JP3911705B2 - Method for producing azobiscyanocarboxylic acid chloride - Google Patents

Method for producing azobiscyanocarboxylic acid chloride Download PDF

Info

Publication number
JP3911705B2
JP3911705B2 JP15295194A JP15295194A JP3911705B2 JP 3911705 B2 JP3911705 B2 JP 3911705B2 JP 15295194 A JP15295194 A JP 15295194A JP 15295194 A JP15295194 A JP 15295194A JP 3911705 B2 JP3911705 B2 JP 3911705B2
Authority
JP
Japan
Prior art keywords
acid
azobiscyanocarboxylic
acid chloride
reaction
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15295194A
Other languages
Japanese (ja)
Other versions
JPH07330705A (en
Inventor
村 信 孝 嶋
藤 俊 康 伊
本 隆 橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Fujifilm Wako Pure Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd, Fujifilm Wako Pure Chemical Corp filed Critical Wako Pure Chemical Industries Ltd
Priority to JP15295194A priority Critical patent/JP3911705B2/en
Publication of JPH07330705A publication Critical patent/JPH07330705A/en
Application granted granted Critical
Publication of JP3911705B2 publication Critical patent/JP3911705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明はアゾ高分子重合開始剤(以下、MAIと略記する。)やマクロモノマー等の原料として有用なアゾビスシアノカルボン酸クロリドの新規な製造方法に関する。
【0002】
【発明の背景】
近年、高分子化合物の開発は汎用のものから付加価値が高い機能性ポリマーへと進展し、中でもミクロ相分離構造に由来する多相構造をとり得ることにより諸機能の効果的な発現が期待されるブロックポリマーやグラフトポリマーの製造がさかんになって来ている。
【0003】
これらブロックポリマーやグラフトポリマーの製造方法は、例えばブロックポリマーではリビング重合法、セグメント結合法、高分子開始剤法等が知られているが、特に高分子開始剤法はブロックポリマーの製造に対し簡便な方法として注目されており、中でも幹ポリマーにアゾ基を含むプレポリマーを重合開始剤として用い、第2モノマーを重合させてブロックポリマーを得る方法は、アゾ高分子重合開始剤〔MAI〕法として脚光をあびている。
【0004】
このMAIを製造する方法としては、例えばJ.Furukawa,S.Yamashita,Angew.Makromol.Chem.,,92(1967)に記載されている様に、分子内に2個の水酸基と、1つのアゾ基をもつアゾビスシアノペンタノールを用いてウレタン結合を持つMAIを合成する方法などが知られている。
しかし、近年、H.Inoue,A.Ueda,S.Nagai,J.Polym.Sci.,A26,1077(1988)、J.Apply.Polym.Sci.,35,2039(1988)、上田明,永井進,高分子論文集,33,131(1976),44,469(1987)、J.Polym.Sci.Polym.Chem.Ed.,22,1611(1984)等に記載されている様に、ブロックポリマーの分子設計が容易に出来るという観点から、水酸基より反応性の高い酸クロリド基をもつアゾビスシアノカルボン酸クロリドをMAIの原料とする方法が主流となっている。
【0005】
一方、グラフトポリマーにおいては、幹ポリマーに反応性の官能基(例えば水酸基)を導入し、これと反応する官能基(例えば酸クロリド基)をもつ枝ポリマーを反応させる方法や、枝ポリマーとなるマクロモノマーと幹ポリマーとなるモノマーを共重合させてグラフトポリマーとするマクロモノマー法等が知られている。特にマクロモノマー法はグラフト効率、簡便さといった点から近年、非常に注目されている。
【0006】
このマクロモノマーの製造方法としては末端反応性ポリマーにメタクリル酸クロリド、メタクリル酸-2-ヒドロキシエチル、4-ヒドロキシスチレン、ビニルピリジン等の反応性モノマーを結合させる方法が一般的であるが、この末端反応性ポリマーは、アゾビスシアノペンタン酸クロリド、アゾビスシアノペンタノール、アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕等の反応性の官能基を持つラジカル重合開始剤を用いることにより容易に合成でき、特にアゾビスシアノペンタン酸クロリドを使う方法はポリマー末端に反応性の高い酸クロリド基が導入出来るため脚光をあびている。
【0007】
これらMAIやマクロモノマーの製造に使用されるアゾビスシアノカルボン酸クロリドの製造方法としては、D.Smith,Makromol.Chem.,103,301(1967)に記載されている、4,4'-アゾビスシアノペンタン酸をベンゼン溶媒中で五塩化リンと反応させる方法、東ドイツ特許第100710号明細書に記載のエチルエーテル中、ピリジンを脱塩酸剤として塩化チオニルと反応させる方法、英国特許第2115810号明細書中に記載のテトラヒドロフラン(THF)溶媒中、ピリジンを触媒として塩化チオニルと反応させる方法、更には、上田明,永井進,高分子論文集,33,131(1979)中に記載の塩化チオニルをクロル化剤及び溶媒として使用する方法等が知られている。
【0008】
【発明が解決しようとする問題点】
しかしながら五塩化リンを用いるMakromol.Chem.,103,301(1967)記載の方法は、使用する五塩化リン自体が毒性の強い化合物であり、更に、反応副生物であるオキシ塩化リンも毒性が強く、生成物からの除去が困難であるという問題がある。
また、高分子論文集記載の方法では、五塩化リンより毒性は低いものの、刺激性のある塩化チオニルを4,4'-アゾビス(4ーシアノペンタン酸)に対して5当量と多量に使用しなければならず、かつ、反応時間が約10時間と長いわりには収率は42.3%と低いという欠点があった。
更に、東ドイツ特許に記載の方法では、目的物を高収率で得てはいるものの、脱塩酸剤のピリジンや副生するピリジン塩酸塩の除去が困難であり、英国特許に記載の方法では、溶媒にTHFを使用しているため生成する塩酸と溶媒のTHFが反応してα,ω-ブタンクロルヒドリンが生成し、これが更に目的とする酸クロリドと反応してエステル体が生成してしまい、含量が低下するという欠点を有していた。
【0009】
【発明の目的】
本発明は上記した如き状況に鑑み成されたもので、五塩化リンの如く毒性の強いハロゲン化剤を使用することなく、短時間で容易に且つ収率良く、高品質のアゾビスシアノカルボン酸クロリドが得られるアゾビスシアノカルボン酸クロリドの新規で且つ極めて効果的な製造方法を提供することを目的とする。
【0010】
【問題を解決するための手段】
上記目的を達成するため本発明は以下の構成より成る。
「一般式[I]
【化1】
(式中、RはC1〜C4のアルキル基を表し、nは1〜5の整数を表す。)
で示されるアゾビスシアノカルボン酸と塩化チオニルとをアセトニトリルを反応溶媒として用いて反応させることを特徴とする一般式[II]
【化2】
(式中、R、nは前記と同じ。)
で示されるアゾビスシアノカルボン酸クロリドの製造方法。」
【0011】
即ち、本発明者らは上記目的を達成すべく鋭意研究を重ねた結果、アゾビスシアノカルボン酸と塩化チオニルとをアセトニトリルを反応溶媒として用いて反応させた場合には、前述した従来法の問題点を全て克服し、短時間で容易に且つ収率良く、高品質のアゾビスシアノカルボン酸クロリドを製造し得ることを見出し本発明を完成するに到った。
【0012】
一般式[I]および[II]に於いて、Rで示されるC1〜C4のアルキル基としては、メチル基、エチル基、プロピル基およびブチル基が挙げられ、プロピル基及びブチル基の場合、直鎖状、分枝状の何れにても可である。
【0013】
本発明で用いられるアセトニトリルの使用量は反応に支障がなければ特に限定されないが、あまり少ないと反応に時間を要し、あまり多すぎると経済的に不利である。従って、アセトニトリルの使用量としては、アゾビスシアノカルボン酸に対し通常1〜100倍容、好ましくは2〜50倍容、更に好ましくは5〜20倍容の範囲から適宜選択される。
尚、反応に支障のない範囲であれば、アセトニトリル中に他の溶媒が適宜混在していても良いことは言うまでもない。換言すれば、本発明に於いて使用可能な反応溶媒としてはアセトニトリル単独溶媒のみならずアセトニトリルを主体とする混合溶媒もこれに含まれる。
アセトニトリルと併用可能な他の反応溶媒としては、アゾビスシアノカルボン酸と塩化チオニルとを反応させてアゾビスシアノカルボン酸クロリドを製造する反応を阻害しない溶媒であれば何れでもよいが、特に、生成する塩酸と反応しない溶媒を使用することが好ましい。これらアセトニトリルと併用可能な他の反応溶媒としては、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、例えばn−ヘキサン、n−ヘプタン等の脂肪族炭化水素類、例えばクロロホルム、ジクロルエタン等のハロゲン化炭化水素類、例えばジエチルエーテル、ジイソプロピルエーテル等のエーテル類等が挙げられる。
【0014】
また、本発明に於いて用いられる塩化チオニルの使用量については特に限定されないが、通常、アゾビスシアノカルボン酸に対して1.1〜2.0当量程度で充分である。即ち、本発明に於いては、塩化チオニルの使用量を従来法でのそれに比べて著しく低減することが可能である。反応温度については通常0〜50℃、好ましくは0〜30℃であり、反応時間は反応温度等により若干異なるが、通常1〜8時間程度で充分である。
【0015】
本発明を実施するには例えば以下の如くして行えば良い。
即ち、アゾビスシアノカルボン酸と、これに対して約1.1〜2.0当量の塩化チオニルとをアセトニトリル中、0〜50℃、好ましくは0〜30℃で1〜8時間反応させる。反応終了後は反応液を減圧濃縮し、溶媒等を留去すれば高品質のアゾビスシアノカルボン酸クロリドを得ることが出来る。
必要に応じて、これを更に適当な溶媒、例えばジクロルメタン−イソプロピルエーテル等を用いて再結晶する等は任意である。
【0016】
本発明の製造方法に於いて、原料として用いられるアゾビスシアノカルボン酸は、例えば4,4'-アゾビス(4-シアノペンタン酸)(和光純薬工業(株)製、商品名V-501)等の市販品を乾燥処理した後に用いても良いし、或いは、例えば特公昭55ー34162号報等に記載の方法に準じて以下の如き方法により合成したものを用いても良い。
即ち、相当するケトカルボン酸をアルカリ存在下に抱水ヒドラジンと反応させてケタジンとし、次いでこれにシアン化水素を付加してヒドラゾ体とした後、臭素等の酸化剤でこれを酸化すれば目的とするアゾビスシアノカルボン酸が得られる。必要に応じてこれを再結晶等により精製する等は任意である。
【0017】
以下に参考例及び実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらによって何ら限定されるものではない。
【0018】
【実施例】
参考例1
水 25mlに4-アセチル酪酸50g(0.384mol)を溶解し、これに攪拌下に25%NaOH水溶液61.5g(0.384mol)を25〜30℃で滴下した後、更に80%抱水ヒドラジン12g(0.192mol)を加えて3.5時間攪拌反応させた。次いでこの反応液にシアン化水素12.8g(0.474mol)を15〜20℃で滴下し1時間攪拌反応させた。一夜放置後濃塩酸47.5g(0.47mol)を加え、氷冷下で25%臭素酸ナトリウム水溶液42.4g(0.070mol)を滴下し30分間攪拌した後析出晶をろ取した。得られた結晶を水150mlに分散し、10%NaOH水溶液でpHを11に調製した後活性炭1.7gを加えて処理し、活性炭をろ去後、ろ液を硫酸でpH2.5として結晶を析出させた。析出晶をろ取し、水、n-ヘキサンで洗浄後乾燥して5,5'ーアゾビス(5-シアノヘキサン酸)の白色結晶42,9gを得た。
IR(KBr):2240cmー1(ーCN),1700cmー1(C=O)
NMR(DMSO-d6):δ1.65ppm(メソ体),1.67ppm(ラセミ体)(6H,s,CH3),
1.4〜1.6ppm(4H,m,CH2)(COOHに対しγ位のCH2),
2.05〜2.11ppm(4H,m,CH2)(COOHに対しβ位のCH2),
2.28〜2.34ppm(4H,m,CH2)(COOHに対しα位のCH2
UV(アセトニトリル):λmax 349nm,E1cm 1%=0.620
m.p:109.6〜112.2℃(分解)
【0019】
実施例1
アセトニトリル 100mlに4,4'-アゾビス(4-シアノペンタン酸)(和光純薬工業(株)製、商品名V-501)10g(0.036mol)を加え、これに5℃で塩化チオニル 17.1g(0.144mol)を1時間かけて滴下後、5±5℃で2時間攪拌反応させた。反応後溶媒を減圧下に留去し残査をジクロルメタン−イソプロピルエーテルから再結晶して4,4'-アゾビス(4-シアノペンタン酸)クロリドの白色結晶 9.3gを得た。 収率82.2%。
m.p 75.6℃(分解) 含量 COClより99.1% λmax 351nm ε=22.1(CH2Cl2
【0020】
実施例2
アセトニトリル 30mlと1,2-ジクロルエタン 20mlとの混合溶媒に、4,4'-アゾビス(4-シアノペンタン酸)(和光純薬工業(株)製、商品名V-501)10g(0.036mol)及び塩化チオニル 11g(0.092mol)を加え、25±2℃で2時間攪拌反応させた。反応後、実施例1と同様に処理して、4,4'-アゾビス(4-シアノペンタン酸)クロリドの白色結晶 9.1gを得た。収率80.4%。
含量 COClより99.4% λmax 351nm ε=22.2(CH2Cl2
【0021】
実施例3
アセトニトリル 154mlに、参考例1で得た5,5'-アゾビス(5-シアノヘキサン酸)15.4g(0.05mol)及び塩化チオニル 24.0g(0.20mol)を加え、20℃で4時間攪拌反応させた。反応後減圧下に溶媒を留去し残査をジクロルメタン−イソプロピルエーテルから再結晶して5,5'-アゾビス(5-シアノヘキサン酸)クロリドの白色結晶 12.9gを得た。収率74.8%。
m.p 75℃(分解) 含量 COClより99.8% λmax 347nm ε=27.0(CH2Cl2
【0022】
【発明の効果】
以上述べた如く、本発明は、MAIやマクロモノマー等の製造に使用されるアゾビスシアノカルボン酸クロリドを製造する方法を提供するものであり、本発明の製造方法によれば、五塩化リンのように毒性が強く、危険性の高い化合物を使用する必要はなく、また脱塩酸剤等も必要とせず、更には除去し難い副生物が生成するおそれもないので、短時間で容易に且つ収率良く、高品質のアゾビスシアノカルボン酸クロリドを得ることができる、という効果を奏するので、斯業に貢献するところ大なる発明である。
[0001]
[Industrial application fields]
The present invention relates to a novel process for producing an azobiscyanocarboxylic acid chloride useful as a raw material for an azo polymer polymerization initiator (hereinafter abbreviated as MAI) and a macromonomer.
[0002]
BACKGROUND OF THE INVENTION
In recent years, the development of polymer compounds has progressed from general-purpose ones to high-value-added functional polymers, and in particular, the effective expression of various functions is expected by taking a multiphase structure derived from a microphase separation structure. Production of block polymers and graft polymers is becoming increasingly popular.
[0003]
As for the production method of these block polymers and graft polymers, for example, the living polymerization method, the segment bonding method, the polymer initiator method and the like are known for the block polymer, but the polymer initiator method is particularly convenient for the production of the block polymer. In particular, a method of obtaining a block polymer by polymerizing a second monomer using a prepolymer containing an azo group in a trunk polymer as a polymerization initiator is known as an azo polymer polymerization initiator [MAI] method. It is in the limelight.
[0004]
As a method for producing this MAI, for example, as described in J. Furukawa, S. Yamashita, Angew. Makromol. Chem., 1 , 92 (1967), two hydroxyl groups and one A method of synthesizing MAI having a urethane bond using azobiscyanopentanol having an azo group is known.
However, in recent years, H. Inoue, A. Ueda, S. Nagai, J. Polym. Sci., A26 , 1077 (1988), J. Apply. Polym. Sci., 35 , 2039 (1988), Akira Ueda, Nagai Block, as described in Susumu, Polymer Journal, 33 , 131 (1976), 44 , 469 (1987), J. Polym. Sci. Polym. Chem. Ed., 22 , 1611 (1984), etc. From the viewpoint of easy molecular design of the polymer, a method using azobiscyanocarboxylic acid chloride having an acid chloride group that is more reactive than a hydroxyl group as a raw material for MAI has become the mainstream.
[0005]
On the other hand, in the graft polymer, a reactive functional group (for example, a hydroxyl group) is introduced into the trunk polymer, and a branch polymer having a functional group (for example, an acid chloride group) that reacts therewith is reacted. A macromonomer method or the like in which a monomer and a monomer serving as a backbone polymer are copolymerized to form a graft polymer is known. In particular, the macromonomer method has attracted much attention in recent years in terms of graft efficiency and simplicity.
[0006]
As a method for producing this macromonomer, a method in which a reactive monomer such as methacrylic acid chloride, 2-hydroxyethyl methacrylate, 4-hydroxystyrene, or vinylpyridine is bonded to a terminal reactive polymer is generally used. The reactive polymer is obtained by using a radical polymerization initiator having a reactive functional group such as azobiscyanopentanoic acid chloride, azobiscyanopentanol, or azobis [2- (2-imidazolin-2-yl) propane]. In particular, the method using azobiscyanopentanoic acid chloride is in the spotlight because a highly reactive acid chloride group can be introduced into the polymer terminal.
[0007]
As a production method of azobiscyanocarboxylic acid chloride used for the production of these MAI and macromonomers, 4,4′-azo is described in D. Smith, Makromol. Chem., 103 , 301 (1967). A method of reacting biscyanopentanoic acid with phosphorus pentachloride in a benzene solvent, a method of reacting thiol chloride with pyridine as a dehydrochlorinating agent in ethyl ether described in East German Patent No. 100710, British Patent No. 2115810 The method of reacting with thionyl chloride using pyridine as a catalyst in the tetrahydrofuran (THF) solvent described in the book, and further, the thionyl chloride described in Akira Ueda, Susumu Nagai, Kobunshi Shigshu, 33 , 131 (1979) A method of using it as a chlorinating agent and a solvent is known.
[0008]
[Problems to be solved by the invention]
However, in the method described in Makromol. Chem., 103 , 301 (1967) using phosphorus pentachloride, the phosphorus pentachloride used is a highly toxic compound, and phosphorus oxychloride as a reaction byproduct is also highly toxic. There is a problem that removal from the product is difficult.
In addition, although the method described in the collection of polymer papers is less toxic than phosphorus pentachloride, irritating thionyl chloride must be used in a large amount of 5 equivalents to 4,4'-azobis (4-cyanopentanoic acid). In addition, the yield was as low as 42.3% when the reaction time was as long as about 10 hours.
Furthermore, in the method described in the East German patent, although the target product is obtained in a high yield, it is difficult to remove pyridine as a dehydrochlorination agent and pyridine hydrochloride as a by-product, and in the method described in the British patent, Since THF is used as the solvent, the resulting hydrochloric acid reacts with the THF of the solvent to produce α, ω-butanechlorohydrin, which further reacts with the desired acid chloride to form an ester. , Had the disadvantage that the content was reduced.
[0009]
OBJECT OF THE INVENTION
The present invention has been made in view of the above-described situation, and without using a highly toxic halogenating agent such as phosphorus pentachloride. It is an object of the present invention to provide a novel and extremely effective production method of azobiscyanocarboxylic acid chloride from which chloride can be obtained.
[0010]
[Means for solving problems]
In order to achieve the above object, the present invention comprises the following arrangement.
“General Formula [I]
[Chemical 1]
(Wherein, R represents an alkyl group of C 1 ~C 4, n is an integer of 1-5.)
The general formula [II], characterized in that azobiscyanocarboxylic acid represented by the formula and thionyl chloride are reacted using acetonitrile as a reaction solvent
[Chemical 2]
(In the formula, R and n are the same as described above.)
The manufacturing method of azobis cyanocarboxylic acid chloride shown by this. "
[0011]
That is, as a result of intensive studies to achieve the above object, the present inventors have found that when azobiscyanocarboxylic acid and thionyl chloride are reacted using acetonitrile as a reaction solvent, the problems of the conventional method described above. All the points were overcome, and it was found that high-quality azobiscyanocarboxylic acid chloride can be produced easily and in good yield in a short time, and the present invention was completed.
[0012]
In the general formulas [I] and [II], examples of the C1-C4 alkyl group represented by R include a methyl group, an ethyl group, a propyl group, and a butyl group. Either a chain shape or a branched shape is possible.
[0013]
The amount of acetonitrile used in the present invention is not particularly limited as long as the reaction is not hindered. However, if it is too small, it takes time for the reaction, and if it is too much, it is economically disadvantageous. Accordingly, the amount of acetonitrile used is appropriately selected from the range of usually 1 to 100 times, preferably 2 to 50 times, more preferably 5 to 20 times the volume of azobiscyanocarboxylic acid.
It goes without saying that other solvents may be appropriately mixed in acetonitrile as long as the reaction does not hinder the reaction. In other words, the reaction solvent that can be used in the present invention includes not only acetonitrile alone but also a mixed solvent mainly composed of acetonitrile.
The other reaction solvent that can be used in combination with acetonitrile may be any solvent as long as it does not inhibit the reaction of producing azobiscyanocarboxylic acid chloride by reacting azobiscyanocarboxylic acid with thionyl chloride. It is preferable to use a solvent that does not react with hydrochloric acid. Examples of other reaction solvents that can be used in combination with acetonitrile include aromatic hydrocarbons such as benzene, toluene, and xylene, aliphatic hydrocarbons such as n-hexane and n-heptane, and halogens such as chloroform and dichloroethane. Hydrocarbons such as ethers such as diethyl ether and diisopropyl ether.
[0014]
The amount of thionyl chloride used in the present invention is not particularly limited, but usually about 1.1 to 2.0 equivalents are sufficient for the azobiscyanocarboxylic acid. That is, in the present invention, the amount of thionyl chloride used can be remarkably reduced as compared with that in the conventional method. About reaction temperature, it is 0-50 degreeC normally, Preferably it is 0-30 degreeC, Although reaction time changes a little with reaction temperature etc., about 1-8 hours are usually enough.
[0015]
For example, the present invention may be performed as follows.
That is, azobiscyanocarboxylic acid and about 1.1 to 2.0 equivalents of thionyl chloride are reacted in acetonitrile at 0 to 50 ° C., preferably 0 to 30 ° C. for 1 to 8 hours. After completion of the reaction, the reaction solution is concentrated under reduced pressure, and the solvent and the like are distilled off, whereby high-quality azobiscyanocarboxylic acid chloride can be obtained.
If necessary, it is optional to recrystallize this with a suitable solvent such as dichloromethane-isopropyl ether.
[0016]
In the production method of the present invention, the azobiscyanocarboxylic acid used as a raw material is, for example, 4,4′-azobis (4-cyanopentanoic acid) (manufactured by Wako Pure Chemical Industries, Ltd., trade name V-501). Commercially available products such as the above may be used after drying, or those synthesized by the following method according to the method described in JP-B-55-34162, for example, may be used.
That is, the corresponding ketocarboxylic acid is reacted with hydrazine hydrate in the presence of an alkali to form ketazine, then hydrogen cyanide is added to form a hydrazo, and then oxidized with an oxidizing agent such as bromine. Biscyanocarboxylic acid is obtained. It is optional to purify this by recrystallization or the like as necessary.
[0017]
Hereinafter, the present invention will be described in more detail with reference to reference examples and examples, but the present invention is not limited thereto.
[0018]
【Example】
Reference example 1
In 25 ml of water, 50 g (0.384 mol) of 4-acetylbutyric acid was dissolved, and 61.5 g (0.384 mol) of 25% NaOH aqueous solution was added dropwise at 25-30 ° C. with stirring, and then 12 g (0.192 of 80% hydrazine hydrate) was added. mol) was added and stirred for 3.5 hours. Next, 12.8 g (0.474 mol) of hydrogen cyanide was added dropwise to this reaction solution at 15 to 20 ° C., and the mixture was stirred for 1 hour. After standing overnight, 47.5 g (0.47 mol) of concentrated hydrochloric acid was added, 42.4 g (0.070 mol) of 25% aqueous sodium bromate solution was added dropwise under ice cooling, and the mixture was stirred for 30 minutes, and the precipitated crystals were collected by filtration. The obtained crystals were dispersed in 150 ml of water, adjusted to pH 11 with 10% NaOH aqueous solution, treated with 1.7 g of activated carbon, filtered off the activated carbon, and the filtrate was precipitated with sulfuric acid at pH 2.5. I let you. The precipitated crystals were collected by filtration, washed with water and n-hexane and then dried to obtain 42,9 g of white crystals of 5,5′-azobis (5-cyanohexanoic acid).
IR (KBr): 2240cm-1 (over CN), 1700cm over 1 (C = O)
NMR (DMSO-d 6 ): δ 1.65 ppm (meso), 1.67 ppm (racemic) (6H, s, CH 3 ),
1.4~1.6ppm (4H, m, CH 2 ) (CH 2 of position γ with respect to COOH),
2.05~2.11ppm (4H, m, CH 2 ) (CH 2 of position β with respect to COOH),
2.28~2.34ppm (4H, m, CH 2 ) (CH 2 of position α to COOH)
UV (acetonitrile): λ max 349nm, E 1cm 1% = 0.620
mp: 109.6-112.2 ° C (decomposition)
[0019]
Example 1
To 100 ml of acetonitrile, 10 g (0.036 mol) of 4,4′-azobis (4-cyanopentanoic acid) (trade name V-501, manufactured by Wako Pure Chemical Industries, Ltd.) was added. 0.144 mol) was added dropwise over 1 hour, and the reaction was stirred at 5 ± 5 ° C. for 2 hours. After the reaction, the solvent was distilled off under reduced pressure, and the residue was recrystallized from dichloromethane-isopropyl ether to obtain 9.3 g of 4,4′-azobis (4-cyanopentanoic acid) chloride white crystals. Yield 82.2%.
mp 75.6 ℃ (decomposition) Content 99.1% from COCl λ max 351nm ε = 22.1 (CH 2 Cl 2 )
[0020]
Example 2
In a mixed solvent of 30 ml of acetonitrile and 20 ml of 1,2-dichloroethane, 10 g (0.036 mol) of 4,4′-azobis (4-cyanopentanoic acid) (manufactured by Wako Pure Chemical Industries, Ltd., trade name V-501) and 11 g (0.092 mol) of thionyl chloride was added, and the reaction was stirred at 25 ± 2 ° C. for 2 hours. After the reaction, the same treatment as in Example 1 was carried out to obtain 9.1 g of 4,4′-azobis (4-cyanopentanoic acid) chloride as white crystals. Yield 80.4%.
Content 99.4% from COCl λ max 351nm ε = 22.2 (CH 2 Cl 2 )
[0021]
Example 3
To 154 ml of acetonitrile, 15.4 g (0.05 mol) of 5,5′-azobis (5-cyanohexanoic acid) obtained in Reference Example 1 and 24.0 g (0.20 mol) of thionyl chloride were added and reacted with stirring at 20 ° C. for 4 hours. . After the reaction, the solvent was distilled off under reduced pressure, and the residue was recrystallized from dichloromethane-isopropyl ether to obtain 12.9 g of white crystals of 5,5′-azobis (5-cyanohexanoic acid) chloride. Yield 74.8%.
mp 75 ℃ (decomposition) Content 99.8% from COCl λ max 347nm ε = 27.0 (CH 2 Cl 2 )
[0022]
【The invention's effect】
As described above, the present invention provides a method for producing azobiscyanocarboxylic acid chloride used in the production of MAI, macromonomer and the like. According to the production method of the present invention, phosphorus pentachloride Thus, there is no need to use a highly toxic and highly dangerous compound, no need for a dehydrochlorination agent, etc., and there is no risk of formation of by-products that are difficult to remove. Since it produces the effect that it is possible to obtain high-quality azobiscyanocarboxylic acid chloride efficiently, this is a great invention that contributes to this industry.

Claims (2)

一般式[I]
Figure 0003911705
(式中、RはC1〜C4のアルキル基を表し、nは1〜5の整数を表す。)
で示されるアゾビスシアノカルボン酸と塩化チオニルとをアセトニトリルを反応溶媒として用いて反応させることを特徴とする一般式[II]
Figure 0003911705
(式中、R、nは前記と同じ。)
で示されるアゾビスシアノカルボン酸クロリドの製造方法。
Formula [I]
Figure 0003911705
(Wherein, R represents an alkyl group of C 1 ~C 4, n is an integer of 1-5.)
The general formula [II], characterized in that azobiscyanocarboxylic acid represented by the formula and thionyl chloride are reacted using acetonitrile as a reaction solvent
Figure 0003911705
(In the formula, R and n are the same as described above.)
The manufacturing method of azobis cyanocarboxylic acid chloride shown by this.
アゾビスシアノカルボン酸が、Azobiscyanocarboxylic acid is 4,4'-4,4'- アゾビスAzobis (4-(Four- シアノペンタン酸Cyanopentanoic acid )) 又はOr 5,5'-5,5'- アゾビスAzobis (5-(Five- シアノヘキサン酸Cyanohexanoic acid )) である請求項1記載のアゾビスシアノカルボン酸クロリドの製造方法。The process for producing azobiscyanocarboxylic acid chloride according to claim 1.
JP15295194A 1994-06-10 1994-06-10 Method for producing azobiscyanocarboxylic acid chloride Expired - Fee Related JP3911705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15295194A JP3911705B2 (en) 1994-06-10 1994-06-10 Method for producing azobiscyanocarboxylic acid chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15295194A JP3911705B2 (en) 1994-06-10 1994-06-10 Method for producing azobiscyanocarboxylic acid chloride

Publications (2)

Publication Number Publication Date
JPH07330705A JPH07330705A (en) 1995-12-19
JP3911705B2 true JP3911705B2 (en) 2007-05-09

Family

ID=15551732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15295194A Expired - Fee Related JP3911705B2 (en) 1994-06-10 1994-06-10 Method for producing azobiscyanocarboxylic acid chloride

Country Status (1)

Country Link
JP (1) JP3911705B2 (en)

Also Published As

Publication number Publication date
JPH07330705A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
JP2007515538A (en) Polymerization using chain transfer agents
JP2002020323A (en) Method for oxidizing alcohol and use of compound obtained by the method
JP3911705B2 (en) Method for producing azobiscyanocarboxylic acid chloride
EP0617110A1 (en) Liquid crystal monomer compound and polymer obtained therefrom
JPS6067446A (en) Production of caprolactone polyester unsaturated monomer
JPH03264549A (en) Production of unsaturated monomer
JP2787343B2 (en) Azo compounds
JP4385436B2 (en) New azoamide compounds
JPH05229990A (en) Bifunctional (meth)acrylate
JP2002037759A (en) Method for producing acrylic acid ester or methacrylic acid ester
JPH07258202A (en) Polymerizable betaine compound
JPH10324714A (en) Lactone ring-containing polymer and its production
JP2859791B2 (en) Method for producing 4-bromomethylbiphenyl compound
JPS6345245A (en) N-(substituted oxalyl)acrylamide and production thereof
JP4348800B2 (en) Novel carboxyl group-containing azoamide compounds
RU2103260C1 (en) Method for production of 4-nitrobenzamide
JP4150791B2 (en) Polyamide 4 derivative, block copolymer containing polyamide 4 and method for producing the same
JP4253897B2 (en) New azoamidine compounds
JP3516095B2 (en) Method for producing azoimino ethers
JPS60228449A (en) Azo compound having monomer structure and its preparation, preparation of graft copolymer and block copolymer to be used for it
JPS6262801A (en) Production of macromonomer
JPH0632768A (en) Production of unsaturated quaternary ammonium salt
JPH0543513A (en) Novel method for preparing benzyl methacrylate or derivative thereof in which the aromatic nucleus is halogenated or alkylated
JPH01115906A (en) Synthesis of polymer having phodanine ring in side chain
JPS6270352A (en) Production of n-substituted acrylamide or methacrylamide

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees