JP3916469B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP3916469B2
JP3916469B2 JP2002005981A JP2002005981A JP3916469B2 JP 3916469 B2 JP3916469 B2 JP 3916469B2 JP 2002005981 A JP2002005981 A JP 2002005981A JP 2002005981 A JP2002005981 A JP 2002005981A JP 3916469 B2 JP3916469 B2 JP 3916469B2
Authority
JP
Japan
Prior art keywords
plasma
plasma processing
counter electrode
metal member
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002005981A
Other languages
Japanese (ja)
Other versions
JP2003209095A (en
Inventor
裕 奥村
征仁 田代
能久 平野
光伸 加茂坂
康弘 戸部
Original Assignee
株式会社エフオーアイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エフオーアイ filed Critical 株式会社エフオーアイ
Priority to JP2002005981A priority Critical patent/JP3916469B2/en
Publication of JP2003209095A publication Critical patent/JP2003209095A/en
Application granted granted Critical
Publication of JP3916469B2 publication Critical patent/JP3916469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、プラズマ成膜装置やプラズマエッチング装置などのプラズマ処理装置(プラズマリアクタ)に関し、IC(半導体デバイス)やLCD(液晶表示パネル)あるいはPDP(プラズマディスプレイパネル)などの製造工程においてウエハやパネル等を処理対象としてプラズマ処理すなわちプラズマ反応に基づく処理を行わせるのに好適なプラズマ処理装置に関する。
【0002】
真空チャンバ内でプラズマ雰囲気に被処理物を曝して行われるプラズマ処理として、エッチングや,アッシング,プラズマCVDなどが挙げられる。そして、これらの処理に用いられるプラズマ処理装置の典型例としては、対向する一対の電極を設けておいてこれらの電極間にプラズマ処理空間を形成してシリコンウエハ等の被処理物(処理基板)にエッチング処理を行ういわゆる平行平板形エッチャー(RIE)や成膜処理を行う平行平板形PCVD等が知られている。
【0003】
【従来の技術】
図2(a)に装置全体の概要構成についての縦断模式図を示したが、平行平板形のプラズマ処理装置は、一対の平行平板が真空チャンバ内に設けられていて、両平板間に形成されたプラズマ処理空間にプラズマを発生させ又は導入するとともにそのプラズマ処理空間内に所定の処理ガス等も導入する。そして、プラズマ処理空間にてプラズマ反応を行わせ、これによってプラズマ処理空間内の被処理物表面に対してエッチング処理等を施すようになっている。
【0004】
具体的には(図2及び特開平10−294307号公報等を参照)、プラズマ処理空間4を囲う真空チャンバは、アルミニウム等の電気良導体からなり、真空チャンバ本体部2に真空チャンバ蓋部3を開閉可能に付加したものである。真空チャンバ本体部2の内底には、チャンバ内に搬入された処理基板1を上面に載せることでそれをプラズマ処理空間4に臨ませて保持する保持電極5が植設され、真空チャンバ蓋部3には、プラズマ処理空間4を挟んで保持電極5と向き合う対向電極6が垂設されている。対向電極6の上には、セラミック等からなる隣接絶縁体10が付設されている。隣接絶縁体10の下面には、プラズマ発生空間10aが多重の円環状や多角形状に彫り込み形成され、それと交互に上から彫り込み形成された溝には、コイル7が格納されている。
【0005】
また、真空チャンバ2+3には、プラズマ処理空間4を真空にしてその圧力を制御するための真空ポンプや可変バルブ等が付設される他、下方の保持電極5に周波数500KHz〜2MHz程度の高周波を印可してバイアス電圧を付与するRF電源9と、プラズマの励起・形成のため上述したコイル7に13MHz〜100MHz程度の高周波を印可するRF電源8(第1印可手段)も付設されている。さらに、上方の対向電極6を通して、具体的には隣接絶縁体10及び対向電極6に形成された流路を通過させて、プラズマの発生や励起に用いられるアルゴン等のプラズマ用ガスAを供給するガスユニットと、反応ガスとして用いられるシランガス等の処理ガスBを供給するガスユニットも、付設されている。
【0006】
そして、プロセスレシピ等に従って、プラズマ発生空間10aにプラズマ用ガスAを送り込みながらRF電源8からコイル7に高周波を印可する。そうすると、プラズマ発生空間10a内にプラズマA’が発生し、それが、対向電極6に分散形成されたプラズマ供給口6aから、プラズマ処理空間4へ流れる。プラズマ処理空間4にプラズマが満ちたところで、やはり対向電極6に分散形成された処理ガス供給口6bを介して処理ガスBをプラズマ処理空間4へ送り込むと、処理基板1に対して所望のプラズマ処理が施される。
【0007】
その際、RF電源9にて保持電極5に適宜なバイアス電圧を掛けることでプラズマ処理に異方性が付与される。
これに対し、対向電極6は、接地されていた。
【0008】
【発明が解決しようとする課題】
もっとも、対向電極にもバイアス電圧を掛けると、プラズマ処理に対して直接には影響しないが、対向電極に付着するプラズマ副生成物等の量を減らすことができる。また、対向電極のところにシリコン等の非金属を設けたときにも、対向電極に付着するカーボン等の量を減らすことができる。そこで、対向電極への不所望な付着を出来るだけ無くすべく、金属製の対向電極に非金属を張り合わせることが考えられる。
【0009】
しかしながら、電極に都合の良い電気良導体は一般に熱膨張率が大きいのに対し、大抵の非金属は、熱膨張率が小さい。そして、プラズマ処理に伴う熱によって歪んだり傷んだりし易い。このため、単純に対向電極と非金属とを組合わせることはできない。
そこで、金属製の対向電極に非金属を張り合わせるに際して歪みや傷みが生じないように対向電極の構造を工夫することが技術的な課題となる。
この発明は、このような課題を解決するためになされたものであり、対向電極への付着の少ないプラズマ処理装置を実現することを目的とする。
【0010】
【課題を解決するための手段】
このような課題を解決するために発明された第1乃至第3の解決手段について、その構成および作用効果を以下に説明する。
【0011】
[第1の解決手段]
第1の解決手段のプラズマ処理装置は、出願当初の請求項1に記載の如く、真空チャンバ内でプラズマ処理空間を挟んで処理基板保持用の保持電極と向き合う対向電極が、電気良導体からなる第1種の金属部材と、それと熱膨張率の異なる第2種の金属部材と、前記プラズマ処理空間に臨む非金属部材とを重ね合わせてできている、というものである。
【0012】
具体的には、出願当初の請求項2に記載の如く、プラズマ処理空間を囲う真空チャンバと、処理基板を前記プラズマ処理空間に臨ませて保持する保持電極と、前記プラズマ処理空間を挟んで前記保持電極と向き合う対向電極と、前記対向電極を通してプラズマ用ガス及び処理ガスを前記プラズマ処理空間へ供給する手段と、前記対向電極に付設されたコイルに高周波電力を印可して前記プラズマ用ガスを励起する第1印可手段とを備えたプラズマ処理装置において、前記対向電極に高周波電力を印可する第2印可手段を設けるとともに、前記対向電極を、電気良導体からなる第1種の金属部材と、それと熱膨張率の異なる第2種の金属部材と、前記プラズマ処理空間に臨む非金属部材とを重ね合わせて構成したものである。
【0013】
このような第1の解決手段のプラズマ処理装置にあっては、対向電極の電極機能が第1種の金属部材によって担保されるとともに、プラズマ被爆面が非金属部材によって覆われるうえ、両者の熱膨張率の相違に起因する歪みや傷みが、第2種の金属部材の介在によって緩和される。
これにより、金属と非金属とを張り合わせた対向電極が不都合無く構成されることとなる。
したがって、この発明によれば、対向電極への付着の少ないプラズマ処理装置を実現することができる。
【0014】
[第2の解決手段]
第2の解決手段のプラズマ処理装置は、出願当初の請求項3に記載の如く、上記の第1の解決手段のプラズマ処理装置であって、前記第2種の金属部材と前記非金属部材との間に接着剤またはその他の充填材が充填されている、というものである。
【0015】
このような第2の解決手段のプラズマ処理装置にあっては、プラズマ発生等に伴って非金属部材の温度が上昇すると、その熱が充填材を介して斑無く而も効率良く金属部材に伝達される。金属部材は一般に熱伝達も良いので、非金属部材の温度上昇も良く抑えられる。これにより、熱歪みが更に少なくなるので、形状設計や部材選択等が容易になる。
したがって、この発明によれば、対向電極への付着の少ないプラズマ処理装置を容易に実現することができる。
【0016】
[第3の解決手段]
第3の解決手段のプラズマ処理装置は、出願当初の請求項4に記載の如く、上記の第2の解決手段のプラズマ処理装置であって、前記第2印可手段が、高周波電力の印可を前記第2種の金属部材に行うようになっている、というものである。
【0017】
このような第3の解決手段のプラズマ処理装置にあっては、非金属部材に隣接している第2種の金属部材に対して高周波が印可されるので、プラズマ被爆面を持つ非金属部材に対して効率良くバイアス電圧が掛かる。
これにより、第2種の金属部材を介在させても、対向電極に関するバイアス電圧の印可による付着量低減の効果は、維持・強化されることとなる。
したがって、この発明によれば、対向電極への付着の特に少ないプラズマ処理装置を容易に実現することができる。
【0018】
【発明の実施の形態】
このような解決手段で達成された本発明のプラズマ処理装置について、これを実施するための形態を、一実施例により具体的に説明する。
先ず、その具体的な構成を、図面を引用して説明するが、図1は、要部である対向電極の縦断面構造を示し、(a)が電極全体、(b)が一部の拡大図である。なお、その図示に際し、締結具や、接着剤、ガス配管、埋設フィルタ、Oリング等は割愛した。また、従来と同様の構成要素には同一の符号を付して示したので、重複する再度の説明は割愛し、以下、従来との相違点を中心に説明する。
【0019】
このプラズマ処理装置が従来のものと相違するのは、対向電極6が改造されて対向電極60になった点と、RF電源67(第2印可手段)が追加されている点である。なお、プラズマ密度を高くすることよりプラズマの均一性や清浄度を高めるのを重視して、磁石は省かれている。
RF電源67は、RF電源9と同様に周波数500KHz〜2MHz程度の高周波を出力するが、RF電源9と異なり上方の対向電極60にバイアス電圧を付与するためのものである。
【0020】
対向電極60は、上から下へ、アルミプレート61(第1種の金属部材)とアルミプレート62(第1種の金属部材)とモリブデンプレート63(第2種の金属部材)とシリコンプレート64(非金属部材)とを重ね合わせて出来ており、側面周囲を絶縁リング65で覆われて、接地状態の真空チャンバ2+3と電気的に短絡しないようになっている。
【0021】
アルミプレート61及びアルミプレート62は、電気良導体であり、両者の合わせめに網状の溝を彫り込み形成し、それに両プレート61,62を貫通するガス流路を連通させることで、ガス流路をアルミプレート61上面のところでは集中させアルミプレート62の下面のところでは分散させている。プラズマ用ガスAと処理ガスBとの各々について、そのようになっている。また、両プレート61,62を貫通して、RF電源8からの給電線を挿通させる穴や、RF電源67からの延びてきた給電線を挿通させる穴も、形成されている。
【0022】
モリブデンプレート63は、熱膨張率がアルミニウムよりも小さくてシリコンに近いうえ、熱伝導率も良い。これには、銅プラグ66が何カ所かに分散してめり込み状態で装着され、そこにRF電源67からの給電線が接続されていて、RF電源67による高周波電力の印可がモリブデンプレート63に対して行われるようになっている。ガスA,Bの流路もそれぞれ貫通して形成されている。
【0023】
シリコンプレート64は、対向電極60内で最も下方に位置していて、プラズマ処理空間4に臨むものである。コイル7を格納するための溝は、隣接絶縁体10からシリコンプレート64に移され、その上面に彫り込み形成されている。プラズマ発生空間10aもシリコンプレート64に移され、プラズマ発生空間10a及びプラズマ供給口6aに代わるプラズマ発生空間60aが、シリコンプレート64の下面に彫り込み形成されている。プラズマ密度を高くすることよりプラズマの均一性や清浄度を高めるのを重視して、プラズマ発生空間60aのプラズマ供給口はプラズマ処理空間4へ向け大きく開いている。
【0024】
コイル7格納用溝とプラズマ発生空間60aは交互に分散等して例えば同心円状や螺旋状に形成されており(特開平10−294307号公報等も参照)、プラズマ用ガスAはプラズマ発生空間60aの溝底に流出し、処理ガスBはプラズマ発生空間60aを避けてそれらの間からプラズマ処理空間4へ流出するようになっている。
【0025】
このようなシリコンプレート64は、例えば、接着剤にてモリブデンプレート63に貼着され、モリブデンプレート63と共にアルミプレート62やアルミプレート61にボルト等で固定される。モリブデンプレート63とシリコンプレート64間の熱伝導を良くするとともに熱膨張時の応力を緩和するため、接着剤には、熱伝導率も伸び率も優れているシリコン接着剤が好適であるが、他の接着剤でも良い。なお、シリコンプレート64とモリブデンプレート63との張り合わせを締結具や係止手段等にて行う場合には、接着剤を併用しても良いが、接着剤に代えて、変形能にも耐熱性にも優れたシリコンゴム等を充填しても良い。
【0026】
このような構成のプラズマ処理装置について、その使用態様及び動作を説明する。
【0027】
保持電極5上に処理基板1が搬入され、プラズマ処理空間4の真空引きが行われると、プロセスレシピ等に従って、プラズマ発生空間60aにプラズマ用ガスAが送り込まれ、RF電源8からコイル7に高周波が印可される。それによって、プラズマ発生空間60a内にプラズマA’が発生してプラズマ処理空間4へ流れる。プラズマ処理空間4にプラズマが満ちたところで、プラズマ用ガスAとは別の流路を通って処理ガスBが処理ガス供給口6bからプラズマ処理空間4へ送り込まれる。また、モリブデンプレート63にもRF電源67から高周波が印可され、それによって、モリブデンプレート63にバイアス電圧が直接惹起されると同時に、シリコンプレート64にもバイアス電圧が誘起される。
【0028】
こうして、処理基板1に対して処理ガスBを使用した所望のプラズマ処理が施される。また、その際、カーボン等の副生成物が生じても、対向電極60のプラズマ被爆面がアルミニウムでなくシリコンであるうえ、そこにバイアス電圧が掛かっているため、カーボン等の対向電極60への付着は阻止される。さらに、シリコンプレート64の熱は、薄い充填材を介して効率良くモリブデンプレート63に伝達され、そこで均一化されながらアルミプレート62,61に逃げるので、シリコンプレート64は、過度の温度上昇が抑えられるうえ、熱分布がほぼ一様になる。それに加えて、熱膨張率も張り合わせ先のモリブデンプレート63と近いため、モリブデンプレート63と揃って伸縮するので、張り合わせ面に不所望な引きつる力がかかることも無い又は少ない。したがって、シリコンプレート64に歪みや傷みが生じない又は生じても僅かにすぎない。また、プラズマ分布の均一性も向上して、プラズマ処理が良質になるという効果もある。
【0029】
【その他】
なお、上記の実施例では、保持電極5及び対向電極60が平行平板形であったが、本発明の適用は、それに限られるものでなく、一方または双方が多少湾曲していても良い。また、処理基板1の形状に適合していれば、丸形でも角形でも良い。
【0030】
【発明の効果】
以上の説明から明らかなように、本発明の第1の解決手段のプラズマ処理装置にあっては、金属と非金属とを張り合わせて対向電極を構成するに際し、他の金属を介在させて、熱膨張率の相違の影響を緩和させたことにより、対向電極への付着の少ないプラズマ処理装置を実現することができたという有利な効果が有る。
【0031】
また、本発明の第2の解決手段のプラズマ処理装置にあっては、充填によって非金属部材の温度上昇が抑えられるようにもしたことにより、対向電極への付着の少ないプラズマ処理装置を実現するのが容易になったという有利な効果を奏する。
【0032】
さらに、本発明の第3の解決手段のプラズマ処理装置にあっては、非金属部材に対して効率良くバイアス電圧が掛かるようにもしたことにより、対向電極への付着の特に少ないプラズマ処理装置を容易に実現することができたという有利な効果が有る。
【図面の簡単な説明】
【図1】 本発明のプラズマ処理装置の一実施例について、その対向電極の縦断面構造を示し、(a)が電極全体、(b)が一部の拡大図である。
【図2】 従来装置の縦断面構造を示し、(a)が真空チャンバの全体図、(b)が対向電極等の縦断面斜視図である。
【符号の説明】
1 処理基板(ウエハ、処理対象板状体、試料、被処理物)
2 真空チャンバ本体部(真空チャンバ)
3 真空チャンバ蓋部(真空チャンバ)
4 プラズマ処理空間
5 保持電極(カソード、対の電極の一方、被処理物乗載用の下部電極)
6 対向電極(アノード、対の電極の他方、被処理物に対向の上部電極)
6a プラズマ供給口
6b 処理ガス供給口
7 コイル(プラズマ励起用高周波の印加回路、第1印可手段)
8 RF電源(プラズマ励起用の高周波電源、第1印可手段)
9 RF電源(保持電極バイアス用高周波印可回路、第3印可手段)
10 隣接絶縁体(プラズマ発生チャンバ)
10a プラズマ発生空間
60 対向電極(アノード、平行平板の他方、被処理物に対向の上部電極)
60a プラズマ発生空間
61 アルミプレート(環状路の蓋部、第1種の金属部材)
62 アルミプレート(環状路の台部、第1種の金属部材)
63 モリブデンプレート(第2種の金属部材)
64 シリコンプレート(非金属部材)
65 絶縁リング
66 銅プラグ(対向電極バイアス用高周波印可回路、第2印可手段)
67 RF電源(対向電極バイアス用高周波印可回路、第2印可手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma processing apparatus (plasma reactor) such as a plasma film forming apparatus or a plasma etching apparatus, and relates to a wafer or panel in a manufacturing process of an IC (semiconductor device), an LCD (liquid crystal display panel), or a PDP (plasma display panel). The present invention relates to a plasma processing apparatus suitable for performing plasma processing, that is, processing based on a plasma reaction.
[0002]
Examples of plasma processing performed by exposing an object to be processed to a plasma atmosphere in a vacuum chamber include etching, ashing, and plasma CVD. As a typical example of a plasma processing apparatus used for these processes, a pair of electrodes facing each other is provided, and a plasma processing space is formed between the electrodes to form an object to be processed (processing substrate) such as a silicon wafer. A so-called parallel plate type etcher (RIE) for performing an etching process and a parallel plate type PCVD for performing a film forming process are known.
[0003]
[Prior art]
FIG. 2 (a) shows a schematic longitudinal sectional view of the overall configuration of the apparatus. In the parallel plate type plasma processing apparatus, a pair of parallel plates are provided in a vacuum chamber and formed between both plates. Plasma is generated or introduced into the plasma processing space, and a predetermined processing gas or the like is also introduced into the plasma processing space. Then, a plasma reaction is performed in the plasma processing space, whereby an etching process or the like is performed on the surface of the object to be processed in the plasma processing space.
[0004]
Specifically (see FIG. 2 and Japanese Patent Application Laid-Open No. 10-294307), the vacuum chamber surrounding the plasma processing space 4 is made of a good electrical conductor such as aluminum, and the vacuum chamber lid 3 is attached to the vacuum chamber body 2. It can be opened and closed. On the inner bottom of the vacuum chamber body 2, a holding electrode 5 is implanted so that the processing substrate 1 carried into the chamber is placed on the upper surface so as to face and hold the plasma processing space 4. 3, a counter electrode 6 facing the holding electrode 5 with a plasma processing space 4 in between is suspended. An adjacent insulator 10 made of ceramic or the like is attached on the counter electrode 6. On the lower surface of the adjacent insulator 10, the plasma generation space 10a is engraved and formed in a multiple annular shape or polygonal shape, and the coil 7 is stored in a groove formed by engraving alternately from above.
[0005]
In addition, the vacuum chamber 2 + 3 is provided with a vacuum pump, a variable valve, etc. for evacuating the plasma processing space 4 and controlling its pressure, and a high frequency of about 500 KHz to 2 MHz is applied to the lower holding electrode 5. An RF power source 9 for applying a bias voltage and an RF power source 8 (first applying means) for applying a high frequency of about 13 MHz to 100 MHz to the coil 7 described above for excitation and formation of plasma are also provided. Further, through the upper counter electrode 6, specifically, through the flow path formed in the adjacent insulator 10 and the counter electrode 6, a plasma gas A such as argon used for plasma generation and excitation is supplied. A gas unit and a gas unit for supplying a processing gas B such as silane gas used as a reaction gas are also provided.
[0006]
Then, according to the process recipe or the like, a high frequency is applied from the RF power source 8 to the coil 7 while feeding the plasma gas A into the plasma generation space 10a. As a result, plasma A ′ is generated in the plasma generation space 10 a and flows from the plasma supply port 6 a formed dispersedly in the counter electrode 6 to the plasma processing space 4. When the plasma processing space 4 is filled with plasma, when the processing gas B is sent to the plasma processing space 4 through the processing gas supply ports 6b formed dispersedly in the counter electrode 6, a desired plasma processing is performed on the processing substrate 1. Is given.
[0007]
At that time, anisotropy is imparted to the plasma processing by applying an appropriate bias voltage to the holding electrode 5 by the RF power source 9.
On the other hand, the counter electrode 6 was grounded.
[0008]
[Problems to be solved by the invention]
However, if a bias voltage is also applied to the counter electrode, it does not directly affect the plasma treatment, but the amount of plasma by-products and the like attached to the counter electrode can be reduced. In addition, when a nonmetal such as silicon is provided at the counter electrode, the amount of carbon or the like attached to the counter electrode can be reduced. In view of this, it is conceivable to attach a non-metal to the metal counter electrode so as to eliminate unwanted adhesion to the counter electrode as much as possible.
[0009]
However, good electrical conductors that are convenient for electrodes generally have a high coefficient of thermal expansion, whereas most non-metals have a low coefficient of thermal expansion. And it is easy to be distorted or damaged by the heat accompanying the plasma treatment. For this reason, a counter electrode and a nonmetal cannot be simply combined.
Therefore, it is a technical problem to devise the structure of the counter electrode so that distortion and damage do not occur when the non-metal is bonded to the metal counter electrode.
The present invention has been made to solve such a problem, and an object thereof is to realize a plasma processing apparatus with less adhesion to the counter electrode.
[0010]
[Means for Solving the Problems]
About the 1st thru | or 3rd solution means invented in order to solve such a subject, the structure and effect are demonstrated below.
[0011]
[First Solution]
In the plasma processing apparatus of the first solution, as described in claim 1 at the beginning of the application, the counter electrode facing the holding electrode for holding the processing substrate in the vacuum chamber across the plasma processing space is made of a good electrical conductor. One type of metal member, a second type of metal member having a different coefficient of thermal expansion, and a non-metal member facing the plasma processing space are overlaid.
[0012]
Specifically, as described in claim 2 at the beginning of the application, a vacuum chamber that surrounds the plasma processing space, a holding electrode that holds the processing substrate facing the plasma processing space, and the plasma processing space across the plasma processing space. A counter electrode facing the holding electrode; means for supplying a plasma gas and a processing gas to the plasma processing space through the counter electrode; and applying a high frequency power to a coil attached to the counter electrode to excite the plasma gas. In the plasma processing apparatus including the first applying means, the second applying means for applying high-frequency power to the counter electrode is provided, and the counter electrode is provided with a first type metal member made of a good electric conductor, and heat A second type metal member having a different expansion coefficient and a non-metal member facing the plasma processing space are overlapped with each other.
[0013]
In such a plasma processing apparatus of the first solution, the electrode function of the counter electrode is secured by the first type metal member, the plasma exposed surface is covered by the non-metal member, and the heat of both Distortion and damage due to the difference in expansion coefficient are alleviated by the intervention of the second type metal member.
As a result, the counter electrode in which the metal and the nonmetal are bonded together is configured without any inconvenience.
Therefore, according to the present invention, it is possible to realize a plasma processing apparatus with less adhesion to the counter electrode.
[0014]
[Second Solution]
The plasma processing apparatus of the second solving means is the plasma processing apparatus of the first solving means as described in claim 3 at the beginning of the application, wherein the second type metal member and the non-metallic member are provided. It is said that an adhesive or other filler is filled in between.
[0015]
In such a plasma processing apparatus of the second solving means, when the temperature of the non-metallic member rises due to the generation of plasma or the like, the heat is transferred to the metallic member efficiently through the filler. Is done. Since the metal member generally has good heat transfer, the temperature rise of the non-metal member can be suppressed well. Thereby, since thermal distortion further decreases, shape design, member selection, etc. become easy.
Therefore, according to the present invention, it is possible to easily realize a plasma processing apparatus with less adhesion to the counter electrode.
[0016]
[Third Solution]
The plasma processing apparatus of the third solving means is the plasma processing apparatus of the second solving means described in claim 4 at the beginning of the application, wherein the second applying means applies the application of high-frequency power. This is to be applied to the second type metal member.
[0017]
In such a plasma processing apparatus of the third solving means, since a high frequency is applied to the second type metal member adjacent to the nonmetallic member, the nonmetallic member having the plasma exposed surface is used. On the other hand, the bias voltage is efficiently applied.
Thereby, even if the second type metal member is interposed, the effect of reducing the adhesion amount by applying the bias voltage with respect to the counter electrode is maintained and strengthened.
Therefore, according to the present invention, it is possible to easily realize a plasma processing apparatus with particularly little adhesion to the counter electrode.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
With regard to the plasma processing apparatus of the present invention achieved by such a solution, a mode for carrying out this will be specifically described by way of an example.
First, a specific configuration thereof will be described with reference to the drawings. FIG. 1 shows a longitudinal sectional structure of a counter electrode as a main part, in which (a) is an entire electrode and (b) is a partially enlarged view. FIG. In the illustration, fasteners, adhesives, gas pipes, buried filters, O-rings, etc. are omitted. In addition, since the same reference numerals are given to the same components as those in the prior art, the repeated description will be omitted, and hereinafter, the differences from the prior art will be mainly described.
[0019]
This plasma processing apparatus is different from the conventional one in that the counter electrode 6 is remodeled into a counter electrode 60 and an RF power source 67 (second applying means) is added. Note that magnets are omitted with emphasis on increasing plasma uniformity and cleanliness by increasing plasma density.
The RF power source 67 outputs a high frequency of about 500 KHz to 2 MHz similarly to the RF power source 9. However, unlike the RF power source 9, the RF power source 67 is for applying a bias voltage to the upper counter electrode 60.
[0020]
The counter electrode 60 includes, from top to bottom, an aluminum plate 61 (first type metal member), an aluminum plate 62 (first type metal member), a molybdenum plate 63 (second type metal member), and a silicon plate 64 ( The non-metal member is superposed on the side surface, and the periphery of the side surface is covered with an insulating ring 65 so as not to be electrically short-circuited with the grounded vacuum chamber 2 + 3.
[0021]
The aluminum plate 61 and the aluminum plate 62 are good electrical conductors, and a mesh-like groove is formed by engraving them together, and the gas flow path penetrating both the plates 61 and 62 is made to communicate therewith. It is concentrated at the upper surface of the plate 61 and dispersed at the lower surface of the aluminum plate 62. This is the case for each of the plasma gas A and the processing gas B. Further, a hole through which the power supply line from the RF power supply 8 is inserted and a hole through which the power supply line extending from the RF power supply 67 is inserted through both the plates 61 and 62 are also formed.
[0022]
The molybdenum plate 63 has a thermal expansion coefficient smaller than that of aluminum and close to that of silicon, and also has a good thermal conductivity. In this, copper plugs 66 are dispersed and installed in several places, and a power supply line from an RF power source 67 is connected thereto, and the application of high frequency power by the RF power source 67 is applied to the molybdenum plate 63. It is supposed to be done. The flow paths of the gases A and B are also formed so as to penetrate each other.
[0023]
The silicon plate 64 is located at the lowest position in the counter electrode 60 and faces the plasma processing space 4. The groove for storing the coil 7 is transferred from the adjacent insulator 10 to the silicon plate 64 and is formed by engraving on the upper surface thereof. The plasma generation space 10 a is also transferred to the silicon plate 64, and a plasma generation space 60 a in place of the plasma generation space 10 a and the plasma supply port 6 a is engraved on the lower surface of the silicon plate 64. The plasma supply port of the plasma generation space 60a is greatly open toward the plasma processing space 4 with an emphasis on increasing the plasma uniformity and cleanliness by increasing the plasma density.
[0024]
The groove for storing the coil 7 and the plasma generation space 60a are alternately dispersed to form, for example, concentric circles and spirals (see also Japanese Patent Laid-Open No. 10-294307), and the plasma gas A is the plasma generation space 60a. The processing gas B flows into the plasma processing space 4 from between them while avoiding the plasma generation space 60a.
[0025]
Such a silicon plate 64 is adhered to the molybdenum plate 63 with an adhesive, for example, and is fixed to the aluminum plate 62 and the aluminum plate 61 together with the molybdenum plate 63 with bolts or the like. In order to improve the heat conduction between the molybdenum plate 63 and the silicon plate 64 and relieve the stress at the time of thermal expansion, a silicon adhesive having excellent thermal conductivity and elongation is suitable as the adhesive. The adhesive may be used. In addition, when bonding the silicon plate 64 and the molybdenum plate 63 with a fastener or locking means, an adhesive may be used in combination, but instead of the adhesive, the deformability and heat resistance are also improved. May be filled with excellent silicon rubber or the like.
[0026]
The use mode and operation of the plasma processing apparatus having such a configuration will be described.
[0027]
When the processing substrate 1 is loaded onto the holding electrode 5 and the plasma processing space 4 is evacuated, the plasma gas A is sent into the plasma generation space 60a in accordance with the process recipe and the like, and the RF power source 8 supplies a high frequency to the coil 7. Is applied. Thereby, plasma A ′ is generated in the plasma generation space 60 a and flows into the plasma processing space 4. When the plasma processing space 4 is filled with plasma, the processing gas B is sent from the processing gas supply port 6b to the plasma processing space 4 through a flow path different from the plasma gas A. Also, a high frequency is applied to the molybdenum plate 63 from the RF power source 67, whereby a bias voltage is directly induced on the molybdenum plate 63 and at the same time a bias voltage is induced on the silicon plate 64.
[0028]
Thus, a desired plasma process using the processing gas B is performed on the processing substrate 1. At this time, even if a by-product such as carbon is generated, the plasma exposed surface of the counter electrode 60 is not aluminum but silicon, and a bias voltage is applied thereto, so that the counter electrode 60 such as carbon is applied to the counter electrode 60. Adhesion is prevented. Furthermore, the heat of the silicon plate 64 is efficiently transferred to the molybdenum plate 63 through the thin filler, and escapes to the aluminum plates 62 and 61 while being uniformed there, so that the silicon plate 64 can be prevented from excessive temperature rise. In addition, the heat distribution becomes almost uniform. In addition, since the coefficient of thermal expansion is close to that of the molybdenum plate 63 to be bonded, it expands and contracts together with the molybdenum plate 63, so that an undesired pulling force is not applied to the bonded surface or less. Therefore, the silicon plate 64 is not distorted or damaged, and it is only slight. In addition, the uniformity of the plasma distribution is improved, and there is an effect that the plasma processing is improved.
[0029]
[Others]
In the above-described embodiment, the holding electrode 5 and the counter electrode 60 have a parallel plate shape. However, the application of the present invention is not limited to this, and one or both may be slightly curved. Moreover, as long as it adapts to the shape of the processing substrate 1, it may be round or square.
[0030]
【The invention's effect】
As is apparent from the above description, in the plasma processing apparatus of the first solving means of the present invention, when a counter electrode is formed by bonding a metal and a non-metal, another metal is interposed, By reducing the influence of the difference in expansion coefficient, there is an advantageous effect that a plasma processing apparatus with less adhesion to the counter electrode can be realized.
[0031]
Further, in the plasma processing apparatus of the second solving means of the present invention, the temperature increase of the nonmetallic member is suppressed by filling, thereby realizing a plasma processing apparatus with less adhesion to the counter electrode. There is an advantageous effect that it becomes easy.
[0032]
Further, in the plasma processing apparatus of the third solving means of the present invention, a plasma processing apparatus with particularly low adhesion to the counter electrode is obtained by applying a bias voltage to the nonmetallic member efficiently. There is an advantageous effect that it can be easily realized.
[Brief description of the drawings]
FIG. 1 shows a longitudinal sectional structure of a counter electrode of an embodiment of a plasma processing apparatus of the present invention, wherein (a) is an entire electrode and (b) is a partially enlarged view.
2A and 2B show a longitudinal sectional structure of a conventional device, in which FIG. 2A is a general view of a vacuum chamber, and FIG. 2B is a longitudinal sectional perspective view of a counter electrode and the like.
[Explanation of symbols]
1. Processing substrate (wafer, target plate, sample, workpiece)
2 Vacuum chamber body (vacuum chamber)
3 Vacuum chamber lid (vacuum chamber)
4 Plasma treatment space 5 Holding electrode (cathode, one of the pair of electrodes, lower electrode for mounting the workpiece)
6 Counter electrode (anode, the other of the pair of electrodes, the upper electrode facing the workpiece)
6a Plasma supply port 6b Process gas supply port 7 Coil (High frequency application circuit for plasma excitation, first applying means)
8 RF power supply (high frequency power supply for plasma excitation, first applying means)
9 RF power supply (High-frequency applying circuit for holding electrode bias, third applying means)
10 Adjacent insulator (plasma generation chamber)
10a Plasma generation space 60 Counter electrode (the anode, the other of the parallel plates, the upper electrode facing the object to be processed)
60a Plasma generation space 61 Aluminum plate (annular passage lid, first type metal member)
62 Aluminum plate (annular base, first type metal member)
63 Molybdenum plate (Type 2 metal member)
64 Silicon plate (non-metallic member)
65 Insulating ring 66 Copper plug (Counter electrode bias high-frequency applying circuit, second applying means)
67 RF power supply (high frequency application circuit for counter electrode bias, second application means)

Claims (2)

プラズマ処理空間を囲う真空チャンバと、
処理基板を前記プラズマ処理空間に臨ませて保持する保持電極と、
前記プラズマ処理空間を挟んで前記保持電極と向き合う対向電極と、
前記対向電極を通してプラズマ用ガスを前記プラズマ処理空間へ供給する手段と、
前記対向電極に付設されたコイルに高周波電力を印加して前記プラズマ用ガスを励起する第1印加手段と、
前記対向電極へ高周波電力を印加する第2印加手段とを備えたプラズマ処理装置において、
前記対向電極が電気良導体からなる第1種の金属部材と、
前記第1種の金属部材よりも熱膨張率の小さな第2種の金属部材と、
前記プラズマ処理空間に臨む非金属部材とを重ね合わせたもので構成され、
前記第2印加手段が高周波電力の印加を前記第2種の金属部材に行なうものであることを特徴とするプラズマ処理装置。
A vacuum chamber surrounding the plasma processing space;
A holding electrode that holds the processing substrate facing the plasma processing space;
A counter electrode facing the holding electrode across the plasma processing space ;
Means for supplying a plasma gas to the plasma processing space through the counter electrode;
First application means for exciting the plasma gas by applying high frequency power to a coil attached to the counter electrode;
A plasma processing apparatus comprising: a second application unit that applies high-frequency power to the counter electrode;
A first type metal member in which the counter electrode is made of a good electric conductor;
A second type metal member having a smaller coefficient of thermal expansion than the first type metal member;
Consists of superposed non-metallic members facing the plasma processing space ,
The plasma processing apparatus, wherein the second applying means applies high frequency power to the second type metal member .
前記非金属部材の材質はシリコンであることを特徴とする請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the non-metallic member is made of silicon .
JP2002005981A 2002-01-15 2002-01-15 Plasma processing equipment Expired - Fee Related JP3916469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005981A JP3916469B2 (en) 2002-01-15 2002-01-15 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002005981A JP3916469B2 (en) 2002-01-15 2002-01-15 Plasma processing equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006281480A Division JP2007080834A (en) 2006-10-16 2006-10-16 Plasma treatment device

Publications (2)

Publication Number Publication Date
JP2003209095A JP2003209095A (en) 2003-07-25
JP3916469B2 true JP3916469B2 (en) 2007-05-16

Family

ID=27644872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005981A Expired - Fee Related JP3916469B2 (en) 2002-01-15 2002-01-15 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3916469B2 (en)

Also Published As

Publication number Publication date
JP2003209095A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
US8449679B2 (en) Temperature controlled hot edge ring assembly
KR101677239B1 (en) Plasma processing apparatus and plasma processing method
JP5294669B2 (en) Plasma processing equipment
US20180294137A1 (en) Plasma processing apparatus
US8441772B2 (en) Substrate for electrostatic chuck and electrostatic chuck
JP5238114B2 (en) Electrode assembly
US7619870B2 (en) Electrostatic chuck
US11289356B2 (en) Stage and plasma processing apparatus
JP2012038461A (en) Plasma processing apparatus
JP2018186179A (en) Substrate processing apparatus and substrate removal method
JP2009239014A (en) Electrode structure and substrate processing device
JP2000077335A (en) Plasma treating device
US20150322571A1 (en) Substrate processing apparatus
JP2017126727A (en) Structure of mounting table and semiconductor processing device
JP2019160816A (en) Plasma processing method and plasma processing apparatus
US20080062610A1 (en) Electrostatic chuck device
JP3916469B2 (en) Plasma processing equipment
CN112420472A (en) Substrate processing apparatus, method of manufacturing substrate processing apparatus, and method of maintaining substrate processing apparatus
JP4456218B2 (en) Plasma processing equipment
JP2019176030A (en) Plasma processing apparatus
JP7361588B2 (en) Edge ring and substrate processing equipment
JP2007080834A (en) Plasma treatment device
US20110039414A1 (en) Plasma processing method and plasma processing apparatus
JP4522003B2 (en) Plasma processing equipment
KR20210008725A (en) Unit for supporting substrate and system for treating substrate with the unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070206

R150 Certificate of patent or registration of utility model

Ref document number: 3916469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees