JP3916113B2 - High strength Ti-added hot-rolled steel sheet for processing and manufacturing method thereof - Google Patents
High strength Ti-added hot-rolled steel sheet for processing and manufacturing method thereof Download PDFInfo
- Publication number
- JP3916113B2 JP3916113B2 JP02212199A JP2212199A JP3916113B2 JP 3916113 B2 JP3916113 B2 JP 3916113B2 JP 02212199 A JP02212199 A JP 02212199A JP 2212199 A JP2212199 A JP 2212199A JP 3916113 B2 JP3916113 B2 JP 3916113B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- pearlite
- rolled steel
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 58
- 239000010959 steel Substances 0.000 title claims description 58
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000003672 processing method Methods 0.000 title 1
- 238000001816 cooling Methods 0.000 claims description 28
- 229910000859 α-Fe Inorganic materials 0.000 claims description 24
- 229910001562 pearlite Inorganic materials 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 11
- 230000009466 transformation Effects 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 238000003754 machining Methods 0.000 claims description 3
- 238000004804 winding Methods 0.000 claims description 3
- 238000001556 precipitation Methods 0.000 description 18
- 238000005728 strengthening Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 238000005098 hot rolling Methods 0.000 description 6
- 229910001567 cementite Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 238000009628 steelmaking Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、自動車部品用や機械構造部品用などに好適な370 〜490MPa級の加工用熱延鋼板とこれを安価に製造する方法に関する。
【0002】
【従来の技術】
最近では、製造コストの低減という要請により自動車部品や機械構造部品などにも、熱延鋼板が用いられており、熱延鋼板であっても加工性に優れた高強度のものが要求されるようになってきている。
【0003】
従来より知られているように、熱延鋼板の強度を高める最も簡便な方法は、C、Mnの量を増やす方法である。しかし、Cの過剰な増加は加工性を劣化させるばかりでなく溶接性の劣化をも招くため、Cに比べて劣化代の小さい、高価なMnの増加に頼らざるを得ないが、Mnを増加させても加工性の劣化は避けることができないため、このような方法では経済性に優れた加工性の良い鋼板を得ることができない。
【0004】
加工性に優れた高強度熱延鋼板として、マルテンサイトやベイナイトなどの低温変態生成物を導入したものが従来から広く知られている。この方法は、鋼板の降伏比を下げ、全伸びを大きくするものとして有効な方法ではあるが、Si、Mn、Crなどの高価な元素の添加によるコストアップ、あるいはそれらを全く添加しない場合は、特定の冷却速度を確保しなければならないための設備上の制約という問題があった。
【0005】
その他に高強度化の方法として、鋼中にTi、Nb、Vなどの炭窒化物を形成する元素を添加した析出強化による熱延鋼板が知られている。これらの元素はどれも同様の働きをするものの、Tiに比べV、Nbの添加はコストがかさむため、V、Nbを添加することを前提とした方法では、経済性に優れているとは言い難かった。
【0006】
そのような方法の中で、特開平9−209076号公報は、TiCの析出強化を活用して加工性に優れた400 〜800N/mm2級の高強度熱延鋼板を開示している。それによれば、Ti量を0.05%以上とすることでTiC析出強化の有効性を認めており、それ未満では狙い強度に対して全伸びの劣る実施例データを示すのみである。
【0007】
しかし、この鋼板は、もともと穴広げ率の高い比較的低強度の鋼をも包含するものであって、一般的に自動車用部品などのプレス成形に際して要求される全伸びと穴拡げ率のバランスから見れば甚だ穴拡げ率を偏重している。例えば、Ti量0.05%未満の鋼の場合、ROT 冷却速度が極めて大きく、ために延性に乏しい組織となっていると考えられる。
【0008】
ここに、「ROT 冷却速度」は、1〜60℃/sの範囲内であって下記式によって規定される熱間圧延終了後の冷却速度である。
CR (℃/s) =−200 ×(0.5×C%+2.5 ×Ti%) +TS/3−85
また、特開平6−200351号公報には伸びフランジ性に優れた690MPa(70kgf/mm2) 以上の高強度熱延鋼板を得る技術が開示されている。これも前記公報の場合と同様、Ti:0.06 〜0.3 %とTiを比較的多量に含有しており、TiCで析出強化し、セメンタイト析出量を最小限にすることで優れた伸びフランジ性が得られることを述べている。
【0009】
しかし、セメンタイト析出量を最小限にすべくTiを増加させてTiC析出量を増やしているため、安価な強化元素といえどもTiを多量に添加すればコストアップにつながるのであって、経済性の点で十分とは言えない。また、過度の析出強化はいたずらに降伏比を上げる傾向があり、Cの大部分をTiC析出強化に供した鋼板は、伸びフランジ性が良好であっても必ずしもプレス成形性に優れているとは言えなかった。
【0010】
【発明が解決しようとする課題】
従来、析出強化による熱延鋼板はセメンタイトが多量に析出して伸びフランジ性が劣るとされていた。あるいは伸びフランジ性を偏重するあまり前出の発明のようにセメンタイト析出量を制限すると全伸び、降伏比やコストの面で不十分なものとならざるを得なかった。
【0011】
本発明の目的は、一般的な自動車部品、機械構造用部品へのプレス成形に必要なレベルの伸びフランジ性を備えた高強度熱延鋼板、具体的には80%以上の穴拡げ率を確保しつつ、36%以上の全伸びを示す、370 〜490MPa級の熱延鋼板と、それを安価に製造する方法を提供することである。
【0012】
【課題を解決するための手段】
かかる課題を達成すべく、本発明者らが鋭意研究を重ねた結果、プレス成形性を改善するには、つまり、実際の一般的なプレス成形に必要なレベルの穴拡げ率を確保しつつ全伸びを増加させるには、フェライト粒をなるべく成長させるとともに、パーライトが粗大にならないよう制御することが有効であるとの新知見を得るに至り、本発明を完成させた。
ここに、本発明の要旨は、次の通りである。
【0013】
(1) 重量%で、
C:0.03%以上0.08%以下、Si: 0%以上0.10%以下、
Mn:0.05%以上1.00%以下、P:0%以上0.030%以下
S: 0.010%以下、 sol.Al:0.003%以上0.100%以下、
N:0.0070%以下、Ti:0.020%以上0.050%未満
残部Feおよび不可避不純物から成る鋼組成を有し、フェライトとパーライトの混合組織よりなり、フェライト結晶粒度が11.5以下、かつ、最大直径5μm以上のパーライトが面積率で8%以下であることを特徴とする、36%以上の全伸びを示す370〜490MPa級の、経済性に優れた加工用高強度熱延鋼板。
【0014】
(2) 上記(1)の鋼組成を有するスラブを1150℃以上に再加熱し、仕上温度800 〜930 ℃で熱間圧延を行い、その直後、700 ℃までの平均冷却速度を5〜20℃/sでA1変態点以下に冷却して、450 〜650 ℃で巻き取ることを特徴とする、フェライトとパーライトの混合組織よりなり、フェライト結晶粒度が 11.5 以下、かつ、最大直径5μ m 以上のパーライトが面積率で8%以下であり、 36 %以上の全伸びを示す 370 〜 490MPa 級の、経済性に優れた加工用高強度熱延鋼板の製造方法。
【0015】
【発明の実施の形態】
次に、本発明の実施の形態について詳細に説明する。
まず本発明において鋼組成を上述のように規定したのは次の通りである。
Cは目標とする強度を確保するためには0.03%以上添加する。ただし、Cは安価な強化元素であり経済性に優れた鋼板を得るためには最大限利用すべきである。よって、望ましくは0.06%以上とするのがよい。しかし一方で、多量のC添加は粗大なパーライトを生成させる原因となり、結果的に加工性を劣化させるため、粗大パーライトの生成が顕著でない範囲として上限を0.08%とする。
【0016】
C量を0.08%以下に抑えることで、セメンタイトの析出量自体が減って加工性が改善されるが、そればかりでなく、このように比較的低いC量において、後述する適切な熱間圧延の仕上げ温度、冷却条件、巻取温度を選択することにより、亀裂の起点となりやすい粗大なパーライトの生成が抑制されて細かく分散した状態が得られることから、優れた伸びフランジ性、つまり穴拡げ率の確保と優れた全伸びをが実現されていると考えられる。
【0017】
Siは、0 〜0.10%添加される。本発明にあって、Siは、不可避不純物の一つであるが、本発明の1態様にあっては、固溶強化による強度調整を目的に0.10%以下の範囲で添加してもよい。0.10%を超えるSiの添加はコストの上昇を招くばかりでなく、Siスケールの頻発による歩留り低下をもたらし、本来の目的である経済性に優れた熱延鋼板を得ることができなくなるため、Siを添加する場合、上限を0.10%とする。
【0018】
Mnは鋼を固溶強化する目的で添加されるが、多量のMnは延性を阻害し、また、粗大なMnSの析出を促して鋼板の伸びフランジ性を劣化させるため、その悪影響が顕著でない範囲として上限を1.00%とする。ただし、経済性に優れた鋼板を得るため、高価な合金元素であるMnの添加量は少ないほど良く、0.80%以下とするのが望ましい。一方、MnはSによる熱間圧延時の鋼の熱間脆化を防ぐ役割があるため、Mnは0.05%以上添加する。好ましくは、0.20〜0.80%である。
【0019】
PはSi同様、不可避不純物の一つであるが強度調整目的で、0.020 %以上添加することもできる。ただし、多過ぎると加工性を劣化させるため、その影響が顕著でない範囲として0.030 %以下とする。
【0020】
Sは不可避不純物であり、MnS析出物を形成して鋼板の伸びフランジ性を低下させるため、極力低減することが望ましい。ただし、その低減はコスト上昇を招くので、Sの悪影響が顕著でない範囲として0.010 %以下とする。
【0021】
Alは製鋼段階で脱酸のために添加される。その効果は: 酸に可溶なAl量(sol.Al)で0.003 %未満では不十分であるので下限を0.003 %とする。一方、多過ぎても効果が飽和して余計なコスト増になるので上限を0.100 %に定める。
【0022】
Nは不可避的不純物であり、Tiと結合してTiNを形成する。ところがTiNは製鋼段階から析出し始めて粗大化し鋼板の強化にはほとんど効かないため、鋼板の強化に有効に働くTi量を減少させてしまう。そればかりでなく粗大なTiNが亀裂の起点となって伸びフランジ性を劣化させるため、Nはできるだけ少なくすることが望ましい。しかし、必要以上のNの低減は製鋼コストの増加を招くばかりであるため、Nによる悪影響が許容できる範囲として上限を0.0070%とする。好ましくは、0.0050%以下である。
【0023】
TiはTiCの析出強化により安価に鋼板の高強度化を達成しうる添加元素であって、本発明において重要な元素である。本発明の目的とする強度を確保するためには、下限0.020 %以上必要である。ただし、TiCの析出強化による高強度化は降伏比を上げるため、過度の添加は加工性を劣化させる。よって、加工性を害しない降伏比を維持しうる範囲として、0.050 %未満とする。好ましくは、0.024 〜0.045 %である。
【0024】
本発明によれば、かかる鋼組成を有する熱延鋼板は、その組織中のフェライト結晶粒度が11.5超だと優れた伸びが得られない。好ましくは10.0以下である。
ここに、「フェライト結晶粒度」はJIS G 0552によって求められるものであって、粒度が小さい程、結晶粒の大きさは大きい。
【0025】
また、最大直径が5μm以上のパーライトが少量でも含まれると伸びフランジ性が急激に悪くなるので影響の顕著でない範囲として、当該パーライトの面積率を8%以下に規定する。ただし、本発明の効果を十分引き出すためには同面積率を5%以下とする方がよい。
【0026】
次に、本発明における熱延鋼板の製造方法について説明するが、上述の鋼組成および性状を備えた熱延鋼板は、次のような製造条件によって製造される。
まず、熱間圧延を行う際のスラブ加熱温度は、圧延前にTiを十分固溶させた状態とするため1150℃以上とする。加熱温度が低すぎてTiの固溶が不十分であると、圧延後に微細に析出するTiCによる析出強化の効果が十分発揮されない。本発明の鋼板を得る上で、スラブ加熱温度の上限は特に規定しないが、高過ぎると加熱コストの増大とスケールロスの増大を招くので1300℃以下とするのが望ましい。
【0027】
熱間圧延の仕上温度は、930 ℃を超えてくると仕上げ後のオーステナイト再結晶および粒成長が顕著で、その後の冷却過程におけるフェライト核生成の起点が少なく、結果的に粗大なフェライトと粗大なパーライトからなる組織が得られて加工性が劣化する。また、800 ℃より低くなるとフェライトが生成し始める温度域になり、鋼板の面内異方性が増大する。よって、仕上温度は800 〜930 ℃、好ましくは、820 〜880 ℃とする。
【0028】
仕上圧延後の冷却は、700 ℃までの平均冷却速度として5〜20℃/sに管理する。かかる冷却は、A3変態直後に初析フェライトを十分成長させ、かつ、A1変態開始前の未変態オーステナイトを細かく分散した状態にするためである。20℃/sを超える冷却速度ではフェライトが細粒となって降伏比が高くなる傾向がある。一方、5℃/sより遅い冷却速度ではCの拡散が盛んなため粗大なパーライトが生成して加工性が劣化する。好ましい冷却速度は、10℃/s以上であり、15℃/s以下である。なお、冷却温度、つまり冷却する先の温度はA1変態点以下であれば特に制限はない。後述するようにこのときの冷却温度は巻取温度であってもよい。
【0029】
なお、前述の特開平9−209076号公報に開示する方法にあっても、熱間圧延終了後に、1〜60℃/sの冷却速度で冷却することを教えているが、そのときの冷却速度は具体的には、C%、Ti%、TSによって規定されており、これを本発明の場合に想定すると、440MPa級の場合、ほぼ30℃/s以上となり、かなり大きな冷却速度となるが、これは上記公報の場合、TiCを微細化することにより、強化の寄与を大きくするためであり、本発明とは本質的に相違する。
【0030】
次いで、例えば水冷または空冷を行い巻取るが、仕上げ圧延後の上記条件での冷却によってA1変態を行った後であるから冷却条件はとくに制限されない。所定の巻取温度にまで冷却すればよい。
【0031】
一つの態様によれば、700 ℃までの平均冷却速度として5〜20℃/sの冷却速度で熱間圧延終了後巻取り温度にまで冷却してから、直ちに巻取ってもよい。
このように、A1変態後は、フェライト中に固溶しているCの排出を促し、微細なTiCを析出させるため450 〜650 ℃で巻き取る。これにより、延性に富むフェライト素地がTiCで析出強化された状態が得られる。650 ℃より高い温度では、析出したTiCが粗大化して析出強化の十分な効果が得られない。また、450 ℃以下ではCが過飽和のままフェライト中に残り、延性を劣化させる。好ましい巻取温度は、480 〜600 ℃である。
【0032】
かくして、本発明にかかる製造方法によって製造された熱延鋼板は、フェライトとパーライトの混合組織よりなり、フェライト結晶粒度が11.5以下、かつ、最大直径5μm以上のパーライトが面積率で8%以下を満足する。
【0033】
【実施例】
次に、本発明の作用効果を実施例に関連させてさらに具体的に説明する。
表2の例No.1〜14は、表1に示す鋼組成A〜Nのスラブを、加熱温度1230℃、仕上温度850 ℃で3.2 mm厚に熱間圧延し、700 ℃までの平均冷却速度を12℃/sとして、520 ℃まで冷却し、次いで巻取り温度まで空冷して冷却し、巻取温度500 ℃で製造したものである。
【0034】
また、表4の例No.15 〜27は、表3の製造条件にて製造したものである。
このようにして得られた熱延鋼板について、下記の要領で引張試験、穴拡げ試験、断面組織観察を行った。結果は、それぞれ表2および表4にまとめて示す。
【0035】
なお、引張試験は圧延方向のJIS 5号引張試験片にて行い、穴拡げ試験は初期径10mmの打ち抜き穴を60°円錐ポンチで押し広げ、割れが板厚を貫通したときの直径dを測定し次式から算出した。
λ={(d−10)/10}×100
組織は、ナイタール腐食にて観察を行い、目視で観察したフェライト、パーライトなどの組織の種類に基づいて判定した。
【0036】
フェライト結晶粒度はJIS G0552 に従って求めた。
また、亀裂の起点となりやすい粗大なパーライトの量を評価するため以下のような方法をとった。
【0037】
すなわち、顕微鏡倍率500 倍の組織写真をコンピュータ画像に取り込み、画像上において目視で最も長い径の実際の寸法が5μm以上であるパーライトを選び抜いて、それらの画像上の面積を合計し、画像全体に占める割合を求めた。これを最大直径5μm以上のパーライト面積率と呼称する。
【0038】
表2および表4に示すように、本発明範囲内に規定された鋼組成を有し、かつ、フェライト平均粒径が比較的大きく、粗大なパーライトが抑制された熱延鋼板は、プレス成形に好適な伸びフランジ性と全伸びのバランスをもっていることが分かる。
【0039】
表2および表4において、本発明の鋼板の目標特性を、YP:420MPa 以下、TS:370〜540MPa、El: 35%以上、λ:80 %以上とした。
しかし、表2に示すように鋼組成が本発明範囲外である場合や、表4に示すように鋼組成が本発明の範囲内であっても製造条件が本発明の範囲を逸脱する場合は、必要な強度が得られなかったり、本発明に定める組織が得られないために良好な特性とならないことが分かる。
【0040】
【表1】
【0041】
【表2】
【0042】
【表3】
【0043】
【表4】
【0044】
【発明の効果】
以上に詳述したように、本発明によれば、必要な伸びフランジ性を確保したプレス成形に適する高強度熱延鋼板、具体的には、優れた全伸びを持つ370 〜490MPa級の熱延鋼板を経済性良く得ることができ、加工性に優れた高強度熱延鋼板に対する要望が大きい産業界の今日的状況からは、本発明は、産業上大きな寄与をする発明である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot-rolled steel sheet for processing of 370 to 490 MPa suitable for automobile parts and machine structural parts, and a method for producing the same at low cost.
[0002]
[Prior art]
Recently, hot rolled steel sheets have been used for automobile parts and machine structural parts due to a demand for reduction in manufacturing costs, and even hot rolled steel sheets are required to have high strength with excellent workability. It is becoming.
[0003]
As conventionally known, the simplest method for increasing the strength of a hot-rolled steel sheet is a method for increasing the amounts of C and Mn. However, an excessive increase in C not only deteriorates workability but also deteriorates weldability. Therefore, it is necessary to rely on an increase in expensive Mn, which has a lower cost of deterioration than C, but increases Mn. Even if it makes it, deterioration of workability cannot be avoided, Therefore Such a method cannot obtain the steel plate with excellent workability excellent in economy.
[0004]
As a high-strength hot-rolled steel sheet excellent in workability, a steel sheet introduced with a low-temperature transformation product such as martensite or bainite has been widely known. This method is an effective method for lowering the yield ratio of the steel sheet and increasing the total elongation, but when the cost increases due to the addition of expensive elements such as Si, Mn, Cr, or when they are not added at all, There has been a problem of restrictions on equipment to ensure a specific cooling rate.
[0005]
In addition, as a method for increasing the strength, a hot-rolled steel sheet by precipitation strengthening in which elements for forming carbonitrides such as Ti, Nb, and V are added to steel is known. Although these elements all function in the same manner, the addition of V and Nb is more expensive than Ti, so the method based on the premise of adding V and Nb is said to be excellent in economic efficiency. It was difficult.
[0006]
Among such methods, Japanese Patent Laid-Open No. 9-209076 discloses a high strength hot rolled steel sheet of 400 to 800 N / mm 2 class that is excellent in workability by utilizing precipitation strengthening of TiC. According to that, the effectiveness of TiC precipitation strengthening is recognized by making the Ti amount 0.05% or more, and below that, only Example data in which the total elongation is inferior to the target strength is shown.
[0007]
However, this steel sheet originally includes relatively low-strength steel with a high hole expansion ratio. From the balance between the total elongation and the hole expansion ratio generally required for press forming of automotive parts and the like. If you look at it, there is an emphasis on the hole expansion rate. For example, in the case of steel with a Ti content of less than 0.05%, the ROT cooling rate is extremely high, and therefore it is considered that the structure has poor ductility.
[0008]
Here, the “ROT cooling rate” is a cooling rate within the range of 1 to 60 ° C./s and after the end of hot rolling defined by the following formula.
CR (° C / s) = -200 x (0.5 x C% + 2.5 x Ti%) + TS / 3-85
Japanese Patent Laid-Open No. 6-200351 discloses a technique for obtaining a high-strength hot-rolled steel sheet of 690 MPa (70 kgf / mm 2 ) or more having excellent stretch flangeability. As in the case of the above publication, Ti: 0.06 to 0.3% and a relatively large amount of Ti are contained. Precipitation strengthening with TiC and excellent stretch flangeability can be obtained by minimizing the amount of cementite precipitation. It states that it will be.
[0009]
However, since Ti is increased in order to minimize the amount of cementite precipitation, the amount of TiC precipitation is increased, so even if it is an inexpensive strengthening element, if a large amount of Ti is added, it will lead to an increase in cost. That is not enough. Moreover, excessive precipitation strengthening tends to increase the yield ratio unnecessarily, and a steel sheet that has been subjected to TiC precipitation strengthening for the most part of C is not necessarily excellent in press formability even if stretch flangeability is good. I could not say it.
[0010]
[Problems to be solved by the invention]
Conventionally, a hot rolled steel sheet by precipitation strengthening has been considered to have a poor cemented stretch flangeability due to a large amount of cementite. Alternatively, if the amount of cementite precipitation is limited as in the above-mentioned invention that stresses stretch flangeability, the total elongation, yield ratio, and cost must be insufficient.
[0011]
The purpose of the present invention is to secure a high-strength hot-rolled steel sheet with a level of stretch flangeability required for press forming to general automobile parts and machine structural parts, specifically, a hole expansion rate of 80% or more. However, it is to provide a hot rolled steel sheet of 370 to 490 MPa class showing a total elongation of 36% or more and a method for producing it at low cost.
[0012]
[Means for Solving the Problems]
As a result of extensive research conducted by the present inventors to achieve such a problem, in order to improve press formability, that is, while ensuring a hole expansion rate of a level necessary for actual general press forming, In order to increase the elongation, the inventors have obtained new knowledge that it is effective to grow ferrite grains as much as possible and to control the pearlite so as not to become coarse, thereby completing the present invention.
Here, the gist of the present invention is as follows.
[0013]
(1) By weight%
C: 0.03% to 0.08%, Si: 0% to 0.10%,
Mn: 0.05% to 1.00%, P: 0% to 0.030%
S: 0.010% or less, sol.Al: 0.003% to 0.100%,
N: 0.0070% or less, Ti: 0.020% or more and less than 0.050% Steel composition composed of the balance Fe and inevitable impurities, consisting of a mixed structure of ferrite and pearlite, ferrite grain size of 11.5 or less, and maximum diameter of 5μm or more A 370 to 490 MPa class high strength hot rolled steel sheet for machining, which exhibits a total elongation of 36% or more, characterized by pearlite having an area ratio of 8% or less.
[0014]
(2) The slab having the steel composition of (1) above is reheated to 1150 ° C or higher, hot rolled at a finishing temperature of 800-930 ° C, and immediately thereafter, the average cooling rate up to 700 ° C is 5-20 ° C. / s and cooled below the a 1 transformation point, 450-650, characterized in that winding in ° C., becomes a mixed structure of ferrite and pearlite, the ferrite grain size is 11.5 or less and more than the maximum diameter 5 [mu] m A method for producing a high-strength hot-rolled steel sheet for machining of 370 to 490 MPa class, which has an area ratio of pearlite of 8% or less and exhibits a total elongation of 36 % or more , which is excellent in economy.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail.
First, the steel composition is defined as described above in the present invention as follows.
C is added in an amount of 0.03% or more to ensure the target strength. However, C is an inexpensive strengthening element and should be used as much as possible in order to obtain an economical steel sheet. Therefore, it is desirable to set it to 0.06% or more. On the other hand, however, the addition of a large amount of C causes the generation of coarse pearlite and consequently deteriorates the workability. Therefore, the upper limit is set to 0.08% as a range in which the formation of coarse pearlite is not remarkable.
[0016]
By suppressing the C amount to 0.08% or less, the precipitation amount of cementite itself is reduced and the workability is improved. However, in such a relatively low C amount, appropriate hot rolling described later is performed. By selecting the finishing temperature, cooling conditions, and coiling temperature, the generation of coarse pearlite that tends to be the starting point of cracks is suppressed and a finely dispersed state can be obtained, so excellent stretch flangeability, that is, the hole expansion rate It is thought that securing and excellent overall growth have been realized.
[0017]
Si is added in an amount of 0 to 0.10%. In the present invention, Si is one of the inevitable impurities, but in one embodiment of the present invention, Si may be added within a range of 0.10% or less for the purpose of adjusting the strength by solid solution strengthening. Addition of Si exceeding 0.10% not only causes an increase in cost, but also causes a decrease in yield due to the frequent occurrence of Si scale, making it impossible to obtain a hot-rolled steel sheet with excellent economic efficiency, which is the original purpose. When added, the upper limit is made 0.10%.
[0018]
Mn is added for the purpose of solid solution strengthening of steel, but a large amount of Mn inhibits ductility and also promotes precipitation of coarse MnS to deteriorate the stretch flangeability of the steel sheet. The upper limit is 1.00%. However, in order to obtain a steel sheet excellent in economic efficiency, the amount of Mn, which is an expensive alloy element, should be as small as possible, and is preferably 0.80% or less. On the other hand, Mn has a role to prevent hot embrittlement of steel during hot rolling with S, so Mn is added in an amount of 0.05% or more. Preferably, it is 0.20 to 0.80%.
[0019]
Like Si, P is one of the inevitable impurities, but 0.020% or more can be added for the purpose of adjusting the strength. However, if the amount is too large, the workability deteriorates, so the effect is not noticeably limited to 0.030% or less.
[0020]
S is an inevitable impurity, and it is desirable to reduce it as much as possible because it forms MnS precipitates and lowers the stretch flangeability of the steel sheet. However, since the reduction leads to an increase in cost, it is set to 0.010% or less as a range where the adverse effect of S is not remarkable.
[0021]
Al is added for deoxidation in the steelmaking stage. The effect is as follows: The amount of Al soluble in acid (sol. Al) is less than 0.003%, so the lower limit is set to 0.003%. On the other hand, if the amount is too large, the effect is saturated and the cost is increased, so the upper limit is set to 0.100%.
[0022]
N is an unavoidable impurity and combines with Ti to form TiN. However, since TiN begins to precipitate from the steelmaking stage and becomes coarse and has little effect on the strengthening of the steel sheet, the amount of Ti that effectively acts on the strengthening of the steel sheet is reduced. In addition, since coarse TiN becomes the starting point of cracks and deteriorates stretch flangeability, it is desirable to reduce N as much as possible. However, since the reduction of N more than necessary only increases the steelmaking cost, the upper limit is set to 0.0070% as a range in which the adverse effects of N can be tolerated. Preferably, it is 0.0050% or less.
[0023]
Ti is an additive element that can achieve high strength of the steel sheet at low cost by precipitation strengthening of TiC, and is an important element in the present invention. In order to ensure the intended strength of the present invention, a lower limit of 0.020% or more is necessary. However, increasing the strength by precipitation strengthening of TiC increases the yield ratio, so excessive addition deteriorates workability. Therefore, the range that can maintain the yield ratio that does not impair the workability is set to less than 0.050%. Preferably, it is 0.024 to 0.045%.
[0024]
According to the present invention, a hot-rolled steel sheet having such a steel composition cannot obtain excellent elongation when the ferrite grain size in the structure exceeds 11.5. Preferably it is 10.0 or less.
Here, the “ferrite crystal grain size” is determined by JIS G 0552, and the smaller the grain size, the larger the crystal grain size.
[0025]
In addition, if even a small amount of pearlite having a maximum diameter of 5 μm or more is contained, the stretch flangeability deteriorates rapidly, so that the area ratio of the pearlite is defined as 8% or less as a range where the influence is not remarkable. However, in order to sufficiently bring out the effects of the present invention, the area ratio is preferably set to 5% or less.
[0026]
Next, although the manufacturing method of the hot-rolled steel plate in this invention is demonstrated, the hot-rolled steel plate provided with the above-mentioned steel composition and property is manufactured on the following manufacturing conditions.
First, the slab heating temperature at the time of hot rolling is set to 1150 ° C. or higher so that Ti is sufficiently dissolved before rolling. If the heating temperature is too low and Ti is not sufficiently dissolved, the effect of precipitation strengthening due to TiC finely precipitated after rolling cannot be sufficiently exhibited. In obtaining the steel sheet of the present invention, the upper limit of the slab heating temperature is not particularly defined, but if it is too high, it causes an increase in heating cost and an increase in scale loss, so that it is preferably 1300 ° C. or lower.
[0027]
When the finishing temperature of hot rolling exceeds 930 ℃, austenite recrystallization and grain growth after finishing are prominent, and the starting point of ferrite nucleation in the subsequent cooling process is small, resulting in coarse ferrite and coarse grains. A structure composed of pearlite is obtained, and workability deteriorates. Further, when the temperature is lower than 800 ° C., it becomes a temperature range where ferrite starts to be generated, and the in-plane anisotropy of the steel sheet increases. Accordingly, the finishing temperature is 800 to 930 ° C, preferably 820 to 880 ° C.
[0028]
Cooling after finish rolling is controlled to 5 to 20 ° C./s as an average cooling rate up to 700 ° C. This cooling is for the purpose of causing the pro-eutectoid ferrite to grow sufficiently immediately after the A 3 transformation and to finely disperse the untransformed austenite before the start of the A 1 transformation. At cooling rates exceeding 20 ° C / s, the ferrite tends to become finer and the yield ratio tends to increase. On the other hand, when the cooling rate is lower than 5 ° C./s, the diffusion of C is vigorous, so coarse pearlite is generated and the workability deteriorates. A preferable cooling rate is 10 ° C./s or more and 15 ° C./s or less. The cooling temperature, i.e. the temperature to which the cooling is not particularly limited as long as the following A 1 transformation point. As will be described later, the cooling temperature at this time may be a coiling temperature.
[0029]
In addition, even in the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 9-209076, it teaches that cooling is performed at a cooling rate of 1 to 60 ° C./s after completion of hot rolling. Is specifically defined by C%, Ti%, and TS. Assuming this in the case of the present invention, in the case of the 440 MPa class, it is almost 30 ° C./s or more, which is a considerably large cooling rate. This is because, in the case of the above publication, the contribution of strengthening is increased by miniaturizing TiC, which is essentially different from the present invention.
[0030]
Then, for example, wound performs water cooling or air cooling, but cooling conditions since it is after the A 1 transformation by cooling under the above conditions after the finish rolling is not particularly limited. What is necessary is just to cool to a predetermined coiling temperature.
[0031]
According to one embodiment, the average cooling rate up to 700 ° C. may be 5 to 20 ° C./s at the cooling rate of 5 to 20 ° C./s.
As described above, after the A 1 transformation, it is wound at 450 to 650 ° C. in order to promote the discharge of C dissolved in the ferrite and precipitate fine TiC. Thereby, the state in which the ferrite base rich in ductility is precipitation strengthened with TiC is obtained. When the temperature is higher than 650 ° C., the precipitated TiC becomes coarse and a sufficient effect of precipitation strengthening cannot be obtained. At 450 ° C. or lower, C remains supersaturated in the ferrite and deteriorates ductility. A preferable winding temperature is 480 to 600 ° C.
[0032]
Thus, the hot-rolled steel sheet manufactured by the manufacturing method according to the present invention has a mixed structure of ferrite and pearlite, and the ferrite crystal grain size is 11.5 or less, and pearlite having a maximum diameter of 5 μm or more satisfies an area ratio of 8% or less. To do.
[0033]
【Example】
Next, the function and effect of the present invention will be described more specifically with reference to examples.
Examples Nos. 1 to 14 in Table 2 are slabs of steel compositions A to N shown in Table 1 which are hot rolled to a thickness of 3.2 mm at a heating temperature of 1230 ° C and a finishing temperature of 850 ° C, and an average cooling rate up to 700 ° C. The product was cooled to 520 ° C. at 12 ° C./s, then cooled to the coiling temperature by air cooling, and manufactured at a coiling temperature of 500 ° C.
[0034]
Examples Nos. 15 to 27 in Table 4 are produced under the production conditions shown in Table 3.
The hot-rolled steel sheet thus obtained was subjected to a tensile test, a hole expansion test, and a cross-sectional structure observation in the following manner. The results are summarized in Table 2 and Table 4, respectively.
[0035]
The tensile test is conducted with JIS No. 5 tensile test piece in the rolling direction, and the hole expansion test is to measure the diameter d when a crack penetrates the plate thickness by expanding a punched hole with an initial diameter of 10 mm with a 60 ° conical punch. It was calculated from the following formula.
λ = {(d−10) / 10} × 100
The structure was observed by nital corrosion and judged based on the type of structure such as ferrite and pearlite observed visually.
[0036]
The ferrite grain size was determined according to JIS G0552.
In addition, the following method was used in order to evaluate the amount of coarse pearlite that is prone to crack initiation.
[0037]
That is, a tissue photograph with a microscope magnification of 500 times is taken into a computer image, and perlite with the longest actual diameter of 5 μm or more is visually selected on the image, and the area on the image is totaled to obtain the entire image. The ratio to the total was calculated. This is called a pearlite area ratio having a maximum diameter of 5 μm or more.
[0038]
As shown in Tables 2 and 4, hot-rolled steel sheets having a steel composition defined within the scope of the present invention, having a relatively large average ferrite grain size, and suppressing coarse pearlite are used for press forming. It can be seen that there is a balance between suitable stretch flangeability and total elongation.
[0039]
In Tables 2 and 4, the target properties of the steel sheet of the present invention were YP: 420 MPa or less, TS: 370 to 540 MPa, El: 35% or more, and λ: 80% or more.
However, when the steel composition is outside the scope of the present invention as shown in Table 2, or when the manufacturing conditions deviate from the scope of the present invention even when the steel composition is within the scope of the present invention as shown in Table 4. It can be seen that the required strength cannot be obtained or that the structure defined in the present invention cannot be obtained, so that no satisfactory characteristics are obtained.
[0040]
[Table 1]
[0041]
[Table 2]
[0042]
[Table 3]
[0043]
[Table 4]
[0044]
【The invention's effect】
As described above in detail, according to the present invention, a high-strength hot-rolled steel sheet suitable for press forming that secures the necessary stretch flangeability, specifically, a 370 to 490 MPa class hot-rolled steel having excellent total elongation. The present invention is an invention that greatly contributes to the industry from the current situation of the industry where there is a great demand for high-strength hot-rolled steel sheets that can obtain steel sheets with good economic efficiency and excellent workability.
Claims (2)
C:0.03%以上0.08%以下、Si: 0%以上0.10%以下、
Mn:0.05%以上1.00%以下、P:0%以上0.030%以下
S: 0.010%以下、 sol.Al:0.003%以上0.100%以下、
N:0.0070%以下、Ti:0.020%以上0.050%未満
残部Feおよび不可避不純物から成る鋼組成を有し、フェライトとパーライトの混合組織よりなり、フェライト結晶粒度が11.5以下、かつ、最大直径5μm以上のパーライトが面積率で8%以下であることを特徴とする、36%以上の全伸びを示す370〜490MPa級の、経済性に優れた加工用高強度熱延鋼板。% By weight
C: 0.03% to 0.08%, Si: 0% to 0.10%,
Mn: 0.05% to 1.00%, P: 0% to 0.030%
S: 0.010% or less, sol.Al: 0.003% to 0.100%,
N: 0.0070% or less, Ti: 0.020% or more and less than 0.050% Steel composition composed of the balance Fe and inevitable impurities, consisting of a mixed structure of ferrite and pearlite, ferrite grain size of 11.5 or less, and maximum diameter of 5μm or more A 370 to 490 MPa class high-strength hot-rolled steel sheet for machining, which exhibits a total elongation of 36% or more, characterized by pearlite having an area ratio of 8% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02212199A JP3916113B2 (en) | 1999-01-29 | 1999-01-29 | High strength Ti-added hot-rolled steel sheet for processing and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02212199A JP3916113B2 (en) | 1999-01-29 | 1999-01-29 | High strength Ti-added hot-rolled steel sheet for processing and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000219937A JP2000219937A (en) | 2000-08-08 |
JP3916113B2 true JP3916113B2 (en) | 2007-05-16 |
Family
ID=12074060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02212199A Expired - Lifetime JP3916113B2 (en) | 1999-01-29 | 1999-01-29 | High strength Ti-added hot-rolled steel sheet for processing and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3916113B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5018934B2 (en) * | 2010-06-29 | 2012-09-05 | Jfeスチール株式会社 | High-strength steel sheet with excellent workability and method for producing the same |
JP5018935B2 (en) | 2010-06-29 | 2012-09-05 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof |
-
1999
- 1999-01-29 JP JP02212199A patent/JP3916113B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000219937A (en) | 2000-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11339451B2 (en) | Low-cost and high-formability 1180 MPa grade cold-rolled annealed dual-phase steel plate and manufacturing method thereof | |
US8465600B2 (en) | High-strength steel sheet having excellent workability | |
US20050167007A1 (en) | High-strength cold-rolled steel sheet having outstanding elongation and superior stretch flange formability and method for production thereof | |
CN114891961A (en) | Cold-rolled heat-treated steel sheet | |
CN107250406B (en) | High strength cold rolled steel plate and its manufacturing method | |
JP4529549B2 (en) | Manufacturing method of high-strength cold-rolled steel sheets with excellent ductility and hole-expansion workability | |
CN106282831A (en) | A kind of high-strength container weather resisting steel and manufacture method thereof | |
JPH10219394A (en) | Cold rolled steel sheet excellent in deep drawability and aging resistance, and hot rolled steel strip for cold rolled steel sheet | |
JP2011052295A (en) | High-strength cold-rolled steel sheet superior in balance between elongation and formability for extension flange | |
CN113737086A (en) | Economical 780 MPa-grade cold-rolled annealed dual-phase steel and manufacturing method thereof | |
JP5302840B2 (en) | High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability | |
JP5456026B2 (en) | High-strength steel sheet, hot-dip galvanized steel sheet with excellent ductility and no cracks at the edge, and manufacturing method thereof | |
JP2005264328A (en) | High-strength steel plate having excellent workability and method for manufacturing the same | |
JP4085809B2 (en) | Hot-dip galvanized cold-rolled steel sheet having an ultrafine grain structure and excellent stretch flangeability and method for producing the same | |
JPH04325657A (en) | High strength hot rolled steel sheet excellent in stretch-flanging property and its manufacture | |
JP2002363649A (en) | Method for producing high strength cold rolled steel sheet | |
JP4848722B2 (en) | Method for producing ultra-high-strength cold-rolled steel sheet with excellent workability | |
JP2000265244A (en) | Hot-dip galvanized steel sheet excellent in strength and ductility, and its manufacture | |
JP3947354B2 (en) | High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof | |
JP2004269924A (en) | High efficient producing method of steel sheet excellent in strength and toughness | |
JP3916113B2 (en) | High strength Ti-added hot-rolled steel sheet for processing and manufacturing method thereof | |
JP2002363685A (en) | Low yield ratio high strength cold rolled steel sheet | |
JP2004211138A (en) | Galvanized cold-rolled steel sheet having ultrafine granular structure and excellent fatigue characteristic, and its producing method | |
JP3831137B2 (en) | Manufacturing method of high-strength steel sheet with excellent ductility and stretch flangeability | |
JP2002226937A (en) | Cold rolled steel sheet and plated steel sheet capable of increasing strength by heat treatment after forming and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040511 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040709 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040910 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20041008 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070202 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100216 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110216 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120216 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120216 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130216 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130216 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130216 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140216 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |