JP3912697B2 - Interlayer insulating film forming coating solution and insulating film forming method using the same - Google Patents

Interlayer insulating film forming coating solution and insulating film forming method using the same Download PDF

Info

Publication number
JP3912697B2
JP3912697B2 JP20422997A JP20422997A JP3912697B2 JP 3912697 B2 JP3912697 B2 JP 3912697B2 JP 20422997 A JP20422997 A JP 20422997A JP 20422997 A JP20422997 A JP 20422997A JP 3912697 B2 JP3912697 B2 JP 3912697B2
Authority
JP
Japan
Prior art keywords
insulating film
sih
interlayer insulating
coating
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20422997A
Other languages
Japanese (ja)
Other versions
JPH10140087A (en
Inventor
嘉男 萩原
達彦 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP20422997A priority Critical patent/JP3912697B2/en
Publication of JPH10140087A publication Critical patent/JPH10140087A/en
Application granted granted Critical
Publication of JP3912697B2 publication Critical patent/JP3912697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Organic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は層間絶縁膜形成用塗布液及びそれを用いた絶縁膜の形成方法に関するものである。さらに詳しくいえば、本発明は、保存安定性、塗布特性に優れるとともに、ち密で表面形状の良好な被膜を再現性よく形成することができ、しかも人体に対する影響が少ない溶媒を含有し、半導体素子や液晶表示素子などの製造において好適に用いられる層間絶縁膜形成用塗布液、及びこの塗布液を用いて層間絶縁膜を効率よく形成させる方法に関するものである。
【0002】
【従来の技術】
半導体素子や液晶表示素子などの各種電子部品材料の製造においては、固体表面に層間絶縁膜を形成させることがしばしば必要になる。このような層間絶縁膜を形成させる塗布液としては、無機性の高いポリシラザン系樹脂を用いた塗布液が種々報告されている[「電子材料」,12月号,第50〜55ページ(1994年)、特開平4―341705号公報、特開平6―73340号公報、特開平6―128529号公報、特開平6―142600号公報)]。
【0003】
これらの層間絶縁膜形成用塗布液は、従来のアルコキシシランを用いた塗布液に比べて、被膜形成材料中の有機成分の含有量が少ないため、基板上に該塗布液を塗布し、乾燥、焼成処理により絶縁膜を形成させるに際し、焼成時の有機成分の焼失量が少なく、その結果ち密な被膜が形成するので、近年注目されている。
【0004】
しかしながら、前記ポリシラザン系樹脂を用いた塗布液は、いずれも保存安定性に劣り、かつ品質にバラツキがあるために、ち密で表面形状のよい被膜を再現性よく形成させることが困難である上、乾燥時(100〜300℃)にポリシラザンが昇華し、これが焼成処理装置の内壁に付着して装置内部を汚染したり、あるいは、ポリシラザンの昇華により被膜が収縮し、クラックの発生原因となるなどの欠点があった。これらポリシラザンの昇華は、塗布液中に含まれる比較的低分子量のポリシラザンによるものと考えられている。
【0005】
また、この塗布液の調製には、有機溶媒として、保存安定性がよいことから主にキシレンが用いられているが、キシレンは人体に対する安全性に問題があるため、実用化には非キシレン系であって、しかも保存安定性及び塗布特性が良好な低毒性溶媒の検討が必要であった。
【0006】
【発明が解決しようとする課題】
本発明は、このような事情のもとで、保存安定性及び塗布特性に優れ、層間絶縁膜に要求される比抵抗値1010〜1017Ω・cm程度の絶縁性を有し、段差のある下地に対して塗布してもクラックの発生がなく、ステップカバレージ性が良好で、かつち密で表面形状の良好な被膜を再現性よく形成することができ、しかも人体に対する影響が少ない溶媒を用いた層間絶縁膜形成用塗布液、及びこの塗布液を用いて効率よく絶縁膜を形成させる方法を提供することを目的としてなされたものである。
【0007】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、有機ポリシラザン中のSiH3 及びSiCH 3 を所定の割合になるように調整したのち、不活性有機溶剤に溶解し溶液としたものが、層間絶縁膜形成用塗布液として、その目的に適合しうること、そして、この塗布液を基板上に塗布し、加湿雰囲気下に焼成することにより、層間絶縁膜が効率よく形成することを見出し、この知見に基づいて本発明を完成するに至った。
【0008】
すなわち、本発明は、1H−NMRスペクトルにおいて、SiH 1 、SiH 2 、SiH 3 及びSiCH 3 のピークを有するポリシラザンであって、かつそれらのピーク面積比について、SiH1とSiH2の和に対するSiH3の割合を0.15〜0.45、SiH 1 とSiH 2 の和に対するSiCH 3 の割合を0.30〜0.55に調整したポリシラザンの不活性有機溶剤溶液から成る層間絶縁膜形成用塗布液、及びこの塗布液を基板上に塗布し、乾燥したのち、焼成帯域中において、相対湿度45%以上の加湿ガス、又はキャリヤーガス1リットルに対して、水分0.001〜0.1gを混合した加湿ガスを流入させながら、300〜800℃の範囲の温度で焼成することを特徴とする層間絶縁膜の形成方法を提供するものである。
【0009】
前記層間絶縁膜形成用塗布液における不活性有機溶剤としては、特に炭素数4以上のアルキル基のジアルキルエーテルが好適である。
【0010】
【発明の実施の形態】
本発明塗布液において用いられるポリシラザンとしては特に制限はなく、公知のもの、例えば前記先行文献に記載のポリシラザン系樹脂を用いることができるが、以下に示す理由から、このポリシラザンの分子量は狭い範囲にあるのが望ましい。
【0011】
微細なパターンを形成する半導体素子製造に用いられる層間絶縁膜は、何万枚もの基板に対して、常に数十nm誤差の範囲で一定の膜厚の被膜を形成できることが望まれる。しかしながら、膜厚のコントロールは極めて難しく、塗布条件の僅かな違いが膜厚に大きく影響を与えるし、また、塗布液の経時的な変化により、調製直後の塗布液を用いて形成した被膜と、数か月間経た塗布液を用いて形成した被膜とで、膜厚に差を生じることもある。したがって、できるだけ長期間にわたって経時的変化の少ない、つまり保存安定性の良好な塗布液の調製が必要不可欠であり、それには、ポリシラザンの分子量を狭い範囲に規定することが重要である。
【0012】
特にポリシラザンは、内部に活性な水素基(窒素原子、ケイ素原子に結合した水素)を有しており、これが架橋して増粘やゲル化を引き起こしやすく、これを防ぐために、また一回の塗布で所望の膜厚が得られるように、あるいは塗布液の濃度調整がしやすいように、あまり高分子量体は好ましくない。また逆に低分子量体を多く含むと架橋性が悪く、被膜表面がゆず肌状になったり、被膜の乾燥時に昇華物が増え、被膜が収縮して膜厚が減少したり、クラックが発生するなどの問題が生じる。したがって、分子量範囲を厳しく設定しておくことが重要である。
【0013】
このような理由から、本発明で用いるポリシラザンは、ゲルパーミエーションクロマトグラフィー(GPC)法により測定したポリスチレン換算の重量平均分子量(Mw)が、1500〜5000の範囲にあるものが好ましく、特に1700〜3000の範囲にあるものが好適である。また、分散度(Mw/Mn)は1〜4の範囲にあるものが好ましい。
【0014】
本発明においては、塗布液の保存安定性及び塗布特性を良好なものとし、かつち密で表面形状の良好な被膜を再現性よく形成させるためには、ポリシラザンについて1H−NMRスペクトル面積比における、SiH1とSiH2の和に対するSiH3の割合を、0.15〜0.45の範囲に、かつSiH 1 とSiH 2 の和に対するSiCH 3 の割合を0.30〜0.55の範囲に調整することが必要である。この調整は、例えばポリシラザンを製造する際に、原料の使用量、反応条件を選択して行うこともできるが、製造したポリシラザンをヘキサメチルジシラザンで処理し、ポリシラザンの活性水素の一部をトリメチルシリル基で置換することにより行うのが有利である。
【0015】
このヘキサメチルジシラザンによるポリシラザンの処理は、その1H―NMRスペクトル(プロトン核磁気共鳴スペクトル)のピーク面積比において、SiH1とSiH2の和に対するSiH3の割合を測定しながら、それが0.15〜0.45の範囲になるまで続ける。この割合が0.15未満では塗布特性が低下し、ピンホールが発生したり、被膜表面がゆず肌状になるなど、ち密で表面形状の良好な被膜の形成が困難になるし、0.45を超えると塗布液の保存安定性が悪くなり、再現性のよい被膜の形成が困難となる。塗布特性及び保存安定性などの面から、処理後のポリシラザンの該ピーク面積比におけるSiH1とSiH2の和に対するSiH3の特に好ましい割合は0.22〜0.32の範囲である。
【0016】
また、ポリシラザンをヘキサメチルジシラザンで処理する際の1H−NMRスペクトルのピーク面積比におけるSiH1とSiH2の和に対するSiCH3の割合については、この割合が0.55を超えると保存安定性がそれほど向上せず、むしろ経済的に不利となるし、また、この割合があまり小さすぎると塗布液の保存安定性は向上しないので、保存安定性及び経済性などの面から、SiH1とSiH2の和に対するSiCH3 割合は、0.30〜0.55、好ましくは0.30〜0.50の範囲になるように選ばれる。
なお、ポリシラザンの活性水素をトリメチルシリル基で置換するには、ヘキサメチルジシラザン以外のトリメチルシリル化剤を用いることもできる。
【0017】
なお、ポリシラザンの1H―NMRスペクトルチャートにおいて、SiH1及びSiH2は4.5〜5.3ppm、SiCH3は0.0〜0.2ppm、SiH3は4.3〜4.5ppmに現われるピークにそれぞれ帰属されるので、前記ピーク面積比は、それぞれの積分曲線によるプロトン(水素)の比から求めることができる。
【0018】
本発明で用いるポリシラザンは、例えばアンモニアを供給して重合を行う方法、熱や圧力を作用させて重合を行う方法などによって製造することができるが、後者の方法で得られたポリシラザンは、経時安定性に優れるので好ましい。
【0019】
本発明塗布液に用いられる不活性有機溶剤としては、消防上及び乾燥性の点から、沸点が50〜200℃程度で、かつ塗布液の保存安定性の点から吸湿性が低い上、人体に対する影響の少ないものが好ましい。このようなものとしては、例えば炭素数4以上のアルキル基のジアルキルエーテルや、シクロヘキセン、ジメチルシクロヘキサン、エチルシクロヘキサン、p‐メンタン、デカリン、2,2,5‐トリメチルヘキサン、ジペンテン、デカン、イソノナン、オクタンなどが挙げられるが、これらの中で炭素数4以上のアルキル基のジアルキルエーテルが好ましく、特にジブチルエーテルが好適である。この不活性有機溶剤は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
【0020】
本発明塗布液には、必要に応じ、ポリシラザンの昇華抑制剤を添加することができる。被膜の乾燥工程において、比較的低分子量のポリシラザンが昇華しやすいが、該昇華抑制剤は、低分子量のポリシラザンと反応して、高分子量化し、その昇華を抑制する作用を有するものである。このような昇華抑制剤としては、例えば、トリアルキルアミンを好ましく挙げることができる。このトリアルキルアミンは未反応で残った場合、乾燥工程で溶剤と共に除かれることが望ましく、したがって、その沸点が200〜300℃程度のものが好ましい。このようなトリアルキルアミンとしては、炭素数4〜8の直鎖又は分枝のアルキル基を有するものが好ましく、例えばトリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、モノブチルジペンチルアミン、モノヘキシルジペンチルアミンなどが挙げられるが、これらの中で、保存安定性、反応性などの点でトリペンチルアミンが好ましく、特にトリ‐n‐ペンチルアミンが好適である。また、これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
【0021】
この昇華抑制剤の添加量が少なすぎると昇華抑制効果が十分に発揮されないし、また、多すぎると塗布液の保存安定性が低下したり、塗布時に高分子量化が進み、被膜不要部分の剥離工程において、剥離液に対する溶解性が悪くなって、剥離処理が行えないなどの問題が生じる。したがって、この昇華抑制剤の添加量は、固形分に対して、通常1〜10重量%、好ましくは3〜5重量%の範囲で選ばれる。
【0022】
この昇華抑制剤は、ヘキサメチルジシラザンとは逆に、ポリシラザンの高分子量化を進める働きをするため、その添加量についてはヘキサメチルジシラザンの添加量を考慮する必要がある。一般的には、反応に関与するヘキサメチルジシラザンの量に対して、0.7〜1.5重量%程度が適当である。
【0023】
本発明塗布液の固形分濃度については特に制限はないが、高すぎると保存安定性が低下するとともに、膜厚の制御が困難となり、逆に低すぎると一回の塗布で得られる膜厚が薄く、所望の膜厚が得られるまで、何度も重ね塗りが必要となるなどの不都合が生じる。したがって、固形分濃度は10〜40重量%の範囲が好ましく、特に15〜25重量%の範囲が好適である。
【0024】
次に、この層間絶縁膜形成用塗布液を用いて絶縁膜を形成させる方法について説明する。
【0025】
まず、所望の基板上に、該塗布液をスピンナー法、スプレー法、浸せき法など、従来慣用されている手段により、通常室温(20〜25℃程度)にて塗布したのち、100〜300℃程度の温度で乾燥処理して、塗布液中の溶媒を除き、ポリシラザン系被膜を形成させる。ポリシラザンの昇華の抑制を効率よく行うためには、乾燥処理前に、25〜100℃、好ましくは40〜70℃の温度で1分間以上待機させるのが有利である。これは、昇華抑制剤とポリシラザンとを十分に反応させ、低分子量体の昇華を抑えるためであり、さらには70℃以下の温度で3分間以上待機させるのが好ましい。100℃を超える温度で行うと昇華の抑制が十分でない場合があり、乾燥時にポリシラザンの昇華による発煙が生じることがある。この理由については、必ずしも明らかではないが、おそらく加熱によりポリシラザンと昇華抑制剤との反応が加速され、反応部分にムラができることにより、未反応の低分子量ポリシラザンが残存するためと思われる。
【0026】
したがって、反応は低温で、昇華抑制剤自体の反応性に基づいて行う方が、反応部分にムラを残さず、好ましいものと思われる。なお、この操作は、温度を段階的に変えて行ってもよく、例えば、塗布後、50℃で1分間、さらに60℃で1分間、さらに90℃で1分間というように設定してもよい。
【0027】
待機時間は1分間以上が好ましく、1分間未満の場合には、次の乾燥工程でポリシラザンの昇華が発生しやすい。昇華したポリシラザンは乾燥室内壁にSiO2の結晶を析出させ、これが塗布膜上に落下して被膜の品質低下の原因となったり、またポリシラザンの昇華に起因する被膜の収縮が起こり、膜厚が減少する傾向にある。1分間以上待機させることにより、そのような現象はなくなり、常に安定した品質の被膜を形成することができるようになる。
【0028】
なお、待機時間中は、乾燥雰囲気下でも加湿雰囲気下でも行うことができるが、過度の加湿状態におくと被膜が大気中の水分を吸収するため、相対湿度45〜55%程度の雰囲気中で行うのが適当である。なお、加湿状態では昇華抑制剤の効果が高まる傾向があるため、その効果を期待して55%を超える雰囲気中で行うこともできる。
【0029】
さらに待機は、塗布を行った塗布室で行ってもよいが、待機している間中は次の基板への塗布操作が行えずスループットが落ちたり、また設定温度を変える必要があるので、効率的には設定温度に保たれた待機室やホットプレートを設けて、流れ作業的に行うことが好ましい。
【0030】
次に、このようにして形成されたポリシラザン系被膜を、焼成帯域中において、相対湿度45%以上の加湿ガス又はキャリヤーガス1リットルに対して、水分0.001〜0.1gを混合した加湿ガスを流入させながら、300〜800℃の範囲の温度において、15〜60分間程度焼成し、該ポリシラザン系被膜を酸化ケイ素(SiO2)膜に転化することにより、層間絶縁膜が形成される。この際、必要に応じてポリシラザンのすべてを酸化ケイ素に転化しなくてもよく、焼成時間、焼成温度、焼成雰囲気は、その目的に応じて適宜選択することができる。なお、キャリヤーガスとしては、酸素ガスが好ましい。
【0031】
このようにして形成された層間絶縁膜は、凹凸のある基板に対して膜厚が0.1〜1.2μm程度のクラックのない膜質の良好な、実質上酸化ケイ素から成る膜である。
【0032】
【発明の効果】
本発明の層間絶縁膜形成用塗布液は、保存安定性及び塗布特性が優れ、電気特性的にも層間絶縁膜として十分な抵抗性を有する、ち密で表面形状の良好な被膜を再現性よく形成することができ、しかも人体に対する影響の少ない溶媒を含有するものであって、半導体素子や液晶表示素子などの各種電子部品材料の製造において好適に用いられる。
【0033】
【実施例】
次に本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
【0034】
実施例1
(1)塗布液の調製
ジクロロシランとアンモニアを原料として常法に従って合成されたポリシラザンにヘキサメチルジシラザンを添加し反応を行い、1H―NMRスペクトルのピーク面積比計算による(SiH1+SiH2)/SiCH3/SiH3の比が1/0.45/0.40のポリシラザン(重量平均分子量=2200、数平均分子量=950)の20重量%ジブチルエーテル溶液(塗布液A)100gを調製した。
【0035】
(2)絶縁膜の形成
表面にアルミニウムによる回路パターン[段差;1μm,ラインアンドスペース(L/S);1.2μm/0.7〜10.0μm]が形式されたシリコンウエーハ上に、上記(1)で得られた塗布液Aを室温23℃、湿度45%の条件下、2000rpmで20秒間スピン塗布したところ塗布性は良好であった。次いで1500rpmで同装置のウエーハエッジ部洗浄ノズルからジブチルエーテルを50ml/min、5秒間噴射したところ、周縁部のポリシラザン塗布液は完全に除去され、剥離性は良好であった。その後250℃で3分間乾燥を行い、次いで、酸素をキャリヤーガスとした水分を含む相対湿度約90%の加湿ガスを流した焼成室内で温度450℃において、30分間焼成することにより酸化ケイ素膜から成る絶縁膜を形成した。この酸化ケイ素膜は表面にクラックの発生は確認されず、平坦性が良好で極めて均質な、絶縁性の良い被膜であった。また、ベアーウエーハ上に、塗布時間を10秒に変え、同様にして被膜を形成したところ膜厚は0.36μmになった。なお、この際の膜厚の測定はエリプソメーターを用いて行った。
【0036】
実施例2、3
(1)塗布液の調製
実施例1(1)において、ヘキサメチルジシラザンの添加量を1H―NMRスペクトルのピーク面積比計算による(SiH1+SiH2)/SiCH3/SiH3の比が1/0.30/0.40及び1/0.50/0.40になるように変えた以外は、実施例1(1)と同様にして塗布液B、Cを調製した。
【0037】
(2)絶縁膜の形成
上記(1)で得られた塗布液B、Cを用いた以外は、実施例1(2)と同様にして実施し、塗布性、剥離性、表面形状、絶縁性を調べたところ、塗布液B、C共、いずれも良好な結果が得られた。
【0038】
実施例4、5
(1)塗布液の調製
実施例1(1)において、ヘキサメチルジシラザンの添加量を1H―NMRスペクトルのピーク面積比計算による(SiH1+SiH2)/SiCH3/SiH3の比が1/0.45/0.30及び1/0.45/0.45になるように変えた以外は、実施例1(1)と同様にして塗布液D、Eを調整した。
【0039】
(2)絶縁膜の形成
上記(1)で得られた塗布液D、Eを用いた以外は、実施例1(2)と同様にして実施し、塗布性、剥離性、表面形状、絶縁性を調べたところ、塗布液Eはいずれも良好な結果が得られた。
塗布液Dは若干塗布性に劣り、かすかにストリエーションの発生がみられたが、表面形状に変化はみられず、良好な膜であった。
【0040】
実施例6〜8
(1) 塗布液の調製
実施例1(1)において、溶剤をジブチルエーテルからオクタン、イソノナン又はn‐デカンに変えた以外は、実施例1(1)と同様にして塗布液F、G及びHを調製した。
(2)絶縁膜の形成
上記(1)で得られた塗布液F、G及びHを用いた以外は、実施例1(2)と同様にして実施し、塗布性、剥離性、表面形状、絶縁性を調べたところ、塗布液F、G及びHは若干塗布性に劣り、かすかにストリエーションの発生がみられたが、表面形状に変化はみられず、良好な膜であった。
【0041】
実施例9
(1)塗布液の調製
実施例1(1)において、ヘキサメチルジシラザンの添加量を1H―NMRスペクトルのピーク面積比計算による(SiH1+SiH2)/SiCH3/SiH3の比が1/0.45/0.27になるように変え、かつトリ‐n‐ペンチルアミン1.0gを添加した以外は、実施例1(1)と同様にして塗布液Iを調製した。
【0042】
(2)絶縁膜の形成
表面にアルミニウムによる回路パターン[段差;1μm,L/S;1.2μm/0.7〜10.0μm]が形成されたシリコンウエーハ上に、上記(1)で得られた塗布液Iを室温23℃、湿度45%の条件下、2000rpmで10秒間スピン塗布したところ塗布性は良好であった。次いで1500rpmで同装置のウエーハエッジ部洗浄ノズルからジブチルエーテルを50ml/min、5秒間噴射したところ、周縁部のポリシラザン塗布液は完全に除去され、剥離性は良好であった。その後50℃で3分間待機し、次いで250℃で3分間乾燥を行ったが、ポリシラザンの昇華による発煙現象はみられなかった。
【0043】
次いで、酸素をキャリヤーガスとした水分を含む相対湿度約90%の加湿ガスを流した焼成室内で、温度450℃において、30分間焼成することにより酸化ケイ素膜から成る絶縁膜を形成した。この酸化ケイ素膜は表面にクラックの発生は確認されず、平坦性に優れ、極めて均質な、絶縁性のよい被膜であった。またベアーウエーハ上に同じ条件で被膜を形成したところ、膜厚は0.36μmであった。なお、この際の膜厚の測定はエリプソメーターを用いて行った。
【0044】
実施例10、11
(1)塗布液の調製
実施例9(1)において、トリ‐n‐ペンチルアミンの代わりにトリ‐n‐ブチルアミン、トリ‐n‐ヘキシルアミンを用いた以外は、実施例9(1)と同様にして塗布液J、Kを調製した。
(2)絶縁膜の形成
上記の(1)で得られた塗布液J、Kを用いた以外は、実施例9(2)と同様にして実施し、塗布性、剥離性、発煙状況、表面形状、絶縁性を調べたところ、両方共いずれも良好な結果が得られた。
【0045】
実施例12
(1)塗布液の調製
実施例9(1)において、トリ‐n‐ペンチルアミンの添加量を2.5gに変えた以外は、実施例9(1)と同様にして塗布液Lを調製した。
(2)絶縁膜の形成
上記(1)で得られた塗布液Lを用いた以外は、実施例9(2)と同様にして実施し、塗布性、剥離性、発煙状況、表面形状、絶縁性を調べたところ、剥離性に劣り、十分に周縁部の塗布液を除去できなかった。それ以外の評価については、いずれも良好な結果が得られた。
【0046】
実施例13〜16
待機温度を20℃、30℃、70℃、90℃に変えた以外は、実施例9(2)と同様にして実施し、発煙状況、表面形状、絶縁性を調べたところ、90℃では、かすかに発煙がみられたが、表面形状に変化はみられなかった。その他の温度に関しては、実施例9(2)と同様、いずれも良好な結果が得られた。
【0047】
実施例17
待機温度を120℃に変えた以外は、実施例9(2)と同様にして実施し、発煙状況、表面形状、絶縁性を調べたところ、少量の発煙がみられ、乾燥室の内壁にSiO2のかすかな付着物が検出された。また表面形状に異状はみられなかった。
【0048】
実施例18〜20
待機時間を2分、7分、10分に変えた以外は、実施例9(2)と同様にして実施し、発煙状況、表面形状、絶縁性を調べたところ、2分では、かすかに発煙がみられたが、表面形状に変化はみられなかった。その他の時間に関しては、実施例9(2)と同様、いずれも良好な結果が得られた。
【0049】
実施例21
待機時間を1分に変えた以外は、実施例9(2)と同様にして実施し、発煙状況、表面形状、絶縁性を調べたところ、少量の発煙がみられ、乾燥室の内壁にSiO2のかすかな付着物が検出された。また表面形状に異状はみられなかった。
【0050】
実施例22
実施例9(2)において、相対湿度約90%の加湿ガスの代りに、酸素ガス1リットルに対して水分0.02gを混合した加湿ガスを用いる以外は、実施例9(2)と同様の操作を繰り返し、表面形状、絶縁性を調べたところ、いずれも良好な結果が得られた。
【0051】
比較例1
(1)塗布液の調製
実施例1(1)において、ヘキサメチルジシラザンの添加量を1H―NMRスペクトルのピーク面積比計算による(SiH1+SiH2)/SiCH3/SiH3の比が1/0/0.10になるように変えた以外は実施例1(1)と同様にして塗布液Xを調製した。
(2)絶縁膜の形成
上記(1)で得られた塗布液Xを用いた以外は、実施例1(2)と同様にして実施し、塗布性、表面形状を調べたところ、ストリエーションが発生し、表面形状はゆず肌状であった。また、乾燥工程後にFT−IRで膜組成を調べたところSiO2化が進行し、経時安定性の低いものとなっていた。
【0052】
比較例2
(1)塗布液の調製
実施例1(1)において、ヘキサメチルジシラザンの添加量を1H―NMRスペクトルのピーク面積比計算による(SiH1+SiH2)/SiCH3/SiH3の比が1/0.45/0.10になるように代えた以外は実施例1(1)と同様にして塗布液Yを調製した。
(2)絶縁膜の形成
上記(1)で得られた塗布液Yを用いた以外は、実施例1(2)と同様にして実施し、塗布性、表面形状を調べたところ、ストリエーションが発生し、表面形状はゆず肌状であった。
【0053】
参考例
実施例1(1)〜12(1)、比較例1(1)、2(1)で得られた塗布液A〜L、X、Yを大気中で密閉したガラス容器内で40℃において6か月間保存した結果、塗布液B、Lは若干粘度、分子量の増加傾向がみられ、重量平均分子量(Mw)で100〜200程度増加した。
また、塗布液Xは粘度の増加が著しく重量平均分子量で1500の増加であった。
【0054】
実施例23
実施例1〜22で形成した被膜付基板上にテトラエトキシシランを原料とするプラズマCVD法による被膜を5000Åの厚さで形成した。
その結果、実施例1〜8の被膜付基板を用いた場合は、上記のテトラエトキシシラン被膜上にわずかに表面荒れを生じたが、ほぼ平坦で良質の膜であった。実施例9〜22の被膜付基板を用いた場合は、非常に平滑で良質の被膜であった。
【0055】
比較例3
比較例1、2で形成した被膜付基板を用いた以外は実施例22と同様にして、被膜を形成した。
その結果、いずれもテトラエトキシシラン被膜上には、下地のポリシラザン被膜上のパーティクルに起因すると思われる凹凸が多数発生し、著しい表面荒れが認められた。
以上により、塗布液A〜Lを用いて層間絶縁膜を形成した場合、その上に表面荒れの少ない良質な膜の形成が可能であるため配線の断線を起こすことがない。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coating liquid for forming an interlayer insulating film and a method for forming an insulating film using the same. More specifically, the present invention contains a solvent that has excellent storage stability and coating properties, can form a dense and good surface shape film with good reproducibility, and has little influence on the human body. The present invention relates to a coating liquid for forming an interlayer insulating film that is preferably used in manufacturing liquid crystal display elements and the like, and a method for efficiently forming an interlayer insulating film using this coating liquid.
[0002]
[Prior art]
In manufacturing various electronic component materials such as semiconductor elements and liquid crystal display elements, it is often necessary to form an interlayer insulating film on a solid surface. As a coating solution for forming such an interlayer insulating film, various coating solutions using a highly inorganic polysilazane resin have been reported [[Electronic Materials], December, pp. 50-55 (1994). ), JP-A-4-341705, JP-A-6-73340, JP-A-6-128529, JP-A-6-142600).
[0003]
These interlayer insulating film forming coating solutions have a lower content of organic components in the film-forming material than coating solutions using conventional alkoxysilane, so that the coating solution is applied onto a substrate, dried, In forming an insulating film by a baking treatment, attention has been paid in recent years because the amount of organic components burned off during baking is small, and as a result a dense film is formed.
[0004]
However, since the coating liquid using the polysilazane resin is inferior in storage stability and has variations in quality, it is difficult to form a dense and good-shaped film with good reproducibility. Polysilazane sublimates during drying (100 to 300 ° C.), which adheres to the inner wall of the baking treatment apparatus and contaminates the inside of the apparatus, or the film contracts due to sublimation of polysilazane and causes cracks. There were drawbacks. Sublimation of these polysilazanes is considered to be caused by a relatively low molecular weight polysilazane contained in the coating solution.
[0005]
In addition, in the preparation of this coating solution, xylene is mainly used as an organic solvent because of its good storage stability. However, since xylene has a problem with safety to the human body, it is a non-xylene type for practical use. In addition, it is necessary to study a low toxicity solvent having good storage stability and coating properties.
[0006]
[Problems to be solved by the invention]
Under such circumstances, the present invention is excellent in storage stability and coating characteristics, and has a specific resistance value of 10 required for an interlayer insulating film.Ten-1017It has an insulating property of about Ω · cm, does not generate cracks even when applied to a substrate with a step, forms a coating with good step coverage and good surface shape with good reproducibility. The present invention has been made for the purpose of providing a coating solution for forming an interlayer insulating film using a solvent that can be used and that has little influence on the human body, and a method for efficiently forming an insulating film using the coating solution.
[0007]
[Means for Solving the Problems]
  As a result of intensive studies to achieve the above object, the present inventors haveOrganicSiH in polysilazaneThree And SiCH Three Was adjusted to a predetermined ratioTheA solution obtained by dissolving in an inert organic solvent can be used as a coating solution for forming an interlayer insulating film, and can be adapted to the purpose, and this coating solution is applied on a substrate and baked in a humidified atmosphere. The present inventors have found that an interlayer insulating film can be formed efficiently, and have completed the present invention based on this finding.
[0008]
  That is, the present invention1H-NMR spectrumIn SiH 1 , SiH 2 , SiH Three And SiCH Three Polysilazanes having the peaks of and thoseTo the peak area ratioabout, SiH1And SiH2SiH for the sum ofThreeThe ratio of 0.15-0.45, SiH 1 And SiH 2 SiCH for the sum of Three The ratio of 0.30 to 0.55A coating liquid for forming an interlayer insulating film comprising an inert organic solvent solution of polysilazane prepared in the above, and a wet gas having a relative humidity of 45% or more in the firing zone after the coating liquid is applied on a substrate and dried, or Provided is a method for forming an interlayer insulating film, characterized by firing at a temperature in the range of 300 to 800 ° C. while flowing a humidified gas mixed with 0.001 to 0.1 g of water into 1 liter of carrier gas. To do.
[0009]
As the inert organic solvent in the interlayer insulating film forming coating solution, a dialkyl ether of an alkyl group having 4 or more carbon atoms is particularly suitable.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The polysilazane used in the coating solution of the present invention is not particularly limited, and a known one, for example, the polysilazane resin described in the above-mentioned prior art can be used. For the following reasons, the molecular weight of this polysilazane is in a narrow range. It is desirable.
[0011]
It is desired that an interlayer insulating film used for manufacturing a semiconductor element for forming a fine pattern can always form a film having a constant film thickness within a range of several tens of nm on tens of thousands of substrates. However, it is extremely difficult to control the film thickness, a slight difference in coating conditions greatly affects the film thickness, and due to the change over time of the coating liquid, a film formed using the coating liquid immediately after preparation, There may be a difference in film thickness between the film formed using a coating solution that has passed for several months. Therefore, it is indispensable to prepare a coating solution that has little change over time as long as possible, that is, has a good storage stability. For that purpose, it is important to define the molecular weight of polysilazane within a narrow range.
[0012]
In particular, polysilazane has an active hydrogen group (hydrogen bonded to nitrogen atom or silicon atom) inside, and this crosslinks easily to cause thickening and gelation. In order to obtain a desired film thickness or to easily adjust the concentration of the coating solution, a high molecular weight material is not preferred. On the other hand, if a large amount of low molecular weight is included, the crosslinkability is poor, the surface of the film becomes distorted, sublimates increase when the film dries, the film shrinks and the film thickness decreases, and cracks occur. Problems arise. Therefore, it is important to set the molecular weight range strictly.
[0013]
For these reasons, the polysilazane used in the present invention preferably has a polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) in the range of 1500 to 5000, particularly 1700 to 1500. Those in the range of 3000 are preferred. The dispersity (Mw / Mn) is preferably in the range of 1 to 4.
[0014]
  In the present invention, in order to improve the storage stability and coating characteristics of the coating solution, and to form a dense and good-coated film with good reproducibility,1SiH in H-NMR spectral area ratio1And SiH2SiH for the sum ofThreeThe ratio of 0.15 to 0.45And SiH 1 And SiH 2 SiCH for the sum of Three In the range of 0.30 to 0.55It is necessary to adjust. This adjustment can be performed, for example, by selecting the amount of raw material used and the reaction conditions when producing polysilazane, but the produced polysilazane is treated with hexamethyldisilazane, and a part of the active hydrogen of polysilazane is trimethylsilylated. It is advantageous to do so by substitution with groups.
[0015]
The treatment of polysilazane with hexamethyldisilazane is1In the peak area ratio of the H-NMR spectrum (proton nuclear magnetic resonance spectrum), SiH1And SiH2SiH for the sum ofThreeContinue until it is in the range of 0.15 to 0.45. If this ratio is less than 0.15, the coating characteristics deteriorate, pinholes are generated, the surface of the coating becomes distorted, and it becomes difficult to form a dense and surface-shaped coating. If it exceeds 1, the storage stability of the coating solution will deteriorate, and it will be difficult to form a film with good reproducibility. SiH in the peak area ratio of the polysilazane after treatment in terms of coating characteristics and storage stability1And SiH2SiH for the sum ofThreeA particularly desirable ratio of is in the range of 0.22 to 0.32.
[0016]
  In addition, when polysilazane is treated with hexamethyldisilazane1SiH in peak area ratio of H-NMR spectrum1And SiH2SiCH for the sum ofThreeAbout the ratio ofIsIf this ratio exceeds 0.55, the storage stability will not be improved so much, but it will be economically disadvantageous.AndIn addition, if this ratio is too small, the storage stability of the coating solution is not improved, so in terms of storage stability and economy, SiH1And SiH2SiCH for the sum ofThree ofThe ratio is0.30 to 0.55, preferablyIt is chosen to be in the range of 0.30 to 0.50.
  In order to replace the active hydrogen of polysilazane with a trimethylsilyl group, a trimethylsilylating agent other than hexamethyldisilazane can also be used.
[0017]
Polysilazane1In the H-NMR spectrum chart, SiH1And SiH2Is 4.5 to 5.3 ppm, SiCHThreeIs 0.0-0.2 ppm, SiHThreeAre attributed to peaks appearing at 4.3 to 4.5 ppm, respectively, so that the peak area ratio can be determined from the ratio of protons (hydrogen) based on the respective integral curves.
[0018]
The polysilazane used in the present invention can be produced by, for example, a method of performing polymerization by supplying ammonia or a method of performing polymerization by applying heat or pressure, but the polysilazane obtained by the latter method is stable over time. Since it is excellent in property, it is preferable.
[0019]
As the inert organic solvent used in the coating liquid of the present invention, the boiling point is about 50 to 200 ° C. from the viewpoint of fire fighting and drying, and the hygroscopicity is low from the viewpoint of storage stability of the coating liquid. Those having little influence are preferred. Examples of such compounds include dialkyl ethers of alkyl groups having 4 or more carbon atoms, cyclohexene, dimethylcyclohexane, ethylcyclohexane, p-menthane, decalin, 2,2,5-trimethylhexane, dipentene, decane, isononane, and octane. Of these, dialkyl ethers of alkyl groups having 4 or more carbon atoms are preferred, and dibutyl ether is particularly preferred. This inert organic solvent may be used independently and may be used in combination of 2 or more type.
[0020]
If necessary, a polysilazane sublimation inhibitor can be added to the coating solution of the present invention. In the coating drying process, relatively low molecular weight polysilazane is likely to sublime, but the sublimation inhibitor has a function of reacting with low molecular weight polysilazane to increase its molecular weight and suppress its sublimation. As such a sublimation inhibitor, for example, a trialkylamine can be preferably exemplified. When this trialkylamine remains unreacted, it is desirable to be removed together with the solvent in the drying step, and therefore, the boiling point is preferably about 200 to 300 ° C. As such a trialkylamine, those having a linear or branched alkyl group having 4 to 8 carbon atoms are preferable. For example, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine, mono Examples thereof include butyldipentylamine and monohexyldipentylamine. Among these, tripentylamine is preferable in terms of storage stability and reactivity, and tri-n-pentylamine is particularly preferable. Moreover, these may be used independently and may be used in combination of 2 or more type.
[0021]
If the addition amount of the sublimation inhibitor is too small, the sublimation inhibitory effect is not sufficiently exerted, and if it is too much, the storage stability of the coating solution is lowered, or the molecular weight is increased during coating, and the coating unnecessary part is peeled off. In a process, the solubility with respect to peeling liquid worsens, and problems, such as being unable to perform a peeling process, arise. Therefore, the addition amount of the sublimation inhibitor is usually selected in the range of 1 to 10% by weight, preferably 3 to 5% by weight, based on the solid content.
[0022]
In contrast to hexamethyldisilazane, this sublimation inhibitor functions to increase the molecular weight of polysilazane. Therefore, it is necessary to consider the amount of hexamethyldisilazane added. Generally, about 0.7 to 1.5% by weight is appropriate for the amount of hexamethyldisilazane involved in the reaction.
[0023]
The solid content concentration of the coating solution of the present invention is not particularly limited, but if it is too high, the storage stability is lowered and it becomes difficult to control the film thickness. Inconveniences such as requiring repeated coating many times until a desired film thickness is obtained. Therefore, the solid content concentration is preferably in the range of 10 to 40% by weight, and particularly preferably in the range of 15 to 25% by weight.
[0024]
Next, a method of forming an insulating film using this interlayer insulating film forming coating solution will be described.
[0025]
First, the coating solution is usually applied at room temperature (about 20 to 25 ° C.) by a conventionally used means such as a spinner method, a spray method or a dipping method on a desired substrate, and then about 100 to 300 ° C. The polysilazane-based film is formed by removing the solvent in the coating solution by drying at a temperature of 5 ° C. In order to efficiently suppress sublimation of polysilazane, it is advantageous to wait for at least 1 minute at a temperature of 25 to 100 ° C., preferably 40 to 70 ° C. before the drying treatment. This is for sufficiently reacting the sublimation inhibitor and polysilazane to suppress sublimation of the low molecular weight substance, and it is preferable to wait at a temperature of 70 ° C. or lower for 3 minutes or longer. If it is carried out at a temperature exceeding 100 ° C., suppression of sublimation may not be sufficient, and smoke may be generated due to sublimation of polysilazane during drying. The reason for this is not necessarily clear, but it is presumably because the reaction between the polysilazane and the sublimation inhibitor is accelerated by heating, and unevenness is formed in the reaction portion, so that unreacted low molecular weight polysilazane remains.
[0026]
Therefore, it seems that it is preferable to carry out the reaction at a low temperature and based on the reactivity of the sublimation inhibitor itself without leaving unevenness in the reaction part. In addition, this operation may be performed by changing the temperature stepwise. For example, after application, the temperature may be set to 50 ° C. for 1 minute, 60 ° C. for 1 minute, and 90 ° C. for 1 minute. .
[0027]
The waiting time is preferably 1 minute or longer, and when it is less than 1 minute, sublimation of polysilazane tends to occur in the next drying step. Sublimated polysilazane is deposited on the dry indoor wall with SiO.2These crystals are deposited and fall on the coating film to cause deterioration of the quality of the film, or the film shrinks due to the sublimation of polysilazane, and the film thickness tends to decrease. By waiting for 1 minute or longer, such a phenomenon is eliminated, and a film having a stable quality can always be formed.
[0028]
During the standby time, it can be performed in a dry atmosphere or a humidified atmosphere. However, if the film is placed in an excessively humidified state, the film absorbs moisture in the air, so that the atmosphere has a relative humidity of about 45 to 55%. It is appropriate to do. In addition, since the effect of a sublimation inhibitor tends to increase in a humidified state, it can be performed in an atmosphere exceeding 55% in anticipation of the effect.
[0029]
Furthermore, the standby may be performed in the coating chamber where the coating is performed, but during the standby, the application operation to the next substrate cannot be performed, and the throughput decreases and the set temperature needs to be changed. Specifically, it is preferable to perform a flow work by providing a standby chamber or a hot plate maintained at a set temperature.
[0030]
Next, the thus-formed polysilazane-based film is a humidified gas in which 0.001 to 0.1 g of moisture is mixed with 1 liter of a humidified gas or a carrier gas having a relative humidity of 45% or more in the firing zone. The polysilazane coating is baked for about 15 to 60 minutes at a temperature in the range of 300 to 800 ° C.2) By converting into a film, an interlayer insulating film is formed. At this time, if necessary, it is not necessary to convert all of the polysilazane into silicon oxide, and the firing time, firing temperature, and firing atmosphere can be appropriately selected according to the purpose. The carrier gas is preferably oxygen gas.
[0031]
The interlayer insulating film thus formed is a film substantially made of silicon oxide having a good film quality without cracks and having a film thickness of about 0.1 to 1.2 μm with respect to an uneven substrate.
[0032]
【The invention's effect】
The coating liquid for forming an interlayer insulating film of the present invention is excellent in storage stability and coating characteristics, and forms a dense and surface-shaped film with good reproducibility that has sufficient resistance as an interlayer insulating film in terms of electrical characteristics. It contains a solvent that has little influence on the human body, and is suitably used in the production of various electronic component materials such as semiconductor elements and liquid crystal display elements.
[0033]
【Example】
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited at all by these examples.
[0034]
Example 1
(1) Preparation of coating solution
Add hexamethyldisilazane to polysilazane synthesized according to a conventional method using dichlorosilane and ammonia as raw materials.1By calculating the peak area ratio of the H-NMR spectrum (SiH1+ SiH2) / SiCHThree/ SiHThree100 g of a 20 wt% dibutyl ether solution (coating solution A) of polysilazane (weight average molecular weight = 2200, number average molecular weight = 950) having a ratio of 1 / 0.45 / 0.40 was prepared.
[0035]
(2) Formation of insulating film
Application obtained in (1) above on a silicon wafer having a circuit pattern [step difference: 1 μm, line and space (L / S); 1.2 μm / 0.7-10.0 μm] formed of aluminum on the surface When the liquid A was spin-coated at 2000 rpm for 20 seconds under the conditions of a room temperature of 23 ° C. and a humidity of 45%, the coating property was good. Next, dibutyl ether was sprayed at 1500 rpm from the wafer edge cleaning nozzle of the apparatus at 50 ml / min for 5 seconds. As a result, the polysilazane coating solution at the peripheral edge was completely removed and the peelability was good. Thereafter, drying is performed at 250 ° C. for 3 minutes, and then, the silicon oxide film is baked at a temperature of 450 ° C. for 30 minutes in a baking chamber in which a humidified gas containing oxygen as a carrier gas and having a relative humidity of about 90% is supplied. An insulating film was formed. This silicon oxide film was a coating with good insulating properties, no cracks on the surface, excellent flatness and extremely uniform properties. Further, when the coating time was changed to 10 seconds on the bare wafer and the film was formed in the same manner, the film thickness was 0.36 μm. The film thickness at this time was measured using an ellipsometer.
[0036]
Examples 2 and 3
(1) Preparation of coating solution
In Example 1 (1), the amount of hexamethyldisilazane added was1By calculating the peak area ratio of the H-NMR spectrum (SiH1+ SiH2) / SiCHThree/ SiHThreeCoating liquids B and C were prepared in the same manner as in Example 1 (1) except that the ratio was changed to 1 / 0.30 / 0.40 and 1 / 0.50 / 0.40.
[0037]
(2) Formation of insulating film
Except that the coating solutions B and C obtained in (1) above were used, the coating solution was carried out in the same manner as in Example 1 (2), and the coating properties, peelability, surface shape, and insulation were examined. Good results were obtained for both B and C.
[0038]
Examples 4 and 5
(1) Preparation of coating solution
In Example 1 (1), the amount of hexamethyldisilazane added was1By calculating the peak area ratio of the H-NMR spectrum (SiH1+ SiH2) / SiCHThree/ SiHThreeThe coating liquids D and E were adjusted in the same manner as in Example 1 (1) except that the ratio was changed to 1 / 0.45 / 0.30 and 1 / 0.45 / 0.45.
[0039]
(2) Formation of insulating film
Except that the coating solutions D and E obtained in (1) above were used, the coating solution was carried out in the same manner as in Example 1 (2), and the coating properties, peelability, surface shape, and insulation were examined. Good results were obtained for all E.
The coating solution D was slightly inferior in coating properties, and slight striation was observed, but the surface shape did not change and was a good film.
[0040]
Examples 6-8
(1) Preparation of coating solution
Coating solutions F, G and H were prepared in the same manner as in Example 1 (1) except that the solvent was changed from dibutyl ether to octane, isononane or n-decane in Example 1 (1).
(2) Formation of insulating film
Except for using the coating liquids F, G and H obtained in (1) above, the same as in Example 1 (2) was carried out, and the coating property, peelability, surface shape, and insulation were examined. Coating solutions F, G, and H were slightly inferior in coating properties, and slight striation was observed, but the surface shape did not change and was a good film.
[0041]
Example 9
(1) Preparation of coating solution
In Example 1 (1), the amount of hexamethyldisilazane added was1By calculating the peak area ratio of the H-NMR spectrum (SiH1+ SiH2) / SiCHThree/ SiHThreeThe coating liquid I was prepared in the same manner as in Example 1 (1) except that the ratio of A was changed to 1 / 0.45 / 0.27 and 1.0 g of tri-n-pentylamine was added. .
[0042]
(2) Formation of insulating film
The coating liquid I obtained in (1) above was applied at room temperature on a silicon wafer having a circuit pattern [step difference: 1 μm, L / S; 1.2 μm / 0.7-10.0 μm] formed on the surface with aluminum. When spin coating was performed at 2000 rpm for 10 seconds under the conditions of ° C. and humidity of 45%, the coating property was good. Next, dibutyl ether was sprayed at 1500 rpm from the wafer edge cleaning nozzle of the apparatus at 50 ml / min for 5 seconds. As a result, the polysilazane coating solution at the peripheral edge was completely removed and the peelability was good. Thereafter, it was waited at 50 ° C. for 3 minutes, and then dried at 250 ° C. for 3 minutes.
[0043]
Next, an insulating film made of a silicon oxide film was formed by baking at a temperature of 450 ° C. for 30 minutes in a baking chamber in which a humidified gas containing moisture containing oxygen as a carrier gas and having a relative humidity of about 90% was flowed. This silicon oxide film was a film having excellent flatness, excellent uniformity, and no insulation on the surface. Further, when a film was formed on the bare wafer under the same conditions, the film thickness was 0.36 μm. The film thickness at this time was measured using an ellipsometer.
[0044]
Examples 10 and 11
(1) Preparation of coating solution
In Example 9 (1), coating solutions J and K were used in the same manner as in Example 9 (1) except that tri-n-butylamine and tri-n-hexylamine were used instead of tri-n-pentylamine. Was prepared.
(2) Formation of insulating film
Except for using the coating liquids J and K obtained in (1) above, this was carried out in the same manner as in Example 9 (2), and the coating property, peelability, smoke generation status, surface shape, and insulation were examined. However, good results were obtained in both cases.
[0045]
Example 12
(1) Preparation of coating solution
A coating liquid L was prepared in the same manner as in Example 9 (1) except that the amount of tri-n-pentylamine added was changed to 2.5 g in Example 9 (1).
(2) Formation of insulating film
Except that the coating liquid L obtained in the above (1) was used, it was carried out in the same manner as in Example 9 (2), and the coating property, peelability, smoke generation state, surface shape, and insulation were examined. The coating solution at the peripheral edge could not be removed sufficiently. For all other evaluations, good results were obtained.
[0046]
Examples 13-16
Except for changing the standby temperature to 20 ° C., 30 ° C., 70 ° C., 90 ° C., it was carried out in the same manner as in Example 9 (2), and the smoke generation situation, surface shape, and insulation were examined. Smoke was slightly seen, but the surface shape did not change. Regarding other temperatures, good results were obtained in the same manner as in Example 9 (2).
[0047]
Example 17
Except that the standby temperature was changed to 120 ° C., it was carried out in the same manner as in Example 9 (2), and when the smoke generation status, surface shape, and insulation were examined, a small amount of smoke was observed, and SiO 2 was found on the inner wall of the drying chamber.2A faint deposit was detected. Further, no abnormality was observed in the surface shape.
[0048]
Examples 18-20
Except that the waiting time was changed to 2 minutes, 7 minutes, and 10 minutes, it was carried out in the same manner as in Example 9 (2), and the smoke generation status, surface shape, and insulation were examined. However, the surface shape was not changed. Regarding other times, as in Example 9 (2), good results were obtained in all cases.
[0049]
Example 21
Except for changing the waiting time to 1 minute, it was carried out in the same manner as in Example 9 (2), and when the smoke generation status, surface shape, and insulation were examined, a small amount of smoke was observed, and SiO2 was found on the inner wall of the drying chamber.2A faint deposit was detected. Further, no abnormality was observed in the surface shape.
[0050]
Example 22
Example 9 (2) is the same as Example 9 (2) except that a humidified gas in which 0.02 g of water is mixed with 1 liter of oxygen gas is used instead of the humidified gas having a relative humidity of about 90%. When the operation was repeated and the surface shape and the insulating properties were examined, good results were obtained in both cases.
[0051]
Comparative Example 1
(1) Preparation of coating solution
In Example 1 (1), the amount of hexamethyldisilazane added was1By calculating the peak area ratio of the H-NMR spectrum (SiH1+ SiH2) / SiCHThree/ SiHThreeA coating solution X was prepared in the same manner as in Example 1 (1) except that the ratio was changed to 1/0 / 0.10.
(2) Formation of insulating film
Except that the coating solution X obtained in (1) above was used, the coating properties and the surface shape were examined in the same manner as in Example 1 (2). It was skin-like. Further, when the film composition was examined by FT-IR after the drying process, SiO 22Progressed and the stability over time was low.
[0052]
Comparative Example 2
(1) Preparation of coating solution
In Example 1 (1), the amount of hexamethyldisilazane added was1By calculating the peak area ratio of the H-NMR spectrum (SiH1+ SiH2) / SiCHThree/ SiHThreeA coating solution Y was prepared in the same manner as in Example 1 (1) except that the ratio was changed to 1 / 0.45 / 0.10.
(2) Formation of insulating film
Except that the coating solution Y obtained in (1) above was used, the coating solution and the surface shape were examined in the same manner as in Example 1 (2). It was skin-like.
[0053]
Reference example
The coating liquids A to L, X, and Y obtained in Examples 1 (1) to 12 (1) and Comparative Examples 1 (1) and 2 (1) were sealed at 40 ° C. in a glass container sealed in the atmosphere. As a result of storage for months, the coating liquids B and L showed a slight increase in viscosity and molecular weight, and the weight average molecular weight (Mw) increased by about 100 to 200.
In addition, the coating solution X had a marked increase in viscosity and an increase of 1500 in weight average molecular weight.
[0054]
Example 23
A film with a thickness of 5000 mm was formed on the coated substrate formed in Examples 1 to 22 by a plasma CVD method using tetraethoxysilane as a raw material.
As a result, when the coated substrate of Examples 1 to 8 was used, the surface was slightly roughened on the tetraethoxysilane coating, but it was a substantially flat and good quality film. When the coated substrate of Examples 9 to 22 was used, it was a very smooth and good quality coating.
[0055]
Comparative Example 3
A coating film was formed in the same manner as in Example 22 except that the coated substrate formed in Comparative Examples 1 and 2 was used.
As a result, in each of the tetraethoxysilane coatings, a large number of irregularities thought to be caused by particles on the underlying polysilazane coating were generated, and remarkable surface roughness was observed.
As described above, when an interlayer insulating film is formed using the coating liquids A to L, a high-quality film with little surface roughness can be formed on the interlayer insulating film.

Claims (7)

1H−NMRスペクトルにおいて、SiH 1 、SiH 2 、SiH 3 及びSiCH 3 のピークを有するポリシラザンであって、かつそれらのピーク面積比について、SiH1とSiH2の和に対するSiH3の割合を0.15〜0.45、SiH 1 とSiH 2 の和に対するSiCH 3 の割合を0.30〜0.55に調整したポリシラザンの不活性有機溶剤溶液から成る層間絶縁膜形成用塗布液。 In 1 H-NMR spectrum, a polysilazane having a peak of SiH 1, SiH 2, SiH 3 and SiCH 3, and with their peak area ratio, the ratio of SiH 3 to the sum of SiH 1 and SiH 2 0 A coating solution for forming an interlayer insulating film comprising an inert organic solvent solution of polysilazane in which the ratio of SiCH 3 to the sum of SiH 1 and SiH 2 is adjusted to 0.30 to 0.55 . 調整がヘキサメチルジシラザン処理で行われる請求項記載の層間絶縁膜形成用塗布液。An interlayer insulating film-forming coating solution as claimed in claim 1, wherein the adjustment is performed with hexamethyldisilazane treatment. 不活性有機溶剤が50〜200℃の沸点を有する請求項1又は2記載の層間絶縁膜形成用塗布液。The coating liquid for forming an interlayer insulating film according to claim 1 or 2, wherein the inert organic solvent has a boiling point of 50 to 200 ° C. 不活性有機溶剤が炭素数4以上のアルキル基をもつジアルキルエーテルである請求項1ないし3のいずれかに記載の層間絶縁膜形成用塗布液。4. The coating liquid for forming an interlayer insulating film according to claim 1, wherein the inert organic solvent is a dialkyl ether having an alkyl group having 4 or more carbon atoms. 昇華抑制剤を含む請求項1ないし4のいずれかに記載の層間絶縁膜形成用塗布液。  The coating liquid for interlayer insulation film formation in any one of Claim 1 thru | or 4 containing a sublimation inhibitor. 請求項1ないし5のいずれかに記載の層間絶縁膜形成用塗布液を基板上に塗布し、乾燥したのち、焼成帯域中において、相対湿度45%以上の加湿ガスを流入させながら、300〜800℃の範囲の温度で焼成することを特徴とする層間絶縁膜の形成方法。  The coating liquid for forming an interlayer insulating film according to any one of claims 1 to 5 is applied onto a substrate and dried, and then 300 to 800 while a humidified gas having a relative humidity of 45% or more is allowed to flow in the firing zone. A method for forming an interlayer insulating film, comprising firing at a temperature in the range of ° C. 請求項1ないし5のいずれかに記載の層間絶縁膜形成用塗布液を基板上に塗布し、乾燥したのち、焼成帯域中において、キャリヤーガス1リットルに対して、水分0.001〜0.1gを混合した加湿ガスを流入させながら、300〜800℃の範囲の温度で焼成することを特徴とする層間絶縁膜の形成方法。  The coating liquid for forming an interlayer insulating film according to any one of claims 1 to 5 is applied on a substrate, dried, and then 0.001 to 0.1 g of moisture per 1 liter of carrier gas in a firing zone. A method for forming an interlayer insulating film, characterized by firing at a temperature in the range of 300 to 800 ° C. while flowing a humidified gas mixed with.
JP20422997A 1996-08-14 1997-07-30 Interlayer insulating film forming coating solution and insulating film forming method using the same Expired - Fee Related JP3912697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20422997A JP3912697B2 (en) 1996-08-14 1997-07-30 Interlayer insulating film forming coating solution and insulating film forming method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21476396 1996-08-14
JP8-214763 1996-08-14
JP20422997A JP3912697B2 (en) 1996-08-14 1997-07-30 Interlayer insulating film forming coating solution and insulating film forming method using the same

Publications (2)

Publication Number Publication Date
JPH10140087A JPH10140087A (en) 1998-05-26
JP3912697B2 true JP3912697B2 (en) 2007-05-09

Family

ID=26514351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20422997A Expired - Fee Related JP3912697B2 (en) 1996-08-14 1997-07-30 Interlayer insulating film forming coating solution and insulating film forming method using the same

Country Status (1)

Country Link
JP (1) JP3912697B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10020185B2 (en) 2014-10-07 2018-07-10 Samsung Sdi Co., Ltd. Composition for forming silica layer, silica layer, and electronic device
US10093830B2 (en) 2014-12-19 2018-10-09 Samsung Sdi Co., Ltd. Composition for forming a silica based layer, method for manufacturing silica based layer, and electronic device including the silica based layer
US10106687B2 (en) 2015-07-31 2018-10-23 Samsung Sdi Co., Ltd. Composition for forming silica layer, method for manufacturing silica layer and silica layer
US10427944B2 (en) 2014-12-19 2019-10-01 Samsung Sdi Co., Ltd. Composition for forming a silica based layer, silica based layer, and electronic device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4767317B2 (en) * 2006-06-08 2011-09-07 アートブリード株式会社 Coating liquid and coating method
JP5692736B2 (en) * 2009-10-05 2015-04-01 株式会社Adeka Insulating film forming coating liquid and insulating film using the same
JP2013001721A (en) * 2011-06-13 2013-01-07 Adeka Corp Inorganic polysilazane, silica film-forming coating liquid containing the same, and method for forming silica film
US10316216B2 (en) 2016-08-31 2019-06-11 Samsung Sdi Co., Ltd. Composition for forming silica layer, and silica layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10020185B2 (en) 2014-10-07 2018-07-10 Samsung Sdi Co., Ltd. Composition for forming silica layer, silica layer, and electronic device
US10093830B2 (en) 2014-12-19 2018-10-09 Samsung Sdi Co., Ltd. Composition for forming a silica based layer, method for manufacturing silica based layer, and electronic device including the silica based layer
US10427944B2 (en) 2014-12-19 2019-10-01 Samsung Sdi Co., Ltd. Composition for forming a silica based layer, silica based layer, and electronic device
US10106687B2 (en) 2015-07-31 2018-10-23 Samsung Sdi Co., Ltd. Composition for forming silica layer, method for manufacturing silica layer and silica layer

Also Published As

Publication number Publication date
JPH10140087A (en) 1998-05-26

Similar Documents

Publication Publication Date Title
KR100298100B1 (en) Polysilazane-based coating solution for the formation of interlayer insulating coating film and Method for the formation of silicon dioxide-based interlayer insulating coating film using the same
EP1035183B1 (en) Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
EP0992556B1 (en) Coating liquid for forming silica-based film having low dielectric constant and substrate having film of low dielectric constant coated thereon
US4865649A (en) Coating solution for forming a silica-based coating film
JP4021131B2 (en) Coating liquid for forming low dielectric constant silica-based coating and substrate with low dielectric constant silica-based coating
EP1026213A1 (en) Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
US20020158310A1 (en) Insulating film of semiconductor device and coating solution for forming insulating film and method of manufacturing insulating film
WO1997035939A1 (en) Coating fluid for low-permittivity silica coating and substrate provided with low-permittivity coating
JP2005517784A (en) Organosiloxane
JP3998979B2 (en) Method for forming low dielectric constant silica-based film and semiconductor substrate with low dielectric constant film
JP3912697B2 (en) Interlayer insulating film forming coating solution and insulating film forming method using the same
EP2073254B1 (en) Method of forming amorphous silica coating of low dielectric constant and amorphous silica coating of low dielectric constant obtained thereby
JP4473352B2 (en) Low dielectric constant silica-based coating, coating liquid for forming the same, and method for preparing the coating liquid
JP3909912B2 (en) Silica-based thick film coating method
US20070117892A1 (en) Coating composition, porous silica-based film, method for producing porous silica-based film and semiconductor device
JP2000106363A (en) Formation of insoluble coating
JPH01194980A (en) Formation of silica coating film and formed coating film
JP2006503165A (en) Organosiloxane
JP4149031B2 (en) Coating liquid for forming low dielectric constant silica-based film and substrate with low dielectric constant film
WO2007111270A1 (en) Composition for forming silica coating and silica coating
JP3635443B2 (en) Method for forming SiO2 film
JP4241879B2 (en) Coating liquid for forming low dielectric constant silica-based film and substrate with low dielectric constant film
JPH0457329A (en) Manufacture of silicon oxide film
JP2002025999A (en) Insulating film and material and method for forming the same
JP2002026002A (en) Insulating film, material for forming insulating film, and method of forming insulating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees