JP3916728B2 - Manufacturing method for secondary battery packing - Google Patents

Manufacturing method for secondary battery packing Download PDF

Info

Publication number
JP3916728B2
JP3916728B2 JP17003197A JP17003197A JP3916728B2 JP 3916728 B2 JP3916728 B2 JP 3916728B2 JP 17003197 A JP17003197 A JP 17003197A JP 17003197 A JP17003197 A JP 17003197A JP 3916728 B2 JP3916728 B2 JP 3916728B2
Authority
JP
Japan
Prior art keywords
mold
molded product
packing
material molded
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17003197A
Other languages
Japanese (ja)
Other versions
JPH1116548A (en
Inventor
建二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yodogawa Hu Tech Co Ltd
Original Assignee
Yodogawa Hu Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yodogawa Hu Tech Co Ltd filed Critical Yodogawa Hu Tech Co Ltd
Priority to JP17003197A priority Critical patent/JP3916728B2/en
Publication of JPH1116548A publication Critical patent/JPH1116548A/en
Application granted granted Critical
Publication of JP3916728B2 publication Critical patent/JP3916728B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二次電池の絶縁シールに用いるフッ素系樹脂としてテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)であり、かつ、メルトフローインデックス(融点より10°C高い温度で測定)が約5g/10min未満のグレードのシート状の押出成形品を用いた、パッキン(ガスケット)を製造する方法に関するものである。
【0002】
【従来の技術】
従来、リチウムイオン二次電池に代表される二次電池の絶縁材ないしシール材として、ポリプロピレン射出成形品でできたパッキンが汎用されている。
【0003】
パッキンの形状には種々のものがあるが、代表的なものは、全体が円形、長円形または四角形の皿状で、かつ中央に貫通孔を有するものである。
【0004】
【発明が解決しようとする課題】
しかしながら、二次電池用のパッキンは、200℃程度の温度に耐える耐熱性、耐ヒートショック性(耐ヒートサイクルショック性)、耐ストレスクラック性(耐応力クラック性)、電解液に対する腐食防止性が要求されるところ、ポリプロピレン射出成形品でできたパッキンは、耐熱性が不足し、耐ヒートショック性および耐ストレスクラック性も必ずしも充分ではなく、また二次電池の負極にフッ化カーボンを用いるときには、溶出するフッ素によりポリプロピレン製パッキンが侵されてシール性が損なわれることがあることなどの問題点があり、二次電池の耐久性の点で限界があった。
【0005】
そこで、耐熱性が良好でかつ腐食のおそれのないフッ素系樹脂製のパッキンを用いれば、電解液による腐食が防止され、シール性が長期間保たれることが期待できる。
【0006】
フッ素系樹脂製のパッキンを作製する方法としては、機械加工法と射出成形法とが考えられる。
【0007】
しかしながら、機械加工法は、労働コストが高くなる上、製品にばらつきを生ずるので、工業的に採用できる方法とは言えない。
【0008】
射出成形法は、完全に溶融して流動化させたフッ素系樹脂を金型に向けて吐出するものである。ところが、一般にフッ素系樹脂はメルトフローインデックス(融点より10℃高い温度におけるものとする)が約5g/10min未満のグレードのものは好ましい特性が得られ、それ以上のものは耐ヒートサイクルショック性や耐ストレスクラック性が不足する傾向があるところ、射出成形法ではメルトフローインデックスが約5g/10min未満のグレードのものを得ることが難しいため特性よりも射出成形性を優先してメルトフローインデックスの大きいグレードのものを用いて射出成形しなければならず、その結果、得られるパッキンの特性が必ずしも好ましいものではないという問題点を生ずる。また二次電池用のパッキンは極めて小さいので、スプーやランナーの占める割合が極めて大きく、しかもそのスプルーやランナーは再使用できないため(再使用すると絶縁性能が劣る)、かなりのコスト高になる上、省資源の趨勢にも反することになること、射出成形後のバリの除去に多大の手数を要することなどの不利もある。
【0009】
本発明は、このような背景下において、フッ素系樹脂素材として、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)を原料として用いながらも、メルトフローインデックスが小さく特性の良好なグレードのものを用いることができ、高価なフッ素系樹脂の無駄が最小限にとどまり、生産性が良好で、バリを生じがたく、さらには品質的にも信頼性のある二次電池用パッキンを製造する工業的な方法を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明の二次電池用パッキンの製造法は、フッ素系樹脂素材として、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)製の素材成形品(1)をその軟化温度以上にまで加熱して軟化させると共に、型により圧力を加えて立体形状の軟化立体成形品(2)に変形させ、ついでそれをその軟化温度以下にまで冷却して目的成形品(3)となすことを特徴とするものである。
【0011】
そして特に好ましい本発明の二次電池用パッキンの製造法は、圧締後の金型キャビティー容量と実質的に同一容量のフッ素系樹脂製の素材成形品(1)を金型内に供給する工程A、素材成形品(1)を、金型内においてその軟化温度以上にまで加熱して軟化させると共に、金型内で圧力を加えて金型キャビティーに沿った立体形状の軟化立体成形品(2)に変形する工程B、金型内においてその軟化立体成形品(2)を、加圧状態を保ちながらその軟化温度以下にまで冷却して目的成形品(3)となし、金型より取り出す工程C、素材成形品 (1) が大サイズであり、工程C後の目的成形品 (3) を個々のパッキン形状に打ち抜く工程D、からなり、フッ素系樹脂製の素材成形品は、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)であり、かつ、メルトフローインデックス(融点より10°C高い温度で測定)が約5g/10min未満のグレードの押出成形品であり、工程Bは、金型内において、素材成形品(1)を、その融点よりも50°C〜0°C低い温度である、260°C〜300°Cで加熱して軟化させた後に、金型内において工程Cの冷却工程を行なうことを特徴とするものである。
【0012】
【発明の実施の形態】
以下本発明を詳細に説明する。
【0013】
本発明の方法においては、フッ素系樹脂製の素材成形品(1) をその軟化温度以上にまで加熱して軟化させると共に、型により圧力を加えて立体形状の軟化立体成形品(2) に変形させ、ついでそれをその軟化温度以下にまで冷却して目的成形品(3) となす。射出成形のようにフッ素系樹脂完全に溶融して流動化させる方法を採らず、素材成形品(1) を軟化させると共に圧力を加えて立体形状の軟化立体成形品(2) に変形させる点が本発明のポイントとなる特徴点である。
【0014】
この方法を実施するため、長尺の素材成形品(1) を用いて加熱、軟化させ、ついでその軟化シートを型ロールまたはプレス型に供給して圧力を加え、連続的にあるいは間歇的に立体形状の軟化立体成形品(2) に変形させ、続いてこれを冷却して目的成形品(3) となすことが可能である。
【0015】
しかしながら、素材成形品(1) として個々のパッキンに見合ったサイズのものあるいは大サイズではあるが金型に収容できる大きさのものを用いてバッチ式に目的物を得る方が、実際的でありかつ品質的にも好ましいので、以下においてはこの方法、つまり工程A、B、Cを経る方法につき詳細に説明を行うことにする。
【0016】
〈工程A〉
工程Aは、圧締後の金型キャビティー容量と実質的に同一容量のフッ素系樹脂製の素材成形品(1) を金型内に供給する工程である。
【0017】
フッ素系樹脂としては、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、エチレン−テトラフルオロエチレン共重合体(ETFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ビニリデンフルオライド系フッ素ゴム、プロピレン−テトラフルオロエチレン系フッ素ゴム、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル系フッ素ゴム、熱可塑性フッ素ゴムなどがあげられる。これらの中では、PFAおよびFEPが好ましく、殊に耐ストレスクラック性および耐熱老化性のすぐれたPFAが特に重要である。なお、本実施の形態におけるフッ素系樹脂には、ポリテトラフルオロエチレン(PTFE)は含まれないものとする。
【0018】
素材成形品(1) は、メルトフローインデックス(融点より10℃高い温度で測定)が約5g/10min 未満のグレードのフッ素系樹脂の押出成形品でできていることが特に好ましい。そのようなグレードのものの方が、耐ヒートサイクルショック性や耐ストレスクラック性の点で有利であるからである。
【0019】
素材成形品(1) としては、貫通孔(h) を有しかつフラットな形状を有しているものを用いるのが通常である。このような形状の素材成形品(1) は、フッ素系樹脂でできたシートを打ち抜いたり、フッ素系樹脂でできたチューブをスライスしたりすることにより得られる。なおフッ素系樹脂のシートやチューブを得るときに、各種の無機または有機の添加剤を内添しておくことにより、着色や遮光を図ったり、耐熱性、耐薬品性などの性質の改良を図ることもできる。
【0020】
素材成形品(1) は、予め個々のパッキンに見合ったサイズにしておくことが多い。このときの形状は、中央部に貫通孔(h) を有する円形、長円形、四角形などの形状である。貫通孔(h) の数は1つとは限らない。また素材成形品(1) として大サイズのものを用い、後述のように目的成形品(3) を金型から取り出した後に個々のパッキン形状に打ち抜くようにすることもできる。
【0021】
素材成形品(1) は、先にも述べたように、圧締後の金型キャビティー容量と実質的に同一容量のものを用いる。キャビティー容量よりも許容範囲を越えて小さい容量のものを用いると、寸法安定性や緻密性が劣るようになり、キャビティー容量よりも許容範囲を越えて大きい容量のものを用いると、バリを生ずるからである。
【0022】
〈工程B〉
工程Bは、素材成形品(1) を、金型内においてまたは金型に供給する前にその軟化温度以上にまで加熱して軟化させると共に、金型内で圧力を加えて金型キャビティーに沿った立体形状の軟化立体成形品(2) に変形する工程である。
【0023】
加熱は、電熱、熱媒(オイル、スチーム、ガス)による加熱、高周波加熱、赤外線加熱などにより行うことができる。金型は、鋳込みなどにより電気ヒーター等の熱源と一体になっていてもよく、熱媒の流れる加熱用の配管、冷却水を流す冷却用の配管、流路、放熱板などを備えたものであってもよい。
【0024】
加熱温度および時間は、素材成形品(1) をその軟化温度以上にまで加熱するに足る温度および時間とする。このうち温度(素材成形品(1) の温度)については、素材成形品(1) がPFA(融点302〜310℃)やFEP(融点255〜265℃)でできている場合には、その融点よりも50〜0℃程度低い温度、たとえばPFAの場合には260〜300℃程度、FEPの場合には200〜260℃程度とすることが好ましい。PTFE(融点327℃)の場合には、その軟化温度以上で融点よりも20〜25℃程度高い温度までの範囲の温度、たとえば280〜350℃とすることが好ましい。加熱時間は、所定の温度にまで昇温してから、たとえば1〜10分間、殊に 1.5〜5分程度保つようにすることが望ましい。
【0025】
加圧方法としては、油圧、空圧、水圧を利用した機構のほか、加熱による熱膨張を利用した機構も採用される。圧力は、たとえば50〜300kg/cm2程度が適当である。
【0026】
〈工程C〉
工程Cは、その軟化立体成形品(2) を、加圧状態を保ちながらその軟化温度以下にまで冷却して目的成形品(3) となし、金型より取り出す工程である。
【0027】
冷却は、水冷や空冷あるいは放冷によりなされるが、短時間で冷却できる水冷の方が生産性の点から有利である。水冷の場合には、金型に冷却水を通す方法のほか、金型を水槽の水中に投入する方法も採用できる。
【0028】
目的成形品(3) は非粘着性のフッ素系樹脂でできている上、冷却時に若干の収縮が起きるので、金型からの取り出しは円滑である。
【0029】
素材成形品(1) が個々のパッキンに見合ったサイズを有しているときは、この工程Cで得られた目的成形品(3) が製品パッキンとなる。
【0030】
〈工程D〉
素材成形品(1) が大サイズであるときは、工程Cで得られた目的成形品(3) はまだ製品パッキンではない。そこでこの場合は、工程Cにより金型から取り出した目的成形品(3) を個々のパッキン形状に打ち抜く工程Dを実施する。
【0031】
〈用途〉
上記工程により得られたパッキンは、二次電池、殊にリチウムイオン二次電池の絶縁シールに用いるフッ素系樹脂製のパッキン(ガスケット)として有用である。
【0032】
〈作用〉
本発明においては、フッ素系樹脂製の素材成形品(1) をその軟化温度以上にまで加熱して軟化させると共に、型により圧力を加えて立体形状の軟化立体成形品(2) に変形させ、ついでそれをその軟化温度以下にまで冷却して目的成形品(3) となしている。
【0033】
特に上述のバッチ式の方法においては、圧締後の金型キャビティー容量と実質的に同一容量のフッ素系樹脂製の素材成形品(1) を金型内に供給する工程A、素材成形品(1) を、金型内においてまたは金型に供給する前にその軟化温度以上にまで加熱して軟化させると共に、金型内で圧力を加えて金型キャビティーに沿った立体形状の軟化立体成形品(2) に変形する工程B、その軟化立体成形品(2) を、加圧状態を保ちながらその軟化温度以下にまで冷却して目的成形品(3) となし、金型より取り出す工程Cを実施するようにしている。
【0034】
そのため、フッ素系樹脂素材としてメルトフローインデックスが小さく特性の良好なグレードのものを用いることができ、また素材成形品(1)は流れを生ずることなく変形するので、金型の合わせ目でバリが発生するおそれがなく、従ってバリの除去のための煩雑な工程を必要としない。また射出成形品のようにスプーやランナーを生じないので、高価なフッ素系樹脂の無駄が最小限にとどまり、コストの点で有利となる上、省資源にも添うことになる。生産性も良好であり、さらには寸法安定性や緻密性のすぐれたパッキンが得られるので、品質的にも信頼性のあるものとなる。
【0035】
【実施例】
次に実施例をあげて本発明をさらに説明する。
【0036】
実施例1
図1は本発明の二次電池用パッキンの製造工程およびそれにより得られた製品パッキンの一例を示した説明図であり、素材成形品(1) および目的成形品(3) については斜視図も付記してある。
【0037】
320℃におけるメルトフローインデックスが2g/10min のPFAを押出成形した厚み 0.6mmのPFAシート(わずかに乳白がかった透明シート)を打ち抜くことにより、フラットな円形の素材成形品(1) を作製した。直径は4mm、貫通孔(h) の径は1mmである。
【0038】
また、3つのブロックからなる金型(4) を準備した。図1中、(4a)は第1雌型、(4b)は第2雌型、(4c)は雄型である。第1雌型(4a)の大径部は素材成形品(1) がちょうど入る径とし、第2雌型(4b)の突起部は素材成形品(1) の貫通孔(h) がちょうど嵌まる径としてある。
【0039】
第1雌型(4a)および第2雌型(4b)を組み合わせた金型に、上記の素材成形品(1) を装着し(図1の(イ)参照)、ついで雌型(4a), (4b)に雄型(4c)を嵌め込んだ(図1の(ロ)参照)。
【0040】
金型(4) を昇温して290℃にまで昇温し、この温度に2分間保って予備成形品(1) をゲル化させてから、雌型(4a), (4b)に向けて雄型(4c)を押し込み、100kg/cm2の圧力で加圧した。この操作により、素材成形品(1) は金型キャビティーに沿った立体形状の軟化立体成形品(2) に変形した(図1の(ハ)参照)。
【0041】
ついで加圧状態を保ちながら、金型(4) を水槽中の多量の水(常温)の中に投入し、軟化立体成形品(2) を冷却して目的成形品(3) となした。
【0042】
最後に、冷却後の目的成形品(3) を金型(4) より取り出した(図1の(ニ)参照)。これにより、目的成形品(3) からなる製品パッキンが得られた。
【0043】
実施例2
図2は本発明の方法により得た製品パッキンの他の一例を示した説明図であり、(イ)は平面図、(ロ)は断面図、(ハ)は底面図である。
【0044】
320℃におけるメルトフローインデックスが2g/10min のPFAを押出成形した厚み 0.5mmのPFAシートを打ち抜くことにより、フラットな四角形の素材成形品(1) を作製した。
【0045】
この素材成形品(1) を用いたほかは実施例1と同様にして、図2に示した目的成形品(3) (製品パッキン)を得た。寸法は図2に付記してある。
【0046】
実施例3
図3は本発明の方法により得た製品パッキンのさらに他の一例を示した説明図であり、(イ)は平面図、(ロ)は(イ)のX−X断面図、(ハ)は底面図である。
【0047】
320℃におけるメルトフローインデックスが2g/10min のPFAを押出成形した厚み 0.5mmのPFAシートを打ち抜くことにより、フラットな長円形の素材成形品(1) を作製した。
【0048】
この素材成形品(1) を用いたほかは実施例1と同様にして、図3に示した目的成形品(3) (製品パッキン)を得た。寸法は図3に付記してある。
【0049】
実施例4
図4は本発明の二次電池用パッキンの製造工程の別の一例を示した説明図である。
【0050】
270℃におけるメルトフローインデックスが2g/10min のFEPを押出成形した厚み 0.6mmのFEPシートを打ち抜くことにより、所定の間隔で貫通孔(h) のみを形成し、素材成形品(1) とした(図4の(イ)参照)。
【0051】
実施例1に準じた大型の金型(4) を昇温して222℃にまで昇温し、この温度に3分間保って素材成形品(1) を軟化させてから、雌型(4a), (4b)に向けて雄型(4c)を押し込み、150kg/cm2の圧力で加圧した。この操作により、素材成形品(1) は金型キャビティーに沿った立体形状の軟化立体成形品(2) に変形した。
【0052】
ついで加圧状態を保ちながら、金型(4) に冷却水を通し、軟化立体成形品(2) を冷却して目的成形品(3) となした(図4の(ロ)参照)。ついで、冷却後の目的成形品(3) を金型(4) より取り出した。
【0053】
この目的成形品(3) を個々のパッキン形状に打ち抜き、製品パッキンとなした(図4の(ハ)参照)。
【0054】
実施例5
実施例4において、素材成形品(1) を得た後、これを加熱軟化させ、ついで金型に供給してから圧力を加えた。この操作により、素材成形品(1) は金型キャビティーに沿った立体形状の軟化立体成形品(2) に変形したので、加圧状態を保ちながら金型に冷却水を通して冷却して目的成形品(3) となし、金型より取り出した。ついで目的成形品(3) を個々のパッキン形状に打ち抜き、製品パッキンとなした。
【0055】
実施例6
320℃におけるメルトフローインデックスが2g/10min のPFAを押出成形した厚み 0.5mmのPFAシートからなる長尺の素材成形品(1) を走行させる間に加熱軟化させ、ついで1対の型ロール間を通して立体形状の軟化立体成形品(2) に変形させ(図4の(ロ)で貫通孔(h) を設けていないものに相当)、続いて冷却ゾーンを通して冷却した。冷却後、個々のパッキン形状に打ち抜くと同時に貫通孔(h) も設け、製品パッキンとなした(図4の(ハ)に相当)。
【0056】
【発明の効果】
作用の項でも述べたように、本発明においては、フッ素系樹脂素材として、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)であり、かつ、メルトフローインデックス(融点より10°C高い温度で測定)が約5g/10min未満のグレードのシート状の押出成形品を用いることができ、また押出成形品は流れを生ずることなく変形するので、金型の合わせ目でバリが発生するおそれがなく、従ってバリの除去のための煩雑な工程を必要としない。また射出成形品のようにスプルーやランナーを生じないので、高価なフッ素系樹脂の無駄が最小限にとどまり、コストの点で有利となる上、省資源にも添うことになる。生産性も良好であり、さらには寸法安定性や緻密性のすぐれたパッキンが得られるので、品質的にも信頼性のあるものとなる。
【図面の簡単な説明】
【図1】本発明の二次電池用パッキンの製造工程およびそれにより得られた製品パッキンの一例を示した説明図である。
【図2】本発明の方法により得た製品パッキンの他の一例を示した説明図である。
【図3】本発明の方法により得た製品パッキンのさらに他の一例を示した説明図である。
【図4】本発明の二次電池用パッキンの製造工程の別の一例を示した説明図である。
【符号の説明】
(1) …素材成形品、
(2) …軟化立体成形品、
(3) …目的成形品、
(4) …金型、
(4a)…第1雌型、(4b)…第2雌型、(4c)…雄型、
(h) …貫通孔
[0001]
BACKGROUND OF THE INVENTION
The present invention is a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) as a fluororesin used for an insulating seal of a secondary battery , and has a melt flow index (measured at a temperature 10 ° C higher than the melting point). The present invention relates to a method for producing a packing (gasket) using a sheet-like extruded product having a grade of less than about 5 g / 10 min .
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a packing made of a polypropylene injection molded product has been widely used as an insulating material or sealing material for a secondary battery represented by a lithium ion secondary battery.
[0003]
There are various types of packings, but typical ones are circular, oval, or quadrangular dish-like, and have a through hole in the center.
[0004]
[Problems to be solved by the invention]
However, the secondary battery packing has heat resistance, heat shock resistance (heat cycle shock resistance), stress crack resistance (stress crack resistance), and anti-corrosion resistance to the electrolyte. Where required, the packing made of a polypropylene injection molded product has insufficient heat resistance, heat shock resistance and stress crack resistance are not necessarily sufficient, and when using carbon fluoride for the negative electrode of a secondary battery, There is a problem that the polypropylene packing may be eroded by the eluted fluorine and the sealing performance may be impaired, and there is a limit in the durability of the secondary battery.
[0005]
Thus, if a fluororesin packing having good heat resistance and no risk of corrosion is used, corrosion due to the electrolytic solution can be prevented and sealing performance can be expected to be maintained for a long time.
[0006]
As a method for producing a fluorine resin packing, a machining method and an injection molding method can be considered.
[0007]
However, the machining method is not a method that can be adopted industrially because it increases labor costs and causes variations in products.
[0008]
In the injection molding method, a fluororesin completely melted and fluidized is discharged toward a mold. However, in general, a fluorine-based resin having a melt flow index (at a temperature 10 ° C. higher than the melting point) of less than about 5 g / 10 min provides preferable characteristics, and a resin having a higher flow resistance than heat cycle shock resistance. Where stress crack resistance tends to be insufficient, it is difficult to obtain a grade having a melt flow index of less than about 5 g / 10 min by the injection molding method. Grades must be injection molded, resulting in the problem that the properties of the resulting packing are not necessarily favorable. Since also the packing is very small for a secondary battery, an extremely large proportion of spool Le chromatography or runners, moreover (insulation performance is poor and reused) the sprue and runner can not be re-used, is considerably high cost In addition, there are disadvantages such as being contrary to the trend of resource saving and requiring a lot of work to remove burrs after injection molding.
[0009]
The present invention, in such a background under a fluorine-based resin Aburamoto material, tetrafluoroethylene - while using perfluoroalkyl vinyl ether copolymer (PFA) as a starting material, a good grade of melt flow index is less characteristic Can be used, and the waste of expensive fluororesin is kept to a minimum, the productivity is good, the burr is not easily generated, and the quality is also reliable. It aims at providing the industrial method to do.
[0010]
[Means for Solving the Problems]
The manufacturing method of the secondary battery packing according to the present invention includes heating a material molded product (1) made of tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) as a fluorine-based resin material to the softening temperature or higher. And is softened and deformed into a three-dimensional softened three-dimensional molded product (2) by applying pressure with a mold, and then cooled to below the softening temperature to obtain a target molded product (3). Is.
[0011]
And particularly preferred process for the preparation of packing for a secondary battery of the present invention, supply the mold cavity volume is substantially the same volume of a fluorine-based resins made of material molded article after pressing the (1) in a mold step a, the material molded product (1), the softening by heating to above the softening temperature of the mold odor Teso, softening of three-dimensional shape along the mold cavity by applying a pressure in the mold to Step B transforming into a three-dimensional molded product (2) , the softened three-dimensional molded product (2) in the mold is cooled to below the softening temperature while maintaining the pressurized state, and the target molded product (3) is obtained. Process C to be removed from the mold , material molded product (1) is a large size, and consists of process D that punches the target molded product (3) after process C into individual packing shapes. Is a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) In addition, the melt flow index (measured at a temperature 10 ° C higher than the melting point) is an extruded molded product having a grade of less than about 5 g / 10 min. In the step B, the material molded product (1) is After cooling at 260 ° C to 300 ° C, which is 50 ° C to 0 ° C lower than the melting point, and softening, the cooling step of step C is performed in the mold. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
[0013]
In the method of the present invention, the material molded article (1) made of a fluororesin is heated to its softening temperature or higher to be softened, and is deformed into a three-dimensional softened three-dimensional molded article (2) by applying pressure with a mold. Then, it is cooled to below the softening temperature to obtain the desired molded product (3). Unlike the injection molding method, the fluororesin is not completely melted and fluidized, and the material molded product (1) is softened and pressure is applied to deform it into a three-dimensional softened three-dimensional molded product (2). This is a feature point that is a point of the present invention.
[0014]
In order to carry out this method, a long material molded product (1) is heated and softened, and then the softened sheet is supplied to a mold roll or a press die to apply pressure, and continuously or intermittently three-dimensionally. It can be deformed into a soft, three-dimensional molded product (2) having a shape, and then cooled to obtain the desired molded product (3).
[0015]
However, it is practical to obtain the target product in a batch type using a material molded product (1) of a size suitable for each packing or a size that is large enough to be accommodated in a mold. Since this method is also preferable in terms of quality, the following description will be made in detail regarding this method, that is, the method passing through steps A, B, and C.
[0016]
<Process A>
Step A is a step of supplying a material molded product (1) made of a fluororesin having substantially the same capacity as the mold cavity capacity after pressing into the mold.
[0017]
The fluorine-based resin, Te tetrafluoroethylene - perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene - hexafluoropropylene copolymer (FEP), ethylene - tetrafluoroethylene copolymer (ETFE), ethylene - Examples thereof include chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride-based fluororubber, propylene-tetrafluoroethylene-based fluororubber, tetrafluoroethylene-perfluoroalkylvinylether-based fluororubber, and thermoplastic fluororubber. Among these, PFA and FEP are preferable, and in particular, PFA excellent in stress crack resistance and heat aging resistance is particularly important. Note that the fluororesin in this embodiment does not include polytetrafluoroethylene (PTFE).
[0018]
The material molded product (1) is particularly preferably made of an extrusion molded product of a fluorine-based resin of a grade having a melt flow index (measured at a temperature 10 ° C. higher than the melting point) of less than about 5 g / 10 min. This is because such grades are more advantageous in terms of heat cycle shock resistance and stress crack resistance.
[0019]
As the material molded product (1), it is usual to use a material having a through hole (h) and a flat shape. The material molded product (1) having such a shape can be obtained by punching a sheet made of a fluororesin or slicing a tube made of a fluororesin. In addition, when obtaining fluororesin sheets and tubes, various inorganic or organic additives are internally added to achieve coloring and shading and to improve properties such as heat resistance and chemical resistance. You can also
[0020]
The material molded product (1) is often sized in advance for each packing. The shape at this time is a shape such as a circle, an oval, or a rectangle having a through hole (h) in the center. The number of through holes (h) is not limited to one. In addition, a large-sized product can be used as the material molded product (1), and the target molded product (3) can be punched into individual packing shapes after taking out from the mold as will be described later.
[0021]
As described above, as the material molded product (1), one having substantially the same capacity as the mold cavity capacity after pressing is used. If a capacitor with a capacity that is smaller than the cavity capacity is smaller than the cavity capacity, the dimensional stability and denseness will be inferior. If a capacitor with a capacity that is larger than the cavity capacity is larger than the tolerance, This is because it occurs.
[0022]
<Process B>
In step B, the material molded product (1) is softened by heating it above its softening temperature in the mold or before being supplied to the mold, and pressure is applied to the mold cavity in the mold. This is a step of deforming into a three-dimensional softened three-dimensional molded product (2).
[0023]
Heating can be performed by electric heating, heating with a heat medium (oil, steam, gas), high-frequency heating, infrared heating, or the like. The mold may be integrated with a heat source such as an electric heater by casting or the like, and includes a heating pipe through which a heat medium flows, a cooling pipe through which cooling water flows, a flow path, a heat sink, etc. There may be.
[0024]
The heating temperature and time are set to a temperature and time sufficient to heat the molded article (1) to the softening temperature or higher. Of these, regarding the temperature (temperature of the material molded product (1)), if the material molded product (1) is made of PFA (melting point 302 to 310 ° C.) or FEP (melting point 255 to 265 ° C.), its melting point It is preferable that the temperature be lower by about 50 to 0 ° C., for example, about 260 to 300 ° C. in the case of PFA and about 200 to 260 ° C. in the case of FEP. In the case of PTFE (melting point: 327 ° C.), the temperature is preferably in the range from the softening temperature to about 20-25 ° C. higher than the melting point, for example, 280-350 ° C. It is desirable that the heating time be maintained for about 1 to 10 minutes, particularly about 1.5 to 5 minutes after the temperature is raised to a predetermined temperature.
[0025]
As a pressurizing method, not only a mechanism using hydraulic pressure, air pressure and water pressure but also a mechanism using thermal expansion by heating is adopted. The pressure is suitably about 50 to 300 kg / cm 2 , for example.
[0026]
<Process C>
Step C is a step in which the soft three-dimensional molded product (2) is cooled to a temperature equal to or lower than the softening temperature while maintaining a pressurized state to obtain a target molded product (3), which is taken out from the mold.
[0027]
Cooling is performed by water cooling, air cooling, or standing cooling, but water cooling that can be cooled in a short time is more advantageous in terms of productivity. In the case of water cooling, in addition to the method of passing cooling water through the mold, a method of pouring the mold into the water of the aquarium can be adopted.
[0028]
The target molded product (3) is made of a non-adhesive fluororesin and, since it shrinks slightly during cooling, it can be easily removed from the mold.
[0029]
When the material molded product (1) has a size suitable for each packing, the target molded product (3) obtained in this step C becomes the product packing.
[0030]
<Process D>
When the material molded product (1) is a large size, the target molded product (3) obtained in step C is not yet a product packing. Therefore, in this case, a process D is performed in which the target molded product (3) taken out from the mold in the process C is punched into individual packing shapes.
[0031]
<Application>
The packing obtained by the above process is useful as a packing (gasket) made of a fluororesin used for an insulation seal of a secondary battery, particularly a lithium ion secondary battery.
[0032]
<Action>
In the present invention, the material molded product (1) made of fluororesin is heated to its softening temperature or higher to be softened, and pressure is applied by a mold to transform it into a three-dimensional softened three-dimensional molded product (2). Then, it is cooled to below the softening temperature to obtain the target molded product (3).
[0033]
In particular, in the batch-type method described above, step A for supplying a material molded product (1) made of fluororesin having substantially the same capacity as the mold cavity capacity after pressing into the mold, the material molded product (1) is softened by heating to a temperature not lower than its softening temperature in the mold or before being supplied to the mold, and pressure is applied in the mold to form a three-dimensional softened solid along the mold cavity. Process B which transforms into molded product (2), the soft three-dimensional molded product (2) is cooled to below the softening temperature while maintaining the pressurized state, and is made the target molded product (3), which is taken out from the mold C is implemented.
[0034]
For this reason, a fluorine resin material having a small melt flow index and good characteristics can be used, and the molded material (1) is deformed without causing a flow. There is no risk of occurrence, and therefore no complicated process for removing burrs is required. Since not cause spool Le chromatography or runners as injection molded article, an expensive fluororesin waste remains minimal, on which is advantageous in terms of cost, so that accompany to conserve resources. Productivity is also good, and packing with excellent dimensional stability and denseness can be obtained, so that the quality is also reliable.
[0035]
【Example】
The following examples further illustrate the invention.
[0036]
Example 1
FIG. 1 is an explanatory view showing an example of a manufacturing process of a secondary battery packing according to the present invention and an example of a product packing obtained thereby, and a perspective view of a material molded product (1) and a target molded product (3). It is added.
[0037]
A flat circular material molded article (1) was produced by punching out a 0.6 mm thick PFA sheet (transparent sheet with a slight opalescence) obtained by extruding PFA having a melt flow index of 2 g / 10 min at 320 ° C. The diameter is 4 mm, and the diameter of the through hole (h) is 1 mm.
[0038]
In addition, a mold (4) consisting of three blocks was prepared. In FIG. 1, (4a) is the first female mold, (4b) is the second female mold, and (4c) is the male mold. The large diameter part of the first female mold (4a) is the diameter that the material molded product (1) can just fit into, and the projection of the second female mold (4b) is just fitted with the through hole (h) of the material molded product (1). It is as a full diameter.
[0039]
The above-mentioned material molded product (1) is mounted on a mold in which the first female mold (4a) and the second female mold (4b) are combined (see (a) of FIG. 1), and then the female mold (4a), The male mold (4c) was fitted into (4b) (see (b) in FIG. 1).
[0040]
The mold (4) is heated up to 290 ° C. and kept at this temperature for 2 minutes to gel the preform (1) and then toward the female molds (4a) and (4b) The male mold (4c) was pushed in and pressurized with a pressure of 100 kg / cm 2 . By this operation, the material molded product (1) was transformed into a three-dimensional softened three-dimensional molded product (2) along the mold cavity (see (c) of FIG. 1).
[0041]
Next, while maintaining the pressurized state, the mold (4) was poured into a large amount of water (room temperature) in a water tank, and the soft three-dimensional molded product (2) was cooled to obtain the desired molded product (3).
[0042]
Finally, the target molded product (3) after cooling was taken out from the mold (4) (see (D) of FIG. 1). As a result, a product packing comprising the target molded product (3) was obtained.
[0043]
Example 2
FIG. 2 is an explanatory view showing another example of the product packing obtained by the method of the present invention, in which (A) is a plan view, (B) is a sectional view, and (C) is a bottom view.
[0044]
A flat rectangular material molded product (1) was produced by punching out a 0.5 mm thick PFA sheet extruded from PFA having a melt flow index of 2 g / 10 min at 320 ° C.
[0045]
The target molded product (3) (product packing) shown in FIG. 2 was obtained in the same manner as in Example 1 except that this material molded product (1) was used. The dimensions are noted in FIG.
[0046]
Example 3
FIG. 3 is an explanatory view showing still another example of the product packing obtained by the method of the present invention, where (A) is a plan view, (B) is a sectional view taken along line XX in (A), and (C) is It is a bottom view.
[0047]
A flat oval material molded article (1) was produced by punching out a 0.5 mm thick PFA sheet obtained by extruding PFA having a melt flow index at 320 ° C. of 2 g / 10 min.
[0048]
The target molded product (3) (product packing) shown in FIG. 3 was obtained in the same manner as in Example 1 except that this material molded product (1) was used. Dimensions are noted in FIG.
[0049]
Example 4
FIG. 4 is an explanatory view showing another example of the manufacturing process of the secondary battery packing of the present invention.
[0050]
By punching out a 0.6 mm thick FEP sheet extruded from FEP with a melt flow index of 2 g / 10 min at 270 ° C., only through-holes (h) were formed at a predetermined interval to obtain a molded article (1) ( (See (a) in FIG. 4).
[0051]
The large mold (4) according to Example 1 was heated up to 222 ° C. and kept at this temperature for 3 minutes to soften the material molded product (1), and then the female mold (4a) The male mold (4c) was pushed toward (4b) and pressurized at a pressure of 150 kg / cm 2 . By this operation, the material molded product (1) was transformed into a three-dimensional softened three-dimensional molded product (2) along the mold cavity.
[0052]
Next, while maintaining the pressurized state, cooling water was passed through the mold (4) to cool the softened three-dimensional molded product (2) to obtain the target molded product (3) (see (b) in FIG. 4). Subsequently, the target molded product (3) after cooling was taken out from the mold (4).
[0053]
This target molded product (3) was punched into individual packing shapes to form product packing (see (c) in FIG. 4).
[0054]
Example 5
In Example 4, after obtaining the raw material molded product (1), this was softened by heating and then supplied to the mold and then pressure was applied. By this operation, the material molded product (1) was transformed into a three-dimensional softened three-dimensional molded product (2) along the mold cavity. The product (3) was taken out of the mold. Subsequently, the target molded product (3) was punched into individual packing shapes to obtain product packings.
[0055]
Example 6
Heated and softened while running a long material molded product (1) made of PFA sheet with a thickness of 0.5mm, extruded from PFA with a melt flow index of 2g / 10min at 320 ° C, and then passed between a pair of mold rolls It was transformed into a three-dimensional softened three-dimensional molded product (2) (corresponding to (b) in FIG. 4 without the through hole (h)), and then cooled through a cooling zone. After cooling, the product was punched into individual packing shapes, and at the same time, through holes (h) were provided to provide product packing (corresponding to (c) in FIG. 4).
[0056]
【The invention's effect】
As mentioned in the section of the action, in the present invention, as a fluorine-based resin Aburamoto material, tetrafluoroethylene - perfluoroalkyl vinyl ether copolymer (PFA), and a melt flow index (10 ° C than the melting point It is possible to use a sheet-like extruded product having a grade of less than about 5 g / 10 min (measured at a high temperature) , and the extruded product is deformed without causing flow, so that burrs are generated at the joint of the mold. There is no fear, and therefore no complicated process for removing burrs is required. Further, since sprues and runners are not generated unlike injection molded products, waste of expensive fluororesin is minimized, which is advantageous in terms of cost and saves resources. Productivity is also good, and packing with excellent dimensional stability and denseness can be obtained, so that the quality is also reliable.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an example of a manufacturing process of a secondary battery packing of the present invention and a product packing obtained thereby.
FIG. 2 is an explanatory view showing another example of the product packing obtained by the method of the present invention.
FIG. 3 is an explanatory view showing still another example of the product packing obtained by the method of the present invention.
FIG. 4 is an explanatory view showing another example of the manufacturing process of the secondary battery packing of the present invention.
[Explanation of symbols]
(1)… Material molded product,
(2)… softened three-dimensional molded product,
(3)… Target molded product,
(4) ... mold,
(4a) ... first female mold, (4b) ... second female mold, (4c) ... male mold,
(h)… through hole

Claims (2)

圧締後の金型キャビティー容量と実質的に同一容量のフッ素系樹脂製の素材成形品(1)を金型内に供給する工程A、
素材成形品(1)を、金型内においてその軟化温度以上にまで加熱して軟化させると共に、金型内で圧力を加えて金型キャビティーに沿った立体形状の軟化立体成形品(2)に変形する工程B、
金型内においてその軟化立体成形品(2)を、加圧状態を保ちながらその軟化温度以下にまで冷却して目的成形品(3)となし、金型より取り出す工程C、
素材成形品(1)が大サイズであり、工程C後の目的成形品(3)を個々のパッキン形状に打ち抜く工程D、からなり、
前記フッ素系樹脂製の素材成形品は、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)であり、かつ、メルトフローインデックス(融点より10°C高い温度で測定)が約5g/10min未満のグレードのシート状の押出成形品であり、
前記工程Bは、金型内において、前記素材成形品(1)を、その融点よりも50°C〜0℃低い温度である、260°C〜300°Cで加熱して軟化させた後に、金型内において前記工程Cの冷却工程を行なう、ことを特徴とする二次電池用パッキンの製造法。
Step A supplies the mold cavity volume is substantially the same volume of a fluorine-based resins made of material molded product (1) into the mold after pressing,
Material molded article (1), the softening by heating to above the softening temperature of the mold odor Teso, softened solid molded article of a three-dimensional shape along the mold cavity by applying a pressure in the mold ( Step B, which is transformed into 2)
In the mold, the soft three-dimensional molded product (2) is cooled to a temperature equal to or lower than the softening temperature while maintaining a pressurized state to form a target molded product (3), and is taken out from the mold.
A material molded product (1) the large size, step punching purposes molded article after step C (3) into individual packing form D, Ri Tona,
The fluororesin material molding is a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) and has a melt flow index (measured at a temperature 10 ° C. higher than the melting point) of less than about 5 g / 10 min. Is a sheet-like extruded product of the grade
In the step B, after the material molded product (1) is softened by heating at 260 ° C. to 300 ° C., which is 50 ° C. to 0 ° C. lower than its melting point, in the mold, A method for producing a packing for a secondary battery , wherein the cooling step of the step C is performed in a mold .
素材成形品(1)が個々のパッキンに見合ったサイズを有している請求項1記載の製造法。Material molded article (1) production method according to claim 1 Symbol placement has a size commensurate with the individual packing.
JP17003197A 1997-06-26 1997-06-26 Manufacturing method for secondary battery packing Expired - Lifetime JP3916728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17003197A JP3916728B2 (en) 1997-06-26 1997-06-26 Manufacturing method for secondary battery packing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17003197A JP3916728B2 (en) 1997-06-26 1997-06-26 Manufacturing method for secondary battery packing

Publications (2)

Publication Number Publication Date
JPH1116548A JPH1116548A (en) 1999-01-22
JP3916728B2 true JP3916728B2 (en) 2007-05-23

Family

ID=15897331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17003197A Expired - Lifetime JP3916728B2 (en) 1997-06-26 1997-06-26 Manufacturing method for secondary battery packing

Country Status (1)

Country Link
JP (1) JP3916728B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035997A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp Sealing material for battery
US9461279B2 (en) 2012-06-25 2016-10-04 Toyota Jidosha Kabushiki Kaisha Battery

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050328A (en) * 2000-08-02 2002-02-15 Seiko Instruments Inc Nonaqueous electrolyte secondary cell
JP2002245991A (en) * 2001-02-16 2002-08-30 Osaka Gas Co Ltd Non-aqueous secondary battery
EP2082125B1 (en) * 2006-11-06 2014-12-24 Garlock Sealing Technologies LLC A low-stress molded gasket and method of making same
JP5127386B2 (en) * 2007-09-28 2013-01-23 株式会社東芝 Square non-aqueous electrolyte battery
EP2357440B1 (en) * 2008-11-03 2016-04-20 Guangwei Hetong Energy Technology (Beijing) Co., Ltd. Heat pipe with micro tubes array and making method thereof and heat exchanging system
JP5266021B2 (en) * 2008-11-14 2013-08-21 正弥 横井 Urethane molded product molding apparatus with penetrating part and manufacturing method using the same
JP5566641B2 (en) 2009-08-26 2014-08-06 株式会社東芝 battery
JP2012011646A (en) * 2010-06-30 2012-01-19 Nok Corp Method of manufacturing product made from tetrafluoroethylene
JP6005250B2 (en) * 2013-02-20 2016-10-12 淀川ヒューテック株式会社 Manufacturing method of gasket for secondary battery
JP6011657B2 (en) * 2014-02-28 2016-10-19 ダイキン工業株式会社 Sealing member
CN108656576B (en) * 2018-05-23 2020-11-10 惠州亿纬锂能股份有限公司 Battery sealing element forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461279B2 (en) 2012-06-25 2016-10-04 Toyota Jidosha Kabushiki Kaisha Battery
JP2014035997A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp Sealing material for battery

Also Published As

Publication number Publication date
JPH1116548A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
JP3916728B2 (en) Manufacturing method for secondary battery packing
JPS63222835A (en) Manufacture of eared stretch-blown plastic bottle
CN102658660B (en) Manufacturing method of wide-amplitude polytetrafluoroethylene rotary cutting membrane
CN109940809B (en) Punch forming die and method for graphite bipolar plate for high-temperature fuel cell
KR950017150A (en) Manufacturing method of insert molding body using fluorocarbon resin as surface material
CN212795790U (en) Mold temperature control system
JPH072382B2 (en) Method for closely bonding a hollow molded body made of thermoplastics to a thin-walled molded body made of thermoplastics capable of being welded to the hollow molded body at the end face side
JP2001071376A (en) Production of packing for secondary cell
JPS6259655B2 (en)
CN108724780B (en) Battery sealing element forming method
CN108749018B (en) Battery sealing element forming method
CN209647575U (en) A kind of cooling mold of buried tube type heating
CN112895403A (en) Hot pressing forming device in PET (polyethylene terephthalate) hot composite die
CN112203470A (en) Three-dimensional heat dissipation plate and processing method thereof
JP2002221276A (en) Packing material and its production method
KR101969807B1 (en) Method for producing diaphragm
CN214235641U (en) Hot extrusion forming die for inclined tee joint
CN212888796U (en) Injection mold convenient to heat
CN103587036A (en) Injection mold and manufacture method of high mirror surface of product surface
CN114571196B (en) Production process of membrane heater with hot water and steam dual-purpose function
JPS63236621A (en) Manufacture of molded form from defective molded form substantially constituted of polymerized unit of tetrafluoroethylene
CN214982974U (en) Mould heating device of forming machine
CN215095499U (en) Flat-mouth die for pushing and extruding polytetrafluoroethylene
CN219338621U (en) Right-angle piece outside rubber coating mould
CN216267454U (en) High-efficient injection mold of radiator fan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term