JP3911221B2 - Refractories for continuous casting - Google Patents

Refractories for continuous casting Download PDF

Info

Publication number
JP3911221B2
JP3911221B2 JP2002271609A JP2002271609A JP3911221B2 JP 3911221 B2 JP3911221 B2 JP 3911221B2 JP 2002271609 A JP2002271609 A JP 2002271609A JP 2002271609 A JP2002271609 A JP 2002271609A JP 3911221 B2 JP3911221 B2 JP 3911221B2
Authority
JP
Japan
Prior art keywords
refractory
phase
spinel
continuous casting
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002271609A
Other languages
Japanese (ja)
Other versions
JP2004106014A (en
Inventor
克巳 内之倉
始 笠原
智弘 今野
修 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002271609A priority Critical patent/JP3911221B2/en
Publication of JP2004106014A publication Critical patent/JP2004106014A/en
Application granted granted Critical
Publication of JP3911221B2 publication Critical patent/JP3911221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼の連続鋳造で使用されるロングノズル、浸漬ノズル、ストッパー、ストッパーヘッド、上ノズル等に適した連続鋳造用耐火物に関するものである。
【0002】
【従来の技術】
これらの連続鋳造用耐火物は、溶鋼の流量制御、溶鋼の酸化防止、溶融スラグや溶融パウダーの巻き込み防止等の機能をもっている。このような機能を持つ連続鋳造用耐火物は、耐熱性、耐溶損性、耐スポール性、耐酸化性について高い性能を要求されるため、これらを構成する耐火材としてはアルミナ−黒鉛質あるいはジルコニア−黒鉛質が適用されてきた。しかしながら、アルミナ−黒鉛質耐火物を、高Mn含有鋼、高酸素含有鋼、高Si含有鋼、Ca処理鋼の鋳造に用いると、溶損が主体の損耗が生じる。一方、ジルコニア−黒鉛質耐火物は、浸漬ノズルの主にパウダーライン部と呼ばれる溶融パウダーと接触する部分に用いられているが、黒鉛の酸化やジルコニア原料の崩壊・脱落が主体の損耗が生じる。このようなノズル耐火物の損耗は、耐火物の使用寿命の低下を招くばかりでなく、製鋼操業上の支障となり、また得られる鋼材の品質にも悪影響を与える。そこで、これらの損耗を防止するために有効な連続鋳造で使用される耐火物の開発が、急務となっている。
【0003】
このような状況に対して、特開平3−243258号公報には、a)Al23を90質量%以上含有、b)MgOを90質量%以上含有、c)ZrO2を90質量%以上含有、のカーボンレスの各耐火物材料を、円筒状スリーブとして1種または2種以上組み合わせて内挿使用する連続鋳造用ノズルが開示されている。しかしながら、このような材料を使用した場合、次のような問題点がある。1)高Mn含有鋼、高酸素含有鋼、Ca処理鋼の鋼種を鋳造する場合、耐火物中のフリーAl23の存在で低融点物を生成するため、耐火物が溶損する。2)ZrO2やMgOは高熱膨張性を有することから耐スポーリング性が低下するため、予熱あるいは使用中に割れが発生する恐れがある。
【0004】
【発明が解決しようとする課題】
本発明は、上記の問題点に鑑みてなされたものであって、その目的とするところは、優れた耐溶損性を有するとともに、十分な耐スポーリング性及び耐酸化性を兼備している鋼の連続鋳造用耐火物を提供することにある。
【0005】
【課題を解決するための手段】
本発明に係る連続鋳造用溶耐火物は、「鋼の連続鋳造用耐火物において、その耐火物を構成している耐火原料の鉱物相がスピネル相単独もしくは80%以上のスピネル相とペリクレース相の混合相から構成されるとともに、スピネル結晶構造内に固溶した状態でTiOを1〜5質量%含有し、該耐火原料とその耐火原料に対して5〜25質量%の黒鉛を含有することによりスピネル層の厚さが数十〜百μmの範囲であることを特徴とする連続鋳造用耐火物。」を要旨とする。
【0006】
【発明の実施の形態】
以下に、本発明に係わる鋼の連続鋳造用耐火物を詳細に説明する。本発明の連続鋳造用耐火物は、その耐火物を構成している鉱物相がスピネル相単独もしくはスピネル相とペリクレース相の混合相からなる耐火原料から構成される。鉱物相が混合相の場合、そこに含まれるスピネル相は80%以上であること、換言すれば、ペリクレース相が20%以下であることが必要である。また、連続鋳造用耐火物を構成している耐火原料には、TiO2が1〜5質量%含有している。さらに、上記の耐火原料に対して黒鉛を5〜25質量%含有させることに特徴がある。このような構成にする理由について、以下に述べる。
【0007】
従来のアルミナ−黒鉛質耐火物やアルミナ−シリカ−黒鉛質耐火物の溶鋼に対する溶損機構は、まず溶鋼への黒鉛の溶解反応が起る。その後、溶鋼が高酸素含有鋼、高Mn含有鋼の場合は溶鋼中の溶融状態元素であるMn、OおよびFeがMnOやFeO状態で稼動面に接触し、耐火物中のAl23やSiO2と反応し、Al23-SiO2-MnO-FeO系化合物を生成する。この化合物は溶鋼温度よりも融点が低いたいめ溶鋼流れに流失しやすいので、その結果として耐火物の溶損が生じる。またCa処理鋼の場合は、溶鋼中のCaが耐火物中のAl23やSiO2を還元し、CaOを生成させる。このCaOが稼動面に接触するCaO-Al23-SiO2系化合物を生成する。この化合物は溶鋼温度よりも融点が低いため耐火物の溶損が生じる。これらの耐火物の溶融スラグに対する溶損機構については、溶鋼−溶融スラグ界面での黒鉛の溶解と溶融スラグ中のCaOと耐火物中のAl23との反応によりCaO-Al23系化合物を生成し、溶損が生じると考えられている。
【0008】
ジルコニア−黒鉛質耐火物は、主に浸漬ノズルのパウダーライン部に使用されており、ジルコニア源としてはCaO安定化ジルコニアが多用されている。この耐火物の溶損機構については、溶鋼−溶融パウダー界面での黒鉛の溶解と溶融パウダー中のSiO2やFと耐火物中のZrO2との反応によるジルコニア骨材の崩壊と流失により、その結果耐火物の溶損が生じる。
以上のことから、鋼の連続鋳造用耐火物の溶損は、溶鋼、溶融スラグ、溶融パウダーなどの溶融物と耐火物との界面における化学反応により発生していることが分かる。
【0009】
そこで、本発明者らは、種々の耐火物について調査研究し、特に連続鋳造用耐火物について調査研究した結果、溶損を完全に防止できる耐火物を発明するに至った。すなわち、高温では、連続鋳造用耐火物の内部においては、スピネル中のMgOと黒鉛との間で次の反応が起る。尚、式における(s)は固相、(g)は気相を意味する。
MgO(s)+C(s)→Mg(g)+CO(g) (1)
生成したMgガスおよびCOガスが耐火物と溶鋼、溶融スラグ、溶融パウダーの各界面に拡散し、そこで次の反応により、耐火物の表面に緻密なMgO層が生成する。
Mg(g)+O→MgO(s) (2)
Mg(g)+CO(g)→MgO(s)+C (3)
このMgO層は、次の反応によりAl23と反応してスピネル(二次スピネル)を生成する。
MgO(s)+Al23(s)→MgO・Al23 (4)
【0010】
本発明の耐火原料にはTiO2を必須成分として含有しており、式(4)の二次スピネル化反応は促進される。その理由は、以下のようである。すなわち、MgOは二価金属イオンであるMg2+イオンとO2-イオン、Al23は三価金属イオンであるAl3+イオンとO2-イオンから構成されており、TiO2中のTi4+イオンがスピネルに固溶すると、結晶構造内での電荷補償の観点から、スピネル結晶構造内に格子欠陥(空隙)が発生し、これらのイオンの拡散運動が容易になり、スピネル結晶構造を安定化させ、その結果スピネル化反応を促進し、耐火物の表面に、より緻密で厚い層を形成する。そして、この層は保護層として働き、溶鋼への耐火物中の黒鉛の溶出、溶融スラグや溶融パウダー中のCaO、SiO2やFと耐火原料との反応を完全に防止することができる。なお、スピネル層の厚みは数十〜百μmであるため、耐火物表面からの剥離は生じない。また、スポーリング割れに対しても悪影響を及ぼさない。
【0011】
ここで、図1は、スピネル相からなる耐火原料にTiO2を添加した時の耐火物表面に生成したスピネル層を主体とする保護層の厚みを調査した結果である。図1から本発明に用いる耐火原料に含まれるTiO2量は、1〜5質量%の範囲が好適であることが分かる。TiO2量が1質量%未満では、二次スピネル化反応は進まず、その結果生成したスピネル層の厚みは薄いため、耐火物の損耗を抑制する効果がない。一方、TiO2量が5質量%を超えると、二次スピネル化反応の他にコランダムの生成反応が起るため、コランダムの溶損が起り保護層は薄くなり、その結果耐火物の溶損を防止することができない。なお本発明では、チタニアは耐火原料を構成しているスピネル結晶構造内に固溶している(チタニアが単独存在していない)ことが必要である。
【0012】
次に、本発明の耐火原料にTiO2以外の金属酸化物を加えることについての効果について説明すると、Li+、Na+、K+などの一価金属イオンについては、これらの金属イオンは1500〜1600℃の使用温度下では蒸発し固溶しない。Ca2+、Ba2+などの二価金属イオンは固溶せず、CaO・2Al23、BaO・Al23などの化合物を生成するためスピネル結晶構造の安定化には寄与しない。三価金属イオンであるY3+イオンや四価金属イオンであるZr4+イオンはそのイオン半径がそれぞれ0.93Å、0.80ÅでMg2+イオン(0.65Å)、Al3+イオン(0.50Å)に比べ大きく、スピネル構造内には固溶しない。Si4+イオンやV5+イオンはMgOやAl23と反応し、スピネル以外の化合物を生成する。これらのことから、スピネル結晶構造の安定化と生成促進にはTiO2の添加が有効であり、他の金属酸化物は不適であることがわかる。
【0013】
本発明の連続鋳造用耐火物において、さらに黒鉛量を5〜25質量%含有させることが好ましいとした理由は、黒鉛量が5質量%未満であれば、耐火物の耐熱的スポーリング性が低下し、予熱中や使用中に割れるためである。一方、25質量%を超えると、耐火物の耐酸化性が悪くなり、予熱中や使用中の組織劣化が起り溶鋼流などによる流動摩耗や、先に述べたように耐火物稼動面にスピネル緻密層が形成されても剥離しやすくなり化学的侵食が大きくなるためである。
【0014】
また、耐火物を構成するスピネル相とペリクレース相の混合相から構成される耐火原料において、スピネル相が80%以上の耐火原料としたのは、スピネル相が80%未満とすると、例えばペリクレース相の存在割合が高くなることとなり、それ自身の高熱膨張性に起因して熱的スポーリング性が低下し、予熱中や使用中に割れる、またコランダム相の存在割合が高くなると溶損が大きくなる、などの理由から本発明ではスピネル相の含有量を80%以上とした。
【0015】
本発明の連続鋳造用耐火物は、連続鋳造用設備におけるロングノズル、浸漬ノズル、ストッパー、ストッパーヘッド、上ノズル、下ノズル等に使用される。上記の耐火物をこれらのノズルの全体に使用しても良いし、必要に応じてノズルの局部、例えば溶鋼と接する内孔部、溶融スラブと接するスラグライン部や溶融パウダーと接するパウダーライン部分等に使用される。
【0016】
【実施例】
次に、本発明の実施例を従来例および比較例と共に挙げ、本発明を具体的に説明する。
表1に示した各耐火原料を用いて、表2に示す耐火原料A〜Sの19種の試料を作製した。ここで、表1の耐火原料Aはコランダム相からなる耐火原料である。耐火原料BからP,Sはスピネル相単独かもしくはスピネル相とペリクレース相の混合相が主体の耐火原料で、アルミナとマグネシアの配合割合が異なる組成のものである。また、耐火原料CからE、耐火原料GからI、耐火原料KからM,Sはチタニア、耐火原料Nはカルシア、耐火原料Oはジルコニアをそれぞれ配合したものである。耐火原料Qはペリクレース相のみからなる耐火原料である。耐火原料RはCaO安定化ジルコニア原料でバテライト相のみからなっている耐火原料である。試料は0.2mmアンダーに粒度調整したこれらの耐火原料に0.5〜0.1mmの鱗状黒鉛を15質量%配合し、バインダーとしてフェノールレジンを添加して均一に混練し、成形した。成形体はコークス中に埋め込んで最高温度1000℃にて還元焼成することにより得た。
【0017】
焼成した試料を用いて溶鋼(高Si含有鋼、Ca処理鋼)、溶融スラグに対する溶損試験、スポール試験、酸化試験を実施した。溶鋼および溶融スラグに対する溶損試験は、40×40×160mmに切出した試料を高周波誘導炉内で溶解した溶鋼、溶融スラグに1600℃×2時間浸漬し、その後の溶損量を測定することにより評価した。スポール試験は、40×40×160mmに切出した試料を高周波誘導炉内で溶解した溶銑に無予熱で1500℃×3分浸漬した後、引き上げ30分冷却した後の弾性率を測定し、溶銑浸漬前後の弾性率の変化率で評価した。酸化試験は50×50×50mmに切出した試料を電気炉内で1400℃×3時間加熱保持し、その後酸化層の厚みを測定することにより評価した。以下、その結果を表2に示す。
【0018】
表2中の耐溶損性指数は従来例1の試料の溶損量を100とした時の相対値でこの値が大きいほど溶損は小さい。また、耐スポール性指数は従来例1の試料の弾性率の変化率を100とした時の相対値でこの値が大きいほどスポールによる耐火物組織の劣化が小さくスポールし難い。実施例1および2と比較例1および2と比較すると、TiO2を1〜5質量%含有させることにより耐溶損性指数は向上し、比較例1および2に比べ優れた耐溶損性を有することがわかる。同様に実施例3および4と比較例3および4、実施例5および6と比較例5および6についても同じ結果であった。比較例7から10に示すように耐火原料中を構成しているスピネル相が80%以下の耐火原料を使用した場合には、耐溶損性と耐スポール性の両特性を満足するものはえられなかった。
【0019】
表3は、耐火原料と配合する鱗状黒鉛量の影響を調べた結果である。比較例11のように鱗状黒鉛量が0質量%の試料は耐スポール性に劣り、比較例12のように鱗状黒鉛量が30質量%の試料は耐酸化性に劣る。一方、実施例8から10に示すように鱗状黒鉛量が5から25質量%では、耐溶損性を維持しつつ耐スポール性と耐酸化性の両特性を満足する特性が得られている。また、これらは従来例1および2に比べ優れた耐溶損性を示すことがわかった。
【0020】
【表1】

Figure 0003911221
【0021】
【表2】
Figure 0003911221
【0022】
【表3】
Figure 0003911221
【0023】
【発明の効果】
以上説明した如く、本発明に係る連続鋳造用耐火物は、耐溶損性、耐スポール性、耐酸化性に優れた特性を示す。
【図面の簡単な説明】
【図1】耐火原料中のTiO2含有量とスピネル相を主体とする表面保護層厚みの関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refractory material for continuous casting suitable for a long nozzle, immersion nozzle, stopper, stopper head, upper nozzle and the like used in continuous casting of steel.
[0002]
[Prior art]
These refractories for continuous casting have functions such as flow control of molten steel, oxidation prevention of molten steel, and prevention of entrainment of molten slag and molten powder. Refractories for continuous casting having such functions are required to have high performance in terms of heat resistance, erosion resistance, spall resistance, and oxidation resistance. Therefore, as a refractory material constituting them, alumina-graphite or zirconia -Graphite has been applied. However, when alumina-graphitic refractories are used for casting high Mn content steel, high oxygen content steel, high Si content steel, and Ca-treated steel, wear caused mainly by melting occurs. On the other hand, zirconia-graphitic refractories are used mainly in a portion of the immersion nozzle that comes into contact with the molten powder called a powder line portion, but wear mainly occurs due to oxidation of graphite and collapse / dropout of the zirconia raw material. Such wear of the refractory material of the nozzle not only causes a reduction in the service life of the refractory material, but also hinders steelmaking operations and adversely affects the quality of the obtained steel material. Therefore, there is an urgent need to develop a refractory material used in continuous casting that is effective for preventing these wear and tear.
[0003]
For such a situation, Japanese Patent Application Laid-Open No. 3-243258 discloses that a) Al 2 O 3 is contained in an amount of 90% by mass or more, b) MgO is contained in an amount of 90% by mass or more, and c) ZrO 2 is contained in an amount of 90% by mass or more. A continuous casting nozzle is disclosed in which each of the carbonless refractory materials is contained and used as a cylindrical sleeve in combination. However, when such a material is used, there are the following problems. 1) When casting steel types of high Mn content steel, high oxygen content steel, and Ca-treated steel, a low melting point material is generated in the presence of free Al 2 O 3 in the refractory material, so that the refractory material melts down. 2) Since ZrO 2 and MgO have high thermal expansibility, the spalling resistance is lowered, so that cracking may occur during preheating or use.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems, and the object of the present invention is steel that has both excellent spalling resistance and oxidation resistance, as well as excellent melt resistance. It is to provide a refractory for continuous casting.
[0005]
[Means for Solving the Problems]
The molten refractory material for continuous casting according to the present invention is “in a refractory material for continuous casting of steel, the mineral phase of the refractory raw material constituting the refractory is a spinel phase alone or 80% or more of a spinel phase and a periclase phase. It is composed of a mixed phase and contains 1 to 5% by mass of TiO 2 in a solid solution state in the spinel crystal structure, and 5 to 25% by mass of graphite with respect to the refractory raw material and the refractory raw material. The gist of the refractory for continuous casting is characterized in that the thickness of the spinel layer is in the range of several tens to hundreds of micrometers .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Below, the refractory for continuous casting of steel according to the present invention will be described in detail. The refractory for continuous casting of the present invention is composed of a refractory raw material in which the mineral phase constituting the refractory is a spinel phase alone or a mixed phase of a spinel phase and a periclase phase. When the mineral phase is a mixed phase, the spinel phase contained therein is 80% or more, in other words, the periclase phase needs to be 20% or less. In addition, the refractory raw material constituting the continuous casting refractories, TiO 2 is contained 1 to 5 mass%. Furthermore, it is characterized by containing 5 to 25% by mass of graphite with respect to the above refractory raw material. The reason for this configuration will be described below.
[0007]
In the conventional erosion mechanism of molten alumina-graphite refractory or alumina-silica-graphitic refractory, the melting reaction of graphite in the molten steel first occurs. Thereafter, when the molten steel is a high oxygen content steel or a high Mn content steel, Mn, O and Fe which are molten state elements in the molten steel contact the working surface in the MnO or FeO state, and Al 2 O 3 in the refractory It reacts with SiO 2 to produce an Al 2 O 3 —SiO 2 —MnO—FeO compound. Since this compound tends to be washed away in the molten steel flow having a melting point lower than the molten steel temperature, the refractory melts as a result. In the case of Ca-treated steel, Ca in the molten steel reduces Al 2 O 3 and SiO 2 in the refractory to generate CaO. This CaO produces a CaO—Al 2 O 3 —SiO 2 compound that contacts the working surface. Since this compound has a melting point lower than the molten steel temperature, refractory melts. Regarding the erosion mechanism of these refractories with respect to molten slag, the CaO-Al 2 O 3 system is obtained by melting graphite at the molten steel-molten slag interface and reacting CaO in the molten slag with Al 2 O 3 in the refractory. It is believed that a compound is formed and melt damage occurs.
[0008]
Zirconia-graphitic refractories are mainly used in the powder line portion of the immersion nozzle, and CaO-stabilized zirconia is frequently used as a zirconia source. The refractory melting mechanism is based on the dissolution of graphite at the molten steel-molten powder interface and the collapse and loss of zirconia aggregate due to the reaction between SiO 2 and F in the molten powder and ZrO 2 in the refractory. As a result, the refractory melts.
From the above, it can be seen that the melting loss of the refractories for continuous casting of steel is caused by a chemical reaction at the interface between the molten steel, molten slag, molten powder and other refractories.
[0009]
Therefore, the present inventors conducted research on various refractories, and in particular, conducted research on refractories for continuous casting. As a result, the inventors have invented a refractory that can completely prevent melting damage. That is, at the high temperature, the following reaction occurs between MgO in the spinel and graphite in the refractory for continuous casting. In the formula, (s) means a solid phase, and (g) means a gas phase.
MgO (s) + C (s) → Mg (g) + CO (g) (1)
The produced Mg gas and CO gas diffuse to each interface of the refractory and molten steel, molten slag, and molten powder, and a dense MgO layer is formed on the surface of the refractory by the following reaction.
Mg (g) + O → MgO (s) (2)
Mg (g) + CO (g) → MgO (s) + C (3)
This MgO layer reacts with Al 2 O 3 by the following reaction to generate spinel (secondary spinel).
MgO (s) + Al 2 O 3 (s) → MgO · Al 2 O 3 (4)
[0010]
The refractory raw material of the present invention contains TiO 2 as an essential component, and the secondary spinelization reaction of the formula (4) is promoted. The reason is as follows. That, MgO is a divalent metal ion Mg 2+ ions and O 2- ions, Al 2 O 3 is constituted by Al 3+ ions and O 2- ions are trivalent metal ions, in TiO 2 of When Ti 4+ ions are dissolved in spinel, from the viewpoint of charge compensation in the crystal structure, lattice defects (voids) are generated in the spinel crystal structure, and the diffusion motion of these ions becomes easy, and the spinel crystal structure As a result, the spinelization reaction is promoted, and a denser and thicker layer is formed on the surface of the refractory. This layer serves as a protective layer, and can completely prevent the elution of graphite in the refractory to the molten steel and the reaction between CaO, SiO 2 and F in the molten slag or molten powder and the refractory raw material. In addition, since the thickness of the spinel layer is several tens to one hundred μm, peeling from the surface of the refractory does not occur. Further, it does not adversely affect spalling cracks.
[0011]
Here, FIG. 1 is the result of investigating the thickness of the protective layer mainly composed of the spinel layer formed on the surface of the refractory when TiO 2 is added to the refractory raw material composed of the spinel phase. FIG. 1 shows that the amount of TiO 2 contained in the refractory raw material used in the present invention is preferably in the range of 1 to 5% by mass. If the amount of TiO 2 is less than 1% by mass, the secondary spinel reaction does not proceed, and the resulting spinel layer is thin, so there is no effect of suppressing the wear of the refractory. On the other hand, if the amount of TiO 2 exceeds 5% by mass, a corundum formation reaction occurs in addition to the secondary spinelation reaction, so that the corundum melts and the protective layer becomes thin. As a result, the refractory is melted. It cannot be prevented. In the present invention, titania needs to be dissolved in the spinel crystal structure constituting the refractory raw material (titania alone does not exist).
[0012]
Next, the effect of adding a metal oxide other than TiO 2 to the refractory raw material of the present invention will be described. For monovalent metal ions such as Li + , Na + and K + , these metal ions are 1500 to It evaporates and does not dissolve at a use temperature of 1600 ° C. Divalent metal ions such as Ca 2+ and Ba 2+ do not dissolve, and compounds such as CaO · 2Al 2 O 3 and BaO · Al 2 O 3 are produced, and thus do not contribute to stabilization of the spinel crystal structure. The Y 3+ ion, which is a trivalent metal ion, and the Zr 4+ ion, which is a tetravalent metal ion, have ion radii of 0.93 and 0.80Å, respectively, and Mg 2+ ions (0.65Å) and Al 3+ ions ( It is larger than 0.50Å) and does not dissolve in the spinel structure. Si 4+ ions and V 5+ ions react with MgO and Al 2 O 3 to produce compounds other than spinel. From these facts, it can be seen that the addition of TiO 2 is effective in stabilizing the spinel crystal structure and promoting the formation, and other metal oxides are not suitable.
[0013]
In the refractory for continuous casting of the present invention, the reason why it is preferable to further contain 5 to 25% by mass of graphite is that if the amount of graphite is less than 5% by mass, the heat resistant spalling property of the refractory is lowered. This is because it cracks during preheating and use. On the other hand, if it exceeds 25% by mass, the oxidation resistance of the refractory deteriorates, the structure deteriorates during preheating or use, and fluid wear due to the molten steel flow, etc. This is because even if a layer is formed, it is easy to peel off and chemical erosion increases.
[0014]
Moreover, in the refractory raw material composed of the mixed phase of the spinel phase and the periclase phase constituting the refractory, the refractory raw material having a spinel phase of 80% or more is assumed to be a periclase phase, for example, if the spinel phase is less than 80%. The existence ratio will be high, the thermal spalling property will decrease due to its high thermal expansion property, it will break during preheating and use, and if the existence ratio of the corundum phase becomes high, the melting loss will increase. For these reasons, the content of the spinel phase is set to 80% or more in the present invention.
[0015]
The refractories for continuous casting of the present invention are used for long nozzles, immersion nozzles, stoppers, stopper heads, upper nozzles, lower nozzles and the like in continuous casting equipment. The above-mentioned refractory may be used for the whole of these nozzles, and if necessary, the local part of the nozzle, for example, an inner hole part in contact with the molten steel, a slag line part in contact with the molten slab, a powder line part in contact with the molten powder, etc. Used for.
[0016]
【Example】
Next, examples of the present invention will be described together with conventional examples and comparative examples to specifically explain the present invention.
Using each refractory raw material shown in Table 1, 19 types of refractory raw materials A to S shown in Table 2 were prepared. Here, the refractory material A in Table 1 is a refractory material comprising a corundum phase. The refractory raw materials B to P and S are refractory raw materials mainly composed of a spinel phase alone or a mixed phase of a spinel phase and a periclase phase, and have different compositions of alumina and magnesia. Further, the refractory materials C to E, the refractory materials G to I, the refractory materials K to M, and S are titania, the refractory material N is calcia, and the refractory material O is zirconia. The refractory raw material Q is a refractory raw material consisting only of the periclase phase. The refractory raw material R is a CaO-stabilized zirconia raw material and is a refractory raw material consisting only of the vaterite phase. Samples were prepared by blending 15% by mass of 0.5 to 0.1 mm of scaly graphite with these refractory raw materials whose particle size was adjusted to under 0.2 mm, adding phenol resin as a binder, and uniformly kneading and molding. The molded body was obtained by embedding in coke and reducing firing at a maximum temperature of 1000 ° C.
[0017]
Using the fired samples, molten steel (high Si-containing steel, Ca-treated steel), a melting loss test for a molten slag, a spall test, and an oxidation test were performed. The melt loss test for molten steel and molten slag is performed by immersing a sample cut into 40 × 40 × 160 mm in molten steel and molten slag in a high-frequency induction furnace at 1600 ° C. for 2 hours, and measuring the amount of molten loss thereafter. evaluated. In the spall test, a sample cut into 40 × 40 × 160 mm was immersed in hot metal melted in a high-frequency induction furnace without preheating at 1500 ° C. for 3 minutes, then measured for elasticity after being pulled up and cooled for 30 minutes. The rate of change in elastic modulus before and after was evaluated. The oxidation test was evaluated by heating and holding a sample cut out to 50 × 50 × 50 mm in an electric furnace at 1400 ° C. for 3 hours, and then measuring the thickness of the oxide layer. The results are shown in Table 2 below.
[0018]
The erosion resistance index in Table 2 is a relative value when the erosion amount of the sample of Conventional Example 1 is 100, and the larger the value, the smaller the erosion loss. Further, the spall resistance index is a relative value when the change rate of the elastic modulus of the sample of the conventional example 1 is 100, and the larger the value, the smaller the deterioration of the refractory structure due to the spall, and the less the spall resistance is. As compared with Examples 1 and 2 and Comparative Examples 1 and 2, the inclusion of 1 to 5% by mass of TiO 2 improves the corrosion resistance index and has superior resistance to corrosion compared to Comparative Examples 1 and 2. I understand. Similarly, the same results were obtained for Examples 3 and 4 and Comparative Examples 3 and 4, and Examples 5 and 6 and Comparative Examples 5 and 6. As shown in Comparative Examples 7 to 10, when a refractory raw material having a spinel phase constituting 80% or less is used in the refractory raw material, those satisfying both the characteristics of melting resistance and spall resistance are obtained. There wasn't.
[0019]
Table 3 shows the results of examining the influence of the amount of scaly graphite blended with the refractory raw material. A sample with a scaly graphite amount of 0 mass% as in Comparative Example 11 is inferior in spall resistance, and a sample with a scaly graphite amount of 30 mass% as in Comparative Example 12 is inferior in oxidation resistance. On the other hand, as shown in Examples 8 to 10, when the amount of scaly graphite is 5 to 25% by mass, characteristics satisfying both the spall resistance and the oxidation resistance while maintaining the resistance to melting are obtained. Moreover, it turned out that these show the outstanding melt | dissolution resistance compared with the prior art examples 1 and 2.
[0020]
[Table 1]
Figure 0003911221
[0021]
[Table 2]
Figure 0003911221
[0022]
[Table 3]
Figure 0003911221
[0023]
【The invention's effect】
As described above, the refractory for continuous casting according to the present invention exhibits characteristics excellent in resistance to melting, spall, and oxidation.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the TiO 2 content in a refractory raw material and the thickness of a surface protective layer mainly composed of a spinel phase.

Claims (1)

鋼の連続鋳造用耐火物において、その耐火物を構成している耐火原料の鉱物相がスピネル相単独もしくは80%以上のスピネル相とペリクレース相の混合相から構成されるとともに、スピネル結晶構造内に固溶した状態でTiOを1〜5質量%含有し、該耐火原料とその耐火原料に対して5〜25質量%の黒鉛を含有することによりスピネル層の厚さが数十〜百μmの範囲であることを特徴とする連続鋳造用耐火物。In refractories for continuous casting of steel, the mineral phase of the refractory raw material constituting the refractory is composed of a spinel phase alone or a mixed phase of spinel phase and periclase phase of 80% or more, and within the spinel crystal structure TiO 2 is contained in an amount of 1 to 5% by mass in a solid solution state, and the spinel layer has a thickness of several tens to hundreds of μm by containing 5 to 25% by mass of graphite with respect to the refractory material and the refractory material. A refractory for continuous casting, characterized by being in a range.
JP2002271609A 2002-09-18 2002-09-18 Refractories for continuous casting Expired - Fee Related JP3911221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002271609A JP3911221B2 (en) 2002-09-18 2002-09-18 Refractories for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002271609A JP3911221B2 (en) 2002-09-18 2002-09-18 Refractories for continuous casting

Publications (2)

Publication Number Publication Date
JP2004106014A JP2004106014A (en) 2004-04-08
JP3911221B2 true JP3911221B2 (en) 2007-05-09

Family

ID=32268868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002271609A Expired - Fee Related JP3911221B2 (en) 2002-09-18 2002-09-18 Refractories for continuous casting

Country Status (1)

Country Link
JP (1) JP3911221B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102049512B (en) * 2011-01-18 2013-05-15 北京利尔高温材料股份有限公司 Production method of burning-free continuous casting integral composite rod
JP6986958B2 (en) * 2017-12-27 2021-12-22 AvanStrate株式会社 Glass substrate manufacturing equipment and glass substrate manufacturing method
JP2021126679A (en) * 2020-02-14 2021-09-02 明智セラミックス株式会社 Continuous casting nozzle

Also Published As

Publication number Publication date
JP2004106014A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
KR101722041B1 (en) Refractory and nozzle for casting
TWI466844B (en) Refractory and casting nozzles
US4913408A (en) Refractory liner compositions
JP3911221B2 (en) Refractories for continuous casting
JP5637630B2 (en) Refractories for continuous casting and nozzles for continuous casting
JPH09202667A (en) Castable refractory for slide gate
JPH07214259A (en) Nozzle for continuous casting of molten steel
JP3312373B2 (en) Long nozzle for continuous casting
JPH08259340A (en) Magnesia-carbon-based castable refractory
JP5920412B2 (en) Continuous casting nozzle
JPH06144939A (en) Basic castable refractory
JP2005089271A (en) Carbon-containing refractory, its manufacturing method and its use application
JP2002362969A (en) Plate brick
JP2004268143A (en) Immersion nozzle for continuous casting of steel
KR100355140B1 (en) A method of producing and using MgO-C based refractory bricks with a coated back side for prevention of oxidation
JPH0740015A (en) Nozzle for continuous casting
JPH07102436B2 (en) Nozzle for continuous casting containing calcium zirconate
JP2971824B2 (en) High corrosion resistance refractory
JPH05319902A (en) Carbon-containing basic refractory
JPH09278539A (en) Monolithic refractory
JPH11216543A (en) Steel continuous casting nozzle
JPH0283250A (en) Production of carbon-containing calcined refractory
JP2004249292A (en) Immersion nozzle for continuously casting steel
JPS61261271A (en) Refractories for molten metal
JPH06345521A (en) Starting material for magnesian refractory and refractory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070126

R151 Written notification of patent or utility model registration

Ref document number: 3911221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees