JP3916454B2 - Method for producing β-FeSi2 thin film - Google Patents

Method for producing β-FeSi2 thin film Download PDF

Info

Publication number
JP3916454B2
JP3916454B2 JP2001386820A JP2001386820A JP3916454B2 JP 3916454 B2 JP3916454 B2 JP 3916454B2 JP 2001386820 A JP2001386820 A JP 2001386820A JP 2001386820 A JP2001386820 A JP 2001386820A JP 3916454 B2 JP3916454 B2 JP 3916454B2
Authority
JP
Japan
Prior art keywords
fesi
film
substrate
thin film
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001386820A
Other languages
Japanese (ja)
Other versions
JP2003183812A (en
Inventor
剛 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001386820A priority Critical patent/JP3916454B2/en
Publication of JP2003183812A publication Critical patent/JP2003183812A/en
Application granted granted Critical
Publication of JP3916454B2 publication Critical patent/JP3916454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、0.85eVのバンドギャップを持つ直接遷移型の半導体であり、太陽電池素子や通信用発光素子、受光素子への応用が期待されているβ−FeSi2膜の作製方法に関する。
【0002】
【従来の技術】
次世代の半導体は資源寿命の心配がなく、低環境負荷型の元素のみから構成されていることが理想である。その候補元素として、資源寿命を考える必要のない大気構成元素(N、O)や、資源寿命の極めて長い元素(Si、Ca、Ga)や、リサイクル率の高い元素(Fe、Cu)が考えられる。
【0003】
以上の考えに沿えば、環境考慮型の半導体としては、GaN、Cu2O、β−FeSi2等の多様なものが考えられる。その中でも、β−FeSi2は、Si基板上にエピタキシャル成長可能であり、吸収係数が大きく(可視波長で〜10-5cm-1)、0.85eVのバントギャップを持つ直接遷移型の半導体であることから、次世代の半導体材料として大変注目を集めている。具体的な応用としては、光デバイス材料や高効率太陽電池材料が挙げられる。
【0004】
β−FeSi2は高融点のFeとSiからなり、Siの反応性が高温で非常に高いために、蒸発源としてルツボは使用できず、高品質薄膜の作製が極めて困難である。現在、イオン注入法(IBS)、固相溶融エピタキシー(SPE)、高周波堆積エピタキシー(RDE)、分子線エピタキシー(MBE)などの様々な方法で作製が試みられている。
【0005】
特開2001−64099号公報には、Arガスに比して質量が大きいXeをスパッタガスに用いることによりSi基板がこれらのプラズマガスに暴露されることによりSi基板表面のSi−Si結合の解離が効率的に進み、堆積されるFeとSiとの反応が促進され、高品質のβ−FeSi2エピタキシャル層が形成されることが開示されている。
【0006】
【発明が解決しようとする課題】
β−FeSi2は高い表面エネルギーを有しているためか、エピタキシャル膜、多結晶膜に限らず、成長するβ−FeSi2は粒状構造になり、粒状でない平坦な膜、すなわち連続膜を得ることは困難とされてきた。上記の特開2001−64099号公報に開示されている方法は、一般的なスパッタリング方法であるので基板がプラズマ中に存在するために成長中の膜がプラズマによる影響を受ける。そのためにArガスをXeガスに交換することで反応性という点で膜質の改善を行っている。
【0007】
分子線エピタキシャル成長法を用いてFeSi2アモルファス膜あるいはFe/Si積層膜を作製した後、SiO2でキャッピングし、その後高温アニールすることで連続膜が得られるとの報告がある。しかし、この方法ではSiO2によるキャッピングと高温アニールの手間がかかり、積層化などの応用を考えた場合にフレキシブルではない。
【0008】
【課題を解決するための手段】
本発明では、薄膜成長法として対向ターゲット式DCスパッタリング法を用いた。
すなわち、本発明は、FeSi2合金ターゲットを用い、5mTorr以下の低いArガス圧力下で、400℃以上に加熱された基板上に対向ターゲット式DCスパッタリング法によりβ−FeSi2膜を堆積させることを特徴とするβ−FeSi2薄膜の作製方法である。
【0009】
本発明の方法では、通常のスパッタリング法に比べて低圧でのスパッタリングが可能であり、スパッタリングガスであるArの圧力を低く設定することにより、基板に到達する粒子がArガスの散乱をほとんど受けないので高エネルギーで粒子を基板に供給でき、基板に到達する粒子の速度を高めることができる。そこで、400℃以上に加熱された基板上に、5nm/min以下、例えば1nm/minの低い堆積速度で膜堆積を行うことで、β−FeSi2膜が連続膜として成長する。
【0010】
図1は、対向ターゲット式DCスパッタリング法の原理を示す概念図である。この方法では、電場Eと並行に印加された磁場Bによりプラズマがターゲット2およびターゲット3間に完全に閉じ込められ、ターゲット2および3と垂直方向に配置された基板1にプラズマが接しないために、中性粒子のみが基板1に堆積され、成長膜がプラズマによる損傷を受けず、堆積膜の表面温度上昇が少ないために連続膜(as−growth)が成長できる。また、再スパッタリングがないために通常のスパッタリング法に比べて得られる膜の組成ずれが少ない。よって、β−FeSi2膜の成長に適している。
【0011】
さらに、FeSi2ターゲットを用いて、基本的にFeとSiの成分原子比1:2の割合で基板に供給するので、基板はSiでなくても膜成長は可能である。Si基板に対しては、ヘテロエピタキシャル成長するために、成長するβ−FeSi2膜は格子がわずかに歪み、光学バンドギャップがバルク値を0〜1.0eV上回るなどの特徴がみられる。
【0012】
図2(a)、(b)に、それぞれ、従来のRFマグネトロンスパッタリング法(RFMS)及び本発明の対向ターゲット式DCスパッタリング法(FTDCS)により作製したβ−FeSi2膜の典型的な表面SEM像を示す。RFMSで作成されたβ−FeSi2膜が島状成長であるのに対して、FTDCSでは基板温度に依らず平滑なβ−FeSi2連続膜が成長した。
【0013】
図3(a)、(b)に、それぞれ、図2(a)、(b)に対応するβ−FeSi2膜の典型的な表面粗さのプロファイルの測定結果を示す。測定には触針型表面形状測定装置(アルファステップ500,KLA−Tencor Corporation)を使用した。横軸がβ−FeSi2膜の面内方向の長さ(μm)、縦軸がβ−FeSi2表面の深さ方向粗さ(nm×10)で、プロファイルの左がβ−FeSi2膜、右がSi基板である。RFMSにより作製したβ−FeSi2膜では粒状構造になり、表面はでこぼこであるのに対して、FTDCSにより作製したβ−FeSi2膜は表面粗さがSi基板と変わらない連続膜となっている。図4に、β−FeSi2膜の典型的な吸収スペクトルを示す。バンドギャップは0.94eVと見積もられる。
【0014】
【実施例】
実施例1〜5
対向ターゲット式DCスパッタリング装置((株)薄膜ソフト社製、ミラートロンスパッタリング装置MTS−L2000−2T)を用いて、Si(100)基板上に基板温度400℃(実施例1)、500℃(実施例2)、600℃(実施例3)、700℃(実施例4)、800℃(実施例5)の各温度で膜厚約240nmの鉄シリサイド薄膜を作製した。ターゲットには原子成分比1:2のFeSi2合金(99.99%)を使用した。スパッタリングチャンバー内はターボ分子ポンプを用いて10-4Pa以下まで排気し、成膜時は15.0sccmのArガスを流入してガス圧を1.0mTorrとし、印加電圧、電流をそれぞれ950V、6.0mAとした。堆積速度は1.0nm/minであった。
【0015】
実施例6〜10
Si(111)基板上に基板温度400℃(実施例6)、500℃(実施例7)、600℃(実施例8)、700℃(実施例9)、800℃(実施例10)の各温度で膜厚約240nmの鉄シリサイド薄膜を作製した。他の条件は実施例1〜5と同じとした。
【0016】
比較例1〜4
Si(100)基板上に基板温度20℃(比較例1)、200℃(比較例2)、300℃(比較例3)、350℃(比較例4)、の各温度で膜厚約240nmの鉄シリサイド薄膜を作製した。他の条件は実施例1〜5と同じとした。
【0017】
比較例5〜8
Si(111)基板上に基板温度20℃(比較例5)、200℃(比較例6)、300℃(比較例7)、350℃(比較例8)、の各温度で膜厚約240nmの鉄シリサイド薄膜を作製した。他の条件は実施例1〜5と同じとした。
【0018】
以上の実施例1〜10および比較例1〜8による作成膜の評価はSEM観察、X線回折、光吸収スペクトル測定、電気抵抗測定により行った。X線回折測定により基板温度が400℃未満の比較例ではβ−FeSi2の極めてブロードなピークが観察された。このことから、β−FeSi2の微結晶からなるアモルファスライクな膜になっていると考えられる。一方、400℃以上の実施例ではβ−FeSi2のピークが多数観測されβ−FeSi2の多結晶が成長することが分かった。
【0019】
バンドギャップの基板温度に対する変化を図5に示す。アモルファスライクなβ−FeSi2微結晶膜が成長する基板温度400℃未満でのエネルギーギャップEgの値は0.65〜0.82eV、β−FeSi2多結晶膜が成長する400℃以上では0.84〜0.94eVである。
【0020】
ここで、β−FeSi2多結晶膜のバンドギャップは他の報告値0.85eVより大きくなっている。これはXRD測定からβ−FeSi2の結晶格子は2.0〜4.0%の体積歪みを有していることが分かっており、このことがバンド構造の変調を誘起し、バンドギャップを増加させていると考えられる。
【0021】
【発明の効果】
半導体薄膜をデバイスなどへ応用する場合、連続膜を得ることは、積層化、キャリア伝導、表面平坦性を考えた場合、必要不可欠である。β−FeSi2は次世代半導体として極めて有望であるが、粒状構造の膜が成長してしまうことが大きな問題となってきた。本発明ではその問題を克服した。
【図面の簡単な説明】
【図1】図1は、対向ターゲット式DCスパッタリング法の原理を示す概念図である。
【図2】図2の(a),(b)は、それぞれ、従来のRFマグネトロンスパッタリング法により作製したβ−FeSi2膜および本発明の方法によって作製したβ−FeSi2膜の表面SEM像を示す図面代用写真である。
【図3】図3の(a),(b)は、それぞれ、従来のRFマグネトロンスパッタリングにより作製したβ−FeSi2膜および本発明の方法によって作製したβ−FeSi2膜の表面粗さプロファイルを示すグラフである。
【図4】図4は、本発明の方法で作製したβ−FeSi2膜の典型的な吸収スペクトルを示すグラフである。
【図5】図5は、本発明の方法で作製したβ−FeSi2膜のバンドギャップの基板温度依存性を比較例と共に示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a β-FeSi 2 film which is a direct transition type semiconductor having a band gap of 0.85 eV and is expected to be applied to a solar cell element, a light emitting element for communication, and a light receiving element.
[0002]
[Prior art]
Ideally, the next generation of semiconductors should be composed of only low environmental load elements without worrying about resource life. Possible candidate elements include atmospheric constituent elements (N, O) that do not require consideration of resource life, elements with extremely long resource life (Si, Ca, Ga), and elements with a high recycling rate (Fe, Cu). .
[0003]
In accordance with the above idea, various semiconductors such as GaN, Cu 2 O, β-FeSi 2 and the like can be considered as environment-friendly semiconductors. Among them, β-FeSi 2 is a direct-transition type semiconductor that can be epitaxially grown on a Si substrate, has a large absorption coefficient (-10 −5 cm −1 in visible wavelength), and has a band gap of 0.85 eV. For this reason, it has attracted a great deal of attention as a next-generation semiconductor material. Specific applications include optical device materials and high-efficiency solar cell materials.
[0004]
β-FeSi 2 is composed of Fe and Si having a high melting point, and since the reactivity of Si is very high at high temperatures, a crucible cannot be used as an evaporation source, and it is extremely difficult to produce a high-quality thin film. At present, production is attempted by various methods such as ion implantation (IBS), solid phase melt epitaxy (SPE), radio frequency deposition epitaxy (RDE), and molecular beam epitaxy (MBE).
[0005]
Japanese Patent Laid-Open No. 2001-64099 discloses dissociation of Si—Si bonds on the surface of a Si substrate by exposing the Si substrate to these plasma gases by using Xe having a mass larger than that of Ar gas as a sputtering gas. Is efficiently progressed, the reaction between deposited Fe and Si is promoted, and a high-quality β-FeSi 2 epitaxial layer is formed.
[0006]
[Problems to be solved by the invention]
Because β-FeSi 2 has a high surface energy, it is not limited to an epitaxial film and a polycrystalline film, but the growing β-FeSi 2 has a granular structure, and a flat film that is not granular, that is, a continuous film is obtained. Has been considered difficult. The method disclosed in the above Japanese Patent Application Laid-Open No. 2001-64099 is a general sputtering method, so that the growing film is affected by the plasma because the substrate exists in the plasma. Therefore, the film quality is improved in terms of reactivity by exchanging Ar gas for Xe gas.
[0007]
There has been a report that a continuous film can be obtained by producing a FeSi 2 amorphous film or a Fe / Si laminated film using molecular beam epitaxial growth, then capping with SiO 2 and then annealing at high temperature. However, this method requires time and labor for capping with SiO 2 and high-temperature annealing, and is not flexible when considering applications such as lamination.
[0008]
[Means for Solving the Problems]
In the present invention, the counter target type DC sputtering method is used as the thin film growth method.
That is, the present invention uses a FeSi 2 alloy target to deposit a β-FeSi 2 film on a substrate heated to 400 ° C. or higher under a low Ar gas pressure of 5 mTorr or less by a counter target type DC sputtering method. This is a method for producing a characteristic β-FeSi 2 thin film.
[0009]
In the method of the present invention, sputtering at a low pressure is possible as compared with a normal sputtering method, and by setting the pressure of Ar, which is a sputtering gas, low, particles reaching the substrate are hardly scattered by Ar gas. Therefore, the particles can be supplied to the substrate with high energy, and the speed of the particles reaching the substrate can be increased. Therefore, a β-FeSi 2 film grows as a continuous film by performing film deposition at a low deposition rate of 5 nm / min or less, for example 1 nm / min, on a substrate heated to 400 ° C. or higher.
[0010]
FIG. 1 is a conceptual diagram showing the principle of the opposed target type DC sputtering method. In this method, the plasma is completely confined between the target 2 and the target 3 by the magnetic field B applied in parallel with the electric field E, and the plasma does not contact the substrate 1 disposed in the direction perpendicular to the targets 2 and 3. Since only the neutral particles are deposited on the substrate 1, the growth film is not damaged by plasma, and the surface temperature rise of the deposition film is small, so that a continuous film (as-growth) can be grown. Further, since there is no resputtering, the composition deviation of the obtained film is small compared to the normal sputtering method. Therefore, it is suitable for the growth of β-FeSi 2 film.
[0011]
Further, since the FeSi 2 target is used to supply the substrate at a ratio of Fe: Si component atomic ratio of 1: 2, the film can be grown even if the substrate is not Si. For the Si substrate, since it grows heteroepitaxially, the growing β-FeSi 2 film has features such that the lattice is slightly distorted and the optical band gap exceeds the bulk value by 0 to 1.0 eV.
[0012]
FIGS. 2A and 2B show typical surface SEM images of β-FeSi 2 films prepared by the conventional RF magnetron sputtering method (RFMS) and the counter target type DC sputtering method (FTDCS) of the present invention, respectively. Indicates. Whereas the β-FeSi 2 film prepared by RFMS has an island-like growth, a smooth β-FeSi 2 continuous film has grown in FTDCS regardless of the substrate temperature.
[0013]
FIGS. 3A and 3B show measurement results of typical surface roughness profiles of the β-FeSi 2 film corresponding to FIGS. 2A and 2B, respectively. A stylus type surface shape measuring device (Alphastep 500, KLA-Tencor Corporation) was used for the measurement. The horizontal axis is the length in the in-plane direction of the β-FeSi 2 film (μm), the vertical axis is the roughness in the depth direction of the β-FeSi 2 surface (nm × 10), the left of the profile is the β-FeSi 2 film, The right is the Si substrate. The β-FeSi 2 film produced by RFMS has a granular structure and the surface is rough, whereas the β-FeSi 2 film produced by FTDCS is a continuous film whose surface roughness is the same as that of the Si substrate. . FIG. 4 shows a typical absorption spectrum of the β-FeSi 2 film. The band gap is estimated to be 0.94 eV.
[0014]
【Example】
Examples 1-5
Using an opposed target type DC sputtering apparatus (manufactured by Thin Film Soft Co., Ltd., Mirrortron sputtering apparatus MTS-L2000-2T), a substrate temperature of 400 ° C. (Example 1) and 500 ° C. (implementation) on a Si (100) substrate. Example 2) An iron silicide thin film having a film thickness of about 240 nm was prepared at each temperature of 600 ° C. (Example 3), 700 ° C. (Example 4), and 800 ° C. (Example 5). An FeSi 2 alloy (99.99%) having an atomic component ratio of 1: 2 was used as a target. The sputtering chamber was evacuated to 10 −4 Pa or less using a turbo molecular pump. During film formation, Ar gas of 15.0 sccm was flowed to make the gas pressure 1.0 mTorr, the applied voltage and current were 950 V, 6 0.0 mA. The deposition rate was 1.0 nm / min.
[0015]
Examples 6-10
Each of substrate temperature 400 degreeC (Example 6), 500 degreeC (Example 7), 600 degreeC (Example 8), 700 degreeC (Example 9), and 800 degreeC (Example 10) on a Si (111) board | substrate. An iron silicide thin film having a thickness of about 240 nm was prepared at a temperature. Other conditions were the same as in Examples 1-5.
[0016]
Comparative Examples 1-4
On the Si (100) substrate, the substrate temperature is 20 ° C. (Comparative Example 1), 200 ° C. (Comparative Example 2), 300 ° C. (Comparative Example 3), and 350 ° C. (Comparative Example 4). An iron silicide thin film was prepared. Other conditions were the same as in Examples 1-5.
[0017]
Comparative Examples 5-8
On the Si (111) substrate, the substrate temperature is 20 ° C. (Comparative Example 5), 200 ° C. (Comparative Example 6), 300 ° C. (Comparative Example 7), and 350 ° C. (Comparative Example 8). An iron silicide thin film was prepared. Other conditions were the same as in Examples 1-5.
[0018]
Evaluation of the produced film by the above Examples 1-10 and Comparative Examples 1-8 was performed by SEM observation, X-ray diffraction, light absorption spectrum measurement, and electrical resistance measurement. An extremely broad peak of β-FeSi 2 was observed in the comparative example in which the substrate temperature was less than 400 ° C. by X-ray diffraction measurement. From this, it is considered that the film is an amorphous-like film made of β-FeSi 2 microcrystals. On the other hand, in the examples of 400 ° C. or higher, many β-FeSi 2 peaks were observed, and it was found that β-FeSi 2 polycrystals grew.
[0019]
The change of the band gap with respect to the substrate temperature is shown in FIG. The value of energy gap Eg at a substrate temperature lower than 400 ° C. to grow an amorphous-like beta-FeSi 2 crystallites film is 0.65~0.82EV, a beta-FeSi 2 polycrystalline film grows 400 ° C. or higher 0. 84 to 0.94 eV.
[0020]
Here, the band gap of the β-FeSi 2 polycrystalline film is larger than the other reported value of 0.85 eV. It is known from XRD measurement that the crystal lattice of β-FeSi 2 has a volume strain of 2.0 to 4.0%, which induces modulation of the band structure and increases the band gap. It is thought that it is letting.
[0021]
【The invention's effect】
When a semiconductor thin film is applied to a device or the like, obtaining a continuous film is indispensable in view of lamination, carrier conduction, and surface flatness. β-FeSi 2 is very promising as a next-generation semiconductor, but it has been a big problem that a film having a granular structure grows. The present invention overcomes that problem.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing the principle of a counter-target type DC sputtering method.
2 (a) and 2 (b) show surface SEM images of a β-FeSi 2 film produced by a conventional RF magnetron sputtering method and a β-FeSi 2 film produced by the method of the present invention, respectively. It is a drawing substitute photograph shown.
(A) in FIG. 3, a (b), respectively, the surface roughness profile of the beta-FeSi 2 film fabricated by the method of producing the beta-FeSi 2 film and the present invention by conventional RF magnetron sputtering It is a graph to show.
FIG. 4 is a graph showing a typical absorption spectrum of a β-FeSi 2 film produced by the method of the present invention.
FIG. 5 is a graph showing the substrate temperature dependence of the band gap of a β-FeSi 2 film produced by the method of the present invention together with a comparative example.

Claims (1)

FeとSiの成分原子比1:2のFeSi2合金ターゲットを用い、5mTorr以下の低いArガス圧力下で、400℃以上に加熱された基板上に対向ターゲット式DCスパッタリング法によりβ−FeSi2膜を堆積させることを特徴とするβ−FeSi2薄膜の作製方法。Using a FeSi 2 alloy target having an Fe: Si component atomic ratio of 1: 2, a β-FeSi 2 film is formed on a substrate heated to 400 ° C. or higher under a low Ar gas pressure of 5 mTorr or less by a counter target type DC sputtering method. A method for producing a β-FeSi 2 thin film characterized by depositing.
JP2001386820A 2001-12-19 2001-12-19 Method for producing β-FeSi2 thin film Expired - Fee Related JP3916454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001386820A JP3916454B2 (en) 2001-12-19 2001-12-19 Method for producing β-FeSi2 thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001386820A JP3916454B2 (en) 2001-12-19 2001-12-19 Method for producing β-FeSi2 thin film

Publications (2)

Publication Number Publication Date
JP2003183812A JP2003183812A (en) 2003-07-03
JP3916454B2 true JP3916454B2 (en) 2007-05-16

Family

ID=27595838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001386820A Expired - Fee Related JP3916454B2 (en) 2001-12-19 2001-12-19 Method for producing β-FeSi2 thin film

Country Status (1)

Country Link
JP (1) JP3916454B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042449A1 (en) * 2011-09-22 2013-03-28 住友化学株式会社 Process for producing metallic particle assembly

Also Published As

Publication number Publication date
JP2003183812A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
JP5451280B2 (en) Wurtzite crystal growth substrate, manufacturing method thereof, and semiconductor device
Darvish et al. Epitaxial growth of Cu2O and ZnO/Cu2O thin films on MgO by plasma-assisted molecular beam epitaxy
US20130298985A1 (en) Microelectronic structures including cuprous oxide semiconductors and having improved p-n heterojunctions
JP2019524982A (en) IIIA nitride growth system and method
KR20080034460A (en) Zno crystal, its growth method and manufacture method for light emitting device
CN112831768B (en) Preparation method and application of hafnium nitride film with high crystallization quality
KR102109347B1 (en) Preparing method of doped metal-chalcogenide thin film
CN102623521A (en) Method for preparing cuprous oxide film
Gu et al. Crystal growth and properties of scandium nitride
JP3716440B2 (en) Boron-containing aluminum nitride thin film and manufacturing method
WO2013089843A2 (en) Photovoltaic semiconductive materials
KR20090023094A (en) Manufacture method for zno-containing compound semiconductor layer
JP3916454B2 (en) Method for producing β-FeSi2 thin film
JP5296995B2 (en) Semiconductor device, semiconductor device manufacturing method, light emitting device, and electronic device
JP4009102B2 (en) Amorphous iron silicide film exhibiting semiconductor characteristics and fabrication method thereof
Shang et al. Pulsed laser deposition and characterization of epitaxial CuInS2 thin films on c-plane sapphire substrates
Xiao et al. Annealing effects on the formation of semiconducting Mg2Si film using magnetron sputtering deposition
Quintero et al. Comparative analysis of Ni-and Ni0. 9Pt0. 1-Ge0. 9Sn0. 1 solid-state reaction by combined characterizations methods
KR20080005002A (en) Preparation method of zinc oxide based oxide thin film using sputtering
JP3929964B2 (en) Method for manufacturing thin film laminated structure
KR102677130B1 (en) Mg2Sn THERMOELECTRIC MATERIALS AND FABRICATION METHOD OF THE SAME
Tolstova et al. Molecular beam epitaxy of Cu2O heterostructures for photovoltaics
WO2022215670A1 (en) Multilayer film structure and production method therefor
Sato et al. A dependence of crystallinity of In2O3 thin films by a two-step heat treatment of indium films on the heating atmosphere
JP2004146483A (en) Manufacturing method of gallium nitride-based solid solution thin film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees