JP3912896B2 - Receiving apparatus and receiving method - Google Patents

Receiving apparatus and receiving method Download PDF

Info

Publication number
JP3912896B2
JP3912896B2 JP11283198A JP11283198A JP3912896B2 JP 3912896 B2 JP3912896 B2 JP 3912896B2 JP 11283198 A JP11283198 A JP 11283198A JP 11283198 A JP11283198 A JP 11283198A JP 3912896 B2 JP3912896 B2 JP 3912896B2
Authority
JP
Japan
Prior art keywords
correlation
gain
spread spectrum
signal
variable gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11283198A
Other languages
Japanese (ja)
Other versions
JPH11298376A (en
Inventor
崇夫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11283198A priority Critical patent/JP3912896B2/en
Publication of JPH11298376A publication Critical patent/JPH11298376A/en
Application granted granted Critical
Publication of JP3912896B2 publication Critical patent/JP3912896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、スペクトラム拡散変調信号を復調可能な受信装置に関し、特に受信信号を増幅する際のAGC(Automatic Gain Control:自動利得制御)技術に関する。
【0002】
【従来の技術】
現在、セルラー電話などで次世代の通信方式としてCDMA(Code Division Multiple Access)が注目されている。このCDMA方式は基本技術としてスペクトラム拡散の技術を応用している。送信側に於いて擬似雑音系列符号(拡散コード)による拡散変調を行い、受信側に於いて送信側で使用したものと同一の符号を使って逆拡散復調を行うことにより通信データを再生する。この拡散コードとしては、お互いに直交する(すなわち、2つの信号を乗積して積分した結果がゼロになる)複数の符号の組み合わせを使うことができる。この複数組の直交した符号を利用して、例えば基地局からはこの複数組の直交符号をそれぞれ通信する複数の移動局に割り振り、これら各組の符号で拡散変調した信号を多重化して同時に送信する。そして、各移動局では、受信を希望する信号に対応する符号を使用して逆拡散することにより、多重化された信号の中から所望の信号のみを取り出すことが可能となる。
【0003】
このように、スペクトラム拡散通信の受信処理においては、送信側と同一の符号により逆拡散処理を行うが、この逆拡散処理にはマッチトフィルタや、スライディング相関器などの相関演算器が使われる。この相関演算器による受信信号の相関信号は、図4に示すようなものとなり、この信号波形のピーク(相関ピーク)から伝送データを再生する。なお、この相関ピークのレベルは相関演算器に入力される受信信号のレベルの比例する。
【0004】
従来の受信装置の例を図2、図3に示す。従来、図2の例では、直交復調器4によりI成分とQ成分に分離した信号I1,Q1をA/D変換した後、IとQの二乗和を求めることにより受信電力値を得て、この結果を用いてAGC制御部にてVGA(Variable Gain Amplifier:利得可変増幅器)3の利得を制御することにより、A/D変換器5に入力される信号レベルを無線伝搬の変動によらない一定値とする。
【0005】
また、図3の例では、スペクトラム拡散変調処理時に使用された複数の拡散コードのうち、受信を希望する信号に対応する拡散コードで相関演算を実行する。その結果、図4に示す波形の相関ピークを得て、その相関ピークのレベルに応じてAGCを行うことにより、所望の信号成分に対して精度よく利得を制御することが可能となる。
【0006】
【発明が解決しようとする課題】
しかし、図2の例では、AGCのフィードバック制御はA/D変換器5のサンプルレート(このサンプルレートは、通常、CDMA方式では、チップレート、すなわち拡散信号の周波数の2倍以上)でサンプルされ、その各々について電力演算を実行するため、入力信号の変動に対して高速に追従できる高速なAGCを実現できる。反面、基地局から各移動機へ送られてくる多重化された信号、および隣のセルの基地局からの信号など、全ての妨害波を含めた信号の全体の電力に対してAGCを行うため、復調すべき信号成分に対するAGC精度は望めない。
【0007】
一方、図3の例では、復調すべき受信信号の自己相関成分をマッチトフィルタ等による相関演算器6で取り出し、その相関ピーク信号の信号レベルに基づいてAGC制御をかけるため、図2の例に比較して所望の信号成分に対するAGC精度は良いため後段の復調特性の劣化を低減できるが、相関ピークはコード発生器11で発生される拡散コードの1周期に1回しか発生しないため、AGC制御部8に入力される信号が時間的に間引かれたものとなり、AGCの応答は遅くなる。
【0008】
また、相関ピークのレベルが最大受信感度を下回るほど低下した場合を考えると、このときには相関ピークは検出されず、相関演算器6の出力は他の拡散コードにより拡散された信号からの相互相関などのノイズとなり、この時のAGCは、このノイズが所定のしきい値に達するようにVGA3の利得(ゲイン)を調整する。
【0009】
通常、自己相関のない信号による相関演算器6からの出力は小さいため、しきい値を超えるまでVGA3のゲインをあげると、その前段のRF部2は総電力波形により動作しているため、信号レベルが結果的に上がり、アナログ回路であるRF部2とVGA3は飽和領域に入る。この状態から受信感度範囲内のレベルの信号が入ってくると、その飽和したアナログ回路は飽和状態からの復帰動作となり、復帰に通常の応答以上の長い時間を要する。
【0010】
本発明は、このような背景の下になされたもので、その課題は、受信したスペクトラム拡散信号を増幅する際の自動利得制御を高速、且つ高精度に行えるようにすることにある。
【0011】
【課題を解決するための手段】
上記課題を解決するため、本発明は、スペクトラム拡散変調信号を復調可能な受信装置において、受信に係るスペクトラム拡散変調信号を利得を変更可能に増幅する可変利得増幅手段と、前記可変利得増幅手段により増幅されたスペクトラム拡散変調信号を直交復調する直交復調手段と、前記直交復調手段により直交復調された2つの直交復調信号に対して拡散コードにより相関演算を行うことにより逆拡散を行う相関演算手段と、前記直交復調手段により直交復調された2つの直交復調信号から受信電力を演算する電力演算手段と、前記相関演算手段により相関演算されて出力された相関ピーク信号に基づいて受信に係るスペクトラム拡散変調信号の信号レベルを検出する相関レベル検出手段と、前記電力演算手段と相関レベル検出手段の処理結果に基づいて前記可変利得増幅手段の利得を制御する利得制御手段とを備え、前記利得制御手段は、前記相関レベル検出手段の処理結果に基づいて前記可変利得増幅手段の利得を制御した結果、前記スペクトラム拡散変調信号の信号レベルが予め設定された誤差範囲を逸脱した場合には、前記電力演算手段の処理結果に基づく前記可変利得増幅手段の利得制御に切り換えるように構成されている
【0012】
また、本発明は、スペクトラム拡散変調信号を受信する受信方法において、受信に係るスペクトラム拡散変調信号を可変利得増幅手段により利得を変更可能に増幅する可変利得増幅工程と、前記可変利得増幅工程により増幅されたスペクトラム拡散変調信号を直交復調する直交復調工程と、前記直交復調工程により直交復調された2つの直交復調信号に対して拡散コードにより相関演算を行うことにより逆拡散を行う相関演算工程と、
前記直交復調工程により直交復調された2つの直交復調信号から受信電力を演算する電力演算工程と、前記相関演算工程により相関演算されて出力された相関ピーク信号に基づいて受信に係るスペクトラム拡散変調信号の信号レベルを検出する相関レベル検出工程と、
前記電力演算工程と相関レベル検出工程の処理結果に基づいて前記可変利得増幅手段の利得を制御する利得制御工程とを備え、前記利得制御工程は、前記相関レベル検出工程の処理結果に基づいて前記可変利得増幅手段の利得を制御した結果、前記スペクトラム拡散変調信号の信号レベルが予め設定された誤差範囲を逸脱した場合には、前記電力演算工程の処理結果に基づく前記可変利得増幅手段の利得制御に切り換えるように構成されている
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しながら説明する。
【0019】
図1は、本発明の実施の形態に係る受信装置の概略構成を示すブロック図であり、本装置は、受信したスペクトラム拡散変調信号を復調可能に構成され、アンテナ1、RF部2、VGA(利得可変増幅器)3、直交復調器4、A/D変換器5、相関演算器6、検波器7、AGC制御部8、電力演算部9、相関レベル検出部10、およびコード発生器11を有している。
【0020】
RF部2は、アンテナ1で受信した高周波の無線信号をダウンコンバートする等のアナログ処理を行い、次段のVGA3の入力形態に適合する信号として入力する。アンテナ1とRF部2の利得は常に一定であるため、RF部2から出力される信号レベルはアンテナ1から受信された受信信号レベルに比例したレベルとなり、電波の伝搬状況の変化によりレベルは大きく変動する。VGA3は、外部からの利得制御信号により利得を変える機能を持つ利得可変増幅器であり、VGA3の利得は、AGC制御部8により受信信号レベルに応じて制御される。
【0021】
CDMA方式では、受信信号は互いに直交するI成分とQ成分を含む形で直交変調されている。そこで、直交復調器4は、VGA3を含む一連のAGCループでレベルが一定となった受信信号の中から2つの直交成分を分離することにより復調し、信号I1とQ1を出力する。この直交復調器4からの出力信号I1、Q1は、それぞれA/Dコンバータ5によりディジタル値に変換され、ディジタル信号I2、Q2として相関演算器6、および電力演算部9に出力される。ただし、このディジタル信号I2、Q2は、送信時のスペクトラム拡散変調処理に使用された全ての拡散コードに対応する成分を含んでいる。
【0022】
相関演算器6では、コード発生器11から発生される所望の信号に対応する拡散コードに基づいて信号I2、Q2について相関演算を行うことにより逆拡散を行い、2つの相関ピーク信号(相関値)I3、Q3を検波器7、相関レベル検出部10に出力する。この2つの相関ピーク信号I3、Q3は、所望の信号のみに対応するものとなっている。従って、検波器7により、相関ピーク信号I3、Q3に対して検波処理を行うことにより、所望の通信データI4、Q4が復元される。
【0023】
次に、AGCについて、詳細に説明する。
【0024】
A/Dコンバータ5の出力であるI2、Q2の2つの信号から、(I2+Q2)の演算を実行すると、アンテナ1からコンバータ5までの信号の流れで受信された信号の全エネルギーに比例した信号を得ることができる。このエネルギーレベル信号を利用してVGA3の利得を制御することにより、信号I1とQ1の信号レベルをアンテナ1にて受信された信号レベルに関係なく一定にすることが可能となる。
【0025】
図1の例では、信号12,Q2を電力演算部9により、(I2+Q2)に相当する演算を行って総受信電力値を求める。その総電力演算値によりAGC制御部8にてVGA3を制御して、l1、Q1を総受信電力値に対して一定となるように制御する。以下、このAGCループを電力演算によるAGCと呼ぶ。
【0026】
電力演算によるAGCは、ディジタル信号I2、Q2がチップレート(拡散変調信号の周波数)の2倍程度の高速なレートで出力するため、高速な応答のAGCを形成することが可能になる。しかし、CDMA方式においては、受信信号には、本受信装置が受信したい信号、すなわち本受信装置の使用している拡散コードでスペクトラム拡散変調された信号以外に、他の受信装置に対応する別の拡散コードでスペクトラム拡散変調された信号や隣接セルの基地局からの信号など、本受信装置にとってはノイズとなる成分も含まれている。そのため、本受信装置では、それら全ての成分が加わった信号として受信する。
【0027】
相関演算器6より前の回路では、上記ノイズ成分を含む信号から、本受信装置で受信を所望する信号成分のみを分離することはできないので、信号I2、Q2は、やはり本受信装置が所望する信号成分以外のノイズ成分を含むこととなる。従って、電力演算部9により演算される受信電力値は、このノイズ成分を含む総受信電力値となる。その結果、AGC制御部8により、この総受信電力値を使用してVGA3の利得を制御したとしても、その制御は、総受信電力を一定とするものとなり、本受信装置が所望する信号以外のノイズ成分の状態により、相関演算器6から出力される相関レベルは変化することになる。これにより、後段の検波部7へ出力する相関ピーク信号のレベルがばらつき、検波処理の精度に影響を与える。
【0028】
そこで、本受信装置では、上記の問題を解決すべく、電力演算によるAGCを行うと共に、以下に説明するように、相関レベル検出部10の出力結果をも利用してAGCを行っている。
【0029】
すなわち、相関演算器6では、複数の拡散コードに基づいてスペクトラム拡散変調されて多重化された受信信号の中から、所望の信号を検出するために、所望の信号のスペクトラム拡散変調に使用された拡散コードをコード発生器11から得て、その所望信号に対応する拡散コードに基づいて相関演算を行い、相関ピーク信号(相関値)I3、Q3を出力する。この相関ピーク信号I3、Q3の信号レベルは、所望信号のレベルにのみ比例している。そこで、相関レベル検出部10では、相関ピークI3、Q3のレベル値をI,Q成分それぞれについて求める。そして、AGC制御部8では、この相関ピークI3、Q3のレベル値に基づいてVGA3の利得を制御することにより、受信信号のうち、所望の信号成分に対応する相関ピーク信号I3、Q3の信号レベルが一定となるようにする。以下、このAGCループを相関レベルによるAGCと呼ぶ。
【0030】
しかし、この相関レベルによるAGCでは、相関演算器6による相関ピーク信号の検出が拡散コードの1周期に1つとなるため、時間的にはレートの低い出力しか得られない。そのために、AGCの応答としては遅いものとなるため、AGCで制御された出力値が期待するレベルに安定するまでの時間を要する。そこで、AGC制御部8は、以下に説明するように、電力演算部9からの総受信電力の信号と、相関レベル検出部10からの所望の受信信号の信号レベル値の両方を利用してVGA3を制御する。
【0031】
すなわち、初期状態を本受信装置が信号をなにも受信していない状態とすると、初期状態では電力演算部9も、相関レベル検出部10も出力する信号は非常に低いレベルとなるため、AGC制御部8はVGA3の利得を最大として、無線信号の到来を待っている。この状態から本受信装置が送信機からの送信信号を受信すると、応答の早い電力演算部9からの総受信電力値が出力されるまでの過渡状態では、VGA3およびRF部2は増幅率が最大となっているため飽和状態となる。
【0032】
電力演算部9からの出力が入力の飽和に応答して上昇するに従い、AGC制御部8はVGA3の利得を落とすことにより、信号I2、Q2における総受信電力レベルを一定とする。この最終安定値に対して予め設定された誤差範囲に到達した段階で、AGC制御部8は制御ループを相関レベルによるAGCに切り替える。
【0033】
相関レベルによるAGCでは、総受信電力のうち、コード発生器11から発生された拡散コードと相関のある信号成分、すなわち本受信装置で受信を所望する信号成分の相関レベルのみに基づいてAGCをかけるため、I3、Q3では所望の信号成分I3、Q3を一定とすることが可能となる。
【0034】
この相関レベルによるAGCを行った場合のVGA3の利得安定レベルと、先の受信電力によるAGCを行った場合のVGA3の利得安定レベルとは異なる。従って、相関レベルによるAGCの結果、受信電力によるAGCの予め設定された誤差範囲を超えてしまうことも考えられるが、AGC制御部8は、この状態ではそのまま相関レベルによるAGCによる制御を継続する。そして、相関レベルによるAGCについても別途、誤差範囲を予め設定しておき、この誤差範囲を超えた場合にのみ、受信電力によるAGCに移行するようにしている。
【0035】
このように、ペクトラム拡散変調信号を受信した初期の段階では電力演算部9にて演算された受信信号の電力に基づいてVGA3の利得を制御し、この制御により受信電力が或る程度安定した後に相関レベル検出部10により検出された相関ピーク信号の信号レベルに基づいてVGA3の利得を制御することにより、受信信号レベルが大きく変化した場合の応答が相関レベルのみを利用した場合と比較して高速になり、また受信信号レベルが瞬時に大きな変化をした場合の飽和状態からの復帰が高速となる。さらに、安定時には相関レベルによる自動利得制御となるため、所望の信号成分にのみ注目した制御が可能となり、高精度な自動利得制御が可能となる。すなわち、自動利得制御において高速性と高精度性とを両立することができる。
【0036】
なお、上記説明では、スペクトラム拡散変調時に使用される拡散コード系列については言及していないが、本発明は、この拡散コード系列として、M系列(Maximam Length Code)、Gold符号系列等の各種のPN系列(Pseudorandam Noise)等を使用した場合にも適用することができる。
【0037】
【発明の効果】
以上説明したように、本発明によれば、スペクトラム拡散変調信号を復調可能な受信装置において、受信に係るスペクトラム拡散変調信号を利得を変更可能に増幅する可変利得増幅手段と、前記可変利得増幅手段により増幅されたスペクトラム拡散変調信号を直交復調する直交復調手段と、前記直交復調手段により直交復調された2つの直交復調信号に対して拡散コードにより相関演算を行うことにより逆拡散を行う相関演算手段と、前記直交復調手段により直交復調された2つの直交復調信号から受信電力を演算する電力演算手段と、前記相関演算手段により相関演算されて出力された相関ピーク信号に基づいて受信に係るスペクトラム拡散変調信号の信号レベルを検出する相関レベル検出手段と、前記電力演算手段と相関レベル検出手段の処理結果に基づいて前記可変利得増幅手段の利得を制御する利得制御手段とを備え、前記利得制御手段は、前記相関レベル検出手段の処理結果に基づいて前記可変利得増幅手段の利得を制御した結果、前記スペクトラム拡散変調信号の信号レベルが予め設定された誤差範囲を逸脱した場合には、前記電力演算手段の処理結果に基づく前記可変利得増幅手段の利得制御に切り換えるように構成したので、受信したスペクトラム拡散変調信号を増幅する際の自動利得制御を高速、且つ高精度に行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る受信装置の概略構成を示すブロック図である。
【図2】従来の第1の受信装置例の概略構成を示すブロック図である。
【図3】従来の第2の受信装置例の概略構成を示すブロック図である。
【図4】相関ピーク信号を示す図である。
【符号の説明】
3 VGA(利得可変増幅器)
4 直交復調器
5 A/D変換器
6 相関演算器
7 検波器
8 AGC制御部
9 電力演算部
10 相関レベル検出部
11 コード発生器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a receiving apparatus capable of demodulating a spread spectrum modulation signal, and more particularly to an AGC (Automatic Gain Control) technique for amplifying a received signal.
[0002]
[Prior art]
At present, CDMA (Code Division Multiple Access) is attracting attention as a next-generation communication method for cellular phones and the like. This CDMA system applies spread spectrum technology as a basic technology. Communication data is reproduced by performing spread modulation with a pseudo-noise sequence code (spreading code) on the transmission side and performing despread demodulation on the reception side using the same code used on the transmission side. As this spreading code, a combination of a plurality of codes orthogonal to each other (that is, the result of multiplying and integrating two signals becomes zero) can be used. Using this plurality of sets of orthogonal codes, for example, the base station allocates this plurality of sets of orthogonal codes to a plurality of mobile stations that communicate with each other, and multiplexes signals that are spread-modulated with these sets of codes and transmits them simultaneously. To do. Each mobile station can extract only a desired signal from the multiplexed signals by despreading using a code corresponding to the signal desired to be received.
[0003]
As described above, in spread spectrum communication reception processing, despreading processing is performed using the same code as that on the transmission side. For this despreading processing, a correlation filter or a correlation calculator such as a sliding correlator is used. The correlation signal of the received signal by this correlation calculator is as shown in FIG. 4, and the transmission data is reproduced from the peak (correlation peak) of this signal waveform. The level of the correlation peak is proportional to the level of the received signal input to the correlation calculator.
[0004]
Examples of conventional receiving apparatuses are shown in FIGS. Conventionally, in the example of FIG. 2, after the signals I1 and Q1 separated into the I component and the Q component by the quadrature demodulator 4 are A / D converted, the received power value is obtained by obtaining the square sum of I and Q, Using this result, the gain of a VGA (Variable Gain Amplifier) 3 is controlled by the AGC control unit so that the signal level input to the A / D converter 5 is constant regardless of fluctuations in radio propagation. Value.
[0005]
In the example of FIG. 3, the correlation calculation is executed with a spread code corresponding to a signal desired to be received among a plurality of spread codes used in the spread spectrum modulation process. As a result, by obtaining the correlation peak of the waveform shown in FIG. 4 and performing AGC according to the level of the correlation peak, it is possible to accurately control the gain for the desired signal component.
[0006]
[Problems to be solved by the invention]
However, in the example of FIG. 2, the feedback control of AGC is sampled at the sample rate of the A / D converter 5 (this sample rate is usually more than twice the chip rate, that is, the frequency of the spread signal in the CDMA system). Since the power calculation is performed for each of them, a high-speed AGC that can follow the fluctuation of the input signal at high speed can be realized. On the other hand, in order to perform AGC on the entire power of signals including all interfering waves, such as multiplexed signals sent from the base station to each mobile device and signals from the base station of the adjacent cell. The AGC accuracy for the signal component to be demodulated cannot be expected.
[0007]
On the other hand, in the example of FIG. 3, the autocorrelation component of the received signal to be demodulated is extracted by the correlation calculator 6 such as a matched filter, and AGC control is performed based on the signal level of the correlation peak signal. Since the AGC accuracy with respect to the desired signal component is good compared to the above, the deterioration of the demodulation characteristics in the subsequent stage can be reduced. However, since the correlation peak occurs only once in one cycle of the spread code generated by the code generator 11, the AGC The signal input to the control unit 8 is thinned out in time, and the AGC response is delayed.
[0008]
Further, considering the case where the level of the correlation peak is lowered to be lower than the maximum receiving sensitivity, the correlation peak is not detected at this time, and the output of the correlation calculator 6 is a cross-correlation from a signal spread by another spreading code. The AGC at this time adjusts the gain of the VGA 3 so that the noise reaches a predetermined threshold value.
[0009]
Normally, the output from the correlation calculator 6 due to a signal having no autocorrelation is small. Therefore, when the gain of the VGA 3 is increased until the threshold value is exceeded, the RF section 2 in the previous stage operates with the total power waveform, so the signal As a result, the level rises, and the RF unit 2 and VGA 3 which are analog circuits enter a saturation region. When a signal having a level within the reception sensitivity range comes in from this state, the saturated analog circuit is restored from the saturated state, and the restoration takes a longer time than the normal response.
[0010]
The present invention has been made under such a background, and an object thereof is to enable automatic gain control at a high speed and high accuracy when a received spread spectrum signal is amplified.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a receiving apparatus capable of demodulating a spread spectrum modulation signal by means of variable gain amplification means for amplifying the spread spectrum modulation signal related to reception so that the gain can be changed, and the variable gain amplification means. Orthogonal demodulation means for orthogonally demodulating the amplified spread spectrum modulation signal, and correlation calculation means for performing despreading by performing a correlation operation on the two orthogonal demodulated signals orthogonally demodulated by the orthogonal demodulation means using a spreading code; A power calculating means for calculating received power from two orthogonally demodulated signals orthogonally demodulated by the orthogonal demodulating means, and spread spectrum modulation related to reception based on the correlation peak signal output by correlation calculation by the correlation calculating means Correlation level detection means for detecting the signal level of the signal, the power calculation means and the correlation level detection means And a gain control means for controlling the gain of said variable gain amplifying means based on management result, said gain control means as a result of controlling the gain of said variable gain amplifying means based on the processing result of the correlation level detecting means When the signal level of the spread spectrum modulation signal deviates from a preset error range, the variable gain amplifying unit is switched to gain control based on the processing result of the power calculating unit .
[0012]
According to another aspect of the present invention, there is provided a receiving method for receiving a spread spectrum modulation signal, a variable gain amplification step for amplifying the spread spectrum modulation signal related to reception by a variable gain amplification means so that the gain can be changed, and amplification by the variable gain amplification step. An orthogonal demodulation step of orthogonally demodulating the spread spectrum modulated signal, a correlation calculation step of performing despreading by performing a correlation operation with a spreading code on the two orthogonal demodulated signals orthogonally demodulated by the orthogonal demodulation step;
A power calculation step of calculating received power from two orthogonal demodulated signals orthogonally demodulated by the orthogonal demodulation step, and a spread spectrum modulation signal related to reception based on a correlation peak signal output by correlation calculation by the correlation calculation step A correlation level detection step of detecting the signal level of
And a gain control step of controlling the gain of said variable gain amplifying means based on the processing result of the power calculation step and the correlation level detection step, said gain control step, on the basis of the processing result of the correlation level detection step As a result of controlling the gain of the variable gain amplifying means, if the signal level of the spread spectrum modulation signal deviates from a preset error range, the gain control of the variable gain amplifying means based on the processing result of the power calculation step It is comprised so that it may switch to .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0019]
FIG. 1 is a block diagram showing a schematic configuration of a receiving apparatus according to an embodiment of the present invention. This apparatus is configured to be able to demodulate a received spread spectrum modulation signal, and includes an antenna 1, an RF unit 2, a VGA ( Variable gain amplifier 3, quadrature demodulator 4, A / D converter 5, correlation calculator 6, detector 7, AGC controller 8, power calculator 9, correlation level detector 10, and code generator 11 is doing.
[0020]
The RF unit 2 performs analog processing such as down-conversion of the high-frequency radio signal received by the antenna 1 and inputs it as a signal that conforms to the input form of the VGA 3 at the next stage. Since the gains of the antenna 1 and the RF unit 2 are always constant, the signal level output from the RF unit 2 becomes a level proportional to the received signal level received from the antenna 1, and the level becomes large due to a change in radio wave propagation status. fluctuate. The VGA 3 is a variable gain amplifier having a function of changing the gain by an external gain control signal, and the gain of the VGA 3 is controlled by the AGC control unit 8 according to the received signal level.
[0021]
In the CDMA system, the received signal is orthogonally modulated in such a way as to include an I component and a Q component that are orthogonal to each other. Therefore, the quadrature demodulator 4 demodulates the signal by separating two orthogonal components from the received signal whose level is constant in a series of AGC loops including the VGA 3, and outputs signals I1 and Q1. The output signals I1 and Q1 from the quadrature demodulator 4 are converted into digital values by the A / D converter 5 and output to the correlation calculator 6 and the power calculator 9 as digital signals I2 and Q2, respectively. However, the digital signals I2 and Q2 include components corresponding to all the spread codes used for the spread spectrum modulation process at the time of transmission.
[0022]
The correlation calculator 6 performs despreading by performing correlation calculation on the signals I2 and Q2 based on the spreading code corresponding to the desired signal generated from the code generator 11, and performs two correlation peak signals (correlation values). I3 and Q3 are output to the detector 7 and the correlation level detector 10. These two correlation peak signals I3 and Q3 correspond to only desired signals. Accordingly, the detector 7 performs detection processing on the correlation peak signals I3 and Q3, thereby restoring desired communication data I4 and Q4.
[0023]
Next, AGC will be described in detail.
[0024]
When the calculation of (I 2 + Q 2 ) is executed from the two signals I 2 and Q 2 that are the outputs of the A / D converter 5, it is proportional to the total energy of the signal received in the signal flow from the antenna 1 to the converter 5. Signal can be obtained. By controlling the gain of the VGA 3 using this energy level signal, the signal levels of the signals I 1 and Q 1 can be made constant regardless of the signal level received by the antenna 1.
[0025]
In the example of FIG. 1, the signals 12 and Q2 are calculated by the power calculation unit 9 corresponding to (I 2 + Q 2 ) to obtain the total received power value. The AGC control unit 8 controls the VGA 3 based on the total power calculation value so that l1 and Q1 are constant with respect to the total received power value. Hereinafter, this AGC loop is referred to as AGC by power calculation.
[0026]
Since the AGC based on the power calculation outputs the digital signals I2 and Q2 at a high rate that is about twice the chip rate (frequency of the spread modulation signal), it is possible to form an AGC with a high-speed response. However, in the CDMA system, the received signal includes other signals corresponding to other receiving apparatuses, in addition to a signal that the receiving apparatus wants to receive, that is, a signal that is spread spectrum modulated by the spreading code used by the receiving apparatus. Components that become noise for the receiving apparatus, such as a signal spread spectrum modulated with a spreading code and a signal from a base station of an adjacent cell, are also included. For this reason, the receiving apparatus receives the signal as a signal in which all the components are added.
[0027]
Since the circuit before the correlation calculator 6 cannot separate only the signal components desired to be received by the receiving apparatus from the signal including the noise component, the signals I2 and Q2 are also desired by the receiving apparatus. A noise component other than the signal component is included. Therefore, the received power value calculated by the power calculator 9 is the total received power value including this noise component. As a result, even if the gain of the VGA 3 is controlled by the AGC control unit 8 using this total received power value, the control makes the total received power constant, and other than the signal desired by the receiving apparatus. Depending on the state of the noise component, the correlation level output from the correlation calculator 6 changes. As a result, the level of the correlation peak signal output to the detection unit 7 at the subsequent stage varies, which affects the accuracy of the detection process.
[0028]
Therefore, in this receiving apparatus, in order to solve the above-described problem, AGC is performed using power calculation and, as will be described below, AGC is also performed using the output result of the correlation level detection unit 10.
[0029]
That is, the correlation calculator 6 is used for spread spectrum modulation of a desired signal in order to detect a desired signal from received signals that have been spread spectrum modulated and multiplexed based on a plurality of spread codes. A spread code is obtained from the code generator 11, a correlation operation is performed based on the spread code corresponding to the desired signal, and correlation peak signals (correlation values) I3 and Q3 are output. The signal levels of the correlation peak signals I3 and Q3 are proportional only to the level of the desired signal. Therefore, the correlation level detection unit 10 obtains the level values of the correlation peaks I3 and Q3 for the I and Q components, respectively. Then, the AGC controller 8 controls the gain of the VGA 3 based on the level values of the correlation peaks I3 and Q3, so that the signal levels of the correlation peak signals I3 and Q3 corresponding to the desired signal component in the received signal. To be constant. Hereinafter, this AGC loop is referred to as AGC based on the correlation level.
[0030]
However, in the AGC based on this correlation level, since the correlation peak signal is detected by the correlation calculator 6 once in one cycle of the spread code, only an output with a low rate can be obtained in terms of time. Therefore, since the response of AGC is slow, it takes time for the output value controlled by AGC to stabilize to the expected level. Therefore, the AGC control unit 8 uses both the signal of the total reception power from the power calculation unit 9 and the signal level value of the desired reception signal from the correlation level detection unit 10 as described below, to make the VGA 3 To control.
[0031]
That is, assuming that the initial state is a state in which the receiving apparatus has not received any signal, the signals output by both the power calculation unit 9 and the correlation level detection unit 10 are very low in the initial state. The control unit 8 waits for the arrival of a radio signal with the gain of the VGA 3 being maximized. In this state, when the receiving apparatus receives a transmission signal from the transmitter, the VGA 3 and the RF unit 2 have the maximum amplification factor in a transient state until the total received power value from the power calculating unit 9 with quick response is output. Therefore, it becomes saturated.
[0032]
As the output from the power calculation unit 9 rises in response to input saturation, the AGC control unit 8 reduces the gain of the VGA 3 so that the total received power level in the signals I 2 and Q 2 is constant. When the error range set in advance for the final stable value is reached, the AGC control unit 8 switches the control loop to AGC based on the correlation level.
[0033]
In the AGC based on the correlation level, the AGC is applied based only on the signal component correlated with the spreading code generated from the code generator 11 out of the total received power, that is, the correlation level of the signal component desired to be received by the receiving apparatus. Therefore, the desired signal components I3 and Q3 can be made constant in I3 and Q3.
[0034]
The gain stability level of VGA 3 when AGC is performed based on this correlation level is different from the gain stability level of VGA 3 when AGC is performed based on the previous received power. Accordingly, it is conceivable that the error range of the AGC based on the reception power exceeds the preset error range as a result of the AGC based on the correlation level. However, in this state, the AGC control unit 8 continues the control based on the AGC based on the correlation level. In addition, an error range is set in advance separately for the AGC based on the correlation level, and only when the error range is exceeded, the AGC is shifted to the AGC based on the received power.
[0035]
In this way, at the initial stage of receiving the spectrum spread modulation signal, the gain of the VGA 3 is controlled based on the power of the received signal calculated by the power calculation unit 9, and the received power is stabilized to some extent by this control. By controlling the gain of the VGA 3 based on the signal level of the correlation peak signal detected by the correlation level detection unit 10, the response when the received signal level changes greatly is faster than when only the correlation level is used. In addition, when the received signal level changes instantaneously, the recovery from the saturated state becomes faster. Furthermore, since automatic gain control is performed based on the correlation level at the time of stabilization, it is possible to perform control with attention paid only to a desired signal component, and high-accuracy automatic gain control is possible. That is, it is possible to achieve both high speed and high accuracy in automatic gain control.
[0036]
In the above description, the spread code sequence used at the time of spread spectrum modulation is not mentioned. However, the present invention is not limited to the spread code sequence, and various PNs such as an M sequence (Maximum Length Code) and a Gold code sequence. The present invention can also be applied when a series (Pseudorand Noise) or the like is used.
[0037]
【The invention's effect】
As described above, according to the present invention, in the receiving apparatus capable of demodulating the spread spectrum modulation signal, the variable gain amplification means for amplifying the spread spectrum modulation signal related to reception so that the gain can be changed, and the variable gain amplification means Orthogonal demodulation means for orthogonally demodulating the spread spectrum modulated signal amplified by the above, and correlation calculation means for performing despreading by performing a correlation operation on the two orthogonally demodulated signals orthogonally demodulated by the orthogonal demodulation means using a spreading code Power calculation means for calculating received power from two orthogonally demodulated signals orthogonally demodulated by the orthogonal demodulation means, and spread spectrum related to reception based on the correlation peak signal output by correlation calculation by the correlation calculation means Correlation level detection means for detecting the signal level of the modulation signal, the power calculation means and the correlation level detection means Based on the processing results and a gain control means for controlling the gain of said variable gain amplifying means, said gain control means as a result of controlling the gain of said variable gain amplifying means based on the processing result of the correlation level detecting means When the signal level of the spread spectrum modulation signal deviates from a preset error range, it is configured to switch to the gain control of the variable gain amplifying unit based on the processing result of the power calculating unit . Automatic gain control when a spread spectrum modulation signal is amplified can be performed at high speed and with high accuracy.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of a receiving apparatus according to an embodiment of the present invention.
FIG. 2 is a block diagram showing a schematic configuration of a first conventional receiving apparatus example.
FIG. 3 is a block diagram showing a schematic configuration of a second conventional receiving apparatus example.
FIG. 4 is a diagram showing a correlation peak signal.
[Explanation of symbols]
3 VGA (variable gain amplifier)
4 Quadrature Demodulator 5 A / D Converter 6 Correlation Calculator 7 Detector 8 AGC Controller 9 Power Calculator 10 Correlation Level Detector 11 Code Generator

Claims (8)

スペクトラム拡散変調信号を復調可能な受信装置において、
受信に係るスペクトラム拡散変調信号を利得を変更可能に増幅する可変利得増幅手段と、
前記可変利得増幅手段により増幅されたスペクトラム拡散変調信号を直交復調する直交復調手段と、
前記直交復調手段により直交復調された2つの直交復調信号に対して拡散コードにより相関演算を行うことにより逆拡散を行う相関演算手段と、
前記直交復調手段により直交復調された2つの直交復調信号から受信電力を演算する電力演算手段と、
前記相関演算手段により相関演算されて出力された相関ピーク信号に基づいて受信に係るスペクトラム拡散変調信号の信号レベルを検出する相関レベル検出手段と、
前記電力演算手段と相関レベル検出手段の処理結果に基づいて前記可変利得増幅手段の利得を制御する利得制御手段とを備え
前記利得制御手段は、前記相関レベル検出手段の処理結果に基づいて前記可変利得増幅手段の利得を制御した結果、前記スペクトラム拡散変調信号の信号レベルが予め設定された誤差範囲を逸脱した場合には、前記電力演算手段の処理結果に基づく前記可変利得増幅手段の利得制御に切り換えることを特徴とする受信装置。
In a receiving device capable of demodulating a spread spectrum modulation signal,
Variable gain amplifying means for amplifying the spread spectrum modulation signal related to reception so that the gain can be changed;
Orthogonal demodulation means for orthogonally demodulating the spread spectrum modulation signal amplified by the variable gain amplification means;
Correlation calculating means for performing despreading by performing a correlation calculation with a spreading code on the two orthogonal demodulated signals orthogonally demodulated by the orthogonal demodulating means;
Power calculating means for calculating received power from two orthogonal demodulated signals orthogonally demodulated by the orthogonal demodulating means;
Correlation level detection means for detecting a signal level of a spread spectrum modulation signal related to reception based on a correlation peak signal output after correlation calculation by the correlation calculation means;
And a gain control means for controlling the gain of said variable gain amplifying means based on the processing result of the correlation level detecting means and the power computing means,
The gain control means controls the gain of the variable gain amplification means based on the processing result of the correlation level detection means, and as a result, the signal level of the spread spectrum modulation signal deviates from a preset error range. The receiving apparatus switches to gain control of the variable gain amplifying means based on the processing result of the power calculating means .
前記可変利得増幅手段、及び直交復調手段は、アナログ信号としての前記スペクトラム拡散変調信号に対して処理を行うことを特徴とする請求項1記載の受信装置。  The receiving apparatus according to claim 1, wherein the variable gain amplifying unit and the quadrature demodulating unit process the spread spectrum modulation signal as an analog signal. 前記相関演算手段は、デジタル信号に変換された前記2つの直交復調信号に対して処理を行うことを特徴とする請求項2記載の受信装置。  The receiving apparatus according to claim 2, wherein the correlation calculation unit performs processing on the two quadrature demodulated signals converted into digital signals. 前記利得制御手段は、前記スペクトラム拡散変調信号を受信した初期の段階では前記電力演算手段の処理結果に基づいて前記可変利得増幅手段の利得を制御し、該制御により受信電力が或る程度安定した後に前記相関レベル検出手段の処理結果に基づいて前記可変利得増幅手段の利得を制御することを特徴とする請求項1記載の受信装置。The gain control means controls the gain of the variable gain amplifying means based on the processing result of the power calculation means at the initial stage of receiving the spread spectrum modulation signal, and the received power is stabilized to some extent by the control. 2. The receiving apparatus according to claim 1, wherein a gain of the variable gain amplifying unit is controlled later based on a processing result of the correlation level detecting unit. スペクトラム拡散変調信号を受信する受信方法において、
受信に係るスペクトラム拡散変調信号を可変利得増幅手段により利得を変更可能に増幅する可変利得増幅工程と、
前記可変利得増幅工程により増幅されたスペクトラム拡散変調信号を直交復調する直交復調工程と、
前記直交復調工程により直交復調された2つの直交復調信号に対して拡散コードにより相関演算を行うことにより逆拡散を行う相関演算工程と、
前記直交復調工程により直交復調された2つの直交復調信号から受信電力を演算する電力演算工程と、
前記相関演算工程により相関演算されて出力された相関ピーク信号に基づいて受信に係るスペクトラム拡散変調信号の信号レベルを検出する相関レベル検出工程と、
前記電力演算工程と相関レベル検出工程の処理結果に基づいて前記可変利得増幅手段の利得を制御する利得制御工程とを備え
前記利得制御工程は、前記相関レベル検出工程の処理結果に基づいて前記可変利得増幅手段の利得を制御した結果、前記スペクトラム拡散変調信号の信号レベルが予め設定された誤差範囲を逸脱した場合には、前記電力演算工程の処理結果に基づく前記可変利得増幅手段の利得制御に切り換えることを特徴とする受信方法。
In a receiving method for receiving a spread spectrum modulation signal,
A variable gain amplifying step for amplifying the spread spectrum modulation signal related to reception so that the gain can be changed by a variable gain amplifying means ;
An orthogonal demodulation step of orthogonally demodulating the spread spectrum modulation signal amplified by the variable gain amplification step;
A correlation calculation step of performing despreading by performing a correlation calculation with a spreading code on the two orthogonally demodulated signals orthogonally demodulated by the orthogonal demodulation step;
A power calculation step of calculating received power from two orthogonal demodulated signals orthogonally demodulated by the orthogonal demodulation step;
A correlation level detection step of detecting a signal level of a spread spectrum modulation signal related to reception based on the correlation peak signal output by correlation calculation in the correlation calculation step;
And a gain control step of controlling the gain of said variable gain amplifying means based on the processing result of the power calculation step and the correlation level detection step,
In the gain control step, when the gain of the variable gain amplifying means is controlled based on the processing result of the correlation level detection step, the signal level of the spread spectrum modulation signal deviates from a preset error range. The receiving method is characterized by switching to gain control of the variable gain amplifying means based on the processing result of the power calculation step .
前記可変利得増幅工程、及び直交復調工程は、アナログ信号としての前記スペクトラム拡散変調信号に対して処理を行うことを特徴とする請求項記載の受信方法。6. The receiving method according to claim 5 , wherein the variable gain amplification step and the quadrature demodulation step perform processing on the spread spectrum modulation signal as an analog signal. 前記相関演算工程は、デジタル信号に変換された前記2つの直交復調信号に対して処理を行うことを特徴とする請求項記載の受信方法。The receiving method according to claim 6 , wherein the correlation calculation step performs processing on the two quadrature demodulated signals converted into digital signals. 前記利得制御工程は、前記スペクトラム拡散変調信号を受信した初期の段階では前記電力演算工程の処理結果に基づいて前記可変利得増幅手段の利得を制御し、該制御により受信電力が或る程度安定した後に前記相関レベル検出工程の処理結果に基づいて前記可変利得増幅手段の利得を制御することを特徴とする請求項記載の受信方法。In the initial stage of receiving the spread spectrum modulation signal, the gain control step controls the gain of the variable gain amplification means based on the processing result of the power calculation step, and the received power is stabilized to some extent by the control. 6. The receiving method according to claim 5, wherein the gain of the variable gain amplifying means is controlled later based on the processing result of the correlation level detecting step.
JP11283198A 1998-04-09 1998-04-09 Receiving apparatus and receiving method Expired - Fee Related JP3912896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11283198A JP3912896B2 (en) 1998-04-09 1998-04-09 Receiving apparatus and receiving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11283198A JP3912896B2 (en) 1998-04-09 1998-04-09 Receiving apparatus and receiving method

Publications (2)

Publication Number Publication Date
JPH11298376A JPH11298376A (en) 1999-10-29
JP3912896B2 true JP3912896B2 (en) 2007-05-09

Family

ID=14596635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11283198A Expired - Fee Related JP3912896B2 (en) 1998-04-09 1998-04-09 Receiving apparatus and receiving method

Country Status (1)

Country Link
JP (1) JP3912896B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4470978B2 (en) 2007-08-30 2010-06-02 トヨタ自動車株式会社 Receiving apparatus and wireless communication system
JP6180953B2 (en) * 2014-02-05 2017-08-16 パナソニック株式会社 Receiver
CN107222179A (en) * 2017-06-15 2017-09-29 哈尔滨工业大学 With large gain scope, the linear VGA circuits of high-precision double control voltage dB

Also Published As

Publication number Publication date
JPH11298376A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
EP0673125B1 (en) Automatic gain control apparatus and method for a spread spectrum signal receiver
US6633603B2 (en) Code tracking loop with automatic power normalization
KR100199237B1 (en) Inverse spread code phase detector in ss receiver
JP3444270B2 (en) Array antenna receiver calibration system
EP1741182B1 (en) System and method for adaptively controlling receiver gain switch points
US6590888B1 (en) Cellar system, mobile portable apparatus, base station apparatus, optimum path detecting method, and apparatus thereof
JP2624964B2 (en) Wireless communication device
EP0984576B1 (en) Rake receiver for direct spreading cdma transmission
KR20040092383A (en) A wireless receiver and a method of processing wireless signal
KR19990044064A (en) Gain Control Method and System Based on Non-Orthogonal Noise Energy
US7106783B2 (en) Method and apparatus for searching multipaths of mobile communication system
KR20010072319A (en) Communication device
US6289036B1 (en) Spread spectrum communication apparatus and method
JP3912896B2 (en) Receiving apparatus and receiving method
JPH07240702A (en) Spread spectrum communication equipment
KR100280027B1 (en) Receiver
US6700921B1 (en) Spread-spectrum communication apparatus
KR100454933B1 (en) Signal interference ratio measuring apparatus for controlling power of forward link, and signal interference ratio measuring method in code division multiple access system
KR100363907B1 (en) Auto frequency tracking control apparatus and method
JP2705428B2 (en) Spread spectrum communication receiver
JP4336009B2 (en) Spread spectrum modulation / demodulation method and apparatus
KR100551857B1 (en) Method and apparatus for searching multipaths in IMT-2000
US7039100B2 (en) Detection of correlation between detected transmissions from multiple base stations and a known code in a mobile telecommunications system
JP2001313588A (en) Power measurement unit for measuring reception signal power and reception interference power
JPH10173626A (en) Receiver for direct diffusion cdma transmission system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees