JP3910938B2 - Transfer device - Google Patents

Transfer device Download PDF

Info

Publication number
JP3910938B2
JP3910938B2 JP2003147936A JP2003147936A JP3910938B2 JP 3910938 B2 JP3910938 B2 JP 3910938B2 JP 2003147936 A JP2003147936 A JP 2003147936A JP 2003147936 A JP2003147936 A JP 2003147936A JP 3910938 B2 JP3910938 B2 JP 3910938B2
Authority
JP
Japan
Prior art keywords
vertical
horizontal
mover
stator
axis linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003147936A
Other languages
Japanese (ja)
Other versions
JP2003341844A (en
Inventor
道鉉 姜
鍾武 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Electrotechnology Research Institute KERI
Original Assignee
Korea Electrotechnology Research Institute KERI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Electrotechnology Research Institute KERI filed Critical Korea Electrotechnology Research Institute KERI
Publication of JP2003341844A publication Critical patent/JP2003341844A/en
Application granted granted Critical
Publication of JP3910938B2 publication Critical patent/JP3910938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/10Combination of electric propulsion and magnetic suspension or levitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Linear Motors (AREA)
  • Non-Mechanical Conveyors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水平(X軸)及び垂直(Y軸)に直線型運動を提供する移送装置に関する。
【0002】
【従来の技術】
移送対象を一の方向に移送する従来の移送装置は、回転運動を生じさせる電動モータ等の回転器と、この回転運動を直線運動に変えるボールスクリューのような直線運動変換器を備える。従来の移送装置は、このような機構によって移送対象を移送するための推力を得ていた。
【0003】
【発明が解決しようとする課題】
しかしながら、回転型電動機とボールスクリューなどの動力伝達装置を使って移送対象を推進する動力を得る場合、装置構成が複雑となる。また、従来の移送装置は、機械部の摩擦による粉塵を発生させるため、高清浄雰囲気での利用には適さなかった。
【0004】
また、従来の垂直移送装置は、移送対象を垂直(Y軸)に移送するために、負荷の重力と反対となる上方位置に対向部材(カウンタ・パート)を設置するとともに、ロープ等の懸架手段及び回転器などを備える必要があり、この結果として動力伝達機構が複雑となっていた。
【0005】
また、直線型運動を提供するための従来の線形電動機は、電動機の単位重さあたりの推力が小さいことから、2軸(X−Y軸)移送装置への適用が困難であった。たとえ適用可能であっても、その場合は、大型の線形電動機を採用する必要があった。
【0006】
本発明は、上記のような問題点に鑑みてなされたものであり、その目的は、構造が簡単であり、かつ機械摩擦による粉塵が発生しない、移送装置を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明によれば、移送対象を水平方向および垂直方向に移送可能な移送装置が提供される。本移送装置は、永久磁石励磁横磁束方式の水平軸線形電動機の推力によって、前記移送対象を水平方向に移送する水平移送手段と、前記水平移送手段上に設置され、永久磁石励磁横磁束方式の垂直軸線形電動機の推力によって、前記移送対象を垂直方向に移送する垂直移送手段と、を含めて構成される。本移送装置において、前記水平移送手段は、永久磁石励磁横磁束方式の前記水平軸線形電動機(1)と、前記水平軸線形電動機の水平固定子が固定される受け台(8)と、前記水平軸線形電動機の水平移動子が固定され、前記水平移動子と共に水平方向に動く水平移動子固定台(7)と、前記受け台の両側部と前記水平移動子固定台の両側部とに相対向するように形成され、前記水平移動子固定台と前記水平移動子とが水平方向に円滑に動くようにする線形軸受(3)と、を含めて構成される。
【0008】
さらに、前記水平移動子は、部分が水平方向に極間隔τp で歪んで形成された∩形状の複数の水平移動子鉄心(9)と、前記水平移動子鉄心と同一形状で形成され、水平方向に前記水平移動子鉄心と交互に密着結合された水平移動子永久磁石(10)と、前記複数の水平移動子鉄心の一方の脚部分と前記複数の水平移動子永久磁石の一方の脚部分と、前記複数の水平移動子鉄心の他方の脚部分と前記複数の水平移動子永久磁石の他方の脚部分とを各々に囲む水平移動子巻線(11)と、から構成される。前記水平固定子は、前記複数の水平移動子鉄心の各脚部分と前記複数の水平移動子永久磁石の各脚部分との下側に位置し、極間隔2τpで設置された複数の水平固定子鉄心(12)から構成される。ここで、前記複数の水平移動子永久磁石は、前記水平移動子鉄心を挟んで隣り合う水平移動子永久磁石との間で各脚部分の磁極が反対となるように配置される。
【0009】
また、本移送装置は、前記水平軸線形電動機を駆動する水平駆動回路を含めて構成され、前記水平駆動回路は、前記水平移動子の前記極間隔τpに対応する移動単位に基づいて、前記水平移動子巻線に供給される電流方向を変えるようにしてもよい。
【0010】
また、前記水平軸線形電動機は、一つの水平固定子と、対応する二つの水平移動子とを有するようにしてもよい。ここで、本移送装置は、二つの前記水平軸線形電動機を駆動する水平駆動回路を含めて構成され、前記水平駆動回路は、前記水平移動子の前記極間隔τpに対応する移動単位に基づいて、前記各水平軸線形電動機の水平移動子巻線に供給される電流方向を変え、前記各水平軸線形電動機の水平移動子巻線に供給される各電流は、前記極間隔τpの1/2に相当する位相差を持つようにしてもよい。
【0011】
また、前記垂直移送手段は、永久磁石励磁横磁束方式の前記垂直軸線形電動機(2)と、前記水平移動子固定台(7)に垂直に設置され、前記垂直軸線形電動機の垂直固定子が固定される垂直移送支持台(4)と、前記垂直軸線形電動機の垂直移動子が固定され、前記垂直移動子と共に垂直方向に動く垂直移動子固定台(6)と、を含めて構成されるようにしてもよい。
【0012】
また、前記垂直固定子は、間隔2τpで設置されたU形状の複数の垂直固定子鉄心(15)と、前記各垂直固定子鉄心の二つの脚部分を各々に囲む垂直固定子巻線(16)と、から構成され、前記垂直移動子は、両端部分が垂直方向に極間隔τp で歪んで形成された複数の垂直移動子鉄心(13)と、前記垂直移動子鉄心と同一形状で形成され、垂直方向に前記垂直移動子鉄心と交互に密着結合され、前記垂直移動子鉄心と共に前記複数の垂直固定子鉄心の二つの脚部分の間に配置された複数の垂直移動子永久磁石(14)と、から構成され、前記複数の垂直移動子永久磁石は、前記垂直移動子鉄心を挟んで隣り合う垂直移動子永久磁石との間で磁極が反対となるように配置されるようにしてもよい。ここで、本移送装置は、前記垂直軸線形電動機を駆動する垂直駆動回路を含めて構成され、前記垂直駆動回路は、前記垂直移動子の前記極間隔τpに対応する移動単位に基づいて、前記垂直固定子巻線に供給される電流方向を変えるようにしてもよい。
【0013】
また、前記垂直移送手段は、二つの永久磁石励磁横磁束方式の垂直軸線形電動機と、前記水平移動子固定台上で互いに一定の距離をおいて垂直に設置され、前記二つの垂直軸線形電動機の垂直固定子が各々に固定される二つの垂直移送支持台と、前記二つの垂直軸線形電動機の垂直移動子の各々が固定され、前記各垂直移動子と共に垂直方向に動く垂直移動子固定台と、を含めて構成されるようにしてもよい。
【0014】
また、前記各垂直固定子は、間隔2τpで設置されたU形状の複数の垂直固定子鉄心と、前記各垂直固定子鉄心の二つの脚部分を各々に囲む垂直固定子巻線と、から構成され、前記各垂直移動子は、両端部分が垂直方向に極間隔τp で歪んで形成された複数の垂直移動子鉄心と、前記垂直移動子鉄心と同一形状で形成され、垂直方向に前記垂直移動子鉄心と交互に密着結合され、前記垂直移動子鉄心と共に前記複数の垂直固定子鉄心の二つの脚部分の間に配置された複数の垂直移動子永久磁石と、から構成され、前記複数の垂直移動子永久磁石は、前記垂直移動子鉄心を挟んで隣り合う垂直移動子永久磁石との間で磁極が反対となるように配置されるようにしてもよい。ここで、本移送装置は、二つの前記垂直軸線形電動機を駆動する垂直駆動回路を含めて構成され、前記垂直駆動回路は、前記垂直移動子の前記極間隔τpに対応する移動単位に基づいて、前記各垂直固定子巻線に供給される電流方向を変え、前記各垂直固定子巻線に供給される電流は、前記極間隔τpの1/2に相当する位相差を持つようにしてもよい。
【0015】
【発明の実施の形態】
以下に添付図面を参照しながら,本発明にかかる移送装置の好適な実施の形態について詳細に説明する。なお,以下の説明および添付された図面において,略同一の機能および構成を有する要素については,同一符号を付することによって重複説明を省略する。
【0016】
図1に、本実施の形態にかかる永久磁石励磁横磁束方式の線形電動機を利用した水平(X軸)及び垂直(Y軸)移送装置の基本構成を示す。この水平(X軸)及び垂直(Y軸)移送装置は、例えば、半導体またはLCD製造工程における被処理体の移送システムや、その他の線形推進システムに適用可能である。
【0017】
同図に示すように、本実施の形態にかかる垂直及び水平移送装置は、水平移送手段と垂直移送手段とで構成される。
【0018】
水平移送手段は、永久磁石励磁横磁束方式の水平軸線形電動機1と、この水平軸線形電動機1の固定子部分が固定され、本水平及び垂直移送装置の全体を支える受け台8と、水平軸線形電動機1の移動子部分が固定され、この移動子部分と共に水平方向に動く水平移動子固定台7と、受け台8の両側部と水平移動子固定台7の両側部で相対向するように形成され、水平移動子固定台7と水平軸線形電動機1の移動子部分が水平方向に円滑に滑り移送されるようにする線形軸受3と、を含めて構成される。
【0019】
線形軸受3は、受け台8の両側部からそれぞれ水平移動子固定台7側に垂直に延び、その上部に形成されるレールと、水平移動子固定台7の両側部から受け台8側に垂直に延び、その下部に受け台8のレールが嵌められるレール安着部から構成される。なお、水平軸線形電動機1では移動子が少なくとも二つ設置されていることが好ましい。
【0020】
一方、垂直移送手段は、二つの永久磁石励磁横磁束方式の垂直軸線形電動機2と、これら垂直軸線形電動機2の固定子部分が固定されるものであって、水平移動子固定台7の上にお互い一定距離をおいて垂直に設置された二つの垂直移送支持台4A、4Bと、二つの垂直軸線形電動機2の移動子部分が固定され、この移動子部分と共に垂直方向に動く垂直移動子固定台6と、垂直移送支持台4A、4Bの上部に設置されて垂直移送手段を水平方向に支持する水平支持台5とを含めて構成される。
【0021】
垂直移動子固定台6には、移送対象を把持または搭載するための手段(図示せず)が設けられる。この手段に把持され、または、搭載された移送対象は、水平移動手段によって水平方向に移送され、垂直移動手段によって垂直方向に移送される。
【0022】
本実施の形態では、水平方向力Fを発生させるために、X軸(水平)移送手段を構成する水平軸線形電動機1は、移動子部分を2台備えており、固定子部分を1台備えている。この構成によって、水平方向への移送距離が長い場合、固定子部分の材料を節約できる。また、X軸(水平)線形電動機1の移動子は、固定子と同位置ではなく、τp/2のずれを持って設置されている。この結果、水平方向への推力のリップル(水平移送中のがたつき)が抑制される。
【0023】
また、Y軸(垂直)移送手段において、垂直方向力Fを発生させるために、垂直軸線形電動機2は、対向する2台で構成される。この構成によって、垂直運動するときの垂直移動子固定台6の平衡が維持される。
【0024】
本実施の形態にかかる水平及び垂直移送装置によれば、水平(X軸)方向へ移送対象を移送するために、長手方向への寸法の短縮化が可能な1次側(移動子)に永久磁石と巻線が採用され、移送距離に相当する長さが必要な2次側(固定子)に鉄心が採用される。したがって、水平及び垂直移送装置の設置作業が容易となる。
【0025】
また、本実施の形態にかかる水平及び垂直移送装置によれば、垂直(Y軸)方向へ移送対象を移送するために、永久磁石と鉄心から成る移動子が採用される。したがって、対向部材や懸架手段を備える従来の垂直移送装置と比べて、垂直方向への高い推力が得られる。
【0026】
ここでは垂直軸線形電動機を二つ設置した場合に即して本発明の実施の形態を説明しているが、必要に応じて、一対の垂直軸線形電動機を複数個並列装着し、各垂直軸線形電動機の移動子部分を全て垂直移動子固定台に固定するようにしてもよい。この構成によれば、垂直方向の推力をさらに向上させることが可能となる。
【0027】
また、固定子部分を一つで構成し、移動子部分を二つで構成した水平軸線形電動機1を用いて本発明の実施の形態を説明しているが、本発明はこれに限定されない。例えば、図1に示した水平軸線形電動機をお互い平行に複数個並列配置し、それぞれの水平軸線形電動機の固定子部分をすべて受け台8に固定し、移動子部分を全て水平移動子固定台7に固定するようにしてもよい。この構成によれば、水平方向の推力をさらに向上させることが可能となる。
【0028】
図2は、永久磁石励磁横磁束方式の水平(X)軸1相線形電動機の構成を示している。
【0029】
移動子は、二つの脚部分を有し、各脚部分が前・後方向にτpほど歪んで形成された鉄心9と、この鉄心9と同じ形状を有する永久磁石10と、巻線11から構成されている。複数の鉄心9と複数の永久磁石10は交互に密着・結合されている。また、巻線11は、多数の鉄心9と多数の永久磁石10が結合した状態で両側の脚をそれぞれ囲んでいる。二つの脚部分を有する複数の鉄心9と二つの脚部分を有する複数の永久磁石10は共に、図2に示したように、例えば略逆U字形状であることが好ましい。
【0030】
固定部は、長方形の鉄心12で構成されている。移動子鉄心9どうしの間に永久磁石10を挿入し、永久磁石磁極(→、←)を図2に示すように、順に交互に配置すると、移動子鉄心9にN、Sの磁極が交互に生じる。
【0031】
図3、図4、および図5は、水平軸力発生原理図である。図3に示すように、永久磁石励磁横磁束方式の水平(X)軸線形電動機の移動子巻線11に電流Ix1aを流すと、磁束Φが、移動子鉄心9、移動子永久磁石10、および固定子鉄心12を通じて発生する。
【0032】
推力発生の詳細を説明するために、図3に示した固定子鉄心12を中間で切って上・下に展開した状態を図4に示す。移動子鉄心9が二つの永久磁石の磁界方向(→、←)の間にあるとき、この移動子鉄心9は、N極に帯磁する。これに対して、移動子鉄心9が二つの永久磁石の磁界方向(←、→)の間にあるとき、この移動子鉄心9は、S極に帯磁する。また、移動子鉄心9と永久磁石10は、両側の同極で同じ方向に力を発生させるために、お互いがτpほど歪んで配置されている。
【0033】
図4に示すように、移動子巻線11に電流Ix1aを流すと、固定子鉄心12の上側にN極の磁束が発生し、下側にS極の磁束が発生する。固定子鉄心12の磁極と移動子(移動子鉄心9、移動子永久磁石10)の磁極との相互作用によって、磁極の方向が同一であると反発力(力Fx2、Fx4)が発生し、磁極の方向が異なると吸引力(力Fx1、Fx3)が発生する。これら力Fx1、Fx2、Fx3、Fx4が合成され、右側方向への力Fxが得られる。
【0034】
図5は、図4に示した移動子(移動子鉄心9、移動子永久磁石10、移動子巻線11)がτp移動した状態を示している。この時、移動子巻線11に対して、電流Ix1aの方向を変更してIx2aを流す。これによって、固定子鉄心12の上側にS極の磁束が生じ、下側にN極の磁束が生じる。図4に示した場合と同様に、固定子鉄心12の磁極と移動子(移動子鉄心9、移動子永久磁石10)の磁極との相互作用によって力Fx5、Fx6、Fx7、Fx8が生じ、右側方向への合成された力Fxが得られる。
【0035】
図6は、永久磁石励磁横磁束方式の垂直(Y)軸1相線形電動機の構成を示している。この垂直(Y)軸1相線形電動機は、移動子鉄心13、移動子永久磁石14、固定子鉄心15及び固定子巻線16で構成されている。
【0036】
図6に示すように、固定子を構成する複数の鉄心15は、二つの突出部(脚部分)を有し、移動方向(Y方向)に2τp間隔に設置されている。また、固定子を構成する固定子巻線16は、複数の鉄心15の各脚部分に巻かれている。複数の鉄心15の二つの脚部分の間に、移動子を構成する移動子鉄心13および移動子永久磁石14が配置されている。二つの同極を持つ移動子鉄心13および移動子永久磁石14を一方向に移動させるために、移動子鉄心13と永久磁石14は、τp歪んで(斜めに)設置されている。二つの脚部分を有する複数の鉄心15は、図6に示したように、例えば略U字形状であることが好ましい。
【0037】
垂直(Y軸)方向に移送対象を移送するための移動子は、鉄心13と永久磁石14から構成されている。このため、移動子の軽量化が実現し、移動子の単位重さあたりの推力(N/kg)も極めて大きくなる。このように、本実施の形態にかかる垂直(Y軸)移送手段は、懸架手段と対向部材を用いることなく移送対象を垂直方向へ移送できる。また、動力伝達手段を備えることなく直接的に垂直方向の直線運動を発生するので、清浄雰囲気での利用が可能である。
【0038】
図7および図8は、垂直(Y軸)移送手段の力発生原理を示している。
【0039】
図7に示すように、固定子巻線16に電流Iy1aを流すと、固定子鉄心15の左側にN極の磁束が生じ、右側にS極の磁束が生じる。この固定子鉄心15の磁極と移動子(移動子鉄心13、移動子永久磁石14)の磁極との相互作用によって、磁極の方向が同じの場合は反発力(力Fy2、Fy4)が発生し、磁極の方向が異なると吸引力(力Fy1、Fy3)が発生する。これら力Fy1、Fy2、Fy3、Fy4が合成され、上側方向への力Fyが得られる。
【0040】
図8は、図7に示した移動子(移動子鉄心13、移動子永久磁石14)がτp移動した状態を示している。この時、固定子巻線16に対して、電流Iy1aの方向を変更してIy2aを流す。これによって、固定子鉄心15の左側にS極の磁束が発生し、右側にN極の磁束が発生する。図7に示した場合と同様に、固定子鉄心15の磁極と移動子(移動子鉄心13、移動子永久磁石14)の磁極との相互作用によって力Fy5、Fy6、Fy7、Fy8が生じ、上側方向への合成された力Fyが得られる。
【0041】
図9は、永久磁石励磁横磁束方式の垂直(Y)軸2相線形電動機の構成を示している。左側と右側にそれぞれ配置された1相電動機が垂直移動子固定台6によって連結されている。左右の電動機はそれぞれ、垂直進行方向に対してτp/2のずれを持って設置されている。この結果、垂直方向への推力のリップル(垂直移送中のがたつき)が抑制される。なお、この垂直移動子固定台6上には、水平及び垂直(X−Y軸)移送装置によって移送される移送対象が置かれる。
【0042】
図10は、永久磁石励磁横磁束方式の水平(X)軸2相線形電動機の電源供給回路を示している。この回路では、共通の電源に対して、A相水平推進電動機とB相水平推進電動機が並列に接続されている。Ix1a方向に電流を発生させるためには電力変換素子17(S、S)を導通させ、その反対方向のIx2a方向に電流を発生させるためには電力変換素子17(S、S)を導通させる。また、Ix1b方向に電流を発生させるためには電力変換素子17(S、S)を導通させ、その反対方向のIx2b方向に電流を発生させるためには電力変換素子17(S、S)を導通させる。
【0043】
図11は、永久磁石励磁横磁束方式の垂直(Y)軸2相線形電動機の電源供給回路を示している。この回路は、図10に示したX軸電源供給回路と原理的に一致している。すなわち、共通の電源に対して、A相垂直昇降電動機とB相垂直昇降電動機が並列に接続されている。Iy1a方向に電流を発生させるためには電力変換素子17(S、S)を導通させ、その反対方向のIy2a方向に電流を発生させるためには電力変換素子17(S、S)を導通させる。また、Iy1b方向に電流を発生させるためには電力変換素子17(S、S)を導通させ、その反対方向のIy2b方向に電流を発生させるためには電力変換素子17(S、S)を導通させる。
【0044】
図12は、永久磁石励磁横磁束方式の水平(X)軸2相線形電動機の各相における時間(t)あるいは移動子位置(x)−電流特性を示している。B相に流れる電流(Ix1b、Ix2b)(図12(b))は、A相に流れる電流(Ix1a、Ix2a)(図12(a))に対して、時間(t)あるいは移動子位置(x)に関して1/2τpの位相差を有する。また、各相の電流周期は2τpである。移動子を一の水平方向へ移動させるために、各相に流れる電流は、移動子の位置に応じてその方向が調整される。例えば、A相に対して、0〜τp区間では正の励磁電流Ix1aが流され、τp〜2τp区間では負の励磁電流Ix2aが流される。
【0045】
図13は、永久磁石励磁横磁束方式の水平(X)軸2相線形電動機の各相における時間(t)あるいは移動子位置(x)−発生力特性を示している。B相に生じる力(Fxb)(図13(b))は、A相に生じる力(Fxa)
(図13(a))に対して、時間(t)あるいは移動子位置(x)に関して1/2τpの位相差を有する。この結果、水平進行方向への推力リップルが減少する。また、時間(t)あるいは移動子位置(x)と2相合成発生力(FxT)の特性曲線(図13(c))は、0、(1/2)τp、τp、(3/2)τp、2τp・・・で最小値を有し、(1/4)τp、(3/4)τp、(5/4)τp、(7/4)τp・・・で最大値を有する。
【0046】
図14は、永久磁石励磁横磁束方式の垂直(Y)軸2相線形電動機の各相における時間(t)あるいは移動子位置(Y)−電流特性を示している。B相に流れる電流(Iy1b、Iy2b)(図14(b))は、A相に流れる電流(Iy1a、Iy2a)(図14(a))に対して、時間(t)あるいは移動子位置(y)に関して1/2τpの位相差を有する。また、各相の電流周期は2τpである。移動子を一の垂直方向へ移動させるために、各相に流れる電流は、移動子の位置に応じてその方向が調整される。例えば、A相に対して、0〜τp区間では正の励磁電流Iy1aが流され、τp〜2τp区間では負の励磁電流Iy2aが流される。
【0047】
図15は、永久磁石励磁横磁束方式の垂直(Y)軸2相線形電動機の各相における時間(t)あるいは移動子位置(Y)−発生力特性を示している。B相に生じる力(Fyb)(図15(b))は、A相に生じる力(Fya)(図15(a))に対して、時間(t)あるいは移動子位置(y)に関して1/2τpの位相差を有する。この結果、垂直進行方向への推力リップルが減少する。また、時間(t)あるいは移動子位置(y)と2相合成発生力(FyT)の特性曲線(図15(c))は、0、(1/2)τp、τp、(3/2)τp、2τp・・・で最小値を有し、(1/4)τp、(3/4)τp、(5/4)τp、(7/4)τp・・・で最大値を有する。
【0048】
添付図面を参照しながら本発明にかかる移送装置の好適な実施形態について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。
【0049】
【発明の効果】
以上の説明の如く、本発明によれば、水平(X軸)方向へ移送対象を移送するために、長手方向への寸法の短縮化が可能な1次側(移動子)に永久磁石と巻線が採用され、移送距離に相当する長さが必要な2次側(固定子)に鉄心が採用される。したがって、移送装置の設置作業が容易となり、装置の製造コストの低減も可能となる。
【0050】
また、本発明によれば、垂直(Y軸)方向へ移送対象を移送するために、永久磁石と鉄心から成る移動子が採用される。したがって、垂直方向への高い推力が得られる。
【0051】
さらに、本発明にかかる移送装置は、動力伝達手段を備えることなく直接的に垂直方向の直線運動を発生するので、清浄雰囲気での利用が可能である。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる水平(X軸)及び垂直(Y軸)移送装置の基本構成を示す斜視図である。
【図2】図1の移送装置に備えられた水平(X)軸1相線形電動機の構成を示す斜視図である。
【図3】図2の水平(X)軸線形電動機における推力発生の原理図(その1)である。
【図4】図2の水平(X)軸線形電動機における推力発生の原理図(その2)である。
【図5】図2の水平(X)軸線形電動機における推力発生の原理図(その3)である。
【図6】図1の移送装置に備えられた垂直(Y)軸1相線形電動機の構成を示す斜視図である。
【図7】図6の垂直(Y)軸線形電動機における推力発生の原理図(その1)である。
【図8】図6の垂直(Y)軸線形電動機における推力発生の原理図(その2)である。
【図9】図1の移送装置に備えられた垂直(Y)軸2相線形電動機の構成を示す斜視図である。
【図10】水平(X)軸2相線形電動機の電源供給回路図である。
【図11】垂直(Y)軸2相線形電動機の電源供給回路図である。
【図12】水平(X)軸2相線形電動機の各相における移動子位置と電流の関係を示す特性図である。
【図13】水平(X)軸2相線形電動機の各相における移動子位置と発生力の関係を示す特性図である。
【図14】垂直(Y)軸2相線形電動機の各相における移動子位置と電流の関係を示す特性図である。
【図15】垂直(Y)軸2相線形電動機の各相における移動子位置と発生力の関係を示す特性図である。
【符号の説明】
1:水平(X)軸線形電動機
2:垂直(X)軸線形電動機
3:線形軸受
4:垂直移送支持台
5:水平支持台
6:垂直移動子固定台
7:水平移動子固定台
8:受け台
9:水平移動子鉄心
10:水平移動子永久磁石
11:水平移動子巻線
12:水平固定子鉄心
13:垂直移動子鉄心
14:垂直移動子永久磁石
15:垂直固定子鉄心
16:垂直固定子巻線
17:電力変換素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transfer device that provides linear motion in the horizontal (X-axis) and vertical (Y-axis).
[0002]
[Prior art]
A conventional transfer device that transfers a transfer object in one direction includes a rotator such as an electric motor that generates a rotary motion, and a linear motion converter such as a ball screw that converts the rotary motion into a linear motion. The conventional transfer apparatus has obtained a thrust for transferring a transfer object by such a mechanism.
[0003]
[Problems to be solved by the invention]
However, when obtaining power for propelling the object to be transferred using a power transmission device such as a rotary electric motor and a ball screw, the device configuration becomes complicated. Moreover, since the conventional transfer device generates dust due to friction of the machine part, it is not suitable for use in a highly clean atmosphere.
[0004]
In addition, the conventional vertical transfer device is provided with an opposing member (counter part) at an upper position opposite to the gravity of the load and a suspension means such as a rope in order to transfer the transfer object vertically (Y-axis). And a rotator and the like, resulting in a complicated power transmission mechanism.
[0005]
In addition, the conventional linear motor for providing linear motion has been difficult to apply to a biaxial (XY axis) transfer device because the thrust per unit weight of the motor is small. Even if applicable, in that case, it was necessary to employ a large linear motor.
[0006]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a transfer device that has a simple structure and does not generate dust due to mechanical friction.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, according to the present invention, a transfer device capable of transferring a transfer object in a horizontal direction and a vertical direction is provided. This transfer device is installed on the horizontal transfer means, the horizontal transfer means for transferring the transfer object in the horizontal direction by the thrust of a horizontal axis linear motor of a permanent magnet excitation transverse magnetic flux system, And vertical transfer means for transferring the transfer object in the vertical direction by the thrust of the vertical axis linear motor. In this transfer apparatus, the horizontal transfer means includes the horizontal-axis linear motor (1) of a permanent magnet excitation transverse magnetic flux system, a cradle (8) to which a horizontal stator of the horizontal-axis linear motor is fixed, and the horizontal The horizontal slider of the axial linear motor is fixed, and is opposed to the horizontal slider fixed base (7) that moves in the horizontal direction together with the horizontal slider, and both sides of the cradle and both sides of the horizontal slider fixed base. And a linear bearing (3) configured to smoothly move the horizontal slider fixed base and the horizontal slider in the horizontal direction.
[0008]
Further, the horizontal mover is formed in the same shape as the horizontal mover iron core, and a plurality of bowl-shaped horizontal mover iron cores (9) formed with leg portions distorted in the horizontal direction with a pole interval τ p , Horizontal mover permanent magnets (10) alternately and closely coupled to the horizontal mover iron core in the horizontal direction, one leg portion of the plurality of horizontal mover iron cores and one leg of the plurality of horizontal mover permanent magnets And a horizontal mover winding (11) surrounding each of the other leg portion of the plurality of horizontal mover iron cores and the other leg portion of the plurality of horizontal mover permanent magnets. The horizontal stator is located below each leg portion of the plurality of horizontal mover iron cores and each leg portion of the plurality of horizontal mover permanent magnets, and is provided with a plurality of horizontal fixtures installed at a pole interval of 2τ p. It consists of a child iron core (12) . Here, the plurality of horizontal mover permanent magnets are arranged such that the magnetic poles of the respective leg portions are opposite to each other between adjacent horizontal mover permanent magnets with the horizontal mover iron core interposed therebetween.
[0009]
In addition, the transfer device is configured to include a horizontal drive circuit that drives the horizontal axis linear motor, and the horizontal drive circuit is based on the movement unit corresponding to the pole interval τ p of the horizontal slider. The direction of the current supplied to the horizontal mover winding may be changed.
[0010]
The horizontal axis linear motor may have one horizontal stator and two corresponding horizontal movers. Here, the transfer device includes a horizontal drive circuit that drives the two horizontal axis linear motors, and the horizontal drive circuit is based on a movement unit corresponding to the pole interval τ p of the horizontal slider. The direction of the current supplied to the horizontal mover winding of each horizontal axis linear motor is changed, and each current supplied to the horizontal mover winding of each horizontal axis linear motor is set to 1 of the pole interval τ p . You may make it have a phase difference equivalent to / 2.
[0011]
The vertical transfer means is installed vertically on the vertical axis linear motor (2) of the permanent magnet excitation transverse magnetic flux system and the horizontal moving element fixed base (7), and the vertical stator of the vertical axis linear motor is A vertical transfer support base (4) to be fixed and a vertical slider fixed base (6) to which a vertical mover of the vertical axis linear motor is fixed and move in the vertical direction together with the vertical mover are configured. You may do it.
[0012]
The vertical stator includes a plurality of U-shaped vertical stator cores (15) installed at a pole interval of 2τ p , and vertical stator windings surrounding two leg portions of each of the vertical stator cores. (16), and the vertical mover has the same shape as the vertical mover iron core and a plurality of vertical mover iron cores (13) formed with both end portions distorted in the vertical direction at a pole interval τ p. A plurality of vertical mover permanent magnets that are alternately and tightly coupled with the vertical mover cores in the vertical direction and are disposed between two leg portions of the plurality of vertical stator cores together with the vertical mover cores (14), and the plurality of vertical mover permanent magnets are arranged such that the magnetic poles are opposite to each other between adjacent vertical mover permanent magnets with the vertical mover iron core interposed therebetween. May be. Here, the transfer device is configured to include a vertical drive circuit that drives the vertical axis linear motor, and the vertical drive circuit is based on a movement unit corresponding to the pole interval τ p of the vertical slider. The direction of the current supplied to the vertical stator winding may be changed.
[0013]
The vertical transfer means includes two permanent magnet excitation transverse magnetic flux type vertical axis linear motors and a vertical distance between the two fixed axis linear motors on the horizontal slider fixed base. Two vertical transfer support bases to which the vertical stators are fixed to each other, and each of the vertical movers of the two vertical axis linear motors is fixed, and the vertical mover fixed bases move in the vertical direction together with the vertical movers. And may be configured to include.
[0014]
Each of the vertical stators includes a plurality of U-shaped vertical stator cores installed at a pole interval of 2τ p , and a vertical stator winding that surrounds two leg portions of each of the vertical stator cores, Each vertical mover is formed of a plurality of vertical mover cores whose both end portions are distorted in the vertical direction with a pole interval τ p , and are formed in the same shape as the vertical mover iron core. A plurality of vertical mover permanent magnets alternately and tightly coupled to the vertical mover iron core and disposed between two leg portions of the plurality of vertical stator iron cores together with the vertical mover iron core; The plurality of vertical mover permanent magnets may be arranged such that the magnetic poles are opposite to each other between adjacent vertical mover permanent magnets with the vertical mover iron core interposed therebetween. Here, the transfer apparatus includes a vertical drive circuit that drives the two vertical axis linear motors, and the vertical drive circuit is based on a movement unit corresponding to the pole interval τ p of the vertical slider. The direction of the current supplied to each vertical stator winding is changed so that the current supplied to each vertical stator winding has a phase difference corresponding to 1/2 of the pole interval τ p. May be.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a transfer device according to the present invention will be described in detail with reference to the accompanying drawings. In the following description and the attached drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted.
[0016]
FIG. 1 shows a basic configuration of a horizontal (X-axis) and vertical (Y-axis) transfer device using a permanent magnet-excited transverse magnetic flux type linear motor according to the present embodiment. The horizontal (X-axis) and vertical (Y-axis) transfer devices can be applied to, for example, a transfer system for a workpiece in a semiconductor or LCD manufacturing process, and other linear propulsion systems.
[0017]
As shown in the figure, the vertical and horizontal transfer device according to the present embodiment includes a horizontal transfer means and a vertical transfer means.
[0018]
The horizontal transfer means includes a permanent magnet-excited transverse magnetic flux type horizontal axis linear motor 1, a stator 8 to which the stator portion of the horizontal axis linear motor 1 is fixed, and supports the entire horizontal and vertical transfer device, and a horizontal axis. The moving part of the linear motor 1 is fixed, and the horizontal moving part fixed base 7 that moves in the horizontal direction together with the moving part, the both sides of the receiving base 8 and the both sides of the horizontal moving part fixed base 7 face each other. And a linear bearing 3 that is formed so that the moving part of the horizontal moving element fixed base 7 and the moving part of the horizontal axis linear electric motor 1 are smoothly slid and transferred in the horizontal direction.
[0019]
The linear bearings 3 extend vertically from both sides of the cradle 8 to the horizontal slider fixed base 7 side, and the rails formed on the linear bearings 3 are perpendicular to the cradle 8 side from both sides of the horizontal slider fixed base 7. It is comprised from the rail seating part by which the rail of the receiving stand 8 is fitted in the lower part. In the horizontal axis linear motor 1, it is preferable that at least two moving elements are installed.
[0020]
On the other hand, the vertical transfer means is one in which two permanent magnet excitation transverse magnetic flux type vertical axis linear motors 2 and a stator portion of these vertical axis linear motors 2 are fixed. The vertical moving elements 4A and 4B, which are vertically installed at a fixed distance from each other, and the moving parts of the two vertical axis linear motors 2 are fixed, and the vertical moving elements which move in the vertical direction together with the moving parts. It is configured to include a fixed base 6 and a horizontal support base 5 that is installed above the vertical transfer support bases 4A and 4B and supports the vertical transfer means in the horizontal direction.
[0021]
The vertical slider fixing base 6 is provided with means (not shown) for gripping or mounting the transfer object. A transfer object held or mounted by this means is transferred in the horizontal direction by the horizontal moving means and transferred in the vertical direction by the vertical moving means.
[0022]
In this embodiment, in order to generate a horizontal force F x, the horizontal axis linear motor 1 constituting X axis (horizontal) transfer means comprise two movers portion, one of the stator member I have. With this configuration, when the transfer distance in the horizontal direction is long, the material of the stator portion can be saved. Further, the mover of the X-axis (horizontal) linear motor 1 is not located at the same position as the stator but is installed with a deviation of τ p / 2. As a result, thrust ripples in the horizontal direction (rattle during horizontal transfer) are suppressed.
[0023]
Further, in the Y-axis (vertical) transport means, in order to generate a vertical force F y, and the vertical axis linear motor 2, consisting of two opposing. With this configuration, the balance of the vertical slider fixed base 6 during vertical movement is maintained.
[0024]
According to the horizontal and vertical transfer device according to the present embodiment, in order to transfer a transfer object in the horizontal (X-axis) direction, the primary side (moving element) can be permanently shortened in the longitudinal direction. Magnets and windings are used, and an iron core is used on the secondary side (stator) that requires a length corresponding to the transfer distance. Therefore, the installation work of the horizontal and vertical transfer devices becomes easy.
[0025]
In addition, according to the horizontal and vertical transfer device according to the present embodiment, a mover composed of a permanent magnet and an iron core is employed to transfer a transfer object in the vertical (Y-axis) direction. Therefore, a high thrust in the vertical direction can be obtained as compared with a conventional vertical transfer device including a facing member and suspension means.
[0026]
Here, the embodiment of the present invention is described in the case where two vertical axis linear motors are installed, but if necessary, a plurality of pairs of vertical axis linear motors are mounted in parallel, and each vertical axis You may make it fix all the slider parts of a linear motor to a vertical slider fixed stand. According to this configuration, it is possible to further improve the thrust in the vertical direction.
[0027]
Moreover, although embodiment of this invention is described using the horizontal axis | shaft linear electric motor 1 which comprised the stator part by one and comprised the two movable part parts, this invention is not limited to this. For example, a plurality of horizontal axis linear motors shown in FIG. 1 are arranged in parallel to each other, all the stator parts of the respective horizontal axis linear motors are fixed to the cradle 8, and all the moving parts are fixed to the horizontal moving element fixed base. 7 may be fixed. According to this configuration, it is possible to further improve the thrust in the horizontal direction.
[0028]
FIG. 2 shows a configuration of a horizontal (X) -axis single-phase linear motor of a permanent magnet excitation transverse magnetic flux method.
[0029]
The moving element has two leg portions, and each leg portion is deformed by τ p in the front and rear directions, a permanent magnet 10 having the same shape as the iron core 9, and a winding 11. It is configured. The plurality of iron cores 9 and the plurality of permanent magnets 10 are in close contact and coupled alternately. Further, the winding 11 surrounds the legs on both sides in a state where a large number of iron cores 9 and a large number of permanent magnets 10 are coupled. The plurality of iron cores 9 having two leg portions and the plurality of permanent magnets 10 having two leg portions are both preferably substantially U-shaped, for example, as shown in FIG.
[0030]
The fixed part is composed of a rectangular iron core 12. When the permanent magnet 10 is inserted between the mover cores 9 and the permanent magnet magnetic poles (→, ←) are alternately arranged as shown in FIG. 2, the N and S magnetic poles are alternately arranged on the mover iron core 9. Arise.
[0031]
3, 4 and 5 are horizontal axial force generation principle diagrams. As shown in FIG. 3, when a current Ix 1a is passed through a rotor winding 11 of a horizontal (X) axis linear motor of a permanent magnet excitation transverse magnetic flux system, a magnetic flux Φ is changed to a rotor core 9, a rotor permanent magnet 10, And through the stator core 12.
[0032]
In order to explain the details of thrust generation, FIG. 4 shows a state where the stator core 12 shown in FIG. When the mover core 9 is between the magnetic field directions (→, ←) of the two permanent magnets, the mover core 9 is magnetized to the N pole. On the other hand, when the mover core 9 is between the magnetic field directions (←, →) of the two permanent magnets, the mover core 9 is magnetized to the S pole. Further, the mover core 9 and the permanent magnet 10 are arranged so as to be distorted with respect to each other by τ p in order to generate a force in the same direction with the same polarity on both sides.
[0033]
As shown in FIG. 4, when a current Ix 1a is passed through the rotor winding 11, an N-pole magnetic flux is generated on the upper side of the stator core 12, and an S-pole magnetic flux is generated on the lower side. Due to the interaction between the magnetic poles of the stator core 12 and the magnetic poles of the moving elements (moving iron core 9 and moving permanent magnet 10), repulsive forces (forces Fx 2 and Fx 4 ) are generated if the magnetic pole directions are the same. When the magnetic pole directions are different, attractive forces (forces Fx 1 and Fx 3 ) are generated. These forces Fx 1 , Fx 2 , Fx 3 , and Fx 4 are combined to obtain a force Fx in the right direction.
[0034]
FIG. 5 shows a state in which the moving elements (moving iron core 9, moving element permanent magnet 10, moving element winding 11) shown in FIG. At this time, the direction of the current Ix 1a is changed, and Ix 2a is supplied to the mover winding 11. As a result, an S pole magnetic flux is generated on the upper side of the stator core 12, and an N pole magnetic flux is generated on the lower side. As in the case shown in FIG. 4, forces Fx 5 , Fx 6 , Fx 7 , Fx 8 are generated by the interaction between the magnetic poles of the stator core 12 and the magnetic poles of the mover (mover iron core 9, mover permanent magnet 10). And a combined force Fx in the right direction is obtained.
[0035]
FIG. 6 shows a configuration of a permanent magnet excitation transverse magnetic flux type vertical (Y) axis single-phase linear motor. This vertical (Y) axis single-phase linear motor is composed of a rotor core 13, a rotor permanent magnet 14, a stator core 15, and a stator winding 16.
[0036]
As shown in FIG. 6, the plurality of iron cores 15 constituting the stator have two projecting portions (leg portions) and are arranged at intervals of 2τ p in the movement direction (Y direction). In addition, the stator winding 16 constituting the stator is wound around each leg portion of the plurality of iron cores 15. A mover iron core 13 and a mover permanent magnet 14 constituting a mover are disposed between two leg portions of the plurality of iron cores 15. In order to move the mover iron core 13 and the mover permanent magnet 14 having two same poles in one direction, the mover iron core 13 and the permanent magnet 14 are distorted (diagonally) by τ p . The plurality of iron cores 15 having two leg portions are preferably substantially U-shaped, for example, as shown in FIG.
[0037]
A moving element for transferring a transfer object in the vertical (Y-axis) direction includes an iron core 13 and a permanent magnet 14. For this reason, the weight of the moving element is realized, and the thrust (N / kg) per unit weight of the moving element becomes extremely large. As described above, the vertical (Y-axis) transfer unit according to the present embodiment can transfer the transfer target in the vertical direction without using the suspension unit and the opposing member. Further, since the vertical linear motion is directly generated without providing the power transmission means, it can be used in a clean atmosphere.
[0038]
7 and 8 show the principle of force generation of the vertical (Y-axis) transfer means.
[0039]
As shown in FIG. 7, when a current Iy 1a is passed through the stator winding 16, an N-pole magnetic flux is generated on the left side of the stator core 15, and an S-pole magnetic flux is generated on the right side. Due to the interaction between the magnetic poles of the stator core 15 and the magnetic poles of the moving elements (moving iron core 13 and moving element permanent magnet 14), repulsive forces (forces Fy 2 and Fy 4 ) are generated when the magnetic pole directions are the same. However, if the directions of the magnetic poles are different, attractive forces (forces Fy 1 and Fy 3 ) are generated. These forces Fy 1 , Fy 2 , Fy 3 , Fy 4 are combined to obtain an upward force Fy.
[0040]
8, the mover (the mover iron cores 13, the mover permanent magnets 14) shown in FIG. 7 shows a state that has moved tau p. At this time, the direction of the current Iy 1a is changed to flow Iy 2a through the stator winding 16. As a result, an S pole magnetic flux is generated on the left side of the stator core 15 and an N pole magnetic flux is generated on the right side. As in the case shown in FIG. 7, forces Fy 5 , Fy 6 , Fy 7 , Fy 8 are generated by the interaction between the magnetic poles of the stator core 15 and the magnetic poles of the mover (mover iron core 13, mover permanent magnet 14). And a combined force Fy in the upward direction is obtained.
[0041]
FIG. 9 shows the configuration of a permanent magnet excitation transverse magnetic flux type vertical (Y) axis two-phase linear motor. Single-phase motors arranged on the left side and the right side are connected by a vertical slider fixed base 6. The left and right motors are respectively installed with a deviation of τ p / 2 with respect to the vertical traveling direction. As a result, the ripple of thrust in the vertical direction (shaking during vertical transfer) is suppressed. On the vertical slider fixed base 6, a transfer object to be transferred by a horizontal and vertical (XY axis) transfer device is placed.
[0042]
FIG. 10 shows a power supply circuit of a horizontal (X) axis two-phase linear motor of the permanent magnet excitation transverse magnetic flux method. In this circuit, an A-phase horizontal propulsion motor and a B-phase horizontal propulsion motor are connected in parallel to a common power source. In order to generate a current in the Ix 1a direction, the power conversion element 17 (S 1 , S 4 ) is made conductive, and in order to generate a current in the opposite Ix 2a direction, the power conversion element 17 (S 2 , S 4). 3 ) Conduct. Further, in order to generate a current in the Ix 1b direction, the power conversion element 17 (S 5 , S 8 ) is made conductive, and in order to generate a current in the opposite Ix 2b direction, the power conversion element 17 (S 6 , S 7 ) are conducted.
[0043]
FIG. 11 shows a power supply circuit of a vertical (Y) axis two-phase linear motor of the permanent magnet excitation transverse magnetic flux method. This circuit is in principle consistent with the X-axis power supply circuit shown in FIG. That is, an A-phase vertical lifting motor and a B-phase vertical lifting motor are connected in parallel to a common power source. In order to generate a current in the Iy 1a direction, the power conversion element 17 (S 1 , S 4 ) is made conductive, and in order to generate a current in the opposite direction Iy 2a , the power conversion element 17 (S 2 , S 4). 3 ) Conduct. In order to generate a current in the Iy 1b direction, the power conversion element 17 (S 5 , S 8 ) is turned on, and in order to generate a current in the opposite direction Iy 2b , the power conversion element 17 (S 6 , S 7 ) are conducted.
[0044]
FIG. 12 shows time (t) or slider position (x) -current characteristics in each phase of a horizontal (X) -axis two-phase linear motor of the permanent magnet excitation transverse magnetic flux method. The current (Ix 1b , Ix 2b ) flowing in the B phase (FIG. 12B) is time (t) or shifted with respect to the current flowing in the A phase (Ix 1a , Ix 2a ) (FIG. 12A). It has a phase difference of 1 / 2τ p with respect to the child position (x). The current period of each phase is 2.tau p. In order to move the slider in one horizontal direction, the direction of the current flowing in each phase is adjusted according to the position of the slider. For example, the A-phase, positive exciting current Ix 1a is passed in 0~Tau p interval, a negative excitation current Ix 2a is made to flow in the τ p ~2τ p sections.
[0045]
FIG. 13 shows time (t) or moving element position (x) -generated force characteristics in each phase of a horizontal (X) -axis two-phase linear motor of the permanent magnet excitation transverse magnetic flux method. The force (Fx b ) generated in the B phase (FIG. 13B) is the force generated in the A phase (Fx a ).
(FIG. 13A) has a phase difference of ½τ p with respect to time (t) or moving element position (x). As a result, thrust ripple in the horizontal traveling direction is reduced. In addition, the characteristic curve (FIG. 13 (c)) of time (t) or moving element position (x) and two-phase combined generation force (Fx T ) is 0, (1/2) τ p , τ p , (3 / 2) τ p , 2τ p ... With minimum values, (1/4) τ p , (3/4) τ p , (5/4) τ p , (7/4) τ p.・ ・ Has the maximum value.
[0046]
FIG. 14 shows time (t) or slider position (Y) -current characteristics in each phase of a permanent magnet excitation transverse magnetic flux type vertical (Y) axis two-phase linear motor. The current (Iy 1b , Iy 2b ) flowing in the B phase (FIG. 14B) is a time (t) or movement relative to the current flowing in the A phase (Iy 1a , Iy 2a ) (FIG. 14A). It has a phase difference of 1 / 2τ p with respect to the child position (y). The current period of each phase is 2.tau p. In order to move the moving element in one vertical direction, the direction of the current flowing in each phase is adjusted according to the position of the moving element. For example, the A-phase, positive exciting current Iy 1a is passed in 0~Tau p interval, a negative exciting current Iy 2a is made to flow in the τ p ~2τ p sections.
[0047]
FIG. 15 shows time (t) or moving element position (Y) -generated force characteristics in each phase of a permanent (magnetizing) transverse magnetic flux type vertical (Y) axis two-phase linear motor. The force (Fy b ) (FIG. 15 (b)) generated in the B phase is related to the time (t) or the moving element position (y) with respect to the force (Fy a ) (FIG. 15 (a)) generated in the A phase. having a phase difference of 1 / 2τ p. As a result, the thrust ripple in the vertical traveling direction is reduced. In addition, the characteristic curve (FIG. 15 (c)) of time (t) or moving element position (y) and two-phase composite generation force (Fy T ) is 0, (1/2) τ p , τ p , (3 / 2) τ p , 2τ p ... With minimum values, (1/4) τ p , (3/4) τ p , (5/4) τ p , (7/4) τ p.・ ・ Has the maximum value.
[0048]
The preferred embodiments of the transfer device according to the present invention have been described with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be obvious to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.
[0049]
【The invention's effect】
As described above, according to the present invention, in order to transfer the object to be transferred in the horizontal (X-axis) direction, the permanent magnet and the coil are wound on the primary side (moving element) capable of shortening the dimension in the longitudinal direction. Wire is adopted, and an iron core is adopted on the secondary side (stator) that requires a length corresponding to the transfer distance. Therefore, the installation work of the transfer device is facilitated, and the manufacturing cost of the device can be reduced.
[0050]
Further, according to the present invention, a mover composed of a permanent magnet and an iron core is employed to transfer the transfer object in the vertical (Y-axis) direction. Therefore, high thrust in the vertical direction can be obtained.
[0051]
Furthermore, since the transfer apparatus according to the present invention directly generates a linear motion in the vertical direction without providing any power transmission means, it can be used in a clean atmosphere.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a basic configuration of a horizontal (X-axis) and vertical (Y-axis) transfer device according to an embodiment of the present invention.
2 is a perspective view showing a configuration of a horizontal (X) axis single-phase linear motor provided in the transfer device of FIG. 1; FIG.
3 is a principle diagram (No. 1) of thrust generation in the horizontal (X) axis linear motor of FIG. 2; FIG.
FIG. 4 is a principle diagram (part 2) of thrust generation in the horizontal (X) axis linear motor of FIG. 2;
FIG. 5 is a principle diagram (No. 3) of thrust generation in the horizontal (X) axis linear motor of FIG. 2;
6 is a perspective view showing a configuration of a vertical (Y) axis single-phase linear motor provided in the transfer device of FIG. 1; FIG.
7 is a principle diagram (No. 1) of thrust generation in the vertical (Y) axis linear motor of FIG. 6; FIG.
FIG. 8 is a principle diagram (part 2) of thrust generation in the vertical (Y) axis linear motor of FIG. 6;
9 is a perspective view showing a configuration of a vertical (Y) axis two-phase linear motor provided in the transfer device of FIG. 1; FIG.
FIG. 10 is a power supply circuit diagram of a horizontal (X) axis two-phase linear motor.
FIG. 11 is a power supply circuit diagram of a vertical (Y) axis two-phase linear motor.
FIG. 12 is a characteristic diagram showing a relationship between a moving element position and a current in each phase of a horizontal (X) axis two-phase linear motor.
FIG. 13 is a characteristic diagram showing a relationship between a moving element position and a generated force in each phase of a horizontal (X) axis two-phase linear motor.
FIG. 14 is a characteristic diagram showing a relationship between a moving element position and a current in each phase of a vertical (Y) axis two-phase linear motor.
FIG. 15 is a characteristic diagram showing a relationship between a moving element position and a generated force in each phase of a vertical (Y) axis two-phase linear motor.
[Explanation of symbols]
1: Horizontal (X) axis linear motor 2: Vertical (X) axis linear motor 3: Linear bearing 4: Vertical transfer support base 5: Horizontal support base 6: Vertical slider fixed base 7: Horizontal slider fixed base 8: Receiving Table 9: Horizontal mover iron core 10: Horizontal mover permanent magnet 11: Horizontal mover winding 12: Horizontal stator iron core 13: Vertical mover iron core 14: Vertical mover permanent magnet 15: Vertical stator iron core 16: Vertically fixed Child winding 17: power conversion element

Claims (10)

移送対象を水平方向および垂直方向に移送可能な移送装置において、
永久磁石励磁横磁束方式の水平軸線形電動機の推力によって、前記移送対象を水平方向に移送する水平移送手段と、前記水平移送手段上に設置され、永久磁石励磁横磁束方式の垂直軸線形電動機の推力によって、前記移送対象を垂直方向に移送する垂直移送手段と、を含めて構成され、
前記水平移送手段は、永久磁石励磁横磁束方式の前記水平軸線形電動機(1)と、前記水平軸線形電動機の水平固定子が固定される受け台(8)と、前記水平軸線形電動機の水平移動子が固定され、前記水平移動子と共に水平方向に動く水平移動子固定台(7)と、前記受け台の両側部と前記水平移動子固定台の両側部とに相対向するように形成され、前記水平移動子固定台と前記水平移動子とが水平方向に円滑に動くようにする線形軸受(3)と、を含めて構成され、
前記水平移動子は、脚部分が水平方向に極間隔τpで歪んで形成された∩形状の複数の水平移動子鉄心(9)と、前記水平移動子鉄心と同一形状で形成され、水平方向に前記水平移動子鉄心と交互に密着結合された水平移動子永久磁石(10)と、前記複数の水平移動子鉄心の一方の脚部分と前記複数の水平移動子永久磁石の一方の脚部分と、前記複数の水平移動子鉄心の他方の脚部分と前記複数の水平移動子永久磁石の他方の脚部分とを各々に囲む水平移動子巻線(11)と、から構成され、
前記水平固定子は、前記複数の水平移動子鉄心の各脚部分と前記複数の水平移動子永久磁石の各脚部分との下側に位置し、極間隔2τpで設置された複数の水平固定子鉄心(12)から構成され、
前記複数の水平移動子永久磁石は、前記水平移動子鉄心を挟んで隣り合う水平移動子永久磁石との間で各脚部分の磁極が反対となるように配置されることを特徴とする移送装置。
In a transfer device capable of transferring a transfer object horizontally and vertically,
A horizontal transfer means for transferring the object to be transferred in the horizontal direction by a thrust of a horizontal axis linear motor of a permanent magnet excitation transverse magnetic flux type, and a vertical axis linear motor of a permanent magnet excitation transverse magnetic flux type installed on the horizontal transfer means. Vertical transfer means for transferring the transfer object in the vertical direction by thrust, and comprising:
The horizontal transfer means includes a permanent magnet excitation transverse magnetic flux type horizontal axis linear motor (1), a cradle (8) to which a horizontal stator of the horizontal axis linear motor is fixed, and a horizontal axis of the horizontal axis linear motor. A movable element is fixed, and is formed to face the horizontal movable element fixed base (7) that moves in the horizontal direction together with the horizontal movable element, and both sides of the cradle and both sides of the horizontal movable element fixed base. A linear bearing (3) that allows the horizontal slider fixed base and the horizontal slider to move smoothly in a horizontal direction,
The horizontal mover is formed of a plurality of bowl-shaped horizontal mover cores (9) whose leg portions are distorted in the horizontal direction with a pole interval τ p and the same shape as the horizontal mover iron core. A horizontal mover permanent magnet (10) alternately and tightly coupled to the horizontal mover iron core, one leg portion of the plurality of horizontal mover iron cores and one leg portion of the plurality of horizontal mover permanent magnets; , And a horizontal mover winding (11) surrounding each of the other leg portion of the plurality of horizontal mover iron cores and the other leg portion of the plurality of horizontal mover permanent magnets,
The horizontal stator is located below each leg portion of the plurality of horizontal mover iron cores and each leg portion of the plurality of horizontal mover permanent magnets, and is provided with a plurality of horizontal fixtures installed at a pole interval of 2τ p. Consists of a child core (12),
It said plurality of horizontal mover permanent magnets are moved you characterized in that the magnetic pole of each leg portion between the horizontal mover permanent magnets adjacent to each other with the horizontal mover iron cores are arranged to be opposite Feeding device.
前記水平軸線形電動機を駆動する水平駆動回路を含めて構成され、前記水平駆動回路は、前記水平移動子の前記極間隔τpに対応する移動単位に基づいて、前記水平移動子巻線に供給される電流方向を変えることを特徴とする、請求項1に記載の移送装置。The horizontal drive circuit is configured to include a horizontal drive circuit that drives the horizontal axis linear motor, and the horizontal drive circuit supplies the horizontal mover windings based on a movement unit corresponding to the pole interval τ p of the horizontal mover. The transfer device according to claim 1, wherein the current direction is changed. 前記水平軸線形電動機は、一つの水平固定子と、対応する二つの水平移動子とを有することを特徴とする、請求項1に記載の移送装置。  The transfer device according to claim 1, wherein the horizontal axis linear motor has one horizontal stator and two corresponding horizontal movers. 二つの前記水平軸線形電動機を駆動する水平駆動回路を含めて構成され、前記水平駆動回路は、前記水平移動子の前記極間隔τpに対応する移動単位に基づいて、前記各水平軸線形電動機の水平移動子巻線に供給される電流方向を変え、前記各水平軸線形電動機の水平移動子巻線に供給される各電流は、前記極間隔τpの1/2に相当する位相差を持つことを特徴とする、請求項3に記載の移送装置。A horizontal drive circuit for driving the two horizontal axis linear motors, wherein the horizontal drive circuit is based on a unit of movement corresponding to the pole interval τ p of the horizontal slider. The direction of the current supplied to the horizontal mover winding of the horizontal axis is changed, and each current supplied to the horizontal mover winding of each horizontal axis linear motor has a phase difference corresponding to 1/2 of the pole interval τ p. The transfer device according to claim 3, wherein the transfer device is provided. 前記垂直移送手段は、永久磁石励磁横磁束方式の前記垂直軸線形電動機(2)と、前記水平移動子固定台(7)に垂直に設置され、前記垂直軸線形電動機の垂直固定子が固定される垂直移送支持台(4)と、前記垂直軸線形電動機の垂直移動子が固定され、前記垂直移動子と共に垂直方向に動く垂直移動子固定台(6)と、を含めて構成されることを特徴とする、請求項1に記載の移送装置。  The vertical transfer means is vertically installed on the vertical axis linear motor (2) of the permanent magnet excitation transverse magnetic flux system and the horizontal moving element fixed base (7), and the vertical stator of the vertical axis linear motor is fixed. A vertical transfer support base (4), and a vertical slider fixed base (6) to which the vertical slider of the vertical axis linear motor is fixed and moves in the vertical direction together with the vertical slider. The transfer device according to claim 1, characterized in that: 前記垂直固定子は、極間隔2τpで設置されたU形状の複数の垂直固定子鉄心(15)と、前記各垂直固定子鉄心の二つの脚部分を各々に囲む垂直固定子巻線(16)と、から構成され、
前記垂直移動子は、両端部分が垂直方向に極間隔τpで歪んで形成された複数の垂直移動子鉄心(13)と、前記垂直移動子鉄心と同一形状で形成され、垂直方向に前記垂直移動子鉄心と交互に密着結合され、前記垂直移動子鉄心と共に前記複数の垂直固定子鉄心の二つの脚部分の間に配置された複数の垂直移動子永久磁石(14)と、から構成され、
前記複数の垂直移動子永久磁石は、前記垂直移動子鉄心を挟んで隣り合う垂直移動子永久磁石との間で磁極が反対となるように配置されることを特徴とする、請求項5に記載の移送装置。
The vertical stator includes a plurality of U-shaped vertical stator cores (15) installed at a pole interval of 2τ p and vertical stator windings (16) surrounding two leg portions of each of the vertical stator cores. ), And
The vertical mover has a plurality of vertical mover cores (13) formed at both end portions distorted in the vertical direction with a pole interval τ p , and has the same shape as the vertical mover iron core. A plurality of vertical mover permanent magnets (14) that are alternately tightly coupled to the mover iron core and disposed between two leg portions of the plurality of vertical stator iron cores together with the vertical mover core;
The plurality of vertical mover permanent magnets are arranged such that magnetic poles are opposite to each other between adjacent vertical mover permanent magnets with the vertical mover iron core interposed therebetween. Transfer device.
前記垂直軸線形電動機を駆動する垂直駆動回路を含めて構成され、前記垂直駆動回路は、前記垂直移動子の前記極間隔τpに対応する移動単位に基づいて、前記垂直固定子巻線に供給される電流方向を変えることを特徴とする、請求項6に記載の移送装置。The vertical driving circuit is configured to include a vertical driving circuit that drives the vertical axis linear motor, and the vertical driving circuit supplies the vertical stator windings based on a moving unit corresponding to the pole interval τ p of the vertical moving element. The transfer device according to claim 6, wherein the current direction to be changed is changed. 前記垂直移送手段は、二つの永久磁石励磁横磁束方式の垂直軸線形電動機と、前記水平移動子固定台上で互いに一定の距離をおいて垂直に設置され、前記二つの垂直軸線形電動機の垂直固定子が各々に固定される二つの垂直移送支持台と、前記二つの垂直軸線形電動機の垂直移動子の各々が固定され、前記各垂直移動子と共に垂直方向に動く垂直移動子固定台と、を含めて構成されることを特徴とする、請求項1に記載の移送装置。  The vertical transfer means includes two permanent magnet excitation transverse magnetic flux type vertical axis linear motors and a vertical distance between the two vertical axis linear motors installed on the horizontal slider fixed base at a certain distance from each other. Two vertical transfer support bases to which the stator is fixed to each other, and each of the vertical movers of the two vertical axis linear motors is fixed, and a vertical mover fixed base that moves in the vertical direction together with each of the vertical movers; The transfer apparatus according to claim 1, comprising: 前記各垂直固定子は、極間隔2τpで設置されたU形状の複数の垂直固定子鉄心と、前記各垂直固定子鉄心の二つの脚部分を各々に囲む垂直固定子巻線と、から構成され、
前記各垂直移動子は、両端部分が垂直方向に極間隔τpで歪んで形成された複数の垂直移動子鉄心と、前記垂直移動子鉄心と同一形状で形成され、垂直方向に前記垂直移動子鉄心と交互に密着結合され、前記垂直移動子鉄心と共に前記複数の垂直固定子鉄心の二つの脚部分の間に配置された複数の垂直移動子永久磁石と、から構成され、
前記複数の垂直移動子永久磁石は、前記垂直移動子鉄心を挟んで隣り合う垂直移動子永久磁石との間で磁極が反対となるように配置されることを特徴とする、請求項8に記載の移送装置。
Each of the vertical stators includes a plurality of U-shaped vertical stator cores installed at a pole interval of 2τ p , and vertical stator windings that surround two leg portions of each of the vertical stator cores. And
Each of the vertical movers has a plurality of vertical mover cores whose ends are distorted in the vertical direction with a pole interval τ p and the same shape as the vertical mover iron cores, and the vertical movers are arranged in the vertical direction. A plurality of vertical mover permanent magnets alternately and tightly coupled to the iron core, and disposed between two leg portions of the plurality of vertical stator iron cores together with the vertical mover iron core,
The plurality of vertical mover permanent magnets are arranged such that magnetic poles are opposite to each other between adjacent vertical mover permanent magnets with the vertical mover iron core interposed therebetween. Transfer device.
二つの前記垂直軸線形電動機を駆動する垂直駆動回路を含めて構成され、前記垂直駆動回路は、前記垂直移動子の前記極間隔τpに対応する移動単位に基づいて、前記各垂直固定子巻線に供給される電流方向を変え、前記各垂直固定子巻線に供給される電流は、前記極間隔τpの1/2に相当する位相差を持つことを特徴とする、請求項に記載の移送装置。The vertical drive circuit is configured to drive two vertical axis linear motors, and the vertical drive circuit is configured based on a moving unit corresponding to the pole interval τ p of the vertical mover. changing the direction of current supplied to the line, the current supplied to the vertical stator winding is characterized by having a phase difference corresponding to 1/2 of the pole pitch tau p, to claim 9 The transfer device described.
JP2003147936A 2002-05-24 2003-05-26 Transfer device Expired - Fee Related JP3910938B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2002-0028999A KR100454656B1 (en) 2002-05-24 2002-05-24 Horizontal And Vertical Transportation System By Using Transverse Flux Linear Motor With Permanent Magnet Excitation
KR2002-028999 2002-05-24

Publications (2)

Publication Number Publication Date
JP2003341844A JP2003341844A (en) 2003-12-03
JP3910938B2 true JP3910938B2 (en) 2007-04-25

Family

ID=36597847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003147936A Expired - Fee Related JP3910938B2 (en) 2002-05-24 2003-05-26 Transfer device

Country Status (4)

Country Link
US (1) US7166938B2 (en)
JP (1) JP3910938B2 (en)
KR (1) KR100454656B1 (en)
TW (1) TWI234537B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9787144B2 (en) 2013-07-10 2017-10-10 Kabushiki Kaisha Toshiba Rotating electrical motor using transverse magnetic flux

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004086595A1 (en) * 2003-03-24 2004-10-07 Technische Universität Berlin Gliding field linear motor
KR100603943B1 (en) * 2004-10-22 2006-07-25 한국전기연구원 Bi-direction operating linear compressor using transverse flux linear motor
KR100753460B1 (en) * 2005-08-11 2007-08-31 주식회사 신성이엔지 Linear Motor with permanent magnet excitation
KR100820160B1 (en) * 2006-07-28 2008-04-08 한국전기연구원 Permanent magnet excited transverse flux linear motor with normal-force compensation structure
KR100977471B1 (en) * 2007-12-24 2010-08-23 한국전기연구원 Integrated Apparatus Of Linear Bearing And Linear Motor
CN102842974B (en) 2012-08-03 2015-06-03 埃塞克科技有限公司 Transverse flux electric machine
CA2827650A1 (en) 2012-09-24 2014-03-24 Eocycle Technologies Inc. Transverse flux electrical machine stator and assembly thereof
CA2829812A1 (en) 2012-10-17 2014-04-17 Eocycle Technologies Inc. Transverse flux electrical machine rotor
CN105308835B (en) 2013-06-20 2019-05-14 奥的斯电梯公司 Motor with the rotor with inclination permanent magnet
CN109178941B (en) * 2018-09-06 2023-11-24 果栗智造(上海)技术股份有限公司 Air source access device of linear transmission system
JP2022547506A (en) * 2019-09-06 2022-11-14 エムオーティーエックス リミテッド rotary transverse flux motor
CN115189491B (en) * 2022-06-29 2024-07-02 北京航空航天大学 Bilateral coreless permanent magnet synchronous linear motor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251931A (en) * 1994-03-10 1995-10-03 Mitsubishi Materials Corp Can self rotating device, coating device and light illuminating device
JPH0891570A (en) * 1994-09-28 1996-04-09 Sony Corp Non-dusting vertical lifter
JPH10263960A (en) * 1997-03-19 1998-10-06 Mori Seiki Co Ltd Machine tool
JPH11205910A (en) * 1998-01-07 1999-07-30 Nkk Corp Linear truck transporting device
KR100302908B1 (en) * 1999-02-25 2001-09-26 윤문수 A permant magnet excited linear actuator
CN1288284A (en) * 1999-04-16 2001-03-21 纽瓦茨国际有限公司 AC electric motor
US6245284B1 (en) * 2000-01-05 2001-06-12 Billy Ray Cooper, Sr. Head fitter
DE10033799A1 (en) * 2000-03-23 2001-10-11 Schaefertoens Joern H Transversal magnetic flux machine, has at least one stator and rotor forming magnetic circuit at right angles to movement direction, in which rotor and stator are formed of magnetic iron strips
JP2002027731A (en) * 2000-07-06 2002-01-25 Hitachi Kiden Kogyo Ltd Linear motor
DE50111043D1 (en) * 2001-08-18 2006-11-02 Trumpf Werkzeugmaschinen Gmbh Machine tool with a driven by linear motors functional unit
KR100440389B1 (en) * 2001-12-26 2004-07-14 한국전기연구원 A 2-phase Transverse Flux Linear Motor With Permanent Magnet Excitation
KR100440391B1 (en) * 2002-03-21 2004-07-14 한국전기연구원 A Integrated System Of Non-Contact Power Feed System And Transverse Flux Linear Motor With Permanent Magnetic Excitation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9787144B2 (en) 2013-07-10 2017-10-10 Kabushiki Kaisha Toshiba Rotating electrical motor using transverse magnetic flux

Also Published As

Publication number Publication date
KR20030091153A (en) 2003-12-03
KR100454656B1 (en) 2004-11-05
TWI234537B (en) 2005-06-21
US7166938B2 (en) 2007-01-23
US20040021374A1 (en) 2004-02-05
TW200406351A (en) 2004-05-01
JP2003341844A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP4473088B2 (en) Linear motor
US6849969B2 (en) Transverse flux linear motor with permanent magnet excitation
JP3910938B2 (en) Transfer device
JP5956993B2 (en) Linear motor
WO2014064785A1 (en) Linear motor and linear motor drive system
US9059626B2 (en) Electric machine with linear mover
US6833638B2 (en) Integrated system for non-contact power feed device and permanent magnet-excited transverse flux linear motor
JP3360606B2 (en) Linear motor
KR100964539B1 (en) Linear motor
TW201530986A (en) Linear motor unit
Rubio et al. Design and analysis of a bearingless motor with passive axial suspension through null-flux coils
JP4750965B2 (en) Maglev motor
US20120205992A1 (en) Transverse flux electrical motor
US7791246B2 (en) Axial motor
KR100757733B1 (en) Permanent magnet exited transverse flux linear motor with E-type mover core
JP3824060B2 (en) Linear motor
KR100753460B1 (en) Linear Motor with permanent magnet excitation
CN220857885U (en) Linear motor
JPH0681482B2 (en) Linear motor
CN2560156Y (en) Straight line propeller
JPH07108086B2 (en) Linear motion motor
JP3700883B2 (en) Linear motor stator
Nakamura et al. Stator design of a multi-consequent-pole bearingless motor with toroidal winding
KR20220135524A (en) Megnetic levitation mobile vehicle
CN118868545A (en) Linear motor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060515

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070125

R150 Certificate of patent or registration of utility model

Ref document number: 3910938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160202

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees