the steelworks.
[0016]
[Example 1]
110 tons of hot metal was decarburized and blown using an upper-bottom blow converter with a scale of 110 tons. Top blowing oxygen flow 19000Nm 3 / hr, bottom-blown oxygen flow rate 1000 Nm 3 / hr, a bottom-blown oxygen nozzle Freon 20 Nm 3 / hr from the periphery of the slit was supplied. The blowing time was 15 minutes, and no abnormality was found around the bottom blowing nozzle. As a result, the amount of LPG used could be reduced by 20 Nm 3 per blowing for 15 minutes. Moreover, since wet dust collection was performed, the dioxin concentration in the fuel gas was less than 0.1 ng / Nm 3 , which is no problem.
[0017]
[Example 2]
Iron-containing cold material, secondary material, carbonaceous material, and oxygen are supplied to a 200-ton-scale melting converter in which seed hot water and seed hot metal exist, and the iron-containing cold material is carburized (carburized) to melt high carbon molten iron and hot metal. In addition, a part of the high-carbon molten iron is left in the furnace at the time of tapping in the inversion furnace and used as seed water for the next iron-containing cold material carburizing and melting operation. In the melting method of the iron-containing cold material of the continuous residual hot metal residue system used as the seed hot metal for the next iron-containing cold material carburizing and melting operation, the iron dust scattering suppression hot metal, sometimes leaving a part of the hot metal in the furnace, The melting operation was carried out using 58 tonnes of scrap as the iron-containing cold material for raw fuel and 11500 kg of pulverized coal as the fuel carbon material. The seed hot water (residual hot water), the seed hot metal (residual hot metal), and the amount of discharged hot water in this operation were 84 tons, 10 tons and 55 tons, respectively. As auxiliary agents, 1070 kg of lime (CaO), 390 kg of magnesia (MgO), and 160 kg of aluminum ash briquette were supplied to adjust the hot metal composition at the completion of melting of the iron-containing cold material. Oxygen was supplied at 9350 Nm 3 .
[0018]
At this time, Freon was supplied from the outside of the molten iron discharge port of the converter into the furnace at a flow rate of 100 Nm 3 / hr.
[0019]
When the above operation was repeated and the operation method using no chlorofluorocarbon was compared with this example, the wear of the molten iron discharge port was reduced by 45%. Moreover, since wet dust collection was performed, the dioxin concentration in the fuel gas was less than 0.1 ng / Nm 3 , which is no problem.
[0020]
【The invention's effect】
The present invention not only provides a treatment for detoxifying chlorofluorocarbons, but also a method that greatly contributes to reducing iron production costs, such as replacement of expensive hydrocarbon gas, extending the life of furnace refractories, and improving the quality of recovered gas. It can be provided and has industrially superior characteristics.
[Brief description of the drawings]
FIG. 1 is a diagram showing a normal converter facility.
FIG. 2 is a process flow showing an example of an embodiment of the present invention.
FIG. 3 is a process flow showing an example of an embodiment of the present invention.
FIG. 4 is a process flow showing an example of an embodiment of the present invention.
[Figure 5]
It is a process flow which shows an example of embodiment of this invention.
[Explanation of symbols]
1 Bottom blowing nozzle 2 Converter 3 Top blowing lance 4 Wet dust collection equipment (OG)
5 Molten iron outlet 6 Sublance

Claims (5)

湿式集塵を有する転炉製鋼法において、転炉の冷却用ガスとしてフロンを当該転炉内に供給することで、当該フロンを分解し湿式集塵することを特徴とするフロンの処理方法。In the converter steelmaking method which has wet dust collection , the flon is decomposed | disassembled and wet dust collection is carried out by supplying the Freon as the cooling gas of a converter into the converter, and carrying out wet dust collection . 湿式集塵を有する転炉製鋼法において、転炉の底吹き羽口冷却用のガスとしてフロンを当該転炉内に供給することで、当該フロンを分解し湿式集塵することを特徴とするフロンの処理方法。In a converter steelmaking method having wet dust collection , flon is decomposed and wet dust collected by supplying flon into the converter as a gas for cooling the bottom blowing tuyeres of the converter. Processing method. 湿式集塵を有する転炉製鋼法において、転炉の炉内二次燃焼帯の冷却用ガスとしてフロンを当該転炉内に供給することで、当該フロンを分解し湿式集塵することを特徴とするフロンの処理方法。In the converter steelmaking method having wet dust collection , the flon is decomposed and wet dust is collected by supplying chlorofluorocarbon into the converter as a cooling gas for the secondary combustion zone in the converter. How to treat chlorofluorocarbons. 湿式集塵を有する転炉製鋼法において、転炉の溶鉄排出口周辺近傍の耐火物保護用ガスとしてフロンを当該転炉内に供給することで、当該フロンを分解し湿式集塵することを特徴とするフロンの処理方法。In converter steelmaking with wet dust collection, chlorofluorocarbon is decomposed and wet dust collected by supplying chlorofluorocarbon into the converter as a refractory protection gas in the vicinity of the molten iron discharge port of the converter. And chlorofluorocarbon processing method. 湿式集塵を有する転炉製鋼法において、転炉から発生する排ガスの顕熱を回収する改質用ガスとしてフロンを当該転炉内に供給することで、当該フロンを分解し湿式集塵することを特徴とするフロンの処理方法。In converter steelmaking with wet dust collection, dissociating flon and collecting wet dust by supplying flon into the converter as a reforming gas that recovers sensible heat of exhaust gas generated from the converter A method for treating chlorofluorocarbon.
JP2001334542A 2001-10-31 2001-10-31 How to treat CFCs Expired - Fee Related JP3917842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334542A JP3917842B2 (en) 2001-10-31 2001-10-31 How to treat CFCs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334542A JP3917842B2 (en) 2001-10-31 2001-10-31 How to treat CFCs

Publications (2)

Publication Number Publication Date
JP2003138310A JP2003138310A (en) 2003-05-14
JP3917842B2 true JP3917842B2 (en) 2007-05-23

Family

ID=19149654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334542A Expired - Fee Related JP3917842B2 (en) 2001-10-31 2001-10-31 How to treat CFCs

Country Status (1)

Country Link
JP (1) JP3917842B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106837764A (en) * 2016-12-19 2017-06-13 内蒙古包钢钢联股份有限公司 A kind of converter carburetion system medium lift pump and low pressure method for controlling pump

Also Published As

Publication number Publication date
JP2003138310A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
RU2271396C2 (en) Hearth melting furnace and method of its operation for production of iron or steel
RU2011105790A (en) METHOD AND INSTALLATION FOR OPTIMIZED IRON AND ENERGY EMISSION CO2
CA2237510A1 (en) Process for reclaiming incineration waste
JPH07216426A (en) Converter iron manufacture
CA2472427C (en) Method for making molten iron
CA2408720C (en) Method and device for producing pig iron or liquid steel pre-products from charge materials containing iron ore
ES2286827T3 (en) PROCEDURE FOR THE TREATMENT OF DUSTS IN THE DUCTS OF ELECTRICAL STEELS.
JP3917842B2 (en) How to treat CFCs
KR100723223B1 (en) Pre-reduction method of sintered ore
JP5439978B2 (en) Melting reduction method
WO2015041834A2 (en) Steel production in a coke dry quenching system
US5993510A (en) Process for working up combustion residues
JPH0723494B2 (en) Method and apparatus for refining molten metal
JP5446505B2 (en) Melting reduction method
CA2304337C (en) Steelmaking using magnesium carbonate
JP3236737B2 (en) Operating method of vertical iron scrap melting furnace
TW201402827A (en) Dephosphorizing agent for steelmaking and steelmaking method of reducing phosphorus content
KR100340572B1 (en) Slag Forming Method in DC Furnace
JP4250382B2 (en) Effective use of iron-containing products
JP7451341B2 (en) Converter blowing method
JP4077778B2 (en) Treatment method of cold iron source containing heat insulating chlorofluorocarbon
JP3451901B2 (en) Operating method of mobile hearth furnace
JP2000192159A (en) Continuously detoxicating and resourcing method of aluminum dross and plating sludge with coke-fusion furnace, vertical shaft cupola, blast furnace, fusion furnace and rotary kiln, electric arc furnace, low frequency induction furnace, high frequency induction furnace, or the like
JPH09118907A (en) Vertical type quick melting furnace
JPH07207328A (en) Treatment of exhaust gas produced at the time of melting scrap

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070209

R151 Written notification of patent or utility model registration

Ref document number: 3917842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees