JP3913239B2 - Fish processing method and processed fish products - Google Patents

Fish processing method and processed fish products Download PDF

Info

Publication number
JP3913239B2
JP3913239B2 JP2004249067A JP2004249067A JP3913239B2 JP 3913239 B2 JP3913239 B2 JP 3913239B2 JP 2004249067 A JP2004249067 A JP 2004249067A JP 2004249067 A JP2004249067 A JP 2004249067A JP 3913239 B2 JP3913239 B2 JP 3913239B2
Authority
JP
Japan
Prior art keywords
fish
smoke
soot
breeding environment
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004249067A
Other languages
Japanese (ja)
Other versions
JP2006061105A (en
Inventor
健三 櫻井
Original Assignee
株式会社オンスイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オンスイ filed Critical 株式会社オンスイ
Priority to JP2004249067A priority Critical patent/JP3913239B2/en
Publication of JP2006061105A publication Critical patent/JP2006061105A/en
Application granted granted Critical
Publication of JP3913239B2 publication Critical patent/JP3913239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Meat, Egg Or Seafood Products (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Processing Of Meat And Fish (AREA)

Description

本発明は、魚類加工方法及び魚類加工品に関するものである。   The present invention relates to a fish processing method and a processed fish product.

発明人は、さきに、魚類の表皮若しくは皮下組織部位に注入管を挿入し、この注入管から燻煙若しくは燻煙成分を含んだ気体と食塩水又は各種塩類の溶液とを注入してこれら気体及び溶液に含まれる各種成分を短時間で魚類の肉中に拡散させ、魚類に燻製品の味付けを施す魚類加工方法を提案している(特許文献1)。この方法によれば各種成分を極めて短時間に肉中に散在でき、出来あがり活魚味覚を味わう事の出来る燻製品の作成が可能となる点で画期的な意義を有するものであった。   The inventor previously inserted an injection tube into the epidermis or subcutaneous tissue of a fish, and injected a gas containing smoke or a smoke component and saline or a solution of various salts through the injection tube. In addition, a fish processing method has been proposed in which various components contained in a solution are diffused into fish meat in a short time to season the fish with a salmon product (Patent Document 1). According to this method, various components can be scattered in the meat in a very short time, and it has an epoch-making significance in the point that it is possible to create a salmon product that can taste the finished fish taste.

また、発明人は、燻煙成分を溶解させた燻液を魚類に付与して魚類に燻製品の味付けを施す魚類加工方法を提案している(特許文献2)。この方法によれば、難しい燻煙処理を行わずに例えば簡単な漬込作業だけで燻煙処理に近い製品ができる点で画期的な意義を有するものであり、業界において好評を博している。   Moreover, the inventor has proposed a fish processing method in which a smoke solution containing a smoke component is applied to fish to season the fish with a fish product (Patent Document 2). This method has a revolutionary significance in that a product close to the soot treatment can be produced by, for example, a simple soaking operation without performing a difficult soot treatment, and has been well received in the industry. .

特開2002−369650公報JP 2002-369650 A 特開2004−033014公報JP 2004-033014 A

しかしながら、上述した従来の魚類加工方法は、気体・液体に含まれる各種成分を浸透させて魚肉に味付けを施す際に、魚体に注射針や注射ノズルなどを挿入して気体・溶液を注入したり、解体切断した魚肉を気体・液体と接触させたり、魚体の心臓部を切開して心臓部から魚体の血管に液体を還流させたりする煩雑な作業が必要となっていた。   However, in the conventional fish processing method described above, when the fish meat is seasoned by infiltrating various components contained in the gas / liquid, an injection needle or injection nozzle is inserted into the fish body to inject the gas / solution. However, complicated operations such as bringing the cut and cut fish meat into contact with gas or liquid, or incising the heart portion of the fish body to return the liquid from the heart portion to the blood vessel of the fish body are required.

また、魚体の大きさや脂質の含有量によって気体・液体に含まれる各種成分の浸透度合いは異なるため、上述した従来の魚類加工方法においては、気体・液体に含まれる各種成分を個々の魚肉に均一に接触させて魚肉中に浸透させて魚肉に均一に品質及び味覚の改善を施すことが困難であった。   In addition, since the degree of penetration of various components contained in the gas / liquid varies depending on the size of the fish body and the lipid content, in the conventional fish processing method described above, the various components contained in the gas / liquid are uniformly distributed in individual fish meat. It was difficult to improve the quality and taste of the fish meat evenly by bringing them into contact with the fish.

本発明は、従来の魚類加工方法により魚類に品質及び味覚の改善を施す際の問題点を見い出し、試行錯誤を繰り返して研究,実験を繰り返すことで、これを解決したもので、水中における魚類の生体反応である鰓呼吸を利用することにより、魚類の飼育環境水中に混入した各種成分を効率的に魚類の体内に吸収蓄積させて、煩雑な作業を伴うことなく個々の魚類に均一に品質及び味覚の改善を施すことが可能な極めて有用な魚類加工方法及び魚類加工品を提供するものである。   The present invention solves this problem by finding problems in improving the quality and taste of fish using conventional fish processing methods, and repeating research and experiments through trial and error. By using agitation respiration, which is a biological reaction, various components mixed in the fish breeding environment water are efficiently absorbed and accumulated in the fish body, so that the quality and quality of each fish can be uniformly and without complicated work. An extremely useful fish processing method and processed fish product capable of improving the taste are provided.

本発明の要旨を説明する。   The gist of the present invention will be described.

燻煙、又は該燻煙を水若しくは水溶液と接触させて燻煙成分を溶解させた燻液を、魚類の回遊する飼育環境水に分散若しくは混入し、該飼育環境水に燻煙成分を溶解させ、該飼育環境水に溶解した燻煙成分を魚類の鰓呼吸によって魚類の体内に吸収蓄積させ、魚類の品質及び味覚の改善を行うことを特徴とする魚類加工方法に係るものである。   Disperse or mix soot smoke or soot solution in which the soot component is dissolved by bringing it into contact with water or an aqueous solution in the breeding environment water where the fish migrate and dissolve the soot component in the breeding environment water Further, the present invention relates to a fish processing method characterized in that the smoke component dissolved in the breeding environment water is absorbed and accumulated in the fish body by respiration of the fish to improve the quality and taste of the fish.

また、前記燻煙は、無酸素乾留燻煙若しくは酸素量を限定し燃焼させ発生した燻煙からすすやタール成分などの不要物を除去したものを採用したことを特徴とする請求項1記載の魚類加工方法に係るものである。   2. The smoke according to claim 1, wherein non-oxygen dry distillation smoke or a product obtained by removing unnecessary substances such as soot and tar components from smoke generated by limiting the amount of oxygen is used. It relates to fish processing methods.

また、前記飼育環境水に酸化防止剤,pH調整剤,調味料などの食品添加物を混入し、該食品添加物を飼育環境水に溶解させ、該飼育環境水中に溶解した食品添加物を魚類の鰓呼吸によって魚類の体内に吸収蓄積させ、魚類の品質及び味覚の改善を行うことを特徴とする請求項1,2のいずれか1項に記載の魚類加工方法に係るものである。   Moreover, food additives such as antioxidants, pH adjusters, seasonings and the like are mixed in the breeding environment water, the food additive is dissolved in the breeding environment water, and the food additive dissolved in the breeding environment water is used as fish. The fish processing method according to any one of claims 1 and 2, wherein the quality and taste of the fish are improved by absorbing and accumulating in the body of the fish by respiration.

また、前記燻煙若しくは前記燻液を、前記飼育環境水に溶存する一酸化炭素濃度が0.2〜10cc/Lとなるように分散若しくは混入したことを特徴とする請求項1〜3のいずれか1項に記載の魚類加工方法に係るものである。   The smoke or the smoke liquid is dispersed or mixed so that the concentration of carbon monoxide dissolved in the breeding environment water is 0.2 to 10 cc / L. This relates to the fish processing method described in item 1.

また、前記飼育環境水に純酸素を、該飼育環境水に溶存する酸素濃度が前記魚類が安定に生存し得る濃度となるように接触させたことを特徴とする請求項1〜4のいずれか1項に記載の魚類加工方法に係るものである。   Further, pure oxygen is brought into contact with the breeding environment water, and the oxygen concentration dissolved in the breeding environment water is brought into contact with the fish so that the fish can stably survive. This relates to the fish processing method described in item 1.

また、請求項1〜5記載の魚類の加工方法により得られる魚類をそのまま若しくは解体切断後、燻液に浸漬したことを特徴とする魚類加工方法に係るものである。   In addition, the present invention relates to a fish processing method characterized in that the fish obtained by the fish processing method according to claims 1 to 5 is immersed in a broth as it is or after being disassembled and cut.

また、請求項1〜5記載の魚類の加工方法により得られる魚類に、燻液を灌流液として用い血管を介して肉中に拡散させて、燻液を付与したことを特徴とする魚類加工方法に係るものである。   A fish processing method characterized in that the fish obtained by the method for processing fish according to claims 1 to 5 is given a liquid smoke by diffusing the liquid into the meat through blood vessels using the liquid as a perfusate. It is related to.

また、請求項1〜7記載の魚類加工方法により得られる魚類をそのまま若しくは解体切断後、冷凍したことを特徴とする魚類加工品に係るものである。   Further, the present invention relates to a processed fish product characterized in that the fish obtained by the method for processing fish according to claims 1 to 7 is frozen as it is or after being disassembled and cut.

本発明は上述のように構成したから、飼育環境水中に溶解した燻煙成分が鰓呼吸を通じて魚類の体内に取り込まれ、血管を介して極めて短時間のうちに魚肉と接触して魚類の体内に吸収蓄積されるため、例えば、大きさや脂質の含有量の異なる個々の魚類の魚肉にも均一に燻煙成分を吸収蓄積させて煩雑な作業を伴うことなく効率的に行うことができ、このように燻煙成分が吸収蓄積した魚肉は、味覚が複雑化して旨みが向上するとともに、燻煙成分により魚肉に抗酸化性が付与されるので冷凍保存中の血合い部分のメト化が防止でき、更に、魚肉の生臭味や環境水由来の生物臭(ジオスミン)を軽減でき、燻煙成分により魚類が鎮静化して魚体の取り扱いが容易となって加工作業が効率化する。また、例えば燻液を混入した場合には飼育環境水中の燻煙成分濃度の調整が非常に容易化する等、極めて有用な魚類加工方法となる。   Since the present invention is configured as described above, the smoke component dissolved in the breeding environment water is taken into the body of the fish through respiration, and comes into contact with the fish meat in a very short time via the blood vessels. Since it is absorbed and accumulated, for example, it is possible to efficiently absorb and accumulate smoke components even in the fish meat of individual fishes with different sizes and lipid contents, and this can be done efficiently without complicated operations. The fish meat that has absorbed and accumulated smoke components improves the taste and improves the taste, and the smoke component imparts antioxidant properties to the fish meat, preventing the bloody portion from being methed during frozen storage. The raw odor of fish meat and biological odor derived from environmental water (diosmin) can be reduced, and the smoke can be calmed by the smoke component, making it easier to handle the fish and improving the processing efficiency. In addition, for example, when phlegm is mixed, it is a very useful fish processing method, such as very easy adjustment of the smoke component concentration in the breeding environment water.

また、請求項2に記載の発明によれば、本発明の魚類の品質及び味覚の改善効果を一層確実に発揮する極めて実用性に秀れた燻煙成分が溶解した飼育環境水を用いた魚類加工方法となる。   In addition, according to the invention described in claim 2, the fish using the breeding environment water in which the smoke component with excellent practicability that exhibits the quality and taste improvement effect of the fish of the present invention is more reliably exhibited is dissolved. It becomes a processing method.

また、請求項3に記載の発明によれば、例えば食品添加物として調味料等を浸透させた魚肉は味付けがされて旨みが向上し、酸化防止剤,pH調整剤等を浸透させた魚肉は、保存性が向上する等、本発明の魚類の品質及び味覚の改善効果を一層確実に発揮する魚類加工方法となる。   Further, according to the invention of claim 3, for example, the fish meat that has been infiltrated with a seasoning as a food additive is seasoned to improve the taste, and the fish meat that has been infiltrated with an antioxidant, a pH adjuster, etc. Thus, it is a fish processing method that more reliably exhibits the effect of improving the quality and taste of the fish of the present invention, such as improved storage stability.

また、請求項4に記載の発明によれば、前記飼育環境水中の一酸化炭素の溶解量が0.2〜10cc/Lとなるように前記燻煙を拡散又は前記燻液を混入することで、魚体を鎮静化できる。例えば、前記燻煙を拡散又は前記燻液を混入することで、一酸化炭素の溶解量を0.2cc/Lから徐々に10cc/Lにまで増大するようにした場合、魚類が正常反応から無反応状態を経て興奮状態となりやがて鎮静化状態となるような一連の制御を非常にスムーズに行うことができ、魚類の加工作業が一層効率化されるとともに、魚肉の肉質変化の原因となり得る魚類の激しい運動を抑制することで魚肉の肉質変化を遅延することができる魚類加工方法となる。   Moreover, according to the invention of claim 4, by diffusing the soot or mixing the smoked liquid so that the dissolved amount of carbon monoxide in the breeding environment water is 0.2 to 10 cc / L. Can calm down the fish body. For example, if the amount of dissolved carbon monoxide is gradually increased from 0.2 cc / L to 10 cc / L by diffusing the smoke or mixing the smoke, the fish will not react normally. It is possible to perform a series of controls that become an excited state through a reaction state and eventually become a sedated state, making the processing of fish more efficient and improving the quality of fish that can cause changes in the meat quality of the fish meat. It becomes the fish processing method which can delay the meat quality change of fish meat by suppressing intense exercise.

また、請求項5に記載の発明によれば、魚類の飼育環境水中の溶存酸素濃度を魚類が安定に生存し得る程度の濃度とすることにより、魚体が安定した状態で飼育環境水中を回遊し、その際の鰓呼吸もスムーズとなって、飼育環境水中の溶解成分の魚体内への取り込みが一層良好とできる等、有用な魚類加工方法となる。   Further, according to the invention described in claim 5, the dissolved oxygen concentration in the fish breeding environment water is set to such a level that the fish can stably survive, so that the fish can be migrated in the breeding environment water in a stable state. In this case, respiration is smooth, and a useful fish processing method can be achieved, for example, the dissolved components in the breeding environment water can be taken into the fish body better.

また、請求項5,6に記載の発明によれば、例えば従来の出願人の魚類の燻液浸漬若しくは燻液灌流処理により一層秀れた燻煙成分を付与した魚類加工方法となる。   Moreover, according to the invention of Claim 5, 6, it becomes the fish processing method which provided the smoke component which was further excellent, for example by the liquid immersion immersion or the liquid perfusion process of the fish of the conventional applicant.

また、請求項7に記載の発明によれば、燻煙成分により魚肉に抗酸化性が付与されているので冷凍保存中の血合い部分のメト化が防止され、長期間冷凍保存しても解凍後に高鮮度且つ味覚の複雑な旨みが向上した高品質の魚肉が得られる、極めて付加価値の高い魚類加工品となる。   In addition, according to the invention described in claim 7, since the anti-oxidation property is imparted to the fish meat by the smoke component, the formation of bloody portions during frozen storage is prevented, and after thawing even if frozen for a long time This is a processed fish product with extremely high added value, which can obtain high-quality fish meat with high freshness and complex taste.

好適と考える本発明の実施形態(発明をどのように実施するか)を、図面に基づいて本発明の作用を示して簡単に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention that are considered suitable (how to carry out the invention) will be briefly described with reference to the drawings, illustrating the operation of the present invention.

魚類の回遊する飼育環境水に、燻煙、又は該燻煙を水または水溶液と接触させて燻煙成分を溶解させた燻液を分散若しくは混入すると、該飼育環境水に燻煙成分が溶解し、この燻煙成分が、魚類の鰓呼吸によって魚類の体内に吸収蓄積する。   If the soot smoke, or the soot solution in which the soot component is dissolved by bringing the soot smoke into contact with water or an aqueous solution, is dispersed or mixed in the breeding environment water in which the fish migrate, the soot component dissolves in the breeding environment water. This smoke component is absorbed and accumulated in the body of fish by respiration of fish.

即ち、魚類は口から取り込んだ水を櫛歯状の鰓弁の間に通し、鰓蓋の下の体壁の開口部から排出しているが、この一本一本の鰓弁の表面には水流と平行に並ぶ極めて薄い板状の二次鰓弁が並んでおり、この二次鰓弁の極薄な細胞の直下には毛細血管がびっしりと詰まっている。この二次鰓弁の表面を流過する飼育環境水に燻煙成分が溶解していると、該水中の溶存酸素は勿論、該水中に溶解した燻煙成分が毛細血管に取り込まれることとなる。   In other words, the fish took the water taken from the mouth between the comb-shaped fin valves and discharged it from the opening of the body wall under the lid, but on the surface of each one of the fin valves A very thin plate-like secondary sputum that is parallel to the water flow is lined up, and capillaries are tightly packed just below the extremely thin cells of the secondary sputum. If the smoke component is dissolved in the breeding environment water flowing through the surface of the secondary soot valve, the smoke component dissolved in the water will be taken into the capillaries as well as the dissolved oxygen in the water. .

従って、毛細血管に取り込まれた燻煙成分が、魚体全体の血管に隈なく還流して血管を介して魚肉中に吸収蓄積し、魚類の品質及び味覚が改善する。   Therefore, the smoke component taken into the capillaries circulates in the blood vessels of the whole fish body without being absorbed and is absorbed and accumulated in the fish meat through the blood vessels, thereby improving the quality and taste of the fish.

また、前記燻煙は、無酸素乾留燻煙若しくは酸素量を限定し燃焼させ発生した燻煙からすすやタール成分などの不要物を除去したものを採用した場合、一層確実に魚類の品質及び味覚が改善される。   In addition, when the smoke is used as an oxygen-free carbonized smoke or a product obtained by removing soot and tar components from soot generated by limiting the amount of oxygen and burning it, the quality and taste of the fish is more reliably confirmed. Is improved.

また、前記飼育環境水に酸化防止剤,pH調整剤,調味料などの食品添加物を混入し、該食品添加物を飼育環境水に溶解させ、該飼育環境水中に溶解した食品添加物を魚類の鰓呼吸によって魚類の体内に吸収蓄積させた場合、例えば食品添加物として調味料等を浸透させた魚肉は味付けがされて旨みが向上し、酸化防止剤,pH調整剤等を浸透させた魚肉は、保存性が向上する。   Moreover, food additives such as antioxidants, pH adjusters, seasonings and the like are mixed in the breeding environment water, the food additive is dissolved in the breeding environment water, and the food additive dissolved in the breeding environment water is used as fish. When it is absorbed and accumulated in the body of fish by respiration of fish, for example, fish meat that has been infused with seasonings as a food additive is seasoned to improve umami, and fish meat that has been impregnated with antioxidants, pH adjusters, etc. Improves the storage stability.

また、前記燻煙若しくは前記燻液を、前記飼育環境水に溶存する一酸化炭素濃度が0.2〜10cc/Lとなるように分散若しくは混入した場合、一酸化炭素により酸素呼吸が抑制されて魚体が鎮静化する。例えば、前記飼育環境水中の一酸化炭素の溶解量を、0.2cc/Lから徐々に10cc/Lにまで増大するように燻液の混入量を変化させると、魚類が正常反応から無反応状態を経て興奮状態となりやがて鎮静化状態となる。   In addition, when the smoke or the smoke is dispersed or mixed so that the concentration of carbon monoxide dissolved in the breeding environment water is 0.2 to 10 cc / L, oxygen respiration is suppressed by the carbon monoxide. The fish body is sedated. For example, if the amount of mixed liquid is changed so that the dissolution amount of carbon monoxide in the breeding environment water gradually increases from 0.2 cc / L to 10 cc / L, the fish changes from a normal reaction to a non-reaction state. After that, it becomes excited and eventually becomes sedated.

また、前記飼育環境水に純酸素を、該飼育環境水に溶存する酸素濃度が前記魚類が安定に生存し得る濃度となるように接触させた場合、飼育環境水中の酸素濃度が過剰も不足もしない状態となって魚体が安定化し、飼育環境水中を正常に回遊し、その際の鰓呼吸がスムーズとなる。   Further, when pure oxygen is brought into contact with the breeding environment water and the oxygen concentration dissolved in the breeding environment water is brought into contact with the fish so that the fish can stably survive, the oxygen concentration in the breeding environment water may be excessive or insufficient. The fish body is stabilized and the fish body is normally migrated in the breeding environment water, and the respiration is smooth.

また、請求項1〜4記載の魚類の加工方法により得られる魚類をそのまま若しくは解体切断後、燻液に浸漬若しくは、請求項1〜4記載の魚類の加工方法により得られる魚類に、燻液を灌流液として用い血管を介して肉中に拡散させて、燻液を付与した場合、例えば従来の出願人の魚類の燻液浸漬若しくは燻液灌流処理により、燻液中の燻煙成分がより一層確実に魚類に付与されて魚類の品質及び味覚の改善効果がより一層確実となる。   Further, the fish obtained by the method for processing fish according to claims 1 to 4 is immersed in the sap as it is or after being dismantled, or the fish is obtained by the method for processing fish according to claims 1 to 4. When the liquid is used as a perfusate and diffused into the meat via blood vessels to give the liquid, the smoke component in the liquid is further increased by, for example, the conventional applicant's fish immersion or liquid perfusion treatment. The effect of improving the quality and taste of fish is more surely given to fish.

また、請求項1〜6記載の魚類加工方法により得られる魚類をそのまま若しくは解体切断後、冷凍した場合、燻煙成分により魚肉に抗酸化性が付与されているので冷凍保存中の血合い部分のメト化が防止され、長期間冷凍保存しても解凍後に高鮮度且つ味覚の複雑な旨みが向上した高品質の魚肉が得られる。   In addition, when the fish obtained by the fish processing method according to claims 1 to 6 is frozen as it is or after being disassembled and cut and then frozen, the anti-oxidation property is imparted to the fish meat by the smoke component, so High-quality fish meat with high freshness and improved complex taste after thawing can be obtained even after long-term freezing.

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

本実施例は、図1に図示したように、飼育環境水を所定量導入した閉鎖水槽1内に、酸素を供給する気体分散器2を付設するとともに、燻煙を発生させる燻煙発生装置3を付設して、前記飼育環境水に酸素及び燻煙成分を分散・溶解させ、この飼育環境水に溶解した酸素及び燻煙成分を魚類の鰓呼吸によって魚類の体内に吸収蓄積させ、魚類の品質及び味覚の改善を行う場合である。   In the present embodiment, as shown in FIG. 1, a smoke disperser 2 for supplying smoke is attached to a closed water tank 1 into which a predetermined amount of breeding environment water is introduced, and smoke is generated. The oxygen and soot components are dispersed and dissolved in the breeding environment water, and the oxygen and soot components dissolved in the breeding environment water are absorbed and accumulated in the fish body by fish respiration. And improving taste.

前記閉鎖水槽1は、魚類等の養殖に一般的に使用される水槽を使用している。また、この閉鎖水槽1に導入する前記飼育環境水は、海水や河川水等の水若しくは魚類の生存環境水として必要となる成分を含有する水溶液を目的に応じ適宜採用している。   The said closed water tank 1 uses the water tank generally used for fish culture. Moreover, the said breeding environment water introduce | transduced into this closed water tank 1 employ | adopts suitably the aqueous solution containing the component required as water, such as seawater and river water, or the living environment water of fish.

前記気体分散器2は、純酸素を前記飼育環境水中に効率良く供給するためのもので、具体的には、微細泡分散器等を採用している。具体的には、前記気体分散器2にチューブを接続して酸素ボンベと連結させて水中に純酸素を供給している。更に具体的には、前記純酸素は、飼育環境水中において魚類が安定に生存し得る程度の溶存酸素濃度を保つようにしている。このように飼育環境水中の酸素濃度が魚類の生存にとって過不足ない状態とすることにより、魚体が安定化し、この飼育環境水中の魚類が正常に回遊することとなり、その際の魚類の鰓呼吸がスムーズに行われる。   The gas disperser 2 is for efficiently supplying pure oxygen into the breeding environment water, and specifically employs a fine bubble disperser or the like. Specifically, a tube is connected to the gas distributor 2 and connected to an oxygen cylinder to supply pure oxygen into water. More specifically, the pure oxygen is kept at a dissolved oxygen concentration that allows fish to survive stably in the breeding environment water. In this way, by making the oxygen concentration in the breeding environment water not excessive or insufficient for the survival of the fish, the fish body is stabilized, and the fish in the breeding environment water normally migrates, and the respiration of the fish at that time Performed smoothly.

また、本実施例の純酸素以外に空気を分散させても良いが、純酸素を用いると飼育環境水中に酸素をより効率的に溶存させることができる。   In addition to the pure oxygen of this embodiment, air may be dispersed. However, when pure oxygen is used, oxygen can be dissolved more efficiently in the breeding environment water.

前記燻煙発生装置3は、燻煙若しくは乾留燻煙を前記飼育環境水に効率よく供給するため、例えば出願人が開発した燻煙発生装置(特開平8−298925号)等を採用している。   The soot generation device 3 employs, for example, a soot generation device (Japanese Patent Laid-Open No. Hei 8-298925) developed by the applicant in order to efficiently supply soot or dry soot to the breeding environment water. .

前記燻煙発生装置3から発生した燻煙は、前記燻煙発生装置3に接続される燻煙供給管4より一時貯留するバッファバッグを経てから、循環ポンプ6に導入される。尚、前記配管4には流量計5が付設され、循環ポンプ6に注入される燻煙の流量を把握できるようにしている。   The soot generated from the soot generator 3 is introduced into the circulation pump 6 after passing through a buffer bag temporarily stored from the soot supply pipe 4 connected to the soot generator 3. The pipe 4 is provided with a flow meter 5 so that the flow rate of smoke injected into the circulation pump 6 can be grasped.

前記循環ポンプ6はまた、この循環ポンプ6に前記閉鎖水槽1内の飼育環境水を導入する導入管7が連設されるとともに、この循環ポンプ6を介して前記閉鎖水槽1内へ飼育環境水を導出する導出管8が連設されている。   The circulation pump 6 is also connected to the circulation pump 6 with an introduction pipe 7 for introducing the breeding environment water in the closed water tank 1, and the breeding environment water is fed into the closed water tank 1 through the circulation pump 6. Is led continuously.

よって、前記燻煙供給管4から循環パイプ6に供給された燻煙と、前記導入管7から導入された飼育環境水とは、前記循環パイプ6内で混合・分散され、飼育環境水に燻煙成分が溶解して、この燻煙成分が溶解した飼育環境水が導出管8から閉鎖水槽1へ導出される。   Therefore, the soot supplied from the soot supply pipe 4 to the circulation pipe 6 and the breeding environment water introduced from the introduction pipe 7 are mixed and dispersed in the circulation pipe 6 so that the soot is kept in the breeding environment water. The smoke component is dissolved, and the breeding environment water in which the smoke component is dissolved is led out from the outlet pipe 8 to the closed water tank 1.

更に、本実施例は、前記循環ポンプ6の導出管8の途中にバルブ9を付設することにより燻煙の溶解度を任意に設定するとともに、静止型ミキサー10及び加圧タンク11を付設することにより、瞬間的に燻煙を飼育環境水に過飽和溶解させることもでき、その結果、燻煙成分は一層効率的に飼育環境水に溶解し得ることとなる。即ち、この際の閉鎖水槽1の飼育環境水には気泡は目視では全く存在せずほぼ完全溶解状態となっている。従って、飼育環境水に溶解しない燻煙がそのまま作業環境大気中に放出されてしまうことを防止できる。   Further, in the present embodiment, the solubilities of smoke are arbitrarily set by providing a valve 9 in the middle of the outlet pipe 8 of the circulation pump 6, and a stationary mixer 10 and a pressurized tank 11 are provided. In addition, the smoke can be instantaneously supersaturated and dissolved in the breeding environment water, and as a result, the smoke component can be more efficiently dissolved in the breeding environment water. That is, no air bubbles are visually present in the breeding environment water of the closed water tank 1 at this time, and it is almost completely dissolved. Therefore, it is possible to prevent the smoke that does not dissolve in the breeding environment water from being released as it is into the working environment atmosphere.

尚、燻煙は、本実施例以外にも、エアストーン等の気体分散器を用いて飼育環境水に分散させても良いが、燻煙成分の飼育環境水への溶解効率は低下する。   In addition to the present embodiment, soot smoke may be dispersed in the breeding environment water using a gas disperser such as an air stone, but the dissolution efficiency of the soot component in the breeding environment water decreases.

本実施例は、前記燻煙を、前記飼育環境水中の一酸化炭素の溶解量が0.2cc/Lから徐々に10cc/L以下にまで増大するような量として分散させている。   In this embodiment, the soot is dispersed in such an amount that the amount of carbon monoxide dissolved in the breeding environment water gradually increases from 0.2 cc / L to 10 cc / L or less.

このように燻煙の指標である一酸化炭素の溶解量を変化させることで、魚類の活動を制御できる。即ち、魚類は、一酸化炭素の溶解量が増大するにつれて正常反応から無反応状態を経て興奮状態となりやがて鎮静化状態となる。従って、魚肉の肉質変化の原因となり得る魚体の興奮が抑制されるとともに魚体が取り扱い易くなって、魚類加工における作業性を向上させることができる。   In this way, fish activity can be controlled by changing the amount of carbon monoxide dissolved, which is an indicator of soot. That is, as the amount of carbon monoxide dissolved increases, the fish changes from a normal reaction to a non-reaction state and then enters an excited state and eventually becomes sedated. Therefore, the excitement of the fish that can cause changes in the meat quality of the fish meat is suppressed and the fish is easy to handle, so that the workability in fish processing can be improved.

尚、溶解する燻煙成分のうち、アセチレンを除く(CO,CH4,C24,C26,C38,C36)等は、溶解度が常圧で0.01〜0.16mL/mLと一定の範囲にありいずれも指標となりうるが本実施例は、比較的成分量比率の大きい一酸化炭素を指標としている。 Among the soot components that dissolve, acetylene is excluded (CO, CH 4 , C 2 H 4 , C 2 H 6 , C 3 H 8 , C 3 H 6 ), etc., and the solubility is 0.01 at normal pressure. Although it is in a certain range of .about.0.16 mL / mL and can be used as an index, this example uses carbon monoxide having a relatively large component amount ratio as an index.

また、本実施例は、作業環境大気中の燻煙汚染を最小限とするため、閉鎖水槽1内に閉鎖槽12を設けている。具体的には、飼育環境水に溶解せずに大気中に放出される燻煙がダクト13を経て作業環境外に排出されるようにしている。   Further, in this embodiment, a closed tub 12 is provided in the closed water tank 1 in order to minimize soot pollution in the working environment atmosphere. Specifically, the smoke released into the atmosphere without being dissolved in the breeding environment water is discharged through the duct 13 to the outside of the work environment.

また、本実施例における燻煙の代わりに燻液を水中に混入しても良い。その場合、例えば出願人が開発した燻煙発生装置(特開平8−298925号)等により発生させた燻煙を洗気筒などによりすすやタール成分を除去した後、空気を絶ったあるいは空気が混入しない状態で、ミキサーまたは、接触筒により加圧状態で水若しくは水溶液に燻煙成分を溶解した燻液を液体分散器等により混入させると良い。このように、燻煙発生装置より発生させた燻煙(燻煙成分)を液体化してあらかじめ所望の濃度の燻煙成分を含有させた燻液とすることで、魚類の飼育環境水中の燻煙成分濃度の調整が非常に容易化して、魚類の品質及び味覚の改善において再現性に優れた方法となる。   Moreover, you may mix soot in water instead of soot in a present Example. In that case, for example, the smoke generated by the soot generator developed by the applicant (Japanese Patent Laid-Open No. Hei 8-298925) is removed from the soot and tar components by a washing cylinder or the like, and then the air is turned off or air is mixed In such a state, it is preferable that a soot solution in which smoke components are dissolved in water or an aqueous solution in a pressurized state by a mixer or a contact cylinder is mixed by a liquid disperser or the like. In this way, the soot (smoke component) generated from the soot generation device is liquefied into a soot liquid containing a desired concentration of the soot component in advance, so that the soot in the fish breeding environment water Adjustment of the component concentration becomes very easy, and it becomes a method with excellent reproducibility in improving the quality and taste of fish.

本実施例は、溶存酸素量を所定量としながら、指標である一酸化炭素の溶解量を0.2cc/L以上にし、時間をかけて、興奮しないように徐々に濃度を上げると、やがて外部刺激に対して無反応となりその後溶解濃度を10cc/L以下まで上昇させ最終的には横臥の後、仰向けとなり処理を終了する。   In this example, while the dissolved oxygen amount is set to a predetermined amount, the dissolved amount of carbon monoxide as an index is set to 0.2 cc / L or more, and the concentration is gradually increased so as not to be excited over time. The reaction becomes non-responsive to the stimulus, and then the dissolution concentration is increased to 10 cc / L or less. Finally, after lying on the back, the process ends.

本実施例により、飼育環境水中に溶解した燻煙成分を、魚類の鰓呼吸により極めて短時間のうちに体内に取り込ませることができる。即ち、前記燻煙に含まれる燻煙由来の調味成分が、該魚類に一般に調理で行われる「隠し味」的な調味を施す。   According to the present embodiment, the smoke component dissolved in the breeding environment water can be taken into the body in a very short time by respiration of fish. That is, the smoke-derived seasoning component contained in the smoke gives the fish a “hidden taste” seasoning that is generally performed in cooking.

尚、本実施例の前記閉鎖水槽1には、食品添加物を混入しても良い。食品添加物としては、魚類の鰓呼吸で取り込まれて該魚類の魚肉の調味,品質の保持若しくは品質の向上をなし得る、固体状,液体状若しくは気体状の酸化防止剤,pH調整剤,調味料等を目的に応じて適宜採用する。また、前記食品添加物の添加量としては、飼育環境水中の魚体の生存に支障がなく、且つ確実に魚類の鰓呼吸で取り込まれて該魚類の魚肉の調味,品質の保持若しくは品質の向上をなし得る程度の量を混入する。   In addition, you may mix a food additive in the said closed water tank 1 of a present Example. As food additives, solid, liquid or gaseous antioxidants, pH adjusters, seasonings that can be taken in by respiration of fish and seasoned, preserved or improved quality of fish meat Adopt appropriate fees according to the purpose. Further, the amount of the food additive added is that there is no hindrance to the survival of the fish in the breeding environment water, and it is surely taken in by respiration of the fish so that the seasoning, quality maintenance or quality improvement of the fish meat of the fish can be achieved. Mix as much as possible.

また、上述した本実施例の魚類の加工方法により得られる魚類は、そのまま若しくは解体切断後、前記燻液に浸漬若しくは前記燻液を灌流液として用い魚体の心臓部を切開して心臓部から魚体の血管に液体を還流させても良く、その場合、燻液中の燻煙成分が、鰓吸収のみならず、体外から魚肉に浸透吸着することとなり、より一層確実に魚肉の品質及び味覚の改善効果が発揮できる。   In addition, the fish obtained by the above-described method for processing fish according to the present embodiment can be used as it is or after being disassembled and cut. In that case, the smoke component in the smoke liquid not only absorbs the smoke, but also penetrates and absorbs the fish meat from outside the body, which improves the quality and taste of the fish meat more reliably. The effect can be demonstrated.

尚、以上の処理を施した魚類をそのまま若しくは解体切断後、冷凍保存しても良く、その場合、燻煙成分により魚肉に抗酸化性が付与されているので冷凍保存中の血合い部分のメト化が防止され、長期間冷凍保存しても解凍後に高鮮度且つ味覚の複雑な旨みが向上した高品質の魚肉が得られる。   In addition, fish subjected to the above treatment may be stored frozen as it is or after being dismantled, and in that case, the anti-oxidation property is imparted to the fish meat by the smoke component, so that the bloody part during frozen storage is met High-quality fish meat with high freshness and a complex taste of taste after thawing can be obtained even when stored frozen for a long period of time.

次に、本実施例の燻液と燻煙との違いについて説明する。   Next, the difference between soot and smoke in the present embodiment will be described.

燻液の定義は不明な部分もあるが、日本国における判断は、「水溶液に溶解したものに限る」としていることから、ここでは燻煙(気体成分)を水溶液に溶解したもの、とした場合、燻煙処理品と燻液処理品の違いの原因は燻煙を水溶液に溶解するときに各成分の溶解度の違いにより各成分の溶解度比率が異なり、さらに燻液に魚肉を接触させ燻煙成分を移動させる過程で、移動成分含量に大きな差を生じ、特に気体成分でその差が大きい事が主因である。   Although the definition of smoked liquid is unclear, the judgment in Japan is that it is limited to “dissolved in aqueous solution”, so here it is assumed that smoke (gas component) is dissolved in aqueous solution The reason for the difference between the smoke-treated product and the smoke-treated product is that when the smoke is dissolved in the aqueous solution, the solubility ratio of each component varies depending on the solubility of each component, and the fish meat is brought into contact with the smoked liquid and the smoke component In the process of moving the gas, there is a large difference in the content of the moving component, mainly due to the large difference in the gas component.

また燻煙中でも乾留燻煙は、木ガスともよばれ、各主成分濃度が高いだけでなく、不安定な成分が多いことから、燻液としたときの酸素の存在下では急速に酸化が進み燻煙臭に変化を生ずることが経験的に知られている。   Also, among the soot, dry soot is also called wood gas. Not only is the concentration of each main component high, but there are many unstable components, so oxidation proceeds rapidly in the presence of oxygen when it is used as smoke. It is empirically known to cause changes in smoke odor.

燻煙成分の特徴は固体、気体、液体成分の混合物であることであり、主要成分が不明である点である。各成分も水に対する溶解度が異なることから、燻煙とそれを水に溶解した燻液は個々の溶解比率は異なることになる。このことは燻煙処理したものと、燻液処理をしたものの違いとなることが予想される。燻煙成分は現在判明している成分だけでも400種を超えていることから、その組成の違いについて述べることは極めて困難である。しかし、燻煙処理品と燻液処理品が明らかに違うことは感覚的に知られていることは周知の事実である。特開2004−033014には以上の内容を元に、燻液処理で燻煙処理に近づける方法を述べている。下記表1に燻煙中に確認されている気体成分の溶解度を示す。


The feature of the smoke component is that it is a mixture of solid, gas, and liquid components, and the main component is unknown. Since each component has a different solubility in water, soot smoke and a smoke solution in which it is dissolved in water have different dissolution ratios. This is expected to be the difference between the smoke-treated and the smoke-treated. It is extremely difficult to describe the difference in the composition because the smoke component exceeds 400 types even with the component currently known. However, it is a well-known fact that it is known sensuously that smoke treated products and smoke treated products are clearly different. Japanese Patent Application Laid-Open No. 2004-033014 describes a method of bringing the soaking process closer to the soot process based on the above contents. Table 1 below shows the solubility of the gas components confirmed in the smoke.


Figure 0003913239
Figure 0003913239

淡水魚に時折発生する特有のカビ臭は環境水中に繁茂したジオスミンの悪臭が鰓呼吸を通じて魚体内に吸収されることが知られ、同様に淡水魚養殖池の上流で灯油漏洩事故が発生すると、極めて短時間で魚肉に臭気は移行する。一方これ等の事故がおきた魚体から臭気を除去する手段として、長時間をかけて清水中で臭気が抜けるまで養生させる手段が取られている。   The unique musty odor that occasionally occurs in freshwater fish is known to be absorbed into the fish body through the respiration of diosmine, which is proliferated in the environmental water. Similarly, when a kerosene leak accident occurs upstream of a freshwater fish pond, Odor shifts to fish meat. On the other hand, as means for removing odors from the fish bodies in which these accidents have occurred, means for taking a long time until the odors disappear in clean water are taken.

また窒素や酸素が過飽和に溶解する飼育環境水では、体内で気泡を生じ血管閉塞を引き起こす(ガス病)事が養殖現場では知られ、その対策も取られている。   In the breeding environment water in which nitrogen and oxygen dissolve in supersaturation, it is known in the farming field that gas bubbles are generated in the body and blood vessel occlusion occurs (gas disease), and countermeasures are taken.

海水魚は体液より高濃度に存在する各塩類が鰓を通じて体内に取り込まれる。その為、海水魚では体内のナトリウムポンプ作用により体外に排出し体内の塩濃度一定に維持することが知られている。また魚病発生時に抗生物質等の治療薬を水溶液とし薬浴し鰓吸収させるため、体内に残留蓄積し社会問題化されることがある。これ等の現象は鰓呼吸の際に水中に溶解している気体、液体、固体の各成分が鰓を介して、体内に吸収され蓄積したり体外に放出されたりすることを物語っている。   In saltwater fish, each salt present at a higher concentration than the body fluid is taken into the body through the salmon. For this reason, it is known that saltwater fish are discharged outside the body by the sodium pump action in the body and maintained at a constant salt concentration in the body. In addition, when a fish disease occurs, a therapeutic agent such as an antibiotic is made into an aqueous solution to be absorbed and absorbed, so that it may accumulate in the body and become a social problem. These phenomena indicate that gas, liquid, and solid components dissolved in water during respiration are absorbed into the body, accumulated, and released outside the body.

各鰓弁の形は多種多様であるが葉状の二次鰓弁はきわめて薄く、薄い上皮の直下を赤血球がかろうじて通過できるほどの毛細管が並びここがガス交換の本舞台になっている。   The shape of each valve is diverse, but the leaf-shaped secondary valve is very thin, and the capillaries that allow the red blood cells to barely pass under the thin epithelium are lined up and this is the main stage of gas exchange.

従って、鰓の表面を流れる水は、鰓部各細胞(被蓋細胞、支持細胞、基底膜及び壁柱細胞)の縁辺部を通して血管内皮に接触することになる。そしてこれ等の層はみな薄くその薄さは0.2〜23μm(平均値は0.5〜5.6μm)で肺胞上皮とよく似た状態にあり、ガス交換を容易にしている。魚類における呼吸作用は水中に溶解した酸素を鰓呼吸で体内に取り込み、体内中で生成した二酸化炭素を鰓を通じて環境水中に排出しているのである。また海水魚においては、鰓を通じ過剰の塩類を排出し体内濃度を一定に保持している。そして魚類を含む水棲動物のえら呼吸には水溶液に溶解している酸素成分の取り込みには優れるが、直接空気から酸素を吸収する能力は、肺呼吸生物に比べ劣ることが知られている。   Therefore, the water flowing on the surface of the heel comes into contact with the vascular endothelium through the edge of each cell of the buttock (capped cells, supporting cells, basement membrane and wall column cells). These layers are all thin and have a thickness of 0.2 to 23 μm (average value is 0.5 to 5.6 μm), which is very similar to the alveolar epithelium and facilitates gas exchange. The breathing action in fish is that oxygen dissolved in water is taken into the body by respiration, and carbon dioxide produced in the body is discharged into the environmental water through the reed. In saltwater fish, excess salt is discharged through the salmon and the body concentration is kept constant. In addition, it is known that aquatic animals including fish excel in the intake of oxygen components dissolved in an aqueous solution, but their ability to absorb oxygen directly from the air is inferior to lung respiratory organisms.

これ等の事実より、呼吸作用に必要な酸素、二酸化炭素のみならず鰓を介して他の燻煙中に含まれる成分で水溶液に溶解した成分が、鰓呼吸を通じ体内に取り込まれることは予想できるところである。又燻煙中に多く存在するメタンを含む低級炭化水素群には生体中においては、他の成分の移動を容易にする同伴ガス(キャリア)の性質があることが知られている。   From these facts, it can be expected that not only oxygen and carbon dioxide necessary for respiratory action, but also components dissolved in aqueous solutions through other smokes will be taken into the body through breathing. By the way. In addition, it is known that the lower hydrocarbon group containing methane, which is abundant in soot, has a property of an accompanying gas (carrier) that facilitates the movement of other components in the living body.

次に、前記飼育環境水中に燻煙を分散して燻煙成分を溶解した際に、燻煙成分がどの程度魚類の鰓呼吸で取り込まれ魚肉中に移行するか確認を行った。   Next, when the soot was dispersed in the breeding environment water to dissolve the soot component, it was confirmed how much the soot component was taken up by the respiration of the fish and transferred into the fish meat.

<測定対象>
1)乾留燻煙ガス成分
2)乾留燻煙ガス成分を30分間溶解接触した燻液中の燻煙成分
3)上記2)の燻液中に真鯛(1.1,1.35kg)を泳がせ20分間放置後取り上げ、魚肉に浸透した燻煙成分
4)無処理の真鯛のバックグラウンド(1.3,1.35kg)
<Measurement target>
1) Carbonized soot gas component 2) Smoke component in smoked liquid in which the carbonized smoke gas component was dissolved and contacted for 30 minutes 3) Swallow true carp (1.1, 1.35 kg) into the smoked liquid of 2) above. Smoked components that have been picked up after standing for a minute and penetrated into the fish meat 4) Background of untreated snapper (1.3, 1.35 kg)

<燻液および魚肉中の燻煙各成分の測定方法>
試料中に残留するガス状成分の回収法には熊沢法を用いた。その概略はつぎの通りである。
<Measurement method for smoke and smoke components in fish meat>
The Kumazawa method was used to recover the gaseous component remaining in the sample. The outline is as follows.

魚肉所定重量(50〜60g)の試料をフラスコ中で沸騰する水中に入れ、試料中から脱離,放散してくる気体を一定流量のキャリアガス(ヘリウムまたは窒素ガス)に同伴させ、テドラーバッグ中に採取する。このとき沸騰水から蒸発する水蒸気はフラスコとテドラーバッグの間に設けられたコンデンサーで凝縮されフラスコに戻される。試料中から脱離、放散する気体混合物を完全に回収するまでに流す窒素ガス量はあらかじめ予備実験で明らかにされている。例えば、仕込み試料重量が50g程度であれば全窒素ガス量は約1.5Lである。テドラーバッグ中に回収した気体混合物中のCO2,COおよびCH4等低級炭化水素の濃度を測定した。 Put a sample of fish weight (50-60g) in boiling water in the flask and let the gas desorbed and released from the sample be accompanied by a constant flow of carrier gas (helium or nitrogen gas) in the Tedlar bag. Collect. At this time, the water vapor evaporating from the boiling water is condensed by the condenser provided between the flask and the Tedlar bag and returned to the flask. The amount of nitrogen gas to flow until the gas mixture desorbed and released from the sample is completely recovered has been clarified in advance in a preliminary experiment. For example, if the charged sample weight is about 50 g, the total nitrogen gas amount is about 1.5 L. The concentrations of lower hydrocarbons such as CO 2 , CO and CH 4 in the gas mixture recovered in the Tedlar bag were measured.

pH,DO,L*a*b*値は、以下の方法で決定した。   The pH, DO, and L * a * b * values were determined by the following method.

CO2:気体中の二酸化炭素はガステック社の検知管2HTを用いた。液体は熊沢法により回収された成分をガステック社の検知管2LCを用いた。魚肉はBGが大きいため測定困難であった。 CO 2 : Carbon dioxide in the gas used a detector tube 2HT manufactured by Gastec. As the liquid, components recovered by the Kumazawa method were used using a detector tube 2LC manufactured by Gastec. Fish meat was difficult to measure due to its large BG.

CO:メタナイザー〈shimadzu,MTN・l)付きガスクロマトグラフ(shimazu,GC・14B)を用い、分離カラム(SUS I.D.3mm)にモレキュラーシープ13X(60〜80メッシュ,2.3m,90℃)を充壊し、キャリアーガスにHe(80mL/min)、CO還元用に水素(75mL/min,400℃)を用いてFIDで検出し濃度を決定した。メタナイザー付きガスクロマトグラフのFIDは感度の高い検出器であるが、COの検出はできない。メタンであれば検出できるので分離カラムの後段にメタナイザー(メタン化反応を行わせる触媒反応管)を取り付け、分離カラムで他の共存ガスから分離されたCOのピークに水素(H2)を混合しメタナイザー中でCH4に転換し(CO+3H2→CH4+H2O)、転換したCH4をFIDで検出するというものである。分離カラム中でCOから分離したCH4のピークはメタナイザー中で反応せずCH4として検出される。分離カラムでCOとCH4は分離されているので、COに由来するCH4と、もともとCH4であったCH4は別々に(異なった保持時間で)検出される。COに由来するCH4の保持時間はもともとCH4であったCH4の保持時間より長い。両ピークの面積から物質量が求められ、ガスクロマトグラフへの注入量を考慮すれば濃度に変換できる。尚、CO2は分離カラムに充填されているモレキュラーシープ13Xに吸着されてしまいメタナイザーを通過しない(ピークは生じない)。又燻煙中の一酸化炭素濃度は、窒素希釈により1000倍で測定し、液体中の一酸化炭素量は検体10ccを採取し、加熱又は硫酸等により1000ccの窒素中に放出させ上記ガスクロにて測定した。 CO: Molecular sieve 13X (60 to 80 mesh, 2.3 m, 90 ° C.) on a separation column (SUS ID 3 mm) using a gas chromatograph (shimadzu, GC · 14B) with a metanizer (shimadzu, MTN · l) The concentration was determined by FID using He (80 mL / min) as a carrier gas and hydrogen (75 mL / min, 400 ° C.) for CO reduction. The FID of the gas chromatograph with a methanizer is a highly sensitive detector, but cannot detect CO. Since methane can be detected, a methanizer (catalyst reaction tube that performs methanation reaction) is attached to the latter stage of the separation column, and hydrogen (H 2 ) is mixed with the CO peak separated from other coexisting gas in the separation column. In the methanizer, it is converted to CH 4 (CO + 3H 2 → CH 4 + H 2 O), and the converted CH 4 is detected by FID. The CH 4 peak separated from CO in the separation column does not react in the methanizer and is detected as CH 4 . Since CO and CH 4 separation column are separated, the CH 4 derived from CO, CH 4 was CH 4 originally (at different retention time) separately detected. Retention time of CH 4 originating from CO is longer than the original retention time of CH 4 was CH 4. The amount of substance can be determined from the areas of both peaks, and can be converted to a concentration by taking into account the amount injected into the gas chromatograph. Note that CO 2 is adsorbed by the molecular sheep 13X packed in the separation column and does not pass through the methanizer (no peak is generated). The concentration of carbon monoxide in soot is measured 1000 times by diluting with nitrogen, and the amount of carbon monoxide in the liquid is 10 cc of a sample collected and released into 1000 cc of nitrogen by heating or sulfuric acid, etc. It was measured.

低級炭化水素:分離カラム(SUS I.D.3mm)にUnipak S(ジーエルサイエンス,100〜150メッシュ)を2m充填したガスクロマトグラフ(shimadzu,GC−14B)を用いてキャリアーガスにはHe(流量40mL/min)を用い、昇温条件下(40〜150℃,昇温速度5℃/min)で分離後、FIDで検出し、濃度を決定した。   Lower hydrocarbon: Gas chromatograph (Shimadzu, GC-14B) packed with 2 m of Unipak S (GL Science, 100-150 mesh) in a separation column (SUS ID 3 mm), and He (flow rate 40 mL) / Min), after separation under temperature rising conditions (40 to 150 ° C., temperature rising rate 5 ° C./min), the concentration was determined by detection with FID.

K値:前処理は、魚肉10gに1M過塩素酸25mLを加えホモジナイズし、3000rpmで5分間遠心分離し上澄みを取り1M炭酸水素ナトリウム溶液を加えてpH6.5に調整。上澄みを0.45μmミリポアフィルターでろ過し、10μLをHPLCに注入した。   K value: In pretreatment, 25 mL of 1M perchloric acid was added to 10 g of fish meat, homogenized, centrifuged at 3000 rpm for 5 minutes, the supernatant was taken, and 1M sodium hydrogen carbonate solution was added to adjust the pH to 6.5. The supernatant was filtered through a 0.45 μm Millipore filter, and 10 μL was injected into the HPLC.

<分析条件>
カラム:STR ODS−移動相,A液/B液100/1(V/V)(A液:リン酸(トリエチルアンモニウム)緩衝液(pH6.8),B液:アセトニトリル),カラム温度:40℃,流量:1.0L/min,検出器:shimadzu SPD−10:AVP,紫外線吸光度波長:260nm
pH:HORIBAガラス電極水素イオン濃度計D−23
DO:IIJIMA DO METER ID−100
L*a*b*:コニカミノルタセンシングColorReaderCR−13
燻煙処理ガスの組成指標として燻煙中の一酸化炭素を含む低級炭化水素群(CO,CH4,C24,C26,C38,C36,n−C410,iso−C4H10)を用いた。
<Analysis conditions>
Column: STR ODS-mobile phase, liquid A / liquid B 100/1 (V / V) (liquid A: phosphate (triethylammonium) buffer (pH 6.8), liquid B: acetonitrile), column temperature: 40 ° C. , Flow rate: 1.0 L / min, Detector: shimadzu SPD-10: AVP, UV absorbance wavelength: 260 nm
pH: HORIBA glass electrode hydrogen ion concentration meter D-23
DO: IIJIMA DO METER ID-100
L * a * b *: Konica Minolta Sensing ColorReaderCR-13
Smoking treatment lower hydrocarbon group containing carbon monoxide in smoke as composition index of the gas (CO, CH 4, C 2 H 4, C 2 H 6, C 3 H 8, C 3 H 6, n-C 4 H 10, iso-C4H 10 ) was used.

<測定結果>
1)燻煙ガス成分

Figure 0003913239




<Measurement results>
1) Smoke gas component
Figure 0003913239




2)上記1)のガスで直接30分間溶解の燻液中の燻煙成分濃度(v/w)

Figure 0003913239
2) Concentration of smoke component (v / w) in the smoke dissolved directly for 30 minutes with the gas of 1) above
Figure 0003913239

3)上記2)の燻液に真鯛を泳がせ10分後に横臥した後魚肉中の各燻煙成分を測定(w/w)

Figure 0003913239
3) Measure the smoke components in the fish meat after swimming the red sea bream in the liquid of 2) above and lying down 10 minutes later (w / w)
Figure 0003913239

4)無処理の魚肉(バックグラウンド)(w/w)

Figure 0003913239

4) Untreated fish (background) (w / w)
Figure 0003913239

表4と表5を比較した場合、明らかに鰓呼吸により燻液中の燻煙成分(一酸化炭素を含む低級炭化水素群)の増大が見られる。表1に示した成分中溶解度の大きいアンモニア、塩化水素、二硫化硫黄、二酸化炭素を除く他の低溶解度の燻煙成分は凡そ燻液と魚肉との間にはほぼヘンリーの法則が成立するが、魚肉中の一酸化炭素濃度が他の低級炭化水素群に比べ大きいのは、魚肉中のヘモグロビン、ミオグロビン等に配位する為と考えられる。   When Table 4 and Table 5 are compared, an increase in the smoke component (lower hydrocarbon group including carbon monoxide) in the soot is clearly seen by breathing. Although the low-solubility smoke components other than ammonia, hydrogen chloride, sulfur disulfide, and carbon dioxide shown in Table 1 have a high solubility, Henry's law is almost established between the liquid and fish meat. The reason why the concentration of carbon monoxide in fish meat is higher than that of other lower hydrocarbon groups is thought to be due to coordination with hemoglobin, myoglobin, etc. in fish meat.

臭気成分や各塩類が鰓呼吸を通じ体内に蓄積される事実や前述の試験結果より鰓呼吸には測定成分に関し選択的に必要成分を取り込んでいるのではないことが判明した。   From the fact that odor components and various salts accumulate in the body through vaginal breathing and the above test results, it was found that vaginal breathing does not selectively incorporate necessary components with respect to the measured component.

そして燻煙成分を水溶液に溶解した成分は活魚遊泳中に生体の反応である鰓呼吸により酸素以外のこれ等の成分が魚肉体内に吸着蓄積することが確認され、新しい燻製品の製造方法となった。   In addition, it was confirmed that the components in which the smoke component was dissolved in the aqueous solution were adsorbed and accumulated in the fish meat by the respiration of the living body during respiration of living fish, and this became a new method for producing a fish product. It was.

次に、前記飼育環境水中の一酸化炭素の溶解量を0.1cc/Lから徐々に20cc/Lにまで増大するように燻煙を混入した際の、この飼育環境水中の養殖魚の挙動並びにこの養殖魚の冷凍保存後のpH,色調,食感について、代表例として養殖カンパチを用いて検討を行った結果について以下に説明する。   Next, the behavior of the cultured fish in the breeding environment water when the soot is mixed so that the amount of carbon monoxide dissolved in the breeding environment water gradually increases from 0.1 cc / L to 20 cc / L. As a representative example, the results obtained by examining the pH, color tone, and texture after freezing storage of cultured fish will be described below.

<試験方法>
200Lタンクに海水を100L注入し水温を20℃設定とし酸素分散器により酸素飽和状態6.2mg/Lの維持に努め、カンパチ1.5kg平均5匹を投入し更に、タンク内で一定の安定遊泳を確認後、乾留燻煙を80〜150cc/min通気し、pHを維持するために炭酸ナトリウムでpH8以上を維持し一酸化炭素溶解度の変化と魚体の反応を調査した。
<Test method>
100L of seawater was injected into a 200L tank, the water temperature was set to 20 ° C, and an oxygen disperser was tried to maintain an oxygen saturation state of 6.2mg / L. After confirming the above, the carbonized smoke was aerated at 80 to 150 cc / min, and the pH was maintained at pH 8 or higher with sodium carbonate to maintain the pH, and the change in solubility of carbon monoxide and the reaction of the fish were investigated.

<養殖魚の挙動>
表6は、一酸化炭素の溶解量の変化と魚体の反応を調査した結果を示したものである。
<Behavior of cultured fish>
Table 6 shows the results of investigating the change in the dissolved amount of carbon monoxide and the reaction of the fish.

Figure 0003913239
Figure 0003913239

表6に示したように、水中の一酸化炭素の溶解量を0.1cc/L以上にし、時間をかけて、興奮しないように徐々に0.5cc/L以上に上げると、養殖カンパチは正常反応から無反応状態を経て興奮状態となりやがて鎮静化状態となった。無反応状態とは外部刺激に対し反応しなくなる状態であり、この状態を確認したら燻煙の供給量を上昇させても、興奮状態にはならなかった(但し、魚種によって興奮期の状態の出現は大幅に違うため、各魚種ごとの誘導濃度、温度及び時間の設定を行う必要がある。)。   As shown in Table 6, when the dissolved amount of carbon monoxide in water is increased to 0.1 cc / L or more and gradually increased to 0.5 cc / L or more so as not to get excited, the cultured amberjack is normal. From reaction to non-response, it became excited and eventually became sedated. The non-reactive state is a state that does not respond to external stimuli. After confirming this state, even if the supply amount of smoke was increased, it did not become an excited state. Appearance varies greatly, so it is necessary to set the induction concentration, temperature, and time for each fish species.)

<養殖魚の冷凍保存後のpH,色調,食味>
養殖魚の冷凍保存後のpH,色調,食味を確認するため、以下に示すような試験区及び対照区にて比較検討を行った。
<PH, color, taste after freezing of cultured fish>
In order to confirm the pH, color, and taste after freezing of cultured fish, a comparative study was conducted in the test group and the control group as shown below.

(試験区):上述の処理条件で処理が施され、仮死状態となった魚体を放血し、三枚卸、真空パック後、急速凍結(マイナス40℃エアブラスト)しその後マイナス18℃で約一ヶ月(28日)保管後解凍し、皮を剥いだ魚肉(6〜8℃保管)について、赤部(血合い部)の色調及び食味等を6時間の差を置いて調べた結果を下記表7に示す。   (Test section): The fish that had been treated under the above-mentioned processing conditions and was put into a dead state was exsanguinated, and after three plate wholesale and vacuum packing, it was quickly frozen (minus 40 ° C air blast), and then about one at minus 18 ° C. Table 7 below shows the results of examining the color tone and taste of the red part (bloody part) with a difference of 6 hours for fish (thawed at 6-8 ° C) that was thawed after storage for months (28 days) and peeled. Shown in

(対照区):試験当日市場より2匹(3kgサイズ)の活魚を購入し血抜き後三枚卸フィレー加工し、試験区と同じ6℃設定インキュベータ内にて保管(6〜8℃)し鮮魚の状態で皮を剥いだ魚肉について、試験区と同様に色調並びに食味を調べた結果を下記表8に示す。   (Control group): Buy 2 live fish (3kg size) from the market on the day of the test, remove blood, and process three-plate wholesale fillets, and store (6-8 ° C) in the same 6 ° C incubator as the test zone. Table 8 below shows the results of examining the color tone and taste of the fish meat that was peeled in the same state as in the test section.

更に試験区、対照区の視覚、味覚試験の結果を下記表9に示した。   Furthermore, the results of visual and taste tests in the test group and the control group are shown in Table 9 below.

Figure 0003913239
Figure 0003913239

Figure 0003913239
Figure 0003913239










Figure 0003913239
Figure 0003913239

以上、表6〜表9から、本実施例における養殖魚の冷凍保存後の色調,食味が対照区と比較して優れていることを確認した。   As described above, from Table 6 to Table 9, it was confirmed that the color tone and taste after freezing storage of the cultured fish in this example were superior to the control group.

比較試験での対照区と比較しての回答で試験区は、1)味がある。2)厚みのある味。3)複雑な味。等極めて抽象的な意見ではあるが明らかに燻煙により鰓を通じて味覚に影響する成分が吸収されていることがうかがわれる。これ等の調味成分は魚肉のうまみ成分であるイノシン酸の生成と複合し、味覚を向上させることが予想される。   In comparison with the control group in the comparative test, the test group has 1) taste. 2) Thick taste. 3) Complex taste. Although it is a very abstract opinion, it can be seen that smoke has absorbed components that affect the taste through smoke. These seasoning ingredients are expected to be combined with the production of inosinic acid, which is an umami component of fish meat, to improve the taste.

以上、本実施例の乾留燻煙を水溶液に溶解した燻液(スモーク・フレーバー)の効果の一つは、名前の通り調味、つまり味付けである。従来より魚の美味しさの尺度は幾通りか述べられているが、食品であることの必須の条件は旨いことである。活魚を含む高鮮度の生鮮魚はそのままでは味覚には乏しく、醤油やわさびといった強い味覚を持つ調味料を使って刺身という食文化が生まれたが、鮮度が高い魚肉は、その後、味覚成分でありATP関連物質であるイノシン酸が生成されるタイミングが他の要素(弾力、歯あたり、舌触り)と最もバランスが取れた時間帯に調理消費されることが経験的に知られ、賞味時間の前に即殺後、一定時間冷蔵庫保持し、このタイミングを見計らって調理する高級料亭は多い。本実施例の燻液の効果の一つは、燻煙由来の調味成分が鰓呼吸を通じ体内に簡単に取り込まれる点である。   As described above, one of the effects of the smoked smoke obtained by dissolving the carbonized soot in this embodiment in an aqueous solution is seasoning, that is, seasoning. Traditionally, several scales of fish taste have been described, but the essential condition for being a food is that it is delicious. The freshness of fresh fish, including live fish, is poor in taste as it is, and a food culture called sashimi was born using seasonings with a strong taste such as soy sauce and wasabi. It is empirically known that the timing at which inosinic acid, an ATP-related substance, is produced is consumed and cooked in a time zone that is most balanced with other factors (elasticity, tooth contact, tongue touch). There are many high-class restaurants that hold refrigerators for a certain period of time after instant killing and cook at this timing. One of the effects of the smoke liquid of the present embodiment is that the smoke-derived seasoning component is easily taken into the body through the breathing.

また、本実施例の溶解した乾留燻煙成分を鰓吸収させた魚の血合い部分はその大半が、冷凍保存中のメト化の進行が遅延する。淡水魚では鯉、ティラビアに乾留燻液を鰓吸収させた検体、海水魚では真鯛、ぶり(ハマチ)、カンパチ、ニベ、すぎ、ひらまさ、さば等血合いの発達した魚種は顕著に丸物でも、切り身でも冷凍保存中のメト化は防止された。一方スズキはほとんど色調には影響を与えず、平目では個体差が大きかった。これは後述する燻煙の溶解液に対する個体毎の体力抵抗差とも受け止められる。   In addition, most of the bloody portion of the fish that has absorbed the dissolved dry-distilled smoke component of the present embodiment is delayed in the progress of metrification during frozen storage. In freshwater fish, specimens that have absorbed dry-distilled broth in Tirabia, and in seawater fish, fish species with deep blood, such as red sea bream, yellowtail, amberjack, nibe, too much, hiramasa, mackerel, etc. Even the fillet was prevented from being transformed during frozen storage. Suzuki, on the other hand, had almost no effect on color, and individual differences were large in flat eyes. This is also accepted as a difference in physical strength resistance for each individual against the soot solution described later.

また、本実施例の燻煙成分による脱臭効果については未だ定説が無いためここでは効果についての結果のみについて述べると、淡水魚養殖池のティラビア(Tilapia・nilotica)で発生したかび臭い藻臭(ジオスミン発生臭)が吸着した活魚をタンク中で酸素を飽和未満とし、燻煙を微量流入し、20分ほどで刺激反応を失った状態で切り身を更にスライスし、対照区と比較したところ、藻臭は顕著に減少した。これ等の効果は即効的に作用し、通常数週間かかる脱臭さらし(無臭の清水中で長時間かけて、鰓排出により臭気成分を体内より排出する。)が極めて短時間で終了することを意味する。応用の範囲は鯉、うなぎ等の閉鎖水路内で鰓呼吸により吸着した環境水臭気に対してであるが、しかし試験の結果では灯油、ガソリン臭には余り効果が無かった。これは燻煙成分の脱臭機能が作用しにくいのではないかと考える。   In addition, since there is no established theory about the deodorization effect by the smoke component of this example, only the result of the effect will be described here. The musty odor algae (diosmin generation odor) generated in the freshwater fish culture pond Tilavia (Tilapia nilotica) ) The adsorbed live fish was subsaturated with oxygen in the tank, smoke was introduced in a small amount, and the slices were further sliced after losing the stimulus response in about 20 minutes. Decreased. These effects act immediately, meaning that deodorizing exposure (usually taking several hours in odorless fresh water and discharging odorous components from the body through sputum discharge), which normally takes several weeks, is completed in a very short time. To do. The range of application is for environmental water odor adsorbed by respiration in closed waterways such as firewood, eel, etc., but the results of the test showed little effect on kerosene and gasoline odor. We think that this may be difficult for the deodorizing function of the smoke component.

また、本実施例は、燻煙を環境飼育水に溶解させ燻液とする時点で魚体に対して鎮静作用を持つ。このことは、魚体を取り扱う上で作業性を向上させ、魚の興奮を抑制し、魚肉の肉質変化を遅延させることが予想される。   In addition, the present example has a sedative action on the fish at the time when the smoke is dissolved in the environmental breeding water to form a smoke solution. This is expected to improve workability in handling the fish body, suppress the excitement of the fish, and delay the change in the meat quality of the fish meat.

尚、本実施例は、海水魚では真鯛、ぶり(ハマチ)、カンパチ、ひらまさ、スキ゛スズキ丸小判、また天然の多獲魚(いわし、秋刀魚、さば)、大型魚であるマグロ類(キハダ、目鉢、南インド、黒)、かつお等の活魚、あるいは淡水魚では、うなぎ、鯉、ティラビア、虹鱒、鮎等の活魚に適用可能で、これらの魚肉の品質改善、冷凍保存性向上、環境飼育水より吸収される臭気の矯正阻止等に利用できる。   In addition, in this example, sea bream fish, red snapper, yellowtail, amberjack, hiramasa, suki perch round oval, natural high catch fish (sardine, sword fish, mackerel), large fish tuna (yellowfin, eyes) In the case of live fish such as bowls, South India, black), bonito, etc., or freshwater fish, it can be applied to live fish such as eel, sea bream, tilabi, rainbow trout, sea bream, etc. It can be used to prevent correction of absorbed odors.

尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   The present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.

本実施例の装置の概略図である。It is the schematic of the apparatus of a present Example.

Claims (8)

燻煙、又は該燻煙を水若しくは水溶液と接触させて燻煙成分を溶解させた燻液を、魚類の回遊する飼育環境水に分散若しくは混入し、該飼育環境水に燻煙成分を溶解させ、該飼育環境水に溶解した燻煙成分を魚類の鰓呼吸によって魚類の体内に吸収蓄積させ、魚類の品質及び味覚の改善を行うことを特徴とする魚類加工方法。   Disperse or mix soot smoke or soot solution in which the soot component is dissolved by bringing it into contact with water or an aqueous solution in the breeding environment water where the fish migrate and dissolve the soot component in the breeding environment water A fish processing method characterized in that the smoke component dissolved in the breeding environment water is absorbed and accumulated in the body of the fish by respiration of the fish to improve the quality and taste of the fish. 前記燻煙は、無酸素乾留燻煙若しくは酸素量を限定し燃焼させ発生した燻煙からすすやタール成分などの不要物を除去したものを採用したことを特徴とする請求項1記載の魚類加工方法。   2. The fish processing according to claim 1, wherein the soot is oxygen-free carbonized soot or a product obtained by removing unnecessary substances such as soot and tar components from soot generated by burning with limited oxygen amount. Method. 前記飼育環境水に酸化防止剤,pH調整剤,調味料などの食品添加物を混入し、該食品添加物を飼育環境水に溶解させ、該飼育環境水中に溶解した食品添加物を魚類の鰓呼吸によって魚類の体内に吸収蓄積させ、魚類の品質及び味覚の改善を行うことを特徴とする請求項1,2のいずれか1項に記載の魚類加工方法。   A food additive such as an antioxidant, a pH adjuster, and a seasoning is mixed in the breeding environment water, the food additive is dissolved in the breeding environment water, and the food additive dissolved in the breeding environment water is used as a fish carp. The fish processing method according to any one of claims 1 and 2, wherein the fish is absorbed and accumulated by respiration to improve the quality and taste of the fish. 前記燻煙若しくは前記燻液を、前記飼育環境水に溶存する一酸化炭素濃度が0.2〜10cc/Lとなるように分散若しくは混入したことを特徴とする請求項1〜3のいずれか1項に記載の魚類加工方法。   The smoke or the smoke liquid is dispersed or mixed so that the concentration of carbon monoxide dissolved in the breeding environment water is 0.2 to 10 cc / L. The fish processing method according to item. 前記飼育環境水に純酸素を、該飼育環境水に溶存する酸素濃度が前記魚類が安定に生存し得る濃度となるように接触させたことを特徴とする請求項1〜4のいずれか1項に記載の魚類加工方法。   The pure oxygen is brought into contact with the breeding environment water, and the oxygen concentration dissolved in the breeding environment water is brought into contact with the fish so that the fish can stably survive. The fish processing method described in 1. 請求項1〜5記載の魚類の加工方法により得られる魚類をそのまま若しくは解体切断後、燻液に浸漬したことを特徴とする魚類加工方法。   6. A fish processing method, wherein the fish obtained by the fish processing method according to claim 1 is immersed in a broth as it is or after being disassembled and cut. 請求項1〜5記載の魚類の加工方法により得られる魚類に、燻液を灌流液として用い血管を介して肉中に拡散させて、燻液を付与したことを特徴とする魚類加工方法。   6. A fish processing method, wherein the fish obtained by the method for processing fish according to claim 1 is given a sap by diffusing it into meat through blood vessels using a sap as a perfusate. 請求項1〜7記載の魚類加工方法により得られる魚類をそのまま若しくは解体切断後、冷凍したことを特徴とする魚類加工品。
A processed fish product, wherein the fish obtained by the fish processing method according to claim 1 is frozen as it is or after being disassembled and cut.
JP2004249067A 2004-08-27 2004-08-27 Fish processing method and processed fish products Active JP3913239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004249067A JP3913239B2 (en) 2004-08-27 2004-08-27 Fish processing method and processed fish products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004249067A JP3913239B2 (en) 2004-08-27 2004-08-27 Fish processing method and processed fish products

Publications (2)

Publication Number Publication Date
JP2006061105A JP2006061105A (en) 2006-03-09
JP3913239B2 true JP3913239B2 (en) 2007-05-09

Family

ID=36108101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004249067A Active JP3913239B2 (en) 2004-08-27 2004-08-27 Fish processing method and processed fish products

Country Status (1)

Country Link
JP (1) JP3913239B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537044A (en) * 2010-09-14 2013-09-30 リチャード・フィリップ・フレンド Process for processing meat using tasteless liquid smoke
CN103404472B (en) * 2013-08-29 2015-04-15 江苏中洋集团股份有限公司 Industrialized ecological cultivation method of ribbonfish

Also Published As

Publication number Publication date
JP2006061105A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
JP3670960B2 (en) Tasteless ultra-refined soot production process for processing frozen and thawed marine products
Erikson et al. Live chilling of Atlantic salmon (Salmo salar) combined with mild carbon dioxide anaesthesia: I. Establishing a method for large-scale processing of farmed fish
Spicer et al. Does the development of respiratory regulation always accompany the transition from pelagic larvae to benthic fossorial postlarvae in the Norway lobster Nephrops norvegicus (L.)?
Wang et al. Influence of postmortem treatment with nitric oxide on the muscle color and color stability of tilapia (Oreochromis niloticus) fillets
Swastawati Quality and safety of smoked catfish (Aries talassinus) using paddy chaff and coconut shell liquid smoke
JP3913239B2 (en) Fish processing method and processed fish products
CN101288490A (en) Production method of dried fish
Wang et al. Treatments of tilapia (Oreochromis niloticus) using nitric oxide for quality improvement: Establishing a potential method for large-scale processing of farmed fish
FR2949948A3 (en) CARNED PRODUCTS IN BRINE PIECES, ESPECIALLY COOKED HAM
KR100814511B1 (en) The method for making salted fish and shellfish using salt produced with deep sea water
JP4909805B2 (en) Method for producing concentrated seawater with storage function and method for preserving marine products using the concentrated seawater
US20030044497A1 (en) Process to treat fish with tasteless smoke or carbon monoxide through the respiratory and circulatory systems
Kristinsson et al. Effect of a filtered wood smoke treatment compared to various gas treatments on aerobic bacteria in yellowfin tuna steaks
JP3650085B2 (en) Fish processing method using smoked liquid with smoke components dissolved
Yang et al. Accumulation and elimination kinetics of 2-Methylisoborneol in crucian carp (Carassius carassius)
JP3976646B2 (en) How to save round tuna
WO2012036571A1 (en) A process for treating meat using tasteless liquid smoke
JP2013165699A (en) Preservation and hauling method of aquatic animal
KR20210006081A (en) Manufacturing method for fish sauce using underground fermentation tank
KR20110082101A (en) A method for preparing salted vegetables with a deep sea oxygen water
Longard et al. Color and some composition changes in Ocean perch (Sebastes marinus) held in refrigerated sea water with and without carbon dioxide
US20080063763A1 (en) Method for manufacturing tasteless and clean smoke for seafood preservation
RU2738475C1 (en) Method of salting delicatessen fish
Rixen et al. Greenhouse gas concentrations and emissions from a plastic-lined shrimp pond on Hainan, China
JP4790788B2 (en) How to remove off-flavors from bivalves

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Ref document number: 3913239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250