JP3912878B2 - Method for producing SiF4 from phosphoric acid production process - Google Patents

Method for producing SiF4 from phosphoric acid production process Download PDF

Info

Publication number
JP3912878B2
JP3912878B2 JP34308097A JP34308097A JP3912878B2 JP 3912878 B2 JP3912878 B2 JP 3912878B2 JP 34308097 A JP34308097 A JP 34308097A JP 34308097 A JP34308097 A JP 34308097A JP 3912878 B2 JP3912878 B2 JP 3912878B2
Authority
JP
Japan
Prior art keywords
sulfuric acid
sif
phosphoric acid
silicofluoride
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34308097A
Other languages
Japanese (ja)
Other versions
JPH10338514A (en
Inventor
功 原田
剛 安武
博行 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP34308097A priority Critical patent/JP3912878B2/en
Publication of JPH10338514A publication Critical patent/JPH10338514A/en
Application granted granted Critical
Publication of JP3912878B2 publication Critical patent/JP3912878B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、SiFの製造方法に関するもので、更に詳しくは燐酸製造プロセスからSiFを製造する方法に関する。
【0002】
【従来の技術】
SiFは、含フッ素アモルファスシリコン膜の原料として、あるいは光ファイバー用配線の原料として使用されている。
この製造方法も数多く知られており、代表的なものとしては、濃硫酸存在下でHFとSiOを反応させる方法(特公昭59−34130号公報)、または珪フッ化水素酸水溶液を濃硫酸中で分解する方法、あるいはNaSiFやBaSiF等の金属珪弗化物を熱分解する方法がある。
しかし、このSiFのみを単独で製造すると、コストが高くなり、副生物の処理など、経済性や処理対策の問題がある。
【0003】
【発明が解決しようとする課題】
本発明の目的は、燐酸製造プロセスから高純度のSiFを安価に製造する方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明者らは、鋭意検討を重ねた結果、燐鉱石より燐酸を製造する工程で、該プロセスから排出される珪フッ化水素酸を利用し、SiFガスを連続的に製造することでコストの低減並びに高純度化を図ることを見い出した。
【0005】
即ち、本発明は 燐鉱石と硫酸液を接触させ、燐酸を製造する方法に於いて、該燐鉱石と該硫酸液を接触する際に酸化ケイ素を添加し、石膏と粗燐酸をろ過工程で分離し得られた粗燐酸を濃縮し、発生する珪フッ化水素酸にアルカリ化合物を添加し珪フッ化物とし、該珪フッ化物を濃硫酸で分解しSiFを発生させた後、余剰の硫酸及び副生物を燐鉱石と硫酸液を接触させる反応槽に戻すことを特徴とする燐酸製造プロセスからSiFを製造する方法に関する。
【0006】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明SiFの製造は、燐酸製造プロセスが燐鉱石を原料とし、燐酸と石膏を生産する能力を有するプロセスに於いて、有用に利用できる。
燐鉱石の主成分を化学式で示すとCa10(POで表され、一般的に、この燐鉱石と硫酸液を反応槽で撹拌することによって、下式(1)に示すように二水石膏と燐酸液が得られる。
【0007】

Figure 0003912878
本発明は、上記、主反応(1)式で生成するHFを酸化ケイ素を加えることによって、下式(2)に示すように珪フッ化水素酸とすることにある。
【0008】
尚、燐鉱石中にも幾分酸化ケイ素が含まれているので、これを加味し添加する必要がある。
【0009】
6HF+SiO→HSiF+2HO ・・・ (2)
酸化ケイ素の使用量は、燐鉱石中の主成分(Ca10(PO)1モルに対して0.34モル以下、好ましくは0.32〜0.33の範囲となるように加えるのが好適である。酸化ケイ素の量が0.34モルを超えると、副生する石膏と燐酸分の分離が悪化するので好ましくない。
【0010】
次に、これを遠心ろ過機によって、珪フッ化水素酸を含む粗燐酸と石膏とに分離される。この粗燐酸液を、エバポレーターを用い減圧下で加熱することによって、粗燐酸が濃縮され、また一方、水を含む珪フッ化水素酸の蒸気が発生する。本発明はこの水を含む珪フッ化水素酸をアルカリ化合物と反応させ、珪フッ化物を生成する。
【0011】
アルカリ化合物には、アルカリ属、アルカリ土類金属から選ばれる化合物で、特に酸化物及び水酸化物、炭酸塩が好適に使用される。中でも、Na、Caの酸化物及び水酸化物、炭酸塩は工業的に安価であるので好ましく、更に好ましくはCaの酸化物及び水酸化物、炭酸塩が用いられる。
【0012】
本発明において、珪フッ化物は珪フッ化カルシウムとすることが好ましい理由は、以下の通りである。
ろ過後のケーキまたは乾燥した珪フッ化物を、濃硫酸に接触させ下記(3)式に示す分解反応によってSiFを製造する。そして、ここで副生する固形成分は、初期工程にもどし、初期工程の燐鉱石と硫酸液を接触させて副生する石膏と共に排出される。副生する固形成分の量は、SiFガスの製造量によって変動があり、その量が少量であれば石膏の品質には何ら差し支えはないものの、副生する固形成分の量が多くなると、石膏の品質の安定に弊害をきたす恐れがある。
【0013】
そこで、カルシウム塩としてCa(OH)を用いた場合に於いて、図1の工程図に示すように珪フッ化カルシウムとなし、これを下記(4)式に示す硫酸分解によって、SiFの発生と共に副生する固形成分が石膏となるので、品質を損なうことなく効率よく回収できるのである。
【0014】
SiF+HSO→SiF+MSO+2HF ・・・(3)
CaSiF+HSO→SiF+CaSO+2HF・・・(4)
M=アルカリ属、アルカリ土類金属
n=1〜2
【0015】
次に、珪フッ化物を、濃硫酸に接触させる反応容器について説明する。反応容器の形状は、特に限定するものではないが、図2に示す流通式の槽型反応器や、図3に示すパドルミキサー式の反応器等が使用できる。また接液部、接ガス部はフッ素樹脂でコーティングあるいはライニングすることが望ましい。
本発明で使用する濃硫酸とは、濃度が85重量%以上のものをいい、好ましくは95重量%以上の濃硫酸を使用する。この硫酸の濃度が85重量%未満では、シロキサン(SiF−O−FSi)が生成しSiFガスの純度が低下する結果となるで好ましくない。
【0016】
また、反応器のガス出口には、コンデンサーを設置し10℃以下の冷媒を通液することにより、発生ガス中のフッ化水素及び水分を抑えることができ、高純度なSiFを得ることができる。
本発明の最も意図する特徴は、SiFガスを発生させた後、余剰の硫酸及び副生されるフッ化物、硫酸化合物を燐酸プロセスの初期工程である燐鉱石と硫酸液を接触させる反応槽に戻すことにある。
【0017】
この方法は、産業廃棄物をプロセスの系外に排出せず、殆どを石膏製品として使用することができる。また、余剰の硫酸を再利用することでSiFの製造コストを削減することも可能となった。
【0018】
さらに、活性アルミナ等の吸着剤を用い、これに通気することにより、極微量の水分やフッ化水素等の不純物を除去することにより、さらに高純度のSiFを得ることができる。
【0019】
【実施例】
以下、本発明を実施例をもって説明する。
尚、%は特記しない限り重量パーセントを表す。
実施例1
南アフリカ産燐鉱石を主成分であるCa10(POベースで500t/Dayを主原料とし、これに硫酸を98%換算で496t/Day、水520t/Day、酸化ケイ素を9.9t/Dayを反応槽で混合し、石膏及び珪フッ化水素酸を含む40%粗燐酸液を得た。石膏を分離した後の該粗燐酸液を濃縮工程に導き、エバポレーターにて缶液温度80℃、圧力100torrの条件で燐酸濃度を75%まで濃縮した。ここで発生した蒸気は、おおよそ水分が300t/Day、珪フッ化水素酸24t/Dayであった。この蒸気を凝縮させた後、この一部を水を使用しスラリー化した30%消石灰スラリーを反応槽で混合し、得られた珪フッ化カルシウムをろ過し、更に200℃で乾燥し、これを中間原料とした。
【0020】
次に図2に示す流通式の反応槽1(容積100L)を用い、珪フッ化カルシウム2t/Dayをスクリューフィーダー3により添加した。同時に濃硫酸フィード管4より98%硫酸を10t/Dayで供給し、撹拌機6で混合した。また、コンデンサー7に5℃の冷却水を循環し、同伴する微量の水分やフッ化水素を除去した後、ガス出口管9よりSiFガスを製造した。
余剰の硫酸と副生した石膏は抜液管10より排出し、燐鉱石と硫酸液を接触させる初期工程に戻した。
【0021】
実施例2
30%消石灰スラリーの替わりに30%NaOHを用い珪フッ化ナトリウムを中間原料とした以外は、実施例1と同様に行い、SiFガスを製造した。
尚、余剰の硫酸と副生したNaSOは抜液管10より排出し、燐鉱石と硫酸液を接触させる初期工程に戻し副生する石膏と共に排出した。
【0022】
実施例3
実施例1と同様な方法で得た珪フッ化カルシウムを図3に示すパドルミキサー式の反応器を用い、駆動モーターでパドルを回転させながら、珪フッ化カルシウム2t/Dayをスクリューフィーダー2により添加した。同時に濃硫酸フィードノズル5より98%硫酸を2t/Dayで供給した。発生するSiFガスはコンデンサー7で、同伴する微量の水分やフッ化水素を除去した後、ガス出口管9よりSiFガスを製造した。
液固相は排出口11より排出され燐鉱石と硫酸液を接触させる初期工程に戻した。
【0023】
【発明の効果】
本発明は燐酸製造プロセスから珪フッ化水素酸を副生させ、これにアルカリ化合物を加え珪フッ化物とし、更に濃硫酸を接触させてSiFを製造し、ここで副生する固形成分は、燐鉱石と硫酸の反応で副生する石膏と共に、石膏ボードやセメント添加剤として使用し、また過剰の硫酸は、前工程の燐鉱石と硫酸の反応用としてリサイクルし、SiFを製造する方法である。
また、本発明は燐鉱石中のフッ素の利用法の一つとして、連続プロセスを実用化し、コストの低減を図るものである。
【0024】
【図面の簡単な説明】
【図1】 本発明工程図の一例
【図2】 流通式槽型反応器
【図3】 パドルミキサー式の反応器
【符号の説明】
1 流通式槽型反応器本体
2 パドルミキサー式の反応器本体
3 スクリューフィーダー
4 濃硫酸フィード管
5 濃硫酸フィードノズル
6 撹拌機
7 コンデンサー
8 冷媒循環用配管
9 ガス出口管
10 抜液管
11 排出口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing SiF 4 , and more particularly to a method for producing SiF 4 from a phosphoric acid production process.
[0002]
[Prior art]
SiF 4 is used as a raw material for a fluorine-containing amorphous silicon film or as a raw material for optical fiber wiring.
Many production methods are also known, and representative examples include a method of reacting HF and SiO 2 in the presence of concentrated sulfuric acid (Japanese Patent Publication No. 59-34130), or an aqueous solution of silicofluoric acid with concentrated sulfuric acid. There is a method of decomposing in the inside, or a method of thermally decomposing a metal silicofluoride such as Na 2 SiF 6 or BaSiF 6 .
However, if only this SiF 4 is produced alone, the cost increases, and there are problems of economic efficiency and treatment measures such as treatment of by-products.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing high-purity SiF 4 at low cost from a phosphoric acid production process.
[0004]
[Means for Solving the Problems]
As a result of intensive investigations, the inventors of the present invention have made cost reduction by continuously producing SiF 4 gas using hydrofluoric acid discharged from the process in the step of producing phosphoric acid from the phosphate ore. It was found that the reduction of the purity and the increase in the purity were achieved.
[0005]
That is, according to the present invention, in the method for producing phosphoric acid by bringing the phosphate rock into contact with the sulfuric acid solution, silicon oxide is added when the phosphate rock is brought into contact with the sulfuric acid solution, and gypsum and crude phosphoric acid are separated in the filtration step. The crude phosphoric acid thus obtained was concentrated, an alkali compound was added to the generated hydrofluoric acid to form a silicofluoride, and the silicofluoride was decomposed with concentrated sulfuric acid to generate SiF 4. The present invention relates to a method for producing SiF 4 from a phosphoric acid production process, wherein the by-product is returned to a reaction vessel in which a phosphate ore and a sulfuric acid solution are brought into contact.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The production of the SiF 4 of the present invention can be effectively used in a process in which the phosphoric acid production process has the ability to produce phosphoric acid and gypsum from phosphate ore.
The main component of the phosphate ore is represented by the chemical formula Ca 10 (PO 4 ) 6 F 2. Generally, the phosphate ore and the sulfuric acid solution are stirred in a reaction tank, as shown in the following formula (1). Dihydrate gypsum and phosphoric acid solution are obtained.
[0007]
Figure 0003912878
The present invention resides in that hydrofluoric acid is formed as shown in the following formula (2) by adding silicon oxide to the HF produced in the main reaction (1) formula.
[0008]
In addition, since some silicon oxide is contained in the phosphate ore, it is necessary to add it in consideration of this.
[0009]
6HF + SiO 2 → H 2 SiF 6 + 2H 2 O (2)
The amount of silicon oxide used is 0.34 mol or less, preferably 0.32 to 0.33 with respect to 1 mol of the main component (Ca 10 (PO 4 ) 6 F 2 ) in the phosphate rock. It is preferable to add. If the amount of silicon oxide exceeds 0.34 mol, the separation of by-product gypsum and phosphoric acid content deteriorates, which is not preferable.
[0010]
Next, this is separated into crude phosphoric acid containing silicofluoric acid and gypsum by a centrifugal filter . By heating the crude phosphoric acid solution under reduced pressure using an evaporator, the crude phosphoric acid is concentrated, and on the other hand, hydrosilicofluoric acid vapor containing water is generated. In the present invention, hydrosilicic acid containing water is reacted with an alkali compound to produce a silicofluoride.
[0011]
As the alkali compound, a compound selected from an alkali genus and an alkaline earth metal, and oxides, hydroxides and carbonates are particularly preferably used. Of these, Na, Ca oxides, hydroxides and carbonates are preferred because they are industrially inexpensive, and Ca oxides, hydroxides and carbonates are more preferred.
[0012]
In the present invention, the reason why the silicofluoride is preferably calcium silicofluoride is as follows.
The cake after filtration or dried silicofluoride is brought into contact with concentrated sulfuric acid to produce SiF 4 by a decomposition reaction represented by the following formula (3). The solid component produced as a by-product here is returned to the initial step, and discharged together with the gypsum produced as a by-product by bringing the phosphate rock in the initial step into contact with the sulfuric acid solution. The amount of solid components produced as a by-product varies depending on the production amount of SiF 4 gas, and if the amount is small, the quality of the gypsum is not a problem, but if the amount of solid components produced as a by-product increases, There is a risk of deteriorating the quality of the product.
[0013]
Therefore, in the case where Ca (OH) 2 is used as the calcium salt, calcium silicofluoride is formed as shown in the process diagram of FIG. 1, and this is converted into SiF 4 by sulfuric acid decomposition shown in the following formula (4). Since the solid component that is by-produced as it is generated becomes gypsum, it can be efficiently recovered without impairing the quality.
[0014]
M n SiF 6 + H 2 SO 4 → SiF 4 + M n SO 4 + 2HF (3)
CaSiF 6 + H 2 SO 4 → SiF 4 + CaSO 4 + 2HF (4)
M = alkali, alkaline earth metal n = 1-2
[0015]
Next, a reaction vessel in which silicofluoride is brought into contact with concentrated sulfuric acid will be described. The shape of the reaction vessel is not particularly limited, but a flow-through tank reactor shown in FIG. 2, a paddle mixer reactor shown in FIG. 3, or the like can be used. Further, it is desirable that the liquid contact part and the gas contact part are coated or lined with a fluororesin.
The concentrated sulfuric acid used in the present invention means one having a concentration of 85% by weight or more, preferably 95% by weight or more. If the concentration of this sulfuric acid is less than 85% by weight, siloxane (SiF 3 —O—F 3 Si) is generated and the purity of the SiF 4 gas is lowered, which is not preferable.
[0016]
In addition, by installing a condenser at the gas outlet of the reactor and passing a refrigerant of 10 ° C. or lower, hydrogen fluoride and moisture in the generated gas can be suppressed, and high-purity SiF 4 can be obtained. it can.
The most intended feature of the present invention is that after generating SiF 4 gas, surplus sulfuric acid, by-product fluoride, and sulfuric acid compound are put into a reaction vessel in which phosphate ore, which is the initial step of the phosphoric acid process, is brought into contact with a sulfuric acid solution. There is to return.
[0017]
This method does not discharge industrial waste out of the process system, and most can be used as a gypsum product. In addition, it becomes possible to reduce the manufacturing cost of SiF 4 by reusing excess sulfuric acid.
[0018]
Furthermore, by using an adsorbent such as activated alumina and venting the adsorbent, impurities such as trace amounts of moisture and hydrogen fluoride can be removed to obtain higher-purity SiF 4 .
[0019]
【Example】
Hereinafter, the present invention will be described with reference to examples.
% Represents weight percent unless otherwise specified.
Example 1
Based on Ca 10 (PO 4 ) 6 F 2, which is mainly composed of South African phosphate ore, 500 t / Day is the main raw material, and sulfuric acid is 496 t / Day, water 520 t / Day, and silicon oxide 9. 9t / Day was mixed in the reaction vessel to obtain a 40% crude phosphoric acid solution containing gypsum and hydrosilicofluoric acid. The crude phosphoric acid solution after separation of the gypsum was introduced into a concentration step, and the phosphoric acid concentration was concentrated to 75% with an evaporator under conditions of a can liquid temperature of 80 ° C. and a pressure of 100 torr. The steam generated here had a water content of approximately 300 t / day and hydrosilicic acid of 24 t / day. After condensing this vapor, a 30% slaked lime slurry, a part of which was slurried using water, was mixed in a reaction vessel, and the resulting calcium silicofluoride was filtered and further dried at 200 ° C. An intermediate material was used.
[0020]
Next, 2 g / day of calcium silicofluoride was added by a screw feeder 3 using a flow-type reaction tank 1 (volume 100 L) shown in FIG. At the same time, 98% sulfuric acid was supplied from the concentrated sulfuric acid feed tube 4 at 10 t / day and mixed with the stirrer 6. Further, after cooling water at 5 ° C. was circulated through the condenser 7 to remove a trace amount of water and hydrogen fluoride, SiF 4 gas was produced from the gas outlet pipe 9.
Excess sulfuric acid and gypsum produced as a by-product were discharged from the drainage pipe 10 and returned to the initial step of bringing the phosphate rock into contact with the sulfuric acid solution.
[0021]
Example 2
SiF 4 gas was produced in the same manner as in Example 1 except that 30% NaOH was used in place of the 30% slaked lime slurry and sodium silicofluoride was used as an intermediate raw material.
Excess sulfuric acid and by-produced Na 2 SO 4 were discharged from the drain tube 10 and returned to the initial step of bringing the phosphate rock into contact with the sulfuric acid solution and discharged together with the gypsum by-product.
[0022]
Example 3
Calcium silicofluoride obtained in the same manner as in Example 1 was added using a paddle mixer type reactor shown in FIG. 3 and calcium tyrosine fluoride 2t / Day was added by screw feeder 2 while rotating the paddle with a drive motor. did. At the same time, 98% sulfuric acid was supplied from the concentrated sulfuric acid feed nozzle 5 at 2 t / day. The generated SiF 4 gas was removed by a condenser 7 from the accompanying trace amount of water and hydrogen fluoride, and then SiF 4 gas was produced from the gas outlet pipe 9.
The liquid solid phase was discharged from the discharge port 11 and returned to the initial step in which the phosphate ore and the sulfuric acid solution were brought into contact with each other.
[0023]
【The invention's effect】
In the present invention, hydrosilicic acid is by-produced from the phosphoric acid production process, an alkali compound is added to this to form a silicofluoride, and further contacted with concentrated sulfuric acid to produce SiF 4 , where the solid component produced as a by-product is: with gypsum by-produced in the reaction of phosphate ore and sulfuric acid, used as a gypsum board or cement additive, also an excess of sulfuric acid, then recycled as a reaction of phosphate rock and sulfuric acid of the previous step, in a process for producing SiF 4 is there.
In addition, the present invention is intended to reduce costs by putting a continuous process into practical use as one of the methods of using fluorine in phosphate rock.
[0024]
[Brief description of the drawings]
[Fig. 1] An example of the process diagram of the present invention [Fig. 2] Flow-through tank reactor [Fig. 3] Paddle mixer type reactor [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flow tank type reactor main body 2 Paddle mixer type reactor main body 3 Screw feeder 4 Concentrated sulfuric acid feed pipe 5 Concentrated sulfuric acid feed nozzle 6 Stirrer 7 Condenser 8 Refrigerant circulation pipe 9 Gas outlet pipe 10 Drain pipe 11 Discharge port

Claims (2)

燐鉱石と硫酸液を接触させ、燐酸を製造する方法に於いて、該燐鉱石と該硫酸液を接触する際に酸化ケイ素を添加し、石膏と粗燐酸をろ過工程で分離し得られた粗燐酸を濃縮し、発生する珪フッ化水素酸にアルカリ化合物を添加し珪フッ化物とし、該珪フッ化物を濃硫酸で分解しSiFを発生させた後、余剰の硫酸及び副生物を燐鉱石と硫酸液を接触させる反応槽に戻すことを特徴とする燐酸製造プロセスからSiFを製造する方法。In the method for producing phosphoric acid by bringing the phosphate rock into contact with the sulfuric acid solution, silicon oxide is added when the phosphate mineral is brought into contact with the sulfuric acid solution, and the gypsum and the crude phosphoric acid are separated by a filtration step. Phosphoric acid is concentrated, and an alkali compound is added to the generated hydrofluoric acid to form a silicofluoride. The silicofluoride is decomposed with concentrated sulfuric acid to generate SiF 4 , and then the surplus sulfuric acid and by-products are converted to phosphate rock. A method for producing SiF 4 from a phosphoric acid production process, wherein the reaction solution is returned to a reaction tank in which a sulfuric acid solution and a sulfuric acid solution are brought into contact. アルカリ化合物にカルシウム塩を用い珪フッ化カルシウムとした後、濃硫酸で分解しSiFを発生させた後、副生する石膏を燐鉱石と硫酸液を接触させる反応槽に戻す請求項1記載の方法。The calcium salt is used as an alkali compound to form calcium silicofluoride, then decomposed with concentrated sulfuric acid to generate SiF 4, and the by-product gypsum is returned to the reaction vessel in which the phosphate rock and the sulfuric acid solution are brought into contact with each other. Method.
JP34308097A 1997-04-08 1997-12-12 Method for producing SiF4 from phosphoric acid production process Expired - Lifetime JP3912878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34308097A JP3912878B2 (en) 1997-04-08 1997-12-12 Method for producing SiF4 from phosphoric acid production process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-89525 1997-04-08
JP8952597 1997-04-08
JP34308097A JP3912878B2 (en) 1997-04-08 1997-12-12 Method for producing SiF4 from phosphoric acid production process

Publications (2)

Publication Number Publication Date
JPH10338514A JPH10338514A (en) 1998-12-22
JP3912878B2 true JP3912878B2 (en) 2007-05-09

Family

ID=26430945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34308097A Expired - Lifetime JP3912878B2 (en) 1997-04-08 1997-12-12 Method for producing SiF4 from phosphoric acid production process

Country Status (1)

Country Link
JP (1) JP3912878B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101306328B1 (en) * 2010-07-22 2013-09-09 울산대학교 산학협력단 Method and apparatus for recovering hexafluorosilicic acid from manufacturing process of phosphoric acid
CN102897769B (en) * 2012-08-24 2014-10-29 山东瑞福锂业有限公司 Production technology of silicon tetrafluoride
CN105002521B (en) * 2015-08-07 2018-01-09 长沙矿冶研究院有限责任公司 A kind of method that impurity magnesium in electrolytic manganese system is removed using fluorine-containing mineral

Also Published As

Publication number Publication date
JPH10338514A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
JP5568142B2 (en) Method for producing aluminum trifluoride
US5427757A (en) Process for the production of phosphoric acid and hydrogen fluoride from phosphate rock and fluosilicic acid
US5382423A (en) Apparatus for recovering calcium fluoride from fluoroetchant
NO851213L (en) PROCEDURE FOR THE PREPARATION OF SILICONE TETRAFLUORIDE.
WO2005118222A2 (en) Phosphogypsum treatment process
EP2118000B1 (en) Preparation of hydrogen fluoride from calcium fluoride and sulfuric acid
CA1078142A (en) Method of producing aluminum fluoride
US11873229B2 (en) Process for preparing calcium fluoride from fluosilicic acid
JP3912878B2 (en) Method for producing SiF4 from phosphoric acid production process
WO2009129458A2 (en) Silicon production process
US5531975A (en) Process for the production of phosphoric acid and calcium fluoride
CN105819415B (en) A kind of production method for the full utilization of resources of phosphorus ore that hydrochloric acid produces calcium hydrogen phosphate fodder
US4067957A (en) Process for producing hydrogen fluoride from an aqueous hydrofluorosilicic acid solution
KR101788891B1 (en) Methods for producing silicon tetrafluoride
GB2178021A (en) Preparation of calcium fluosilicate for use in obtaining calcium fluoride and pure fluosilicic acid
JP3264677B2 (en) Method for producing hydrogen fluoride
JP5779934B2 (en) Calcium fluoride recovery method
JPH05170435A (en) Method for recovering calcium fluoride from fluorine-containing etchant
JPH05382B2 (en)
CN101993100B (en) Silicon tetrafluoride byproduct separation process
CN111252785A (en) Method for recycling waste liquid generated by absorbing HCl and application thereof
EP3126290A2 (en) High purity synthetic fluorite and process for preparing the same
JP3449675B2 (en) Method for recovering silicon fluoride from phosphoric acid production process
EP0155979A1 (en) A method for the production of at least one sodium aluminum fluoride salt
JPH08132065A (en) Treatment of polyphosphoric acid-containing water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term