JP3916894B2 - Radio base station adaptive array antenna transceiver apparatus - Google Patents

Radio base station adaptive array antenna transceiver apparatus Download PDF

Info

Publication number
JP3916894B2
JP3916894B2 JP2001201564A JP2001201564A JP3916894B2 JP 3916894 B2 JP3916894 B2 JP 3916894B2 JP 2001201564 A JP2001201564 A JP 2001201564A JP 2001201564 A JP2001201564 A JP 2001201564A JP 3916894 B2 JP3916894 B2 JP 3916894B2
Authority
JP
Japan
Prior art keywords
transmission
reception
signals
optical
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001201564A
Other languages
Japanese (ja)
Other versions
JP2003017927A (en
Inventor
恭宜 鈴木
凝 陳
哲夫 廣田
俊雄 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2001201564A priority Critical patent/JP3916894B2/en
Publication of JP2003017927A publication Critical patent/JP2003017927A/en
Application granted granted Critical
Publication of JP3916894B2 publication Critical patent/JP3916894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無線通信用基地局に用いられる小型化、低消費電力化、設置性の改善を図った無線基地局のアダプティブアレーアンテナ用送受信装置に関する。
【0002】
【従来の技術】
図5に従来のアレーアンテナ用無線通信用基地局装置(1つの送受信系統)の構成を示す。
無線通信用基地局装置は、基地局建物内に設置される変調装置3と復調装置14と、屋外に設置される共用器2と低雑音受信増幅器10から構成される塔頂設置型フロントエンドと、アンテナ1から構成される。また、変調装置3と共用器2、及び低雑音増幅器10と復調装置14は同軸ケーブル5’、12’を介して接続される。
変調装置3に入力された信号は変調され、増幅されたRF信号は同軸ケーブル5’、共用器2を経てアンテナ1から送信される。アンテナ1で受信された信号は、共用器2を経て低雑音受信増幅器10で増幅され、同軸ケーブル12’を経て復調装置14に入力される。復調装置14は受信信号を復調し、復調された電気信号を出力する。
【0003】
また、アダプティブアレーアンテナを用いた無線通信方式の大容量化が検討されている。アダプティブアレーアンテナは、干渉波の到来方向に対してヌル(零点)を向けることにより抑圧し、希望波到来方向に対してビームを形成することができる。このため、従来のオムニアンテナまたはセクタアンテナによるビームパターンに比べて無線通信方式の大容量化を可能にする。
(1)アダプティブアレーアンテナを実現するには、アンテナエレメント数分の送信系統及び受信系統の無線回路を必要とする。また、基地局建物内からアンテナまでの配線において、アンテナエレメント数分の高周波(同軸)ケーブルを必要とする。
このように従来のオムニアンテナまたはセクタアンテナの無線装置をアダプティブアレーアンテナに適用する場合、既存アンテナ鉄塔などに設置する際に重量、容積等の機械的条件の制約を受ける。
(2)アダプティブアレーアンテナ用無線装置では、一般に送信系統の電気長を同じにする必要がある。もし、送信系統でそれぞれの系統の電気長に誤差があれば、その誤差は設計したビームパターンと実際に放射したビームパターンとの誤差となる。ビームパターンの誤差は、例えばヌル、ビームの位置の変化となり、無線システムの設計値どおりの加入者容量を達成できなくなる。
【0004】
【発明が解決しようとする課題】
本発明の解決するべき課題は、アレーアンテナ用無線通信用基地局装置に用いられる、小型化を達成しアンテナ鉄塔への設置を可能とするアレーアンテナ用送受信装置を提供することである。また、設計通りのビームパターンを形成するために、各系統の電気長の調整を容易とする。
【0005】
【課題を解決するための手段】
この発明によるアレーアンテナ用送受信装置は、N(Nは自然数)の送信系統及び受信系統を持つアレーアンテナ用送受信装置であって、
送信系統は、N系統の無線信号に対応する電気信号を多重化して光信号に変換し、1本の送信側光ファイバに出力する送信側電気・光変換回路と、上記1本の送信側光ファイバで伝送された光信号を電気信号に変換し、変換された信号をN系統に多重分離する送信側光・電気変換回路と、N系統に分離された電気信号が入力されるN入力N出力のマルチポートアンプとを備え
受信系統は、帯域制限されたN系統の受信信号を増幅する受信増幅器と、上記受信増幅器で増幅されたN系統の受信信号を多重化して光信号に変換し、1本の受信側光ファイバに出力する受信側電気・光変換回路と、上記受信側光ファイバで伝送された光信号を電気信号に変換し、変換された信号をN系統に多重分離する受信側光・電気変換回路とを備え
上記送信側光・電気変換回路と上記マルチポートアンプと、上記受信増幅器と上記受信側電気・光変換回路とが、RF送受信回路として同一の筺体に収容され上記アンテナ直下のアンテナ鉄塔上に設置され、
上記N入力N出力のマルチポートアンプは、入力側ハイブリッドネットワークと複数のフィードフォワード増幅器と出力側ハイブリッドネットワークとが縦続接続されて、上記複数のフィードフォワード増幅器の対応する各ループの遅延線路の電気長が互いに同一とされている。
【0006】
【発明の実施の形態】
図1に本発明の第1実施例であるアレーアンテナ用送受信装置の構成を示す。共用器2、及びマルチポートアンプ7、光・電気変換回路6等から構成されるRF送受信回路はアンテナ直下のアンテナ鉄塔に設置され、基地局建物内には変調装置3、電気・光変換回路4等が設置される。
【0007】
(送信系統)
送受信回路には、変調装置3からのRF信号を基地局建物内の電気・光変換回路4にて光信号に変換し、変換された光信号を光ファイバ5にて伝送する。RF送受信回路の光・電気変換回路6にて、伝送された光信号を電気信号に変換する。
光ファイバ5は送信系統数(1,・・・,N、N:自然数)用いる。
電気信号に変換されたRF信号は、マルチポートアンプ7に入力される。ここで所定の送信電力まで増幅される。増幅された信号は、共用器2を経てアンテナ1に給電され送信される。
【0008】
(受信系統)
アンテナ1で受信された信号は、共用器2を経て各受信系統(1,・・・,N)の低雑音受信増幅器10に入力され増幅される。増幅された受信信号は、電気・光変換回路11にて光信号に変換される。変換された光信号はそれぞれの受信系統に対応した光ファイバ12にて基地局建物内の信号処理装置に伝送される。
基地局建物内には、伝送された光信号を電気信号に変換する光・電気変換回路13と変換された電気信号を復調する復調装置14が設置される。
【0009】
図2に本発明の第2実施例であるアレーアンテナ用送受信装置の構成を示す。第2実施例は第1実施例の光伝送回路が異なる。すなわち、第1実施例では各送信系統及び各受信系統毎にN本の光ファイバを用いて配線(接続)していたが、第2実施例では各送信系統及び各受信系統の電気信号をそれぞれ周波数多重を行う(図4参照)。周波数多重された電気信号は、電気・光変換回路4にて光信号に変換され、1本の光ファイバ5にて伝送する。このように1本化することで複数の光ファイバによる偏差とレーザダイオードの調整等の問題を解決できる。
【0010】
図3に8系統マルチポートアンプの構成例を示す。
マルチポートアンプは、入力側ハイブリッドネットワーク7−1と、個別増幅器(SAFF)7−2と、出力側ハイブリッドネットワーク7−3から構成される。
本発明では、個別増幅器にパイロット信号を用いた自己調整形フィードフォワード増幅器を用いる。マルチポートアンプにおける系統間の利得偏差及び位相偏差は、ハイブリッドネットワークのアイソレーション特性と、個別増幅器の分散による。マルチポートアンプのアイソレーション特性は、文献(江上俊一郎、川合誠、「多端子電力合成形マルチビーム送信系」電子情報通信学会論文誌B、Vol.J69-B,No.2,1986.02)に示されている。例えば、8系統の場合、系統間アイソレーションを30dBとすれば、利得標準偏差0.7dB以下、位相標準偏差5deg以下でマルチポートアンプを実現する必要がある。
従来は個別増幅器の利得偏差及び位相偏差を所定値以下にするには、それぞれの増幅器の個別調整を行う必要があった。また、経年変化による特性のずれに対して有効な補償方法はなかった。そこで、個別増幅器にフィードフォワード増幅器を用いることで容易に利得偏差及び位相偏差をきわめて少なくできることは既に述べた。さらに、パイロット信号を用いる自己調整形フィードフォワード増幅器により、経年変化、温度変化に対しても十分に利得偏差及び位相偏差を所定値以下にできることが知られている(特公平7−77330号公報(特願昭63−23574号)、楢橋祥一、野島俊雄「移動通信用超低歪多周波共通増幅器 SAFF-A」電子情報通信学会無線通信システム研究会技術報告RCS90-4,1990 参照)。
【0011】
このように、送信系にパイロット信号を用いた自己調整形フィードフォワード増幅器をマルチポートアンプに用いることで、系統間の利得偏差及び位相偏差を常に所定値以下とすることができ、また供給電力を個別構成とした増幅器と比べて系統数分の1にし低消費電力化を達成することにより小型の放熱フィン等を用いることができ装置を小型化することができる。上記においてマルチポートアンプの個別増幅器として自己調整形フィードフォワード増幅器を用いた例について説明したが、自己調整形フィードフォワード増幅器以外のフィードフォワ−ド増幅器も同様に用いることができる。これらは、いずれもアレーアンテナ用RF回路をアンテナ鉄塔中に設置する上で有効である。
図5に示す従来例と比較して、本発明による送受信装置はマルチポートアンプにより送信電力増幅器の小型化及び低消費電力化を可能にし、光ファイバにて基地局建物内と屋外に設置されるRF送受信回路を接続することでケーブル配線を容易にする。
【0012】
図4に周波数多重を行う光伝送回路の構成例を示す。
光伝送回路は、周波数変換器4−1、6−4と、電力合成器4−3と、電気・光信号変換器4−3と、光ファイバ5と、光・電気信号変換器6−1と電力分配器6−2と、帯域通過フィルタ(BPF)6−3と、周波数変換器6−4から構成される。また、周波数変換器は、局部発振器とミキサから構成される。
送信系統において、基地局建物内の周波数多重装置にて各送信系統の電気信号(入力1〜8)をそれぞれ異なる搬送波周波数(f1〜f8)により周波数変換器4−11〜4−18において帯域変換を行う。電気・光変換回路(E/O)4−3では、周波数多重された電気信号を一括して光信号に変換する。変換された光信号は、光ファイバ5にて伝送される。
本送受信装置において、光ファイバ5で伝送された光信号は、光・電気変換回路(O/E)6−1にて一括して電気信号に変換される。変換された電気信号は、それぞれの搬送波周波数を中心周波数とする帯域通過フィルタ(BPF)6−3にて電気信号を分離する。分離された各電気信号は、周波数変換器6−4にて搬送波周波数(f9〜f16)により元の周波数帯域に変換して出力1〜8を得る。受信系統についても送信系統と同様であるので説明を省略する。
このようにして、第1実施例では2N本必要とした光ファイバを2本にすることができる。この第2実施例により、RF送受信回路のアンテナ鉄塔への設置性はさらに改善される。
【0013】
第2実施例では、各送信系統の送信信号を周波数多重した。同様にして波長多重、時間多重、符号多重など既に知られている多重化技術と組み合わせることもできる。
本送受信装置は、アダプティブアレーアンテナのみならずマルチビーム用アレーアンテナなどのアレーアンテナシステムを用いる無線装置のRF回路として用いることができる。
【0014】
【発明の効果】
以上説明したように本発明により以下の効果を奏する。
(1)従来のアダプティブアレーアンテナ用無線装置と比較して、小型化、低消費電力化、設置性の改善が可能となる。
(2)RF送受信回路のアンテナ鉄塔への設置が容易となる。
(3)従来のアダプティブアレーアンテナ用無線装置と比較して、無線装置の規模の削減が可能となる。
【図面の簡単な説明】
【図1】本発明の第1実施例であるアレーアンテナ用送受信装置の構成図。
【図2】本発明の第2実施例であるアレーアンテナ用送受信装置の構成図。
【図3】8系統マルチポートアンプの構成図。
【図4】周波数多重光伝送回路の構成図。
【図5】従来のアレーアンテナ送受信系統の構成図。
【符号の説明】
1 アンテナ
2 共用器
3 変調装置
4、4−3、11 電気・光変換回路
4−1、6−4 周波数変換器
4−2 電力合成器
5、12 光ファイバ
6、6−1、13 光・電気変換回路
6−2 電力分配器
6−3 BPF
7 マルチポートアンプ
7−1 入力側ハイブッリッドネットワーク
7−2 フィードフォワード増幅器
7−3 出力側ハイブッリッドネットワーク
10 低雑音受信増幅器
14 復調装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transmitting / receiving apparatus for an adaptive array antenna of a wireless base station, which is used for a wireless communication base station and is reduced in size, power consumption, and installation.
[0002]
[Prior art]
FIG. 5 shows a configuration of a conventional base station device for radio communication for an array antenna (one transmission / reception system).
A radio communication base station apparatus includes a modulation apparatus 3 and a demodulation apparatus 14 installed in a base station building, a duplexer 2 installed outdoors, and a tower-mounted front end composed of a low-noise receiving amplifier 10. The antenna 1 is configured. The modulation device 3 and the duplexer 2, and the low noise amplifier 10 and the demodulation device 14 are connected via coaxial cables 5 ′ and 12 ′.
The signal input to the modulation device 3 is modulated, and the amplified RF signal is transmitted from the antenna 1 through the coaxial cable 5 ′ and the duplexer 2. The signal received by the antenna 1 is amplified by the low-noise receiving amplifier 10 through the duplexer 2 and input to the demodulator 14 through the coaxial cable 12 ′. The demodulator 14 demodulates the received signal and outputs the demodulated electrical signal.
[0003]
In addition, increasing the capacity of wireless communication systems using adaptive array antennas is being studied. The adaptive array antenna can suppress the beam by directing a null (zero point) with respect to the arrival direction of the interference wave, and can form a beam with respect to the arrival direction of the desired wave. For this reason, compared with the beam pattern by the conventional omni antenna or a sector antenna, the capacity | capacitance of a wireless communication system can be enlarged.
(1) In order to realize an adaptive array antenna, radio circuits of transmission systems and reception systems corresponding to the number of antenna elements are required. Further, in the wiring from the base station building to the antenna, high frequency (coaxial) cables corresponding to the number of antenna elements are required.
As described above, when a conventional omni antenna or sector antenna radio apparatus is applied to an adaptive array antenna, there are restrictions on mechanical conditions such as weight and volume when the antenna apparatus is installed on an existing antenna tower.
(2) In an adaptive array antenna radio apparatus, it is generally necessary to make the electrical lengths of the transmission systems the same. If there is an error in the electrical length of each system in the transmission system, the error is an error between the designed beam pattern and the actually radiated beam pattern. An error in the beam pattern is, for example, a null or a change in the position of the beam, and it becomes impossible to achieve the subscriber capacity as designed in the wireless system.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide an array antenna transmission / reception device that is used in a base station device for radio communication for an array antenna and that can be installed on an antenna tower. In addition, in order to form a designed beam pattern, the electrical length of each system can be easily adjusted.
[0005]
[Means for Solving the Problems]
An array antenna transmission / reception device according to the present invention is an array antenna transmission / reception device having N (N is a natural number) transmission system and reception system,
The transmission system multiplexes electrical signals corresponding to N-system radio signals, converts them into optical signals, and outputs them to one transmission-side optical fiber, and the one transmission-side light. An optical signal transmitted through a fiber is converted into an electrical signal, and a transmission-side optical / electrical conversion circuit that demultiplexes the converted signal into N systems, and an N-input N-output that receives the electrical signals separated into the N systems With a multi-port amplifier ,
The receiving system multiplexes the N-system received signals amplified by the receiving amplifier and the N-system received signals that have been band-limited, and converts the N-system received signals into optical signals to be converted into one receiving-side optical fiber. A receiving-side electrical / optical converting circuit for outputting, and a receiving-side optical / electrical converting circuit for converting an optical signal transmitted through the receiving-side optical fiber into an electrical signal and demultiplexing the converted signal into N systems. ,
The transmission-side optical / electrical conversion circuit, the multi-port amplifier, the reception amplifier, and the reception-side electrical / optical conversion circuit are housed in the same housing as an RF transmission / reception circuit and installed on an antenna tower directly below the antenna. ,
The N-input N-output multiport amplifier has an input-side hybrid network, a plurality of feed-forward amplifiers, and an output-side hybrid network connected in cascade, and the electrical length of the delay line of each loop corresponding to the plurality of feed-forward amplifiers. Are identical to each other.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows the configuration of an array antenna transmitting / receiving apparatus according to a first embodiment of the present invention. An RF transmission / reception circuit including a duplexer 2, a multi-port amplifier 7, an optical / electrical conversion circuit 6 and the like is installed in an antenna tower immediately below the antenna, and a modulation device 3 and an electric / optical conversion circuit 4 are installed in the base station building. Etc. are installed.
[0007]
(Transmission system)
In the transmission / reception circuit , the RF signal from the modulation device 3 is converted into an optical signal by the electric / optical conversion circuit 4 in the base station building, and the converted optical signal is transmitted through the optical fiber 5. An optical / electrical conversion circuit 6 of the RF transmission / reception circuit converts the transmitted optical signal into an electrical signal.
The optical fiber 5 uses the number of transmission systems (1,..., N, N: natural number).
The RF signal converted into the electrical signal is input to the multiport amplifier 7. Here, it is amplified to a predetermined transmission power. The amplified signal is fed to the antenna 1 via the duplexer 2 and transmitted.
[0008]
(Reception system)
The signal received by the antenna 1 is input to the low noise receiving amplifier 10 of each receiving system (1,..., N) via the duplexer 2 and amplified. The amplified received signal is converted into an optical signal by the electrical / optical conversion circuit 11. The converted optical signal is transmitted to the signal processing device in the base station building through the optical fiber 12 corresponding to each receiving system.
In the base station building, an optical / electrical conversion circuit 13 that converts a transmitted optical signal into an electrical signal and a demodulator 14 that demodulates the converted electrical signal are installed.
[0009]
FIG. 2 shows the configuration of an array antenna transmission / reception apparatus according to the second embodiment of the present invention. The second embodiment is different from the optical transmission circuit of the first embodiment. That is, in the first embodiment, wiring (connection) is performed using N optical fibers for each transmission system and each reception system, but in the second embodiment, electrical signals of each transmission system and each reception system are respectively transmitted. Frequency multiplexing is performed (see FIG. 4). The frequency-multiplexed electric signal is converted into an optical signal by the electric / optical conversion circuit 4 and transmitted through one optical fiber 5. Such a single configuration can solve problems such as deviation due to a plurality of optical fibers and adjustment of the laser diode.
[0010]
FIG. 3 shows a configuration example of an 8-system multiport amplifier.
The multiport amplifier includes an input-side hybrid network 7-1, an individual amplifier (SAFF) 7-2, and an output-side hybrid network 7-3.
In the present invention, a self-adjusting feedforward amplifier using a pilot signal is used as an individual amplifier. The gain deviation and phase deviation between systems in the multi-port amplifier are due to the isolation characteristics of the hybrid network and the dispersion of the individual amplifiers. The isolation characteristics of multi-port amplifiers are shown in the literature (Shun-ichiro Egami, Makoto Kawai, “Multi-terminal power combining multi-beam transmission system” IEICE Transactions B, Vol. J69-B, No. 2, 1986.02) Has been. For example, in the case of 8 systems, if the isolation between systems is 30 dB, it is necessary to realize a multiport amplifier with a gain standard deviation of 0.7 dB or less and a phase standard deviation of 5 deg or less.
Conventionally, in order to reduce the gain deviation and phase deviation of the individual amplifiers to a predetermined value or less, it is necessary to individually adjust each amplifier. Also, there was no effective compensation method for characteristic deviation due to secular change. Thus, it has already been described that the gain deviation and the phase deviation can be easily reduced by using a feedforward amplifier as the individual amplifier. Further, it is known that a self-adjusting feedforward amplifier using a pilot signal can sufficiently reduce a gain deviation and a phase deviation to a predetermined value or less with respect to secular change and temperature change (Japanese Patent Publication No. 7-77330). (See Japanese Patent Application No. 63-23574), Shoichi Takahashi, Toshio Nojima “Ultra Low Distortion Multi-Frequency Common Amplifier SAFF-A for Mobile Communications”, RCS90-4,1990, Technical Report of Radio Communication System Society of IEICE.
[0011]
In this way, by using a self-adjusting feedforward amplifier using a pilot signal for the transmission system as a multiport amplifier, the gain deviation and phase deviation between the systems can always be kept below a predetermined value, and the supply power can be reduced. By achieving a reduction in power consumption by reducing the number of systems to one in comparison with an amplifier having an individual configuration, a small radiating fin or the like can be used, and the apparatus can be miniaturized. In the above description, the self-adjusting feedforward amplifier is used as the individual amplifier of the multi-port amplifier. However, a feedforward amplifier other than the self-adjusting feedforward amplifier can be used in the same manner. These are all effective in installing the array antenna RF circuit in the antenna tower.
Compared with the conventional example shown in FIG. 5, the transmission / reception apparatus according to the present invention enables the transmission power amplifier to be reduced in size and power consumption by a multiport amplifier, and is installed in the base station building and outdoors by optical fiber. Cable wiring is facilitated by connecting an RF transceiver circuit .
[0012]
FIG. 4 shows a configuration example of an optical transmission circuit that performs frequency multiplexing.
The optical transmission circuit includes frequency converters 4-1 and 6-4, a power combiner 4-3, an electric / optical signal converter 4-3, an optical fiber 5, and an optical / electrical signal converter 6-1. And a power distributor 6-2, a band pass filter (BPF) 6-3, and a frequency converter 6-4. The frequency converter is composed of a local oscillator and a mixer.
The transmission system, the frequency converter 4-1 1 ~4-1 8 by an electric signal of each transmission system (input 1-8), respectively different carrier frequencies (f1 to f8) at a frequency multiplexer of the base station in the building Perform band conversion. The electrical / optical conversion circuit (E / O) 4-3 collectively converts frequency-multiplexed electrical signals into optical signals. The converted optical signal is transmitted through the optical fiber 5.
In this transmission / reception apparatus, optical signals transmitted through the optical fiber 5 are collectively converted into electrical signals by an optical / electrical conversion circuit (O / E) 6-1. The converted electric signal is separated by a band pass filter (BPF) 6-3 having each carrier frequency as a center frequency. Each separated electric signal is converted to the original frequency band by the carrier frequency (f9 to f16) by the frequency converter 6-4 to obtain outputs 1 to 8. Since the reception system is the same as the transmission system, description thereof is omitted.
In this manner, the number of optical fibers required in the first embodiment can be two. According to the second embodiment, the installation property of the RF transmission / reception circuit to the antenna tower is further improved.
[0013]
In the second embodiment, the transmission signals of the respective transmission systems are frequency-multiplexed. Similarly, it can be combined with known multiplexing techniques such as wavelength multiplexing, time multiplexing, and code multiplexing.
This transmission / reception apparatus can be used as an RF circuit of a radio apparatus using an array antenna system such as an array antenna for multi-beams as well as an adaptive array antenna.
[0014]
【The invention's effect】
As described above, the present invention has the following effects.
(1) Compared with a conventional adaptive array antenna radio apparatus, it is possible to reduce the size, reduce the power consumption, and improve the installation property.
(2) The RF transmission / reception circuit can be easily installed on the antenna tower.
(3) Compared with a conventional adaptive array antenna radio apparatus, the scale of the radio apparatus can be reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an array antenna transmission / reception apparatus according to a first embodiment of the present invention;
FIG. 2 is a configuration diagram of an array antenna transmission / reception apparatus according to a second embodiment of the present invention;
FIG. 3 is a configuration diagram of an 8-system multiport amplifier.
FIG. 4 is a configuration diagram of a frequency multiplexing optical transmission circuit.
FIG. 5 is a configuration diagram of a conventional array antenna transmission / reception system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Antenna 2 Duplexer 3 Modulator 4, 4-3, 11 Electricity / optical conversion circuit 4-1, 6-4 Frequency converter 4-2 Power combiner 5, 12 Optical fiber 6, 6-1 13 Light / Electric conversion circuit 6-2 Power distributor 6-3 BPF
7 Multi-port amplifier 7-1 Input side hybrid network 7-2 Feed forward amplifier 7-3 Output side hybrid network 10 Low noise receiving amplifier 14 Demodulator

Claims (1)

N(Nは自然数)の送信系統及び受信系統を持つ無線基地局のアダプティブアレーアンテナ用送受信装置であって、
送信系統は、N系統の無線信号に対応する電気信号を多重化して光信号に変換し、1本の送信側光ファイバに出力する送信側電気・光変換回路と、上記1本の送信側光ファイバで伝送された光信号を電気信号に変換し、変換された信号を独立した互いに異なる周波数の信号によって元の周波数帯域のN系統に多重分離する送信側光・電気変換回路と、N系統に分離された電気信号が増幅され、N系統に分離された電気信号を出力するN入力N出力のマルチポートアンプと、上記N入力N出力のマルチポートアンプの出力電気信号中の送信帯域を通過させてN個のアンテナに給電する送信フィルタとで構成され、
受信系統は、上記N個のアンテナで受信した信号からN系統の希望受信帯域を通過させる受信フィルタと、帯域制限されたN系統の受信信号を増幅する受信増幅器と、上記受信増幅器で増幅されたN系統の受信信号を多重化して光信号に変換し、1本の受信側光ファイバに出力する受信側電気・光変換回路と、上記受信側光ファイバで伝送された光信号を電気信号に変換し、変換された信号を独立した互いに異なる周波数の信号によってN系統に多重分離する受信側光・電気変換回路とで構成され、
上記送信側光・電気変換回路と上記マルチポートアンプと上記送信フィルタと、上記受信フィルタと上記受信増幅器と上記受信側電気・光変換回路とが、RF送受信回路として同一の筺体に収容され上記アンテナ直下のアンテナ鉄塔上に設置され、
上記N入力N出力のマルチポートアンプは、入力側ハイブリッドネットワークと複数のフィードフォワード増幅器と出力側ハイブリッドネットワークとが縦続接続されて、上記複数のフィードフォワード増幅器の対応する各ループの遅延線路の電気長が互いに同一とされていること、
を特徴とする無線基地局のアダプティブアレーアンテナ用送受信装置。
N (where N is a natural number) a transmission / reception device for an adaptive array antenna of a radio base station having a transmission system and a reception system,
The transmission system multiplexes electrical signals corresponding to N-system radio signals, converts them into optical signals, and outputs them to one transmission side optical fiber, and the one transmission side light. A transmission-side optical / electrical conversion circuit that converts an optical signal transmitted through a fiber into an electric signal, and demultiplexes the converted signal into N systems in the original frequency band by independent signals of different frequencies; passing the amplified separated electrical signals, and a multi-port amplifier you output an electric signal separated into N systems N inputs N outputs, the transmission band in the output electrical signal of the multiport amplifier of the N-input N-output And a transmission filter that feeds N antennas,
The reception system is a reception filter that passes N desired reception bands from signals received by the N antennas, a reception amplifier that amplifies the band-limited N reception signals, and is amplified by the reception amplifier. Multiplex N-system received signals, convert them to optical signals, output to one receiving-side optical fiber, and convert the optical signals transmitted on the receiving-side optical fiber into electrical signals And a receiving side optical / electrical conversion circuit that demultiplexes the converted signal into N systems with independent signals of different frequencies ,
The transmission-side optical / electrical conversion circuit, the multiport amplifier, the transmission filter, the reception filter, the reception amplifier, and the reception-side electrical / optical conversion circuit are housed in the same housing as an RF transmission / reception circuit. Installed on the antenna tower directly below,
The N-input N-output multiport amplifier has an input-side hybrid network, a plurality of feed-forward amplifiers, and an output-side hybrid network connected in cascade, and the electrical length of the delay line of each loop corresponding to the plurality of feed-forward amplifiers. Are identical to each other,
A radio base station adaptive array antenna transceiver apparatus.
JP2001201564A 2001-07-03 2001-07-03 Radio base station adaptive array antenna transceiver apparatus Expired - Fee Related JP3916894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201564A JP3916894B2 (en) 2001-07-03 2001-07-03 Radio base station adaptive array antenna transceiver apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201564A JP3916894B2 (en) 2001-07-03 2001-07-03 Radio base station adaptive array antenna transceiver apparatus

Publications (2)

Publication Number Publication Date
JP2003017927A JP2003017927A (en) 2003-01-17
JP3916894B2 true JP3916894B2 (en) 2007-05-23

Family

ID=19038496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201564A Expired - Fee Related JP3916894B2 (en) 2001-07-03 2001-07-03 Radio base station adaptive array antenna transceiver apparatus

Country Status (1)

Country Link
JP (1) JP3916894B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101336531B1 (en) 2006-01-25 2013-12-03 텔레폰악티에볼라겟엘엠에릭슨(펍) Method and apparatus for reducing combiner loss in a multi-sector, omni-base station
KR200455318Y1 (en) * 2009-03-09 2011-08-30 주식회사 케이티 Multi-port antenna unit

Also Published As

Publication number Publication date
JP2003017927A (en) 2003-01-17

Similar Documents

Publication Publication Date Title
US10491273B2 (en) Distributed antenna system for MIMO signals
US6812905B2 (en) Integrated active antenna for multi-carrier applications
US8289910B2 (en) Device for receiving and transmitting mobile telephony signals with multiple transmit-receive branches
US8423028B2 (en) Active antenna array with multiple amplifiers for a mobile communications network and method of providing DC voltage to at least one processing element
US10615754B2 (en) Methods and apparatuses for digital pre-distortion
JP2000078072A (en) Transmitter-receiver
US9871593B2 (en) Remote radio head
KR20000075941A (en) Cellular communications systems
KR20140037912A (en) Distributed antenna system architectures
KR101528324B1 (en) Donor/remote unit and mobile communication base station system with the same
US20110159810A1 (en) Active antenna array for a mobile communications network with multiple amplifiers using separate polarisations for transmission and a combination of polarisations for reception of separate protocol signals
EP2719016B1 (en) Multi-beam multi-radio antenna
US8731616B2 (en) Active antenna array and method for relaying first and second protocol radio signals in a mobile communications network
US20200366254A1 (en) Communication device and operating method thereof
US11967991B2 (en) DAS for multi-frequency band and multi-carrier based on O-RAN standard
JP3916894B2 (en) Radio base station adaptive array antenna transceiver apparatus
EP1782544B1 (en) High power parallel block-up converter
US20040224629A1 (en) Antenna apparatus of relay system
US20210160887A1 (en) Communication device and operating method thereof
US20220200690A1 (en) Repeater system
WO2017158910A1 (en) Active antenna system
USRE50175E1 (en) Methods and apparatuses for digital pre-distortion
WO2024016125A1 (en) Radio frequency isolation module and communication system
EP4113864A1 (en) Remote unit, multi-band distributed system and signal processing method
TW202234836A (en) Multiband fdd (frequency division duplex) radio configuration for reduction in transmit and receive path resources

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3916894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees