JP3915538B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP3915538B2
JP3915538B2 JP2002042928A JP2002042928A JP3915538B2 JP 3915538 B2 JP3915538 B2 JP 3915538B2 JP 2002042928 A JP2002042928 A JP 2002042928A JP 2002042928 A JP2002042928 A JP 2002042928A JP 3915538 B2 JP3915538 B2 JP 3915538B2
Authority
JP
Japan
Prior art keywords
hot water
compressor
refrigerant
water
expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002042928A
Other languages
Japanese (ja)
Other versions
JP2003240341A (en
Inventor
克己 鉾谷
道雄 森脇
日出樹 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2002042928A priority Critical patent/JP3915538B2/en
Publication of JP2003240341A publication Critical patent/JP2003240341A/en
Application granted granted Critical
Publication of JP3915538B2 publication Critical patent/JP3915538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、給湯機に関するものである。
【0002】
【従来の技術】
従来の給湯機としては、図6に示すように、熱源側サイクル81と、給湯側サイクル82とを備えるものがある。熱源側サイクル81は冷媒回路を備え、この冷媒回路は、圧縮機83に、順次、水熱交換器84と、膨張弁85と、空気熱交換器86等が接続されて構成される。また、給湯側サイクル82は、貯湯タンク87と循環路88とを備える。そして、この循環路88に水循環用ポンプ89と熱交換路90とが介設されている。この場合、熱交換路90は水熱交換器84にて構成される。
【0003】
冷媒回路の冷媒としては、近年、環境上の問題等から、超臨界で使用する超臨界冷媒(例えば、炭酸ガス)を用いる場合がある。従って、この炭酸ガスを使用した単純サイクルでは、モリエル線図が図7に示すものとなる。
【0004】
【発明が解決しようとする課題】
ところで、上記給湯機では、圧縮機83を駆動させると共に、ポンプ89を駆動(作動)させると、給湯側サイクル82においては、貯湯タンク87の取水口から貯溜水(温湯)が循環路88に流出し、これが熱交換路90を流通して、湯入口から貯湯タンク87の上部に返流される。
【0005】
また、熱源側サイクル81においては、図7に示すように、▲1▼の状態の高圧冷媒が圧縮機83から吐出され、この高圧冷媒が水熱交換器84に導入される。水熱交換器84では、熱交換路90と通過する水と熱交換を行う。これによって、この通過する水は加熱される(沸き上げられる)。そして、この熱交換により、高圧冷媒は水に対して放熱し、そのエンタルピが▲1▼から▲2▼の状態にまで低下する。この▲2▼の状態の高圧冷媒は、膨張弁85へ送られる。この膨張弁85では、高圧冷媒が減圧され、その圧力が▲2▼から▲3▼の状態まで低下する。そして、この▲3▼の状態の冷媒は、空気熱交換器86へ導入される。空気熱交換器86では、この低圧冷媒が空気と熱交換を行う。この熱交換により、低圧冷媒は吸熱して蒸発して、そのエンタルピが▲3▼の状態から▲4▼の状態にまで増大する。この▲4▼の状態の低圧冷媒が圧縮機83へ送られる。
【0006】
このため、超臨界で使用する超臨界冷媒(例えば、炭酸ガス)を用いる場合には、▲3▼と▲4▼とのエンタルピ差は小さく冷凍サイクル効率が悪いことになっていた。従って、大量の湯の沸き上げを必要とする給湯機では、大型化され、製造コスト及びランニングコスト高となっていた。
【0007】
この発明は、上記従来の欠点を解決するためになされたものであって、その目的は、COPが向上し、省エネ、電気料金の低減を図れる給湯機を提供することにある。
【0008】
【課題を解決するための手段】
そこで請求項1の給湯機は、冷媒に超臨界で使用する超臨界冷媒を用いた冷媒回路にて、温湯を沸き上げる給湯機であって、下部側に設けた給水口から水道水が供給され、上部側に設けた給湯口から高温の温湯を出湯する貯湯タンク3を設け、貯湯タンク3の取水口4からの貯溜水が循環路6の熱交換路8を流通し、これによって高温冷媒と循環路6の循環水とで熱交換が行われて循環水が加熱されると共に、湯入口5から貯湯タンク3に返流され、また、この貯湯タンク3の湯が床暖パネル54を加熱して貯湯タンク3に戻る床暖房を行うべく構成して成り、さらに上記冷媒回路に膨張機12を備え、この膨張機12で発生した動力の回収を可能としたことを特徴としている。
【0009】
請求項1の給湯機では、冷媒回路に膨張機12を備えているので、冷凍サイクルの膨張過程が等エントロピー変化となり、この膨張機12で発生した動力の回収が可能となると共に、蒸発能力が増大する。これによって、COPが向上する。さらに、冷媒に超臨界で使用する超臨界冷媒を用いるので、オゾン層の破壊、環境汚染等の問題がなく、地球環境にやさしい給湯機となる。また、この給湯機では、効率良く沸き上げた湯を、床暖房に使用するので、効率のよい床暖房を行うことができる。
【0010】
請求項2の給湯機は、上記動力を、上記冷媒回路の圧縮機10に入力することを特徴としている。
【0011】
上記請求項2の給湯機では、膨張機12で発生した動力を、上記冷媒回路の圧縮機に入力することができるので、圧縮機10を駆動させる外部入力を低減することができる。これによって、膨張機構に膨張弁を使用したものと同一の能力を発揮させる場合には、圧縮機10の小型化を図ることができる。
【0012】
請求項3の給湯機は、上記膨張機12と圧縮機10とは共通の駆動軸を有し、この膨張機12で発生した動力を上記駆動軸19を介して圧縮機10に伝達することを特徴としている。
【0013】
上記請求項3の給湯機では、膨張機12で発生した動力を、膨張機12と圧縮機10との共通の駆動軸19にて圧縮機10に伝達するので、膨張機12で発生した動力を圧縮機10に確実に伝達することができる。
【0016】
請求項の給湯機は、上記冷媒回路にて沸き上げられた温湯を、浴槽等への給湯と、床暖房とに使用することを特徴としている。
【0017】
上記請求項の給湯機では、効率良く沸き上げた湯を、浴槽等への給湯と、床暖房に使用するので、効率のよい給湯及び床暖房を行うことができる。
【0018】
【発明の実施の形態】
次に、この発明の給湯機の具体的な実施の形態について、図面を参照しつつ詳細に説明する。図1はこの給湯機の簡略図を示す。この給湯機は、給湯側サイクル1と熱源側サイクル2とを備える。給湯側サイクル1は、貯湯タンク3を備え、この貯湯タンク3に貯湯された温湯が図示省略の浴槽等に供給される。すなわち、貯湯タンク3には、その下部側に給水口(図示省略)が設けられると共に、その上部側に給湯口(図示省略)が設けられている。そして、給水口から貯湯タンク3に水道水が供給され、給湯口から高温の温湯が出湯される。また、貯湯タンク3には、その下部側に取水口4が開設されると共に、その上部側に湯入口5が開設され、取水口4と湯入口5とが循環路6にて連結されている。そして、この循環路6に水循環用ポンプ7と熱交換路8とが介設されている。
【0019】
そして、加熱側サイクル(ヒートポンプ式加熱源)2は冷媒回路を備え、この冷媒回路は、圧縮機10と、熱交換路8を構成する水熱交換器11と、減圧機構としての膨張機12と、空気熱交換器13とを順に接続して構成される。すなわち、圧縮機10の吐出管14を水熱交換器11に接続し、水熱交換器11と膨張機12とを冷媒通路15にて接続し、膨張機12と空気熱交換器13とを冷媒通路16にて接続し、空気熱交換器13と圧縮機10と冷媒通路17にて接続している。また、冷媒としては、冷媒に超臨界で使用する超臨界冷媒(例えば、炭酸ガス、その他、エチレン、エタン、酸化窒素等)を用いる。
【0020】
ところで、上記冷媒回路では、圧縮機10と膨張機12とが一体とされた圧縮・膨張ユニット体18が使用されている。すなわち、圧縮・膨張ユニット体18は、図2に示すように、冷媒を臨界圧以上に圧縮して送り出す圧縮機10と、冷媒を膨張させる膨張機12と、圧縮機10及び膨張機12に駆動軸19を通じて動力を供給する電動機(モータ)20とがケーシングA内に密封状態で収納されたものである。このため、圧縮機10、電動機20、及び膨張機12はこの共通の駆動軸19により連結されている。
【0021】
この場合、ケーシングAの内部が、圧縮機10及び電動機20側の第1空間部21と、膨張機12側の第2空間部22とに断熱材23等にて区画されている。そして、圧縮機10としては、いわゆる揺動ピストン型ロータリ圧縮機にて構成され、第1・第2シリンダ機構24、25を備える。すなわち、第1・第2シリンダ機構24、25は、それぞれ、上記駆動軸19に装着されるクランク軸26、27と、このクランク軸26、27に外嵌されるピストン28、29と、このピストン28、29が収納されるシリンダ室30、31を有するシリンダ32、33とを備える。
【0022】
第1シリンダ機構24のシリンダ32は、シリンダ本体34と、このシリンダ本体34の一方の端面に装着される蓋部材35と、シリンダ本体34の他方の端面に装着される介在体36等にて構成される。この蓋部材35は上記駆動軸19の一端部を支持している。また、第2シリンダ機構25のシリンダ33は、シリンダ本体38と、上記介在体36と、シリンダ本体38のモータ20側の端面に装着される蓋部材39等にて構成される。そして、各シリンダ本体34、38には吸入ポート40、41が連設されている。
【0023】
次に、膨張機12は、この場合、揺動ピストン型膨張機にて構成される。すなわち、上記駆動軸19に装着されるクランク軸43と、このクランク軸43に外嵌されるピストン44と、このピストン44が収納されるシリンダ室45を有するシリンダ46とを備える。シリンダ46は、シリンダ本体47と、上記駆動軸19の他端部を支持する支持体48と、断熱材23側の仕切プレート49等で構成することができる。また、シリンダ本体47には吐出ポート50が連設され、さらに、シリンダ室45には吸入管51が接続されている。
【0024】
上記のように構成された圧縮・膨張ユニット体18の圧縮機10は、モータ20によって駆動される。すなわち、駆動軸19を回転駆動させることによって、この駆動軸19に連設されたクランク軸26、27を回動させて、ピストン28、29をシリンダ室30、31内で揺動運動をさせる。そのため、この揺動運動に従って吸入ポート40、41からシリンダ室30、31内に冷媒を吸入し、この冷媒を、このシリンダ室30、31でピストン28、29が揺動することによって、臨界圧力以上の所定圧力まで圧縮し、この高温高圧となった冷媒を、ケーシングAに設けられた吐出ポート42から吐出配管14へと吐出する。
【0025】
また、膨張機12では、駆動軸19を回転駆動させることによって、この駆動軸19に連設されたクランク軸43を回動させて、ピストン44をシリンダ室45内で揺動運動をさせる。そのため、この揺動運動に従って吸入管52からシリンダ室45内に冷媒を吸入し、この冷媒を、このシリンダ室45でピストン44が揺動することによって、冷媒を膨張させ、その膨張した冷媒を吐出ポート50から冷媒通路16へ流出させる。
【0026】
上記のように構成された給湯機によれば、圧縮機10を駆動させる(モータ20を通電することによって、駆動軸19を回転駆動させる)と共に、水循環用ポンプ13を駆動(作動)させると、圧縮機10からの高圧高温の冷媒が水熱交換器11に流入すると共に、貯湯タンク3の取水口4からの貯溜水(低温水)が循環路6の熱交換路8を流通する。これによって、高圧高温の冷媒と循環路6の循環水とで熱交換が行われ、この循環水は加熱され(沸き上げられ)、湯入口5から貯湯タンク3に返流(流入)され、貯湯タンク3に高温の温湯を貯湯することができる。
【0027】
この際の冷媒回路の冷凍サイクルは図3のようになる。すなわち、▲1▼の状態の高圧冷媒が圧縮機10から吐出され、この高圧冷媒が水熱交換器11に導入される。水熱交換器11では熱交換路14と通過する水との熱交換を行う。この熱交換により、高圧冷媒は水に対して放熱し、そのエンタルピが▲1▼から▲2▼の状態にまで低下する。この▲2▼の状態の高圧冷媒は、膨張機12へ送られる。この膨張機12では、高圧冷媒が減圧され、その圧力が▲2▼から▲3▼´の状態まで低下する。この際、膨張機構として膨張機12を使用しているので、等エントロピー変化となって、この▲3▼´と▲3▼(▲3▼は、膨張機12を使用せずに膨張弁を使用した減圧状態である)のエンタルピ差の動力回収が可能となる。そして、この▲3▼´の状態の冷媒は、空気熱交換器13へ導入される。空気熱交換器13では、この低圧冷媒が空気と熱交換を行う。この熱交換により、低圧冷媒は吸熱して蒸発してそのエンタルピが▲3▼´の状態から▲4▼の状態にまで増大する。この▲4▼の状態の低圧冷媒が圧縮機10へ送られる。なお、図3の網掛け部は単純サイクルの場合を示している。
【0028】
この場合、上記動力回収は、上記駆動軸19によって圧縮機10へ伝達され、この圧縮機10の駆動力に伝達される。すなわち、圧縮機10としては、図3に示すように、▲4▼から▲1▼までの入力を必要とし、このうち、▲3▼´から▲3▼の差分を、回収して▲4▼から▲4▼´までの入力値として圧縮機10の入力に使用することができ、圧縮機10への外部からの入力を低減することができる。このため、COPが向上して、省エネ、電気料金の低減を図ることができる。しかも、蒸発能力も増加するので、膨張弁を使用したものよりも小型の圧縮機を使用しても、同一の能力を得ることができ、製造コスト及びランニングコストの低減を図ることができる。
【0029】
次に、図4は、図1に示した給湯機の簡略図に床暖房ユニット53を付加したこの発明の実施の形態を示し、この場合、貯湯タンク3に貯湯された湯を、床暖房に使用している。すなわち、この給湯機は、床暖パネル52を有する床暖房ユニット53を備える。床暖パネル52の内部には、循環パイプ54が配設され、この循環パイプ54の入口54aに往き配管56が接続され、循環パイプ54の出口54bに戻り配管57が接続されている。また、往き配管56は貯湯タンク3の上部の給湯口58に接続され、戻り配管57は貯湯タンク3の下部の返流口59に接続されている。そして、往き配管56に循環用ポンプ60が介設されている。なお、他の構成は、図1に示した空気調和機と同様であるので、同一部分を同一の符号で示してその説明を省略する。
【0030】
従って、循環用ポンプ60を駆動することによって、貯湯タンク3の湯が給湯口58から流出して、往き配管56を介して循環パイプ54を流れ、戻り配管57を介して返流口59から貯湯タンク3に戻る。この際、この循環パイプ54を流れる湯によって、床暖パネル52が暖められ、床暖房を行うことができる。
【0031】
従って、この図4の給湯機では、給湯側ユニット1及び熱源側ユニット2は図1と同様の構成であるので、給湯機として、COPが向上して、省エネ、電気料金の低減を図ることができる。しかも、蒸発能力も増加するので、膨張弁を使用したものよりも小型の圧縮機を使用しても、同一の能力を得ることができ、製造コスト及びランニングコストの低減を図ることができる。そして、このように効率良く沸き上げた湯を床暖房に利用することができ、全体として、高効率のシステムを構成することができる。ところで、現状の電気料金は深夜(例えば、23時から7時までの時間帯)の電気料金単価が昼間に比べて安価に設定されているので、この貯湯タンク3に湯を貯めるための運転をこの深夜に行えば、節電を図ることができる。
【0032】
また、図5に示すように、往き配管56等に浴槽等へ給湯を行う配管61を接続することによって、床暖房に加え、浴槽等への給湯(以下、単に給湯と呼ぶ場合がある)も可能となる。この場合、往き配管56において、配管61の合流部62よりも下流側に開閉バルブ63を介設すると共に、配管61に開閉バルブ64を介設している。これによって、床暖房のみを行う場合と、給湯のみを行う場合と、床暖房及び給湯を行う場合とに切換ることができる。なお、他の構成は、図1に示した空気調和機と同様であるので、同一部分を同一の符号で示してその説明を省略する。
【0033】
すなわち、開閉バルブ63を開状態とすると共に、開閉バルブ64を閉状態とすれば、床暖房のみを行うことができ、開閉バルブ63を閉状態とすると共に、開閉バルブ64を開状態とすれば、給湯のみを行うことができ、開閉バルブ63、64を開状態とすれば、床暖房及び給湯を行うことができる。
【0034】
従って、この図5の給湯機によれば、上記図4の給湯機と同様、給湯機として、COPが向上して、省エネ、電気料金の低減を図ることができる。しかも、蒸発能力も増加するので、膨張弁を使用したものよりも小型の圧縮機を使用しても、同一の能力を得ることができ、製造コスト及びランニングコストの低減を図ることができる。しかも、このように効率良く沸き上げた湯を床暖房及び浴槽等への給湯に利用することができ、全体として、きわめて高効率のシステムを構成することができる。そして、この床暖房及び給湯に使用する湯を深夜に沸き上げておけば、電気料金を大幅に節約することができ、ユーザにとっては好適の給湯機となる。なお、図5の給湯機に給湯には、台所や洗面所等への給湯も含まれる。
【0035】
以上にこの発明の具体的な実施の形態について説明したが、この発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。例えば、膨張機12として、圧縮機10と駆動軸19が共通化されていないものであってもよい。すなわち、膨張機12で発生した動力を、一旦、電気エネルギに変換して取出し、この電気エネルギを圧縮機10の駆動電力として入力する等の構成であってもよい。また、膨張機12としては、スクロール式の膨張機であってもよい。ここで、スクロール式の膨張機とは、固定スクロールと、旋回スクロールとを備えたものであり、その流入口から高圧の冷媒が流入すると、冷媒は旋回スクロールに旋回動力を生じさせながら次第に減圧膨張し、その流出口から流出する。このため、このようなスクロール式の膨張機でも発生した動力を、圧縮機1へ伝達して、この圧縮機1の駆動に利用することができるようにすればよい。さらに、膨張機12としては、その他、歯車型、スクリュ−型等の各種の膨張機も使用することができる。なお、圧縮機10としても、スクロール式やスクリュ−式等の各種の圧縮機を使用することができる。
【0036】
【発明の効果】
請求項1の給湯機によれば、この膨張機で発生した動力の回収が可能となると共に、蒸発能力が増大する。これによって、COPが向上して、無駄のない効率のよい運転が可能となる。さらに、冷媒に超臨界で使用する超臨界冷媒を用いるので、オゾン層の破壊、環境汚染等の問題がなく、地球環境にやさしい給湯機となる。また、この給湯機によれば、効率良く沸き上げた湯を、床暖房に使用するので、効率のよい床暖房を行うことができる。すなわち、給湯機として高効率のシステムを構成することができ、ランニングコストの低減を図ることができる。
【0037】
請求項2の給湯機によれば、圧縮機を駆動させる外部入力を低減することができる。これによって、膨張機構に膨張弁を使用したものと同一の能力を発揮させる場合には、圧縮機の小型化を図ることができ、製造コスト及びランニングコストの低減を達成できる。
【0038】
請求項3の給湯機によれば、膨張機で発生した動力を確実に圧縮機に伝達することができる。これによって、より効率の良い運転が可能となって、省エネ、電気料金の低減を図ることができる。
【0040】
請求項の給湯機によれば、効率良く沸き上げた湯を、浴槽等への給湯と、床暖房に使用するので、効率のよい給湯及び床暖房を行うことができる。給湯機として高効率のシステムを構成することができ、ランニングコストの低減を図ることができる。しかも、ユーザは給湯及び床暖房にて快適に過ごすことができる。
【図面の簡単な説明】
【図1】この発明の給湯機の実施の形態を示す簡略図である。
【図2】上記給湯機の圧縮機と膨張機の断面図である。
【図3】上記給湯機のモリエル線図である。
【図4】 図1の給湯機に対して床暖房ユニットを付設したこの発明の給湯機の実施の形態を示す簡略図である。
【図5】この発明の給湯機の別の実施の形態を示す簡略図である。
【図6】従来の給湯機の簡略図である。
【図7】従来の給湯機のモリエル線図である。
【符号の説明】
10 圧縮機
12 膨張機
19 駆動軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water heater.
[0002]
[Prior art]
As a conventional hot water heater, there is one provided with a heat source side cycle 81 and a hot water supply side cycle 82 as shown in FIG. The heat source side cycle 81 includes a refrigerant circuit, and this refrigerant circuit is configured by sequentially connecting a water heat exchanger 84, an expansion valve 85, an air heat exchanger 86, and the like to a compressor 83. The hot water supply side cycle 82 includes a hot water storage tank 87 and a circulation path 88. A water circulation pump 89 and a heat exchange path 90 are interposed in the circulation path 88. In this case, the heat exchange path 90 is configured by a water heat exchanger 84.
[0003]
In recent years, a supercritical refrigerant (for example, carbon dioxide gas) used in a supercritical state may be used as a refrigerant in the refrigerant circuit due to environmental problems. Therefore, in a simple cycle using carbon dioxide, the Mollier diagram is as shown in FIG.
[0004]
[Problems to be solved by the invention]
By the way, in the hot water supply apparatus, when the compressor 83 is driven and the pump 89 is driven (actuated), the stored water (hot water) flows out from the water intake port of the hot water storage tank 87 into the circulation path 88 in the hot water supply side cycle 82. Then, this flows through the heat exchange path 90 and is returned from the hot water inlet to the upper part of the hot water storage tank 87.
[0005]
Further, in the heat source side cycle 81, as shown in FIG. 7, the high-pressure refrigerant in the state (1) is discharged from the compressor 83, and this high-pressure refrigerant is introduced into the water heat exchanger 84. The water heat exchanger 84 exchanges heat with the heat exchange path 90 and water passing therethrough. As a result, the passing water is heated (boiled up). By this heat exchange, the high-pressure refrigerant dissipates heat to the water, and the enthalpy decreases from (1) to (2). The high-pressure refrigerant in the state (2) is sent to the expansion valve 85. In the expansion valve 85, the high-pressure refrigerant is depressurized, and the pressure is reduced from the state (2) to the state (3). Then, the refrigerant in the state (3) is introduced into the air heat exchanger 86. In the air heat exchanger 86, the low-pressure refrigerant exchanges heat with air. By this heat exchange, the low-pressure refrigerant absorbs heat and evaporates, and its enthalpy increases from the state (3) to the state (4). The low-pressure refrigerant in the state (4) is sent to the compressor 83.
[0006]
For this reason, when using a supercritical refrigerant (for example, carbon dioxide gas) used in supercriticality, the difference in enthalpy between (3) and (4) is small and the refrigeration cycle efficiency is poor. Therefore, in a water heater that requires boiling a large amount of hot water, the size of the water heater is increased, resulting in high manufacturing costs and running costs.
[0007]
The present invention has been made to solve the above-described conventional drawbacks, and an object of the present invention is to provide a hot water heater capable of improving COP, saving energy, and reducing electricity charges.
[0008]
[Means for Solving the Problems]
Accordingly, the water heater of claim 1 is a water heater for boiling hot water in a refrigerant circuit using a supercritical refrigerant used supercritically as a refrigerant, and tap water is supplied from a water supply port provided on the lower side. The hot water storage tank 3 for discharging hot hot water from the hot water supply port provided on the upper side is provided, and the stored water from the water intake 4 of the hot water storage tank 3 circulates in the heat exchange path 8 of the circulation path 6. Heat is exchanged with the circulating water in the circulation path 6 to heat the circulating water and returned to the hot water storage tank 3 from the hot water inlet 5, and the hot water in the hot water storage tank 3 heats the floor warming panel 54. It is configured to perform floor heating to return to the hot water storage tank 3, and further, the refrigerant circuit is provided with an expander 12, and the power generated by the expander 12 can be recovered.
[0009]
In the hot water heater of claim 1, since the refrigerant circuit is provided with the expander 12, the expansion process of the refrigeration cycle becomes an isentropic change, the power generated in the expander 12 can be recovered, and the evaporation capacity is Increase. This improves COP. Furthermore, since a supercritical refrigerant used supercritically is used as the refrigerant, there is no problem of ozone layer destruction, environmental pollution, and the like, and the water heater becomes friendly to the global environment. Moreover, in this water heater, since the hot water heated up efficiently is used for floor heating, efficient floor heating can be performed.
[0010]
The water heater of claim 2 is characterized in that the power is input to the compressor 10 of the refrigerant circuit.
[0011]
In the hot water supply apparatus of the second aspect, since the power generated in the expander 12 can be input to the compressor of the refrigerant circuit, the external input for driving the compressor 10 can be reduced. Accordingly, the compressor 10 can be reduced in size when the same capability as that using an expansion valve is used for the expansion mechanism.
[0012]
In the water heater of claim 3, the expander 12 and the compressor 10 have a common drive shaft, and the power generated by the expander 12 is transmitted to the compressor 10 via the drive shaft 19. It is a feature.
[0013]
In the hot water supply apparatus according to the third aspect, since the power generated in the expander 12 is transmitted to the compressor 10 by the common drive shaft 19 of the expander 12 and the compressor 10, the power generated in the expander 12 is transmitted. It can be reliably transmitted to the compressor 10.
[0016]
The water heater according to claim 4 is characterized in that the hot water boiled in the refrigerant circuit is used for hot water supply to a bathtub or the like and floor heating.
[0017]
In the hot water supply apparatus according to the fourth aspect, since the hot water that has been efficiently boiled is used for hot water supply to a bathtub or the like and floor heating, efficient hot water supply and floor heating can be performed.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Next, specific embodiments of the water heater of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a simplified diagram of this water heater. The water heater includes a hot water supply side cycle 1 and a heat source side cycle 2. The hot water supply side cycle 1 includes a hot water storage tank 3, and hot water stored in the hot water storage tank 3 is supplied to a bathtub or the like (not shown). That is, the hot water storage tank 3 is provided with a water supply port (not shown) on the lower side and a hot water supply port (not shown) on the upper side. And tap water is supplied to the hot water storage tank 3 from a water supply port, and hot hot water is discharged from a hot water supply port. In addition, the hot water storage tank 3 is provided with a water intake 4 on the lower side thereof, and a hot water inlet 5 is opened on the upper side thereof, and the water intake 4 and the hot water inlet 5 are connected by a circulation path 6. . The circulation path 6 is provided with a water circulation pump 7 and a heat exchange path 8.
[0019]
And the heating side cycle (heat pump type heat source) 2 is provided with a refrigerant circuit, and this refrigerant circuit includes a compressor 10, a water heat exchanger 11 constituting the heat exchange path 8, and an expander 12 as a pressure reducing mechanism. The air heat exchanger 13 is connected in order. That is, the discharge pipe 14 of the compressor 10 is connected to the water heat exchanger 11, the water heat exchanger 11 and the expander 12 are connected by the refrigerant passage 15, and the expander 12 and the air heat exchanger 13 are connected to the refrigerant. They are connected by a passage 16 and are connected by an air heat exchanger 13, a compressor 10 and a refrigerant passage 17. In addition, as the refrigerant, a supercritical refrigerant (for example, carbon dioxide, other ethylene, ethane, nitrogen oxide, etc.) that is used supercritically as the refrigerant is used.
[0020]
Incidentally, in the refrigerant circuit, a compression / expansion unit body 18 in which the compressor 10 and the expander 12 are integrated is used. That is, as shown in FIG. 2, the compression / expansion unit body 18 is driven by the compressor 10 that compresses and sends out the refrigerant to a critical pressure or higher, the expander 12 that expands the refrigerant, and the compressor 10 and the expander 12. An electric motor (motor) 20 that supplies power through a shaft 19 is housed in a sealed state in the casing A. For this reason, the compressor 10, the electric motor 20, and the expander 12 are connected by this common drive shaft 19.
[0021]
In this case, the inside of the casing A is partitioned by a heat insulating material 23 and the like into a first space 21 on the compressor 10 and electric motor 20 side and a second space 22 on the expander 12 side. The compressor 10 is a so-called oscillating piston type rotary compressor, and includes first and second cylinder mechanisms 24 and 25. That is, the first and second cylinder mechanisms 24 and 25 are respectively provided with crankshafts 26 and 27 mounted on the drive shaft 19, pistons 28 and 29 fitted on the crankshafts 26 and 27, and pistons. And cylinders 32 and 33 having cylinder chambers 30 and 31 in which 28 and 29 are accommodated.
[0022]
The cylinder 32 of the first cylinder mechanism 24 includes a cylinder body 34, a lid member 35 attached to one end surface of the cylinder body 34, an interposer 36 attached to the other end surface of the cylinder body 34, and the like. Is done. The lid member 35 supports one end of the drive shaft 19. The cylinder 33 of the second cylinder mechanism 25 includes a cylinder main body 38, the interposition body 36, a lid member 39 attached to the end surface of the cylinder main body 38 on the motor 20 side, and the like. In addition, suction ports 40 and 41 are connected to the cylinder bodies 34 and 38, respectively.
[0023]
Next, the expander 12 is constituted by a swinging piston type expander in this case. That is, a crankshaft 43 mounted on the drive shaft 19, a piston 44 fitted on the crankshaft 43, and a cylinder 46 having a cylinder chamber 45 in which the piston 44 is accommodated. The cylinder 46 can be composed of a cylinder body 47, a support 48 that supports the other end of the drive shaft 19, a partition plate 49 on the heat insulating material 23 side, and the like. A discharge port 50 is connected to the cylinder body 47, and a suction pipe 51 is connected to the cylinder chamber 45.
[0024]
The compressor 10 of the compression / expansion unit body 18 configured as described above is driven by a motor 20. That is, by rotating the drive shaft 19, the crankshafts 26 and 27 connected to the drive shaft 19 are rotated, and the pistons 28 and 29 are oscillated in the cylinder chambers 30 and 31. Therefore, the refrigerant is sucked into the cylinder chambers 30 and 31 from the suction ports 40 and 41 according to this swinging motion, and the pistons 28 and 29 are swung in the cylinder chambers 30 and 31 so as to exceed the critical pressure. The refrigerant having been compressed to a predetermined pressure and discharged at a high temperature and a high pressure is discharged from the discharge port 42 provided in the casing A to the discharge pipe 14.
[0025]
In the expander 12, the drive shaft 19 is rotationally driven to rotate the crankshaft 43 connected to the drive shaft 19, thereby causing the piston 44 to swing within the cylinder chamber 45. Therefore, the refrigerant is sucked into the cylinder chamber 45 from the suction pipe 52 in accordance with the swing motion, and the piston 44 swings in the cylinder chamber 45 so that the refrigerant is expanded and the expanded refrigerant is discharged. The refrigerant flows out from the port 50 to the refrigerant passage 16.
[0026]
According to the water heater configured as described above, when the compressor 10 is driven (the drive shaft 19 is rotationally driven by energizing the motor 20) and the water circulation pump 13 is driven (actuated), The high-pressure and high-temperature refrigerant from the compressor 10 flows into the water heat exchanger 11, and the stored water (low-temperature water) from the water intake 4 of the hot water storage tank 3 flows through the heat exchange path 8 of the circulation path 6. As a result, heat exchange is performed between the high-pressure and high-temperature refrigerant and the circulating water in the circulation path 6, and this circulating water is heated (boiling) and returned (inflowed) from the hot water inlet 5 to the hot water storage tank 3. High temperature hot water can be stored in the tank 3.
[0027]
The refrigeration cycle of the refrigerant circuit at this time is as shown in FIG. That is, the high-pressure refrigerant in the state (1) is discharged from the compressor 10, and this high-pressure refrigerant is introduced into the water heat exchanger 11. The water heat exchanger 11 performs heat exchange between the heat exchange path 14 and the passing water. By this heat exchange, the high-pressure refrigerant dissipates heat to the water, and its enthalpy decreases from (1) to (2). The high-pressure refrigerant in the state (2) is sent to the expander 12. In the expander 12, the high-pressure refrigerant is depressurized, and the pressure is reduced from (2) to (3) '. At this time, since the expander 12 is used as the expansion mechanism, the isentropic change is caused, and the expansion valve is used without using the expansion machine 12 in (3) ′ and (3) (3). Power recovery of the enthalpy difference of the reduced pressure state). Then, the refrigerant in the state (3) ′ is introduced into the air heat exchanger 13. In the air heat exchanger 13, this low-pressure refrigerant exchanges heat with air. By this heat exchange, the low-pressure refrigerant absorbs heat and evaporates, and the enthalpy increases from the state (3) to the state (4). The low-pressure refrigerant in the state (4) is sent to the compressor 10. The shaded portion in FIG. 3 shows the case of a simple cycle.
[0028]
In this case, the power recovery is transmitted to the compressor 10 by the drive shaft 19 and is transmitted to the driving force of the compressor 10. That is, as shown in FIG. 3, the compressor 10 requires inputs from (4) to (1), and among these, the difference from (3) 'to (3) is recovered and (4) To (4) 'can be used for the input of the compressor 10, and the external input to the compressor 10 can be reduced. For this reason, COP improves and it can aim at energy saving and reduction of an electricity bill. Moreover, since the evaporation capacity is also increased, the same capacity can be obtained even if a compressor smaller than that using an expansion valve is used, and the manufacturing cost and running cost can be reduced.
[0029]
Next, FIG. 4 shows an embodiment of the present invention in which a floor heating unit 53 is added to the simplified diagram of the water heater shown in FIG. 1. In this case, hot water stored in the hot water storage tank 3 is used for floor heating. I use it. That is, the water heater includes a floor heating unit 53 having a floor warming panel 52. A circulation pipe 54 is disposed inside the warm floor panel 52, an outgoing pipe 56 is connected to an inlet 54 a of the circulation pipe 54, and a return pipe 57 is connected to an outlet 54 b of the circulation pipe 54. The forward piping 56 is connected to the hot water supply port 58 at the upper part of the hot water storage tank 3, and the return piping 57 is connected to the return flow port 59 at the lower part of the hot water storage tank 3. A circulation pump 60 is interposed in the outgoing pipe 56. In addition, since the other structure is the same as that of the air conditioner shown in FIG. 1, the same part is shown with the same code | symbol and the description is abbreviate | omitted.
[0030]
Accordingly, by driving the circulation pump 60, hot water in the hot water storage tank 3 flows out from the hot water supply port 58, flows through the circulation pipe 54 through the forward piping 56, and flows from the return flow port 59 through the return piping 57. Return to tank 3. At this time, the warm floor panel 52 is warmed by hot water flowing through the circulation pipe 54, and floor heating can be performed.
[0031]
Therefore, in the water heater of FIG. 4, the hot water supply side unit 1 and the heat source side unit 2 have the same configuration as that of FIG. 1, so that the COP can be improved as a water heater to save energy and reduce the electricity bill. it can. Moreover, since the evaporation capacity is also increased, the same capacity can be obtained even if a compressor smaller than that using an expansion valve is used, and the manufacturing cost and running cost can be reduced. And the hot water heated up efficiently in this way can be utilized for floor heating, and a highly efficient system can be comprised as a whole. By the way, the current electricity rate is set at a lower price than the daytime electricity rate unit in the middle of the night (for example, from 23:00 to 7:00), so the operation to store hot water in this hot water storage tank 3 is performed. You can save power if you go at midnight.
[0032]
Further, as shown in FIG. 5, by connecting a pipe 61 for supplying hot water to the bathtub or the like to the outgoing pipe 56 or the like, in addition to floor heating, hot water to the bathtub or the like (hereinafter sometimes simply referred to as hot water supply) is also provided. It becomes possible. In this case, in the forward piping 56, an opening / closing valve 63 is provided downstream of the joining portion 62 of the piping 61, and an opening / closing valve 64 is provided in the piping 61. Thereby, it is possible to switch between the case where only floor heating is performed, the case where only hot water is supplied, and the case where floor heating and hot water are performed. In addition, since the other structure is the same as that of the air conditioner shown in FIG. 1, the same part is shown with the same code | symbol and the description is abbreviate | omitted.
[0033]
That is, if the opening / closing valve 63 is opened and the opening / closing valve 64 is closed, only floor heating can be performed. If the opening / closing valve 63 is closed and the opening / closing valve 64 is opened, Only hot water can be supplied. If the on-off valves 63 and 64 are opened, floor heating and hot water can be supplied.
[0034]
Therefore, according to the water heater shown in FIG. 5, as with the water heater shown in FIG. 4, the COP can be improved and energy saving and reduction of electricity charges can be achieved. Moreover, since the evaporation capacity is also increased, the same capacity can be obtained even if a compressor smaller than that using an expansion valve is used, and the manufacturing cost and running cost can be reduced. Moreover, the hot water that has been efficiently boiled in this manner can be used for floor heating and hot water supply to a bathtub or the like, and as a whole, an extremely efficient system can be configured. And if the hot water used for this floor heating and hot water supply is boiled in the middle of the night, an electricity bill can be saved greatly and it will become a suitable hot water heater for a user. Note that the hot water supply to the water heater in FIG. 5 includes hot water supply to a kitchen, a washroom, and the like.
[0035]
Although specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention. For example, as the expander 12, the compressor 10 and the drive shaft 19 may not be shared. That is, the power generated by the expander 12 may be temporarily converted into electric energy and taken out, and this electric energy may be input as driving power for the compressor 10. The expander 12 may be a scroll type expander. Here, the scroll-type expander includes a fixed scroll and a turning scroll. When high-pressure refrigerant flows from the inlet, the refrigerant gradually expands under reduced pressure while generating turning power in the turning scroll. And flows out from the outlet. For this reason, the power generated in such a scroll expander may be transmitted to the compressor 1 and used for driving the compressor 1. Furthermore, as the expander 12, other various expanders such as a gear type and a screw type can be used. As the compressor 10, various types of compressors such as a scroll type and a screw type can be used.
[0036]
【The invention's effect】
According to the hot water supply apparatus of the first aspect, the power generated by the expander can be recovered and the evaporation capacity is increased. As a result, COP is improved and efficient operation without waste is possible. Furthermore, since a supercritical refrigerant used supercritically is used as the refrigerant, there is no problem of ozone layer destruction, environmental pollution, and the like, and the water heater becomes friendly to the global environment. Moreover, according to this water heater, since the hot water heated up efficiently is used for floor heating, efficient floor heating can be performed. That is, a high-efficiency system can be configured as a water heater, and the running cost can be reduced.
[0037]
According to the water heater of claim 2, external input for driving the compressor can be reduced. Accordingly, when the same capability as that using an expansion valve is used for the expansion mechanism, the compressor can be reduced in size, and the manufacturing cost and the running cost can be reduced.
[0038]
According to the water heater of claim 3, the power generated by the expander can be reliably transmitted to the compressor. As a result, more efficient operation is possible, and energy saving and reduction of electricity charges can be achieved.
[0040]
According to the hot water supply apparatus of claim 4, since the hot water boiled up efficiently is used for hot water supply to a bathtub or the like and floor heating, efficient hot water supply and floor heating can be performed. A high-efficiency system can be configured as a water heater, and the running cost can be reduced. Moreover, the user can spend comfortably with hot water and floor heating.
[Brief description of the drawings]
FIG. 1 is a simplified diagram showing an embodiment of a water heater according to the present invention.
FIG. 2 is a cross-sectional view of a compressor and an expander of the water heater.
FIG. 3 is a Mollier diagram of the water heater.
4 is a simplified diagram showing an embodiment of a water heater of the present invention in which a floor heating unit is attached to the water heater of FIG . 1. FIG.
FIG. 5 is a simplified diagram showing another embodiment of the water heater according to the present invention.
FIG. 6 is a simplified diagram of a conventional water heater.
FIG. 7 is a Mollier diagram of a conventional water heater.
[Explanation of symbols]
10 Compressor 12 Expander 19 Drive shaft

Claims (4)

冷媒に超臨界で使用する超臨界冷媒を用いた冷媒回路にて、温湯を沸き上げる給湯機であって、下部側に設けた給水口から水道水が供給され、上部側に設けた給湯口から高温の温湯を出湯する貯湯タンク(3)を設け、貯湯タンク(3)の取水口(4)からの貯溜水が循環路(6)の熱交換路(8)を流通し、これによって高温冷媒と循環路(6)の循環水とで熱交換が行われて循環水が加熱されると共に、湯入口(5)から貯湯タンク(3)に返流され、また、この貯湯タンク(3)の湯が床暖パネル(54)を加熱して貯湯タンク(3)に戻る床暖房を行うべく構成して成り、さらに上記冷媒回路に膨張機(12)を備え、この膨張機(12)で発生した動力の回収を可能としたことを特徴とする給湯機。A hot water heater that boils hot water in a refrigerant circuit that uses a supercritical refrigerant that is used as a supercritical refrigerant, and tap water is supplied from a water supply port provided on the lower side, and from a water supply port provided on the upper side. A hot water storage tank (3) for discharging hot hot water is provided, and the stored water from the water intake (4) of the hot water storage tank (3) flows through the heat exchange path (8) of the circulation path (6), whereby the high temperature refrigerant And the circulating water in the circulation path (6) exchange heat to heat the circulating water and return it from the hot water inlet (5) to the hot water storage tank (3). It is configured to perform floor heating in which hot water heats the floor warming panel (54) and returns to the hot water storage tank (3), and further includes an expander (12) in the refrigerant circuit, which is generated in the expander (12). The hot water heater is characterized in that the recovered power can be recovered. 上記動力を、上記冷媒回路の圧縮機(10)に入力することを特徴とする請求項1の給湯機。  The hot water heater according to claim 1, wherein the power is input to a compressor (10) of the refrigerant circuit. 上記膨張機(12)と圧縮機(10)とは共通の駆動軸(19)を有し、この膨張機(12)で発生した動力を上記駆動軸(19)を介して圧縮機(10)に伝達することを特徴とする請求項2の給湯機。  The expander (12) and the compressor (10) have a common drive shaft (19), and the power generated by the expander (12) is transferred to the compressor (10) via the drive shaft (19). The water heater according to claim 2, wherein the water heater is transmitted to the water heater. 上記冷媒回路にて沸き上げられた温湯を、浴槽等への給湯に使用することを特徴とする請求項1〜請求項3のいずれかの給湯機。The hot water that has been boiled in the refrigerant circuit, one of the water heater of claim 1 to claim 3, characterized in that used for hot water supply to the tub or the like.
JP2002042928A 2002-02-20 2002-02-20 Water heater Expired - Fee Related JP3915538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002042928A JP3915538B2 (en) 2002-02-20 2002-02-20 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002042928A JP3915538B2 (en) 2002-02-20 2002-02-20 Water heater

Publications (2)

Publication Number Publication Date
JP2003240341A JP2003240341A (en) 2003-08-27
JP3915538B2 true JP3915538B2 (en) 2007-05-16

Family

ID=27782876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002042928A Expired - Fee Related JP3915538B2 (en) 2002-02-20 2002-02-20 Water heater

Country Status (1)

Country Link
JP (1) JP3915538B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617831B2 (en) * 2004-11-02 2011-01-26 ダイキン工業株式会社 Fluid machinery
JP2006132818A (en) * 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd Control method for refrigerating cycle device, and refrigerating cycle device using the same
JP4940632B2 (en) * 2005-11-08 2012-05-30 ダイキン工業株式会社 Heat pump water heater
JP4765910B2 (en) * 2006-11-24 2011-09-07 ダイキン工業株式会社 Fluid machinery
CN101542072B (en) * 2007-01-18 2011-08-31 松下电器产业株式会社 Fluid machine and refrigeration cycle device
JP4755618B2 (en) * 2007-03-12 2011-08-24 パナソニック株式会社 Refrigeration cycle equipment
JP5604454B2 (en) 2012-01-13 2014-10-08 リンナイ株式会社 Heating device and water heater
JP5581361B2 (en) 2012-09-24 2014-08-27 リンナイ株式会社 Heating device and water heater
CN108981160B (en) * 2018-08-10 2020-10-30 大连民族大学 Heat supply method of open type heat pump with air circulation

Also Published As

Publication number Publication date
JP2003240341A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
US7178358B2 (en) Vapor-compression refrigerant cycle system with refrigeration cycle and Rankine cycle
JP2004150748A (en) Refrigeration cycle device
JP3915538B2 (en) Water heater
US9222706B2 (en) Refrigeration cycle apparatus and operating method of same
JP4118291B2 (en) Variable capacity compressor and its starting operation method
JPH06331225A (en) Steam jetting type refrigerating device
WO2004055331A1 (en) Volume expander and fluid machine
JP2004232492A (en) Fluid machine
JPS60128990A (en) Double stage rotary compressor
JP2009243866A (en) Heat pump hot-water supply device
JP2006307857A (en) Cogeneration system
JP2007078260A (en) Thermal drive power generation air conditioning device
KR100389267B1 (en) Air conditioner
JP2005024192A (en) Exhaust heat recovering equipment
CN214536902U (en) Multipurpose carbon dioxide heat pump cold and heat combined supply system
JP2002061980A (en) Compression type heat pump air conditioner and method for operating the same
JP2004020153A (en) Engine heat pump
JP4997024B2 (en) Heat pump water heater
JP2004143951A (en) Scroll compressor
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP2004138333A (en) Refrigeration cycle device
JP4463660B2 (en) Refrigeration equipment
CN111084230A (en) Overlapped air source ultra-high temperature instant sterilization device and method
JP2001065888A (en) Carbon dioxide refrigerating machine
JP2002115931A (en) Air conditioning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees