JP3912151B2 - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
JP3912151B2
JP3912151B2 JP2002075751A JP2002075751A JP3912151B2 JP 3912151 B2 JP3912151 B2 JP 3912151B2 JP 2002075751 A JP2002075751 A JP 2002075751A JP 2002075751 A JP2002075751 A JP 2002075751A JP 3912151 B2 JP3912151 B2 JP 3912151B2
Authority
JP
Japan
Prior art keywords
resonance voltage
heating
thermal power
inverter circuit
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002075751A
Other languages
Japanese (ja)
Other versions
JP2003272821A (en
Inventor
博 富永
忠明 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002075751A priority Critical patent/JP3912151B2/en
Publication of JP2003272821A publication Critical patent/JP2003272821A/en
Application granted granted Critical
Publication of JP3912151B2 publication Critical patent/JP3912151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Induction Heating Cooking Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は一般家庭のキッチンや業務用等に用いられる誘導加熱調理器に関するものである。
【0002】
【従来の技術】
近年、誘導加熱調理器は安全・清潔・高効率という優れた特徴が認知され、一般家庭のキッチンや業務用等に広く普及されている。
【0003】
以下、従来構成の誘導加熱調理器について、図、図を参照して説明する。図において、41は商用電源で、整流回路42で全波整流し平滑コンデンサ43で平滑して直流電源を構成している。44はインバータ回路で、加熱コイル45と、加熱コイル45に並列接続された共振コンデンサ46と、加熱コイル45に直列接続されたスイッチング素子47と、スイッチング素子47に逆並列に接続された逆導通ダイオード48で構成されている。49は商用電源41からの入力電流を検知する入力電流検知手段、50はインバータ回路44の加熱出力を設定する火力設定手段、51はインバータ回路44の共振電圧を検知する共振電圧検知手段、52はインバータ回路44の共振電圧を所定以下に制限する共振電圧リミッタ手段である。53は共振電圧リミッタ手段52の設定範囲内で入力電流検知手段49の検知電流が火力設定手段50での設定となるように駆動手段54の出力を制御する制御手段である。
【0004】
以上のように構成された誘導加熱調理器では、インバータ回路44の共振電圧の制限値VLが火力設定によらず一定であるので、共振電圧リミッタ手段52が動作しにくい負荷鍋では図の負荷Aに示すように、火力設定1ではPA1の火力、火力設定2ではPA2の火力でそれぞれ加熱動作されるが、共振電圧リミッタ手段52が動作する負荷鍋では図の負荷Bに示すように、火力設定1、2ともに設定火力より低いPB1の火力で動作していた。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の構成では、共振電圧の制限値VLが火力設定によらず一定であるため、図の負荷Bのように低い火力設定で共振電圧リミッタ手段52が動作すると、火力設定を上げても負荷鍋の火力は同一であり、使用者が違和感を感じる場合があった。場合によっては機器が正常に動作しているにも関わらず、火力感が変わらないので故障と勘違いされてしまうという問題があった。また、火力設定を下げても火力が変わらないので、例えば調理物が焦げ付いてしまい実調理に不具合が生じるという課題があった。
【0006】
さらに、図の負荷Aでは火力を下げると、インバータ回路44の損失は低減するので、インバータ回路44を冷却する冷却ファンの回転数を火力設定に応じて変更して静音化を図ることができるが、負荷Bでは共振電圧リミッタ手段52が動作する火力以上ではインバータ回路44の損失は同じであるので、最大火力設定時と同じ冷却能力が必要となり、低火力設定時の冷却ファンの静音化を図ることができないという不具合があった。
【0007】
本発明は上記課題を解決するもので、火力設定に応じてインバータ回路の共振電圧の制限値を変更可能として、設定火力毎に異なる火力を実現する誘導加熱調理器を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の誘導加熱調理器は、共振電圧リミッタ手段は、火力設定手段での設定を上げると前記インバータ回路の共振電圧の制限値を高くする構成とするとともに前記共振電圧リミッタ手段は前記温度検知手段の検知温度が所定温度を超えると共振電圧の制限レベルを低下するものである。
【0009】
これにより、火力設定に応じてインバータ回路の最大共振電圧を制限することができ、共振電圧リミッタ手段が動作する負荷鍋においても、設定火力毎に異なる火力感を得ることが可能となる。また、所定の火力設定以上で共振電圧リミッタ手段が動作時に、インバータ回路の損失が大きい場合や、スイッチング素子の耐圧マージンが小さい場合においても、所定時間が経過すると共振電圧の制限値を低下するので、インバータ回路の発熱やスイッチング素子の耐圧が許容値を超えて破壊するのを抑制して、共振電圧リミッタ手段が動作する時の最大火力を大きくすることができる。
【0010】
【発明の実施の形態】
請求項1に記載の発明は、加熱コイルとスイッチング素子を含み、前記スイッチング素子のオンオフにより前記加熱コイルに高周波電流を供給するインバータ回路と、前記インバータ回路の加熱出力を設定する火力設定手段と、前記インバータ回路への入力電流を検知する入力電流検知手段と、前記インバータ回路の共振電圧を検知する共振電圧検知手段と、前記インバータ回路の共振電圧を制限する共振電圧リミッタ手段と、前記共振電圧リミッタ手段の制限範囲内で前記入力電流検知手段の検知した火力が前記火力設定手段での設定された火力になるように前記スイッチング素子をオンオフする制御手段と、前記火力設定手段での設定が所定火力以上にて加熱する時間を計時する加熱時間計時手段を備え、前記共振電圧リミッタ手段は、前記火力設定手段での設定を上げると前記インバータ回路の共振電圧の制限値を高くするとともに前記共振電圧リミッタ手段は前記温度検知手段の検知温度が所定温度を超えると共振電圧の制限レベルを低下するものである。これにより、火力設定に応じてインバータ回路の最大共振電圧を制限することができ、共振電圧リミッタ手段が動作する負荷鍋においても、設定火力毎に異なる火力感を得ることが可能となる。また、所定の火力設定以上で共振電圧リミッタ手段が動作時に、インバータ回路の損失が大きい場合や、スイッチング素子の耐圧マージンが小さい場合においても、所定時間が経過すると共振電圧の制限値を低下するので、インバータ回路の発熱やスイッチング素子の耐圧が許容値を超えて破壊するのを抑制して、共振電圧リミッタ手段が動作する時の最大火力を大きくすることができる。
【0011】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。
【0012】
(実施例1)
図1は本発明の実施例1における誘導加熱調理器を示すものである。図1において、11は商用電源で、整流回路12で全波整流し平滑コンデンサ13で平滑して直流電源を構成している。14はインバータ回路で、加熱コイル15と、加熱コイル15に並列接続された共振コンデンサ16と、加熱コイル15に直列接続されたスイッチング素子17と、スイッチング素子17に逆並列に接続された逆導通ダイオード18で構成され、スイッチング素子17のオンオフにより加熱コイル15に高周波電流を供給する。19は商用電源11からインバータ回路14への入力電流を検知する入力電流検知手段、20はインバータ回路14の加熱出力を設定する火力設定手段、21はインバータ回路14の加熱コイル15と共振コンデンサの共振電圧を検知する共振電圧検知手段、22はインバータ回路14の共振電圧を所定以下に制限する共振電圧リミッタ手段で、火力設定手段20での設定に応じて共振電圧の制限レベルを変更するものである。23は共振電圧リミッタ手段22の設定範囲内で入力電流検知手段19の検知結果と火力設定手段20での設定に応じてスイッチング素子17をオンオフするように駆動手段24の出力を制御する制御手段である。
【0013】
また、25はインバータ回路14を冷却する冷却ファン、26は冷却ファン25を任意の回転数で制御するファン制御手段、27は所定以上の火力設定で連続加熱している時間を計時する加熱時間計時手段、28はスイッチング素子17またはその近傍の温度を検知する温度検知手段、29はスイッチング素子17のオン時間を検知するオン時間検知手段である。
【0014】
以上のように構成された誘導加熱調理器についてその動作を説明する。駆動手段24によりスイッチング素子17をオンオフすると、加熱コイル15に高周波電流が流れ、加熱コイル15上方に載置された負荷鍋が加熱される。負荷鍋に入力される火力は入力電流検知手段19で検知しており、火力設定手段20で設定された火力となるように制御手段23はスイッチング素子17のオン時間を制御する。加熱コイル15に電流が流れると共振コンデンサ16との共振回路により共振電圧が発生しており、加熱コイル15に過大な電流が流れることによりインバータ回路14の共振電圧が過大となり、インバータ回路14の過電圧破壊や過電流破壊および冷却能力の限界を超えた熱破壊を防ぐため、インバータ回路14の共振電圧を共振電圧検知手段21で検知して共振電圧リミッタ手段22の設定範囲内で動作するように制御手段23はスイッチング素子17のオン時間を制御する。
【0015】
今、火力設定手段20により火力設定1で加熱を開始すると、図2、図3に示すようにファン制御手段26は冷却ファン25の回転数をr1とし、共振電圧リミッタ手段22は共振電圧の制限値をV1として、制御手段23は共振電圧がV1以下で入力電力がPA1となるようにスイッチング素子17のオン時間を制御し、図2に示すように、負荷Aでは入力電力がPA1で安定する。負荷Bの場合は入力電力がPA1より低い電力で共振電圧がV1となるため、共振電圧がV1の時の電力PB1で安定する。
【0016】
次に、火力設定手段20で火力設定2に上げると、ファン制御手段26は冷却ファン25の回転数をr1より高いr2とし、共振電圧リミッタ手段22は共振電圧の制限値をV1より高いV2として、制御手段23は共振電圧がV2以下で入力電力がPA2となるように制御するので、負荷Aでは入力電力がPA2で安定し、負荷Bでは共振電圧がV2の時の電力PB2で安定する。
【0017】
以上のように本実施例によれば、火力設定手段22の設定に応じて共振電圧リミッタ手段22の制限レベルを変更するので、低い火力設定で共振電圧リミッタ手段22が動作する負荷鍋においても、設定火力を変更した時に異なる火力感を得ることが可能となる。
【0018】
また、共振電圧リミッタ手段22の制限レベルまたは火力設定手段22の設定に応じてファン制御手段26は冷却ファン25の回転数を変更するので、共振電圧の制限レベルが低くインバータ回路14の損失が低い設定においては、冷却ファン25の回転数を低下することができるので、冷却ファン25の騒音を低減することができ、機器の静音化を図ることができる。
【0019】
なお、本実施例ではインバータ構成を一石電圧共振型で構成したが、他のインバータ構成でも同様の効果が得られる。
【0020】
また、インバータ回路14の共振電圧検知は、加熱コイル15や、共振コンデンサ16、またはスイッチング素子17いずれの両端電圧で検知しても同様の効果が得られるし、各々の素子の直列回路で検知しても同様の効果が得られる。
【0021】
(実施例2)
以下本発明の実施例2について説明する。基本構成は実施例1と同一であり説明を省略する。異なる点は、加熱時間計時手段27で所定以上の火力設定で連続加熱する時間を計時し、所定時間を超えると共振電圧リミッタ手段22の制限レベルを低下するようにしていることである。
【0022】
以上のように構成された誘導加熱調理器において、火力設定手段20で全7段階の火力設定の最大火力である火力設定7で加熱を開始すると、ファン制御手段26は冷却ファン25の回転数をr2とし、共振電圧リミッタ手段22は共振電圧の制限値をV2として、制御手段23は所定の火力となるようにスイッチング素子17のオン時間を制御する。加熱時間計時手段27は火力設定7で加熱する場合のみ、加熱開始からの加熱時間を計時する。図4に示すように時間t0から加熱開始するとスイッチング素子17の温度が上昇する。火力設定7で長時間加熱するとスイッチング素子17の温度が許容値Tcmaxを超えて熱破壊する可能性があるが、t1時間経過後に自動的に共振電圧リミッタ手段22は共振電圧の制限値をV1に低下するので、スイッチング素子17の温度はTcmaxを超えない。
【0023】
また、スイッチング素子17の耐圧マージンが大きくなり、電源異常などによりインバータ回路14の共振電圧過大となり、スイッチング素子17の耐圧を超える可能性が低くなる。
【0024】
以上のように本実施例によれば、加熱時間計時手段27で所定以上の火力設定で連続加熱する時間を計時し、所定時間を超えると共振電圧リミッタ手段22の制限レベルを低下するので、インバータ回路14の発熱や耐圧が許容値を超えて破壊するのを防止して、共振電圧リミッタ手段22が動作するときの火力を大きくすることができる。
【0025】
なお、本実施例では全火力設定を7段階としたが段階数は特に限定しないし、加熱時間計時手段27が加熱時間を計時する設定火力を上位2段階以上としても同様の効果が得られる。
【0026】
(実施例3)
以下本発明の実施例3について説明する。基本構成は実施例1と同一であり説明を省略する。異なる点は、温度検知手段28の検知温度が所定温度を超えると共振電圧リミッタ手段22の制限レベルを低下するようにしたことである。
【0027】
以上のように構成された誘導加熱調理器において、火力設定手段20で全7段階の火力設定の最大火力である火力設定7で加熱を開始すると、ファン制御手段26は冷却ファン25の回転数をr2とし、共振電圧リミッタ手段22は共振電圧の制限値をV2として、制御手段23は所定の火力となるようにスイッチング素子17のオン時間を制御する。スイッチング素子17の温度を検知する温度検知手段28はスイッチング素子17の外郭温度、またはスイッチング素子17に取り付けられた放熱フィンの温度、またはスイッチング素子17の近傍の雰囲気やパターン部の温度を検知しており、図5に示すように温度検知手段28の検知温度がT1を超えると共振電圧リミッタ手段22は共振電圧の制限値をV1に低下する。また、ファン制御手段26は冷却ファン25の回転数をr3に増加する。
【0028】
以上のように本実施例によれば、温度検知手段28でスイッチング素子の温度が所定温度を超えると共振電圧リミッタ手段22の制限レベルを低下するので、インバータ回路14の発熱が許容値を超えて破壊するのを防止して、共振電圧リミッタ手段22が動作するときの火力を大きくすることができる。
【0029】
また、温度検知手段28でスイッチング素子の温度が所定温度を超えると、ファン制御手段26は冷却ファン25の回転数を増加するので、インバータ回路14の発熱が許容値を超えて破壊するのを防止して、共振電圧リミッタ手段22が動作するときの火力を大きくすることができる。
【0030】
なお、本実施例では全火力設定を7段階としたが段階数は特に限定しないし、設定火力を最大火力以外の設定としても同様の効果が得られる。
【0031】
【発明の効果】
以上、本発明によれば、火力設定に応じてインバータ回路で発生する共振電圧の制限値を変更可能として、共振電圧リミッタ手段が動作する負荷鍋においても、設定火力毎に異なる火力感を実現し実調理時の調理性能を向上することができる。また、所定の火力設定以上で共振電圧リミッタ手段が動作時に、インバータ回路の損失が大きい場合や、スイッチング素子の耐圧マージンが小さい場合においても、所定時間が経過すると共振電圧の制限値を低下するので、インバータ回路の発熱やスイッチング素子の耐圧が許容値を超えて破壊するのを抑制して、共振電圧リミッタ手段が動作する時の最大火力を大きくすることができる。
【図面の簡単な説明】
【図1】 本発明の実施例1における誘導加熱調理器のブロック図
【図2】 同、誘導加熱調理器における入力電力と共振電圧の関係を示す図
【図3】 同、誘導加熱調理器における火力設定と共振電圧リミッタおよびファン回転数の関係を示す図
【図4】 本発明の実施例2における誘導加熱調理器の加熱時間とスイッチング素子の温度の関係を示す図
【図5】 本発明の実施例3における誘導加熱調理器のスイッチング素子の温度に対する共振電圧リミッタおよびファン回転数の関係を示す図
【図】 従来例における誘導加熱調理器のブロック図
【図】 (a)従来例の誘導加熱調理器における入力電力と共振電圧の関係を示す図
(b)(a)における火力設定と入力電力の関係を表す図
【符号の説明】
14 インバータ回路
15 加熱コイル
17 スイッチング素子
19 入力電流検知手段
20 火力設定手段
21 共振電圧検知手段
22 共振電圧リミッタ手段
23 制御手段
25 冷却ファン
26 ファン制御手段
27 加熱時間計時手段
28 温度検知手段
29 オン時間検知手段
30 発振周波数検知手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction heating cooker used for a general household kitchen or business use.
[0002]
[Prior art]
In recent years, induction heating cookers have been recognized for their excellent features such as safety, cleanliness, and high efficiency, and have been widely used in kitchens for general homes and business use.
[0003]
Hereinafter, the induction heating cooker of the prior art arrangement, Fig. 6 will be described with reference to FIG. In the figure, reference numeral 41 denotes a commercial power supply, which is full-wave rectified by a rectifier circuit 42 and smoothed by a smoothing capacitor 43 to constitute a DC power supply. Reference numeral 44 denotes an inverter circuit, which is a heating coil 45, a resonant capacitor 46 connected in parallel to the heating coil 45, a switching element 47 connected in series to the heating coil 45, and a reverse conducting diode connected in antiparallel to the switching element 47. 48. 49 is an input current detection means for detecting an input current from the commercial power supply 41, 50 is a heating power setting means for setting the heating output of the inverter circuit 44, 51 is a resonance voltage detection means for detecting the resonance voltage of the inverter circuit 44, and 52 is The resonance voltage limiter means limits the resonance voltage of the inverter circuit 44 to a predetermined value or less. 53 is a control means for controlling the output of the drive means 54 so that the detection current of the input current detection means 49 is set by the heating power setting means 50 within the setting range of the resonance voltage limiter means 52.
[0004]
In the above configured induction heating cooker as, since limit value VL of the resonance voltage of the inverter circuit 44 is constant regardless of the heating power setting, load resonance voltage limiter means 52 in FIG. 7 is a work hard load pan as shown in a, firepower heating power setting 1, PA1, but are heating operation respectively fired thermal setting 2, PA2, as the load pot resonance voltage limiter means 52 operates is shown in the load B in FIG. 7, Both of the thermal power settings 1 and 2 were operated with the thermal power of PB1 lower than the set thermal power.
[0005]
[Problems to be solved by the invention]
However, in the conventional configuration, since limit value VL of the resonance voltage is constant regardless of the heating power setting, the resonance voltage limiter means 52 at a lower heating power setting as the load B in FIG. 7 operates, raising the heating power setting However, the heating power of the load pan was the same, and the user sometimes felt uncomfortable. In some cases, there is a problem that even though the device is operating normally, the feeling of heat does not change, so it is mistaken for a failure. In addition, since the thermal power does not change even if the thermal power setting is lowered, there is a problem that the cooked food is burnt and a problem occurs in actual cooking, for example.
[0006]
Further, when the heating power is lowered at the load A in FIG. 7 , the loss of the inverter circuit 44 is reduced. Therefore, the number of rotations of the cooling fan that cools the inverter circuit 44 can be changed according to the heating power setting to achieve noise reduction. However, since the loss of the inverter circuit 44 is the same for the load B above the thermal power at which the resonance voltage limiter 52 operates, the same cooling capacity is required as when the maximum thermal power is set, and the cooling fan is silenced when the low thermal power is set. There was a problem that it could not be planned.
[0007]
This invention solves the said subject, and it aims at providing the induction heating cooking appliance which implement | achieves a different thermal power for every setting thermal power by making the limit value of the resonant voltage of an inverter circuit changeable according to thermal power setting. .
[0008]
[Means for Solving the Problems]
To achieve the above object, the induction heating cooker of the present invention, the resonance voltage limiter means, the resonance with a structure to increase the limit value of the resonance voltage of said inverter circuit and increasing the settings in the thermal power setting means The voltage limiter means lowers the limit level of the resonance voltage when the temperature detected by the temperature detection means exceeds a predetermined temperature .
[0009]
Thereby, the maximum resonance voltage of the inverter circuit can be limited in accordance with the setting of the thermal power, and it becomes possible to obtain a different thermal power feeling for each set thermal power even in the load pan where the resonant voltage limiter means operates. In addition, when the resonance voltage limiter means operates at a predetermined thermal power setting or more and the inverter circuit loss is large or the withstand voltage margin of the switching element is small, the limit value of the resonance voltage is lowered after a predetermined time. In addition, it is possible to increase the maximum heating power when the resonance voltage limiter means operates by suppressing the heat generation of the inverter circuit and the breakdown voltage of the switching element from exceeding the allowable value.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 includes a heating coil and a switching element, an inverter circuit that supplies a high-frequency current to the heating coil by turning on and off the switching element, and a thermal power setting unit that sets a heating output of the inverter circuit; Input current detection means for detecting an input current to the inverter circuit, resonance voltage detection means for detecting a resonance voltage of the inverter circuit, resonance voltage limiter means for limiting the resonance voltage of the inverter circuit, and the resonance voltage limiter Control means for turning on and off the switching element so that the thermal power detected by the input current detection means within the limit range of the means becomes the thermal power set by the thermal power setting means, and the setting by the thermal power setting means is a predetermined thermal power a heating time counting means for counting the time for heating at least the resonant voltage limiter means, The resonant voltage limiter means together and raising the setting in serial heating power setting means to increase the limit value of the resonance voltage of the inverter circuit decreases the limit level of the resonant voltage sensing temperature of said temperature detecting means exceeds a predetermined temperature Is. Thereby, the maximum resonance voltage of the inverter circuit can be limited in accordance with the setting of the thermal power, and it becomes possible to obtain a different thermal power feeling for each set thermal power even in the load pan where the resonant voltage limiter means operates. In addition , when the resonance voltage limiter means operates at a predetermined thermal power setting or more and the inverter circuit loss is large or the withstand voltage margin of the switching element is small, the limit value of the resonance voltage is lowered after a predetermined time. In addition, it is possible to increase the maximum heating power when the resonance voltage limiter means operates by suppressing the heat generation of the inverter circuit and the breakdown voltage of the switching element from exceeding the allowable value.
[0011]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0012]
Example 1
FIG. 1 shows an induction heating cooker in Embodiment 1 of the present invention. In FIG. 1, reference numeral 11 denotes a commercial power supply, and full-wave rectified by a rectifier circuit 12 and smoothed by a smoothing capacitor 13 to constitute a DC power supply. Reference numeral 14 denotes an inverter circuit, which is a heating coil 15, a resonant capacitor 16 connected in parallel to the heating coil 15, a switching element 17 connected in series to the heating coil 15, and a reverse conducting diode connected in antiparallel to the switching element 17. The high-frequency current is supplied to the heating coil 15 by turning on and off the switching element 17. 19 is an input current detecting means for detecting an input current from the commercial power supply 11 to the inverter circuit 14, 20 is a heating power setting means for setting the heating output of the inverter circuit 14, and 21 is a resonance between the heating coil 15 of the inverter circuit 14 and the resonance capacitor. Resonance voltage detection means 22 for detecting the voltage is a resonance voltage limiter means 22 for limiting the resonance voltage of the inverter circuit 14 to a predetermined value or less, and changes the restriction level of the resonance voltage according to the setting in the heating power setting means 20. . A control means 23 controls the output of the driving means 24 so that the switching element 17 is turned on and off in accordance with the detection result of the input current detection means 19 and the setting in the heating power setting means 20 within the set range of the resonance voltage limiter means 22. is there.
[0013]
Reference numeral 25 denotes a cooling fan that cools the inverter circuit 14, reference numeral 26 denotes fan control means for controlling the cooling fan 25 at an arbitrary rotation number, and reference numeral 27 denotes a heating time count that measures the time of continuous heating at a predetermined heating power setting or more. Means 28 is a temperature detecting means for detecting the temperature of the switching element 17 or the vicinity thereof, and 29 is an on-time detecting means for detecting the on-time of the switching element 17.
[0014]
The operation | movement is demonstrated about the induction heating cooking appliance comprised as mentioned above. When the switching element 17 is turned on / off by the driving means 24, a high-frequency current flows through the heating coil 15, and the load pan placed above the heating coil 15 is heated. The thermal power input to the load pan is detected by the input current detection means 19, and the control means 23 controls the ON time of the switching element 17 so that the thermal power set by the thermal power setting means 20 is obtained. When a current flows through the heating coil 15, a resonance voltage is generated by a resonance circuit with the resonance capacitor 16, and when an excessive current flows through the heating coil 15, the resonance voltage of the inverter circuit 14 becomes excessive, and the overvoltage of the inverter circuit 14 is increased. In order to prevent breakdown, overcurrent breakdown, and thermal breakdown exceeding the limit of the cooling capacity, the resonance voltage of the inverter circuit 14 is detected by the resonance voltage detection means 21 and controlled so as to operate within the set range of the resonance voltage limiter means 22. The means 23 controls the on time of the switching element 17.
[0015]
Now, when heating is started at the thermal power setting 1 by the thermal power setting means 20, the fan control means 26 sets the rotational speed of the cooling fan 25 to r1 as shown in FIGS. 2 and 3, and the resonance voltage limiter means 22 limits the resonance voltage. Assuming that the value is V1, the control means 23 controls the on-time of the switching element 17 so that the resonance voltage is V1 or less and the input power is PA1, and as shown in FIG. . In the case of the load B, since the input power is lower than PA1 and the resonance voltage is V1, the load P is stabilized at the power PB1 when the resonance voltage is V1.
[0016]
Next, when the thermal power setting means 20 raises the thermal power setting to 2, the fan control means 26 sets the rotational speed of the cooling fan 25 to r2 higher than r1, and the resonance voltage limiter means 22 sets the limit value of the resonance voltage to V2 higher than V1. Since the control means 23 controls the resonance voltage to be equal to or less than V2 and the input power to be PA2, the load A is stabilized at the input power PA2 and the load B is stabilized at the power PB2 when the resonance voltage is V2.
[0017]
As described above, according to the present embodiment, the limit level of the resonance voltage limiter means 22 is changed in accordance with the setting of the thermal power setting means 22, so even in a load pan in which the resonance voltage limiter means 22 operates with a low thermal power setting, It is possible to obtain a different thermal feeling when the set thermal power is changed.
[0018]
Further, since the fan control means 26 changes the rotational speed of the cooling fan 25 according to the limit level of the resonance voltage limiter means 22 or the setting of the thermal power setting means 22, the limit level of the resonance voltage is low and the loss of the inverter circuit 14 is low. In the setting, since the number of rotations of the cooling fan 25 can be reduced, the noise of the cooling fan 25 can be reduced, and the apparatus can be quieted.
[0019]
In the present embodiment, the inverter configuration is a single voltage resonance type, but the same effect can be obtained with other inverter configurations.
[0020]
The resonance voltage detection of the inverter circuit 14 can be obtained by detecting the voltage across the heating coil 15, the resonance capacitor 16, or the switching element 17, and can be detected by a series circuit of each element. However, the same effect can be obtained.
[0021]
(Example 2)
Embodiment 2 of the present invention will be described below. The basic configuration is the same as that of the first embodiment, and a description thereof is omitted. The difference is that the heating time measuring means 27 measures the time for continuous heating with a heating power setting greater than or equal to a predetermined value, and the limit level of the resonance voltage limiter means 22 is lowered when the predetermined time is exceeded.
[0022]
In the induction heating cooker configured as described above, when the heating power setting means 20 starts heating at the heating power setting 7 which is the maximum heating power of all seven stages of heating power setting, the fan control means 26 sets the rotation speed of the cooling fan 25. r2 is set, the resonance voltage limiter means 22 sets the limit value of the resonance voltage to V2, and the control means 23 controls the ON time of the switching element 17 so as to have a predetermined heating power. The heating time counting means 27 measures the heating time from the start of heating only when heating is performed with the thermal power setting 7. As shown in FIG. 4, when heating is started from time t0, the temperature of the switching element 17 rises. If the heating power setting 7 is heated for a long time, the temperature of the switching element 17 may exceed the allowable value Tcmax and may be thermally destroyed. However, the resonance voltage limiter 22 automatically sets the limit value of the resonance voltage to V1 after the elapse of t1 time. Therefore, the temperature of the switching element 17 does not exceed Tcmax.
[0023]
Further, the withstand voltage margin of the switching element 17 is increased, the resonance voltage of the inverter circuit 14 is excessive due to a power supply abnormality or the like, and the possibility of exceeding the withstand voltage of the switching element 17 is reduced.
[0024]
As described above, according to the present embodiment, the heating time measuring means 27 measures the time for continuous heating with a heating power setting greater than or equal to a predetermined value, and when the predetermined time is exceeded, the limit level of the resonance voltage limiter means 22 is reduced. It is possible to prevent the heat generation and breakdown voltage of the circuit 14 from breaking beyond an allowable value, and to increase the thermal power when the resonance voltage limiter means 22 operates.
[0025]
In the present embodiment, the total heating power is set to seven stages, but the number of stages is not particularly limited, and the same effect can be obtained even if the heating power measuring means 27 sets the heating power set for measuring the heating time to the upper two or more stages.
[0026]
(Example 3)
Embodiment 3 of the present invention will be described below. The basic configuration is the same as that of the first embodiment, and a description thereof is omitted. The difference is that the limit level of the resonance voltage limiter 22 is lowered when the temperature detected by the temperature detector 28 exceeds a predetermined temperature.
[0027]
In the induction heating cooker configured as described above, when the heating power setting means 20 starts heating at the heating power setting 7 which is the maximum heating power of all seven stages of heating power setting, the fan control means 26 sets the rotation speed of the cooling fan 25. r2 is set, the resonance voltage limiter means 22 sets the limit value of the resonance voltage to V2, and the control means 23 controls the ON time of the switching element 17 so as to have a predetermined heating power. The temperature detection means 28 for detecting the temperature of the switching element 17 detects the outer temperature of the switching element 17, the temperature of the radiation fin attached to the switching element 17, or the temperature in the vicinity of the switching element 17 and the temperature of the pattern portion. As shown in FIG. 5, when the temperature detected by the temperature detector 28 exceeds T1, the resonance voltage limiter 22 lowers the limit value of the resonance voltage to V1. Further, the fan control means 26 increases the rotational speed of the cooling fan 25 to r3.
[0028]
As described above, according to the present embodiment, when the temperature of the switching element exceeds the predetermined temperature in the temperature detection means 28, the limit level of the resonance voltage limiter means 22 is lowered, so that the heat generation of the inverter circuit 14 exceeds the allowable value. It is possible to prevent destruction and increase the heating power when the resonance voltage limiter means 22 operates.
[0029]
Further, when the temperature of the switching element exceeds a predetermined temperature by the temperature detection means 28, the fan control means 26 increases the number of rotations of the cooling fan 25, so that the heat generation of the inverter circuit 14 is prevented from being destroyed beyond an allowable value. Thus, the heating power when the resonance voltage limiter 22 operates can be increased.
[0030]
In this embodiment, the total heating power is set to seven stages, but the number of stages is not particularly limited, and the same effect can be obtained even if the setting heating power is set to a setting other than the maximum heating power.
[0031]
【The invention's effect】
As described above, according to the present invention, the limit value of the resonant voltage generated in the inverter circuit can be changed according to the thermal power setting, and even in the load pan in which the resonant voltage limiter unit operates, a different thermal feeling is realized for each set thermal power. The cooking performance during actual cooking can be improved. In addition, when the resonance voltage limiter means operates at a predetermined thermal power setting or more and the inverter circuit loss is large or the withstand voltage margin of the switching element is small, the limit value of the resonance voltage is lowered after a predetermined time. In addition, it is possible to increase the maximum heating power when the resonance voltage limiter means operates by suppressing the heat generation of the inverter circuit and the breakdown voltage of the switching element from exceeding the allowable value.
[Brief description of the drawings]
FIG. 1 is a block diagram of an induction heating cooker in Embodiment 1 of the present invention. FIG. 2 is a diagram showing a relationship between input power and resonance voltage in the induction heating cooker. FIG. FIG. 4 is a diagram showing the relationship between the thermal power setting, the resonance voltage limiter, and the fan speed. FIG. 4 is a diagram showing the relationship between the heating time of the induction heating cooker and the temperature of the switching element in Example 2 of the present invention. block diagram of the induction heating cooker in Fig. 6 prior art example showing a resonance voltage limiter and fan speed relationship to temperature of the switching element of the induction heating cooker according to the third embodiment [Fig. 7] (a) conventional example The figure which shows the relationship between the input power and the resonance voltage in the induction heating cooker (b) The figure which shows the relation between the thermal power setting and the input power in (a)
DESCRIPTION OF SYMBOLS 14 Inverter circuit 15 Heating coil 17 Switching element 19 Input current detection means 20 Thermal power setting means 21 Resonance voltage detection means 22 Resonance voltage limiter means 23 Control means 25 Cooling fan 26 Fan control means 27 Heating time counting means 28 Temperature detection means 29 On time Detection means 30 Oscillation frequency detection means

Claims (1)

加熱コイルとスイッチング素子を含み、前記スイッチング素子のオンオフにより前記加熱コイルに高周波電流を供給するインバータ回路と、前記インバータ回路の加熱出力を設定する火力設定手段と、前記インバータ回路への入力電流を検知する入力電流検知手段と、前記インバータ回路の共振電圧を検知する共振電圧検知手段と、前記インバータ回路の共振電圧を制限する共振電圧リミッタ手段と、前記共振電圧リミッタ手段の制限範囲内で前記入力電流検知手段の検知した火力が前記火力設定手段での設定された火力になるように前記スイッチング素子をオンオフする制御手段と、前記火力設定手段での設定が所定火力以上にて加熱する時間を計時する加熱時間計時手段を備え、前記共振電圧リミッタ手段は、前記火力設定手段での設定を上げると前記インバータ回路の共振電圧の制限値を高くするとともに前記共振電圧リミッタ手段は前記温度検知手段の検知温度が所定温度を超えると共振電圧の制限レベルを低下する誘導加熱調理器。An inverter circuit that includes a heating coil and a switching element, and that supplies a high-frequency current to the heating coil by turning on and off the switching element; thermal power setting means for setting a heating output of the inverter circuit; and an input current to the inverter circuit is detected Input current detection means, resonance voltage detection means for detecting the resonance voltage of the inverter circuit, resonance voltage limiter means for limiting the resonance voltage of the inverter circuit, and the input current within a limit range of the resonance voltage limiter means. Control means for turning on and off the switching element so that the thermal power detected by the detection means becomes the thermal power set by the thermal power setting means, and time for heating when the setting by the thermal power setting means exceeds a predetermined thermal power heating time comprises a time measuring means, the resonance voltage limiter means, set in the thermal power setting means Induction heating cooker wherein the resonance voltage limiter means for lowering the restriction level of the resonant voltage sensing temperature of said temperature detecting means exceeds a predetermined temperature with a higher limit value of the resonance voltage of said inverter circuit and increasing.
JP2002075751A 2002-03-19 2002-03-19 Induction heating cooker Expired - Fee Related JP3912151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002075751A JP3912151B2 (en) 2002-03-19 2002-03-19 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002075751A JP3912151B2 (en) 2002-03-19 2002-03-19 Induction heating cooker

Publications (2)

Publication Number Publication Date
JP2003272821A JP2003272821A (en) 2003-09-26
JP3912151B2 true JP3912151B2 (en) 2007-05-09

Family

ID=29204743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002075751A Expired - Fee Related JP3912151B2 (en) 2002-03-19 2002-03-19 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP3912151B2 (en)

Also Published As

Publication number Publication date
JP2003272821A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
EP1667491B1 (en) Inverter circuit for an induction heating apparatus, cooking appliance having such circuit, and operating method
CN100505957C (en) Induction heating cooking apparatus interrupting operation due to container eccentricity
JP3912120B2 (en) Induction heating cooker
JPH05166579A (en) Induction heating cooker
JP3912151B2 (en) Induction heating cooker
JP2006253132A (en) Induction heating cooking device using dsp
JP3604538B2 (en) Electromagnetic cooker
JP2010257841A (en) Induction heating cooking device
JP2004111090A (en) Induction heating cooker
JP4444126B2 (en) Heating equipment
JPH0645058A (en) Induction heating cooker
JP3861759B2 (en) Induction heating cooker
JPH11329696A (en) Induction heater cooker
JP2003017235A (en) Induction heating cooker
JP3941697B2 (en) Induction heating cooker
JP2003017234A (en) Induction heating cooker
JP3168956B2 (en) Induction heating cooker
JP4161924B2 (en) Cooker
JP2003059635A (en) Heater cooker
JP2003017236A (en) Induction heating cooker
JPH09199268A (en) Induction heating cooking utensil
JP3019440B2 (en) Induction heating cooker
JP2022044871A (en) Induction heating cooker
KR100740317B1 (en) System for controlling resonant voltage of induction heating device
JPH07289421A (en) Induction heating type rice cooker

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R151 Written notification of patent or utility model registration

Ref document number: 3912151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees