JP3910425B2 - Method for forming electrolyte membrane for fuel cell - Google Patents

Method for forming electrolyte membrane for fuel cell Download PDF

Info

Publication number
JP3910425B2
JP3910425B2 JP2001366598A JP2001366598A JP3910425B2 JP 3910425 B2 JP3910425 B2 JP 3910425B2 JP 2001366598 A JP2001366598 A JP 2001366598A JP 2001366598 A JP2001366598 A JP 2001366598A JP 3910425 B2 JP3910425 B2 JP 3910425B2
Authority
JP
Japan
Prior art keywords
resin solution
electrode
electrolyte membrane
negative electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001366598A
Other languages
Japanese (ja)
Other versions
JP2003168447A (en
Inventor
修 角谷
孝 鈴木
陽一 神山
玄 沖山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001366598A priority Critical patent/JP3910425B2/en
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to CA2462303A priority patent/CA2462303C/en
Priority to KR1020047005453A priority patent/KR100909759B1/en
Priority to DE60236614T priority patent/DE60236614D1/en
Priority to US10/494,866 priority patent/US20050019649A1/en
Priority to PCT/JP2002/012301 priority patent/WO2003047018A1/en
Priority to CNB028238184A priority patent/CN1321474C/en
Priority to AU2002355028A priority patent/AU2002355028A1/en
Priority to EP02788648A priority patent/EP1450426B1/en
Publication of JP2003168447A publication Critical patent/JP2003168447A/en
Application granted granted Critical
Publication of JP3910425B2 publication Critical patent/JP3910425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池の正・負極間に備える電解質膜の成形方法に関する。
【0002】
【従来の技術】
図7は従来の燃料電池を示す説明図である。この燃料電池100は、負極(水素極)101と正極(酸素極)102との間に電解質膜103を配置し、負極101に含む触媒に水素分子(H2)を接触させるとともに、正極102に含む触媒に酸素分子(O2)を接触させることにより、電子e-を矢印の如く流すことにより、電流を発生させるものである。電流を発生させる際に、水素分子(H2)と酸素分子(O2)とから生成水(H2O)を得る。
【0003】
図8(a),(b)は従来の燃料電池を構成する電解質膜の成形方法を示す説明図である。
(a)において、基板105に負極101を塗布した電極板106を準備し、この電極板106を載置台108に載置する。次に、塗布した負極101が乾燥する前に、スクリーン印刷機110を矢印の如く移動する。
このスクリーン印刷機110は、上部に吐出部110aを備え、スクリーン印刷機110の吐出部110aが電極板106(基板105や負極101)の上方に到達した際に吐出部110aから電解質膜用の樹脂溶液を吐出するものである。
【0004】
(b)において、スクリーン印刷機110を位置P1〜位置P2間で移動する際に、スクリーン印刷機110の吐出部110aから電極板106(基板105や負極101)に電解質膜用の樹脂溶液112を塗布することにより、電極板106(基板105や負極101)を樹脂溶液112で覆う。次に、この樹脂溶液を乾燥して電解質膜103(図7に示す)を得る。
【0005】
【発明が解決しようとする課題】
ところで、スクリーン印刷機110から電極板106に樹脂溶液112を塗布しながら位置P1から矢印の如く移動する際に、負極101の表面に矢印aの如く剪断力が発生する。
さらに、スクリーン印刷機110から電極板106に樹脂溶液112を塗布する際に、負極101は未乾燥の状態にある。
【0006】
このため、スクリーン印刷機110で電極板106に樹脂溶液112を塗布しながら、スクリーン印刷機110を位置P1から矢印の如く移動することで、負極101の表面に矢印aの如く剪断力が発生すると、発生した剪断力で負極101の表層部101aがずれてしまう虞れがある。
負極101の表層部101aがずれた製品は、廃棄処分又は改修する必要があり、そのことが生産性を高める妨げになる。
【0007】
そこで、本発明の目的は、負極などの電極に電解質膜を成形する際に、電極の表層部がずれることを防止できる燃料電池用電解質膜の成形方法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために本発明の請求項1は、載置台に電極を載置する工程と、この電極の外周に沿って外側規制壁部材を配置することにより、この外側規制壁部材で電極を囲う工程と、この電極の上方に配置した噴霧手段から、樹脂溶液を噴霧するとともに、この噴霧手段を前記電極に沿わせて移動することにより、電極に樹脂溶液を塗布する工程とからなる燃料電池用電解質膜の成形方法であって、前記樹脂溶液に気体を含ませて噴霧することにより、樹脂溶液の噴霧圧を抑えることを特徴とする。
請求項2は、前記噴霧完了後、前記外側規制壁部材を冷却した状態で前記載置台から取除くことを特徴とする。
請求項3は、前記外側規制壁部材の内壁にコーティング剤を塗布したことを特徴とする。
【0009】
請求項1によれば、電極の上方に噴霧手段を配置し、この噴霧手段から樹脂溶液を噴霧して電極に樹脂溶液を塗布することで、電極に剪断力が発生することを防止できる。加えて、気体を含ませた樹脂溶液を噴霧することで、噴霧圧を抑えることができる。
これにより、樹脂溶液を電極に塗布する際に、電極の表面がずれることを防止できる。
【0010】
加えて、気体を含ませた樹脂溶液を噴霧することで、電極の周縁に樹脂溶液を噴霧する際に、電極の周縁に発生する噴霧圧、すなわち剪断力を小さく抑えることができる。これにより、電極に発生する剪断力を小さく抑えることができるので、電極の表層部がずれることを防止できる。
【0011】
また、外側規制部材で電極を囲うことで、樹脂溶液を塗布した際に、樹脂溶液を外側規制部材に沿って成形することができる。このため、電解質膜の周縁を好適に形成することができる。
さらに、請求項2によれば、噴霧完了後、前記外側規制壁部材を冷却することで、樹脂溶液の外周部を冷却してある程度凝固させた状態で、外側規制壁部材を載置台から取除くことができる。
加えて、請求項3によれば、外側規制壁部材の内壁にコーティング剤を塗布することで、樹脂溶液との離型性を好適に保つことができる。
【0012】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。
図1は本発明に係る燃料電池用電解質膜の成形方法で成形した電解質膜を備えた燃料電池を示す分解斜視図である。
燃料電池ユニット10は複数(2個)の燃料電池11,11で構成したものである。燃料電池11は、負基板13に負極(電極)14を設けて負電極板12を形成し、この負電極板12に燃料電池用の電解質膜15を設け、正基板17に正極(電極)18を設けて正電極板16を形成し、この正極18を電解質膜15に重ね、負基板13の外側に負極側流路基板21を配置し、正基板17の外側に正極側流路基板24を配置したものである。
この燃料電池11をセパレータ26を介して複数個(2個)備えることで、燃料電池ユニット10を構成する。
【0013】
負基板13に負極側流路基板21を積層することで、負極側流路基板21の流路溝21aを負基板13で覆うことにより、水素ガス流路22を形成する。また、正基板17に正極側流路基板24を積層することで、正極側流路基板24の流路溝24aを正基板17で覆うことにより、酸素ガス流路25を形成する。
【0014】
水素ガス流路22に水素ガスを供給することで、負極14に含む触媒に水素分子(H2)を吸着させるとともに、酸素ガス流路25に酸素ガスを供給することで、正極18に含む触媒に酸素分子(O2)を吸着させる。これにより、電子(e-)を矢印の如く流して電流を発生させることができる。
なお、電流を発生させる際に、水素分子(H2)と酸素分子(O2)とから生成水(H2O)を得る。
【0015】
図2は本発明に係る燃料電池用電解質膜の成形方法で成形した電解質膜を示す断面図であり、負基板13に負極14を設けて負電極板12を形成し、負極14及び負基板13のうちの負極14の周囲のから突出した表面部位13aを、電解質膜15でそれぞれ覆った状態を示す。
負基板13は、カーボンで形成したシート材(カーボンペーパ)であり、一方の面13bに負極14を備える。この負極14に触媒を含み、この触媒に水素分子(H2)を吸着させる。
なお、図1に示す正基板17は、負極板13と同様にカーボンで形成したシート材(カーボンペーパ)であり、一方の面に正極18を備える。この正極18に触媒を含み、この触媒に酸素分子(O2)を吸着させる。
【0016】
電解質膜15は、負極14及び負基板13のうちの負極14の周囲のから突出した表面部位13aに、樹脂溶液(一例としてHC系ポリマー溶液)を塗布し、塗布後、樹脂溶液を乾燥することで得たイオン交換用の膜である。
【0017】
図3(a),(b)は本発明に係る燃料電池用電解質膜の成形方法を説明する第1工程説明図である。
(a)において、負基板(基板)13に負極(電極)14を塗布した負電極板(電極板)12を準備し、この負電極板12を載置台30に載置する。
【0018】
(b)において、負電極板12の外周12aに沿って外側規制壁部材32を配置することにより、この外側規制壁部材32で負電極板12を囲う。この外側規制壁部材32は、二分割した左右の外側規制壁部材33,34で構成したものである。
二分割の外側規制壁部材33,34で負電極板12を囲った後、二分割の外側規制壁部材33,34の内壁33a,34aにコーティング剤35,35を塗布する。
【0019】
続いて、負電極板12の上方(例えば、負基板13の一端13cの上方)に噴霧手段38を配置する。その後、負電極板12にプラスの電荷を付与するようにプラス電荷付与手段41を調整するとともに、噴霧手段38のノズル39から噴霧する樹脂溶液にマイナスの電荷を付与するようにマイナス電荷付与手段42を調整する。
【0020】
図4(a),(b)は本発明に係る燃料電池用電解質膜の成形方法を説明する第2工程説明図である。
(a)において、噴霧手段38のノズル39から、気体を含ませた樹脂溶液を噴霧する。この噴霧状の樹脂溶液(以下、「噴霧状樹脂溶液」という)45は、マイナス電荷付与手段42でマイナスの電荷が付与されている。この状態で、噴霧手段38を負電極板12に沿わせて矢印▲1▼の如く移動することにより、負基板13の一端13cから負極14の一端14aまでの間の負基板13の表面部位13aに樹脂溶液46を塗布する。
【0021】
樹脂溶液46を塗布する際に、噴霧状樹脂溶液45にマイナス電荷を付与するとともに、負電極板12にプラス電荷を付与することで、噴霧状樹脂溶液45を好適にムラなく負基板13の表面部位13aに樹脂溶液46を塗布することができる。
【0022】
(b)において、噴霧手段38を矢印▲1▼の如く継続して移動する。このとき、噴霧状樹脂溶液45の噴霧圧が負極14の一端14aの周縁に発生するが、噴霧状樹脂溶液45には気体を含ませているので、噴霧状樹脂溶液45の噴霧圧を抑えることができる。
【0023】
これにより、負極14の一端14aの周縁に樹脂溶液46を塗布する際に、負極14の一端14aの周縁に発生する噴霧圧、すなわち剪断力を小さく抑えることができる。このため、負極14の表面層14bが従来技術のように水平にずれることを防止することができる。
【0024】
図5(a),(b)は本発明に係る燃料電池用電解質膜の成形方法を説明する第3工程説明図である。
(a)において、噴霧手段38を矢印▲1▼の如く継続して移動する。このとき、噴霧状樹脂溶液45の噴霧圧が負極14の表面層14bに発生するが、噴霧圧は負極14の表面層14bに対して鉛直に作用するので、負極14の表面層14bが従来技術のように水平にずれることを防止することができる。
【0025】
さらに、噴霧手段38が負極14の他端14cまで到達すると、噴霧状樹脂溶液45の噴霧圧が負極14の他端14cの周縁に発生するが、噴霧状樹脂溶液45には気体を含ませているので、噴霧状樹脂溶液45の噴霧圧を抑えることができる。
【0026】
これにより、負極14の他端14の周縁に樹脂溶液46を塗布する際に、負極14の他端14cの周縁に発生する噴霧圧、すなわち剪断力を小さく抑えることができる。
このため、負極14の表面層14bが従来技術のように水平にずれることを防止することができる。
【0027】
(b)において、噴霧手段38を負極14の他端14cから基板13の他端13dまで移動することにより、負極14の他端14cから基板13の他端13dまで間の基板の表面部位13aに樹脂溶液46を塗布する。これにより塗布工程を完了する。
【0028】
ここで、外側規制部材32で負電極板12を囲うことで、樹脂溶液46を塗布した際に、樹脂溶液46を外側規制部材46に沿って成形することができる。このため、樹脂溶液46の外周縁、すなわち電解質膜15の外周縁15a(図2参照)を好適に形成することができる。
【0029】
また、負電極板12にプラスの電荷を付与するとともに、噴霧手段38から噴霧する噴霧状樹脂溶液45にマイナスの電荷を付与することで、樹脂溶液46の塗布ムラを防ぐことができる。これにより、樹脂溶液46を均一の厚さに塗布することができる。
【0030】
また、噴霧手段38を矢印▲1▼の方向に移動するのみでは、樹脂溶液46の厚みを均一に塗布することが難しい場合には、樹脂溶液46の厚みが薄い部位を噴霧手段38で再度塗布することで、樹脂溶液46の厚みを均一に塗布することができる。
【0031】
さらに、その他の方法として、噴霧手段38からの噴霧状樹脂溶液45の吐出量を調整することで、樹脂溶液46の厚みを均一に塗布することができる。
一例として、噴霧状樹脂溶液45を塗布の際に、樹脂溶液46の厚みが薄くなる部位が存在する場合には、その部位において噴霧状樹脂溶液45を多量に吐出することで、樹脂溶液46の厚みを均一に塗布することができる。
【0032】
図6は本発明に係る燃料電池用電解質膜の成形方法を説明する第4工程説明図である。
塗布工程の完了後、噴霧手段38(図5に示す)を樹脂溶液46の上方から退避させる。次に、外側規制壁部材32(左右の外側規制壁部材33,34)を冷却することで、樹脂溶液46の外周部46aを冷却してある程度凝固させる。この状態で、左右の外側規制壁部材33,34を矢印▲2▼の如く載置台30から取除く。
【0033】
左右の外側規制壁部材33,34の内壁33a,34aには各々コーティング剤35,35を塗布してあるので、樹脂溶液46との離型性を好適に保つことができる。
加えて、樹脂溶液46の外周部46aを冷却してある程度凝固させることで、外側規制壁部材32(左右の外側規制壁部材33,34)を外した際に、樹脂溶液46の外周部46aの変形を防止することができる。
【0034】
なお、前記実施形態では、噴霧手段38を負電極板12の一端から他端に向けて移動する例について説明したが、これに限らないで、噴霧手段38を噴霧手段38の中央(すなわち、負極14の中央)から端部に向けて移動する等のその他の移動方法で塗布することも可能である。
【0035】
また、前記実施形態では、負電極板12に樹脂溶液46を塗布する例について説明したが、これに限らないで、正電極板16に樹脂溶液46を塗布しても同様の効果を得ることができる。
さらに、前記実施形態では、左右の外側規制壁部材33,34の内壁33a,34aにコーティング剤35,35を塗布した例について説明したが、コーティング剤35,35を塗布しなくてもよい。
【0036】
また、外側規制壁部材32を左右の外側規制壁部材33,34に二分割した例について説明したが、外側規制壁部材32を二分割以上の複数個に分割することも可能であり、外側規制壁部材32を分割しないで一体物とすることも可能である。
【0037】
さらに、負電極板12にプラスの電荷を付与するとともに、噴霧手段38のノズル39から噴霧する噴霧状樹脂溶液45にマイナスの電荷を付与する例について説明したが、これに限らないで、負電極板12や噴霧状樹脂溶液45に電荷を付与しないようにすることも可能である。
【0038】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1は、電極の上方に噴霧手段を配置し、この噴霧手段から樹脂溶液を噴霧して電極に樹脂溶液を塗布することで、電極に剪断力が発生することを防止できる。加えて、気体を含ませた樹脂溶液を噴霧することで、噴霧圧を抑えることができる。
これにより、樹脂溶液を電極に塗布する際に、電極の表面がずれることを防止できる。
【0039】
加えて、気体を含ませた樹脂溶液を噴霧することで、電極の周縁に樹脂溶液を噴霧する際に、電極の周縁に発生する噴霧圧、すなわち剪断力を小さく抑えることができる。これにより、電極に発生する剪断力を小さく抑えることができるので、電極の表層部がずれることを防止できる。
このように、電極の表層部がずれることを防止することで、品質の安定を図ることができるので生産性を高めることができる。
【0040】
また、外側規制部材で電極を囲うことで、樹脂溶液を塗布した際に、樹脂溶液を外側規制部材に沿って成形することができる。このため、電解質膜の周縁を好適に形成することができ、品質の安定を図ることができるので、生産性をより一層高めることができる。
さらに、請求項2は、噴霧完了後、前記外側規制壁部材を冷却することで、樹脂溶液の外周部を冷却してある程度凝固させた状態で、外側規制壁部材を載置台から取除くことができる。
加えて、請求項3は、外側規制壁部材の内壁にコーティング剤を塗布することで、樹脂溶液との離型性を好適に保つことができる。
【図面の簡単な説明】
【図1】本発明に係る燃料電池用電解質膜の成形方法で成形した電解質膜を備えた燃料電池を示す分解斜視図
【図2】本発明に係る燃料電池用電解質膜の成形方法で成形した電解質膜を示す断面図
【図3】本発明に係る燃料電池用電解質膜の成形方法を説明する第1工程説明図
【図4】本発明に係る燃料電池用電解質膜の成形方法を説明する第2工程説明図
【図5】本発明に係る燃料電池用電解質膜の成形方法を説明する第3工程説明図
【図6】本発明に係る燃料電池用電解質膜の成形方法を説明する第4工程説明図
【図7】従来の燃料電池を示す説明図
【図8】従来の燃料電池を構成する電解質膜の成形方法を示す説明図
【符号の説明】
11…燃料電池、12…負電極板、12a…負電極板の外周(電極の外周)、13…負基板、14…負極(電極)、15…電解質膜、16…正電極板、17…正基板、18…正極(電極)、30…載置台、32…外側規制壁部材、35…コーティング剤、38…噴霧手段、45…噴霧状樹脂溶液、46…樹脂溶液。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming an electrolyte membrane provided between the positive and negative electrodes of a fuel cell.
[0002]
[Prior art]
FIG. 7 is an explanatory view showing a conventional fuel cell. In this fuel cell 100, an electrolyte membrane 103 is disposed between a negative electrode (hydrogen electrode) 101 and a positive electrode (oxygen electrode) 102, hydrogen molecules (H 2 ) are brought into contact with a catalyst included in the negative electrode 101, and By bringing oxygen molecules (O 2 ) into contact with the catalyst, the electrons e are caused to flow as shown by the arrows to generate an electric current. When an electric current is generated, generated water (H 2 O) is obtained from hydrogen molecules (H 2 ) and oxygen molecules (O 2 ).
[0003]
8A and 8B are explanatory views showing a method for forming an electrolyte membrane constituting a conventional fuel cell.
In (a), an electrode plate 106 in which the negative electrode 101 is applied to the substrate 105 is prepared, and this electrode plate 106 is mounted on the mounting table 108. Next, before the applied negative electrode 101 is dried, the screen printer 110 is moved as shown by an arrow.
The screen printing machine 110 includes a discharge unit 110a at the top, and when the discharge unit 110a of the screen printing machine 110 reaches above the electrode plate 106 (the substrate 105 or the negative electrode 101), the resin for the electrolyte membrane is discharged from the discharge unit 110a. The solution is discharged.
[0004]
In (b), when the screen printer 110 is moved between the position P1 and the position P2, the resin solution 112 for the electrolyte membrane is applied to the electrode plate 106 (the substrate 105 and the negative electrode 101) from the discharge unit 110a of the screen printer 110. By applying, the electrode plate 106 (the substrate 105 or the negative electrode 101) is covered with the resin solution 112. Next, this resin solution is dried to obtain an electrolyte membrane 103 (shown in FIG. 7).
[0005]
[Problems to be solved by the invention]
By the way, when the resin solution 112 is applied from the screen printer 110 to the electrode plate 106 and moved from the position P1 as indicated by an arrow, a shearing force is generated on the surface of the negative electrode 101 as indicated by an arrow a.
Further, when the resin solution 112 is applied from the screen printer 110 to the electrode plate 106, the negative electrode 101 is in an undried state.
[0006]
Therefore, when the screen printer 110 is moved from the position P1 as indicated by the arrow while the resin solution 112 is applied to the electrode plate 106 by the screen printer 110, a shearing force is generated on the surface of the negative electrode 101 as indicated by the arrow a. There is a possibility that the surface layer portion 101a of the negative electrode 101 is displaced by the generated shearing force.
A product in which the surface layer portion 101a of the negative electrode 101 is displaced needs to be disposed of or repaired, which hinders productivity.
[0007]
Therefore, an object of the present invention is to provide a method for forming an electrolyte membrane for a fuel cell that can prevent the surface layer portion of the electrode from shifting when the electrolyte membrane is formed on an electrode such as a negative electrode.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, claim 1 of the present invention comprises a step of placing an electrode on a mounting table and an outer regulating wall member disposed along the outer periphery of the electrode, whereby the electrode is formed by the outer regulating wall member. And a step of spraying the resin solution from the spraying means disposed above the electrode and applying the resin solution to the electrode by moving the spraying means along the electrode. A method for forming an electrolyte membrane for a battery, wherein the spray pressure of the resin solution is suppressed by spraying the resin solution with gas.
According to a second aspect of the present invention, after the spraying is completed, the outer regulation wall member is removed from the mounting table in a cooled state .
According to a third aspect of the present invention, a coating agent is applied to the inner wall of the outer regulating wall member.
[0009]
According to the first aspect, the spraying means is disposed above the electrode, and the resin solution is sprayed from the spraying means to apply the resin solution to the electrode, thereby preventing the shearing force from being generated on the electrode. In addition, the spray pressure can be suppressed by spraying the resin solution containing gas.
Thereby, when applying a resin solution to an electrode, it can prevent that the surface of an electrode shifts.
[0010]
In addition, by spraying the resin solution containing gas, when spraying the resin solution on the periphery of the electrode, the spray pressure generated at the periphery of the electrode, that is, the shearing force, can be suppressed to a small value. Thereby, since the shearing force which generate | occur | produces in an electrode can be restrained small, it can prevent that the surface layer part of an electrode shift | deviates.
[0011]
Further, by enclosing the electrode with the outer regulating member, the resin solution can be molded along the outer regulating member when the resin solution is applied. For this reason, the periphery of an electrolyte membrane can be formed suitably.
Furthermore, according to the second aspect, after the spraying is completed, the outer regulating wall member is cooled, so that the outer regulating wall member is removed from the mounting table in a state where the outer peripheral portion of the resin solution is cooled and solidified to some extent. be able to.
In addition, according to the third aspect, by applying the coating agent to the inner wall of the outer regulating wall member, the releasability from the resin solution can be suitably maintained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is an exploded perspective view showing a fuel cell including an electrolyte membrane formed by the method for forming an electrolyte membrane for a fuel cell according to the present invention.
The fuel cell unit 10 is composed of a plurality (two) of fuel cells 11 and 11. In the fuel cell 11, a negative electrode (electrode) 14 is provided on a negative substrate 13 to form a negative electrode plate 12, a fuel cell electrolyte membrane 15 is provided on the negative electrode plate 12, and a positive electrode (electrode) 18 is provided on a positive substrate 17. The positive electrode plate 16 is formed, the positive electrode 18 is superimposed on the electrolyte membrane 15, the negative-side flow path substrate 21 is disposed outside the negative substrate 13, and the positive-side flow path substrate 24 is disposed outside the positive substrate 17. It is arranged.
The fuel cell unit 10 is configured by providing a plurality (two) of the fuel cells 11 via the separator 26.
[0013]
By stacking the negative electrode side flow path substrate 21 on the negative substrate 13, the flow path groove 21 a of the negative electrode side flow path substrate 21 is covered with the negative substrate 13, thereby forming the hydrogen gas flow path 22. Further, by stacking the positive side flow path substrate 24 on the positive substrate 17, the flow path groove 24 a of the positive side flow path substrate 24 is covered with the positive substrate 17, thereby forming the oxygen gas flow path 25.
[0014]
By supplying hydrogen gas to the hydrogen gas flow path 22, hydrogen molecules (H 2 ) are adsorbed to the catalyst included in the negative electrode 14, and by supplying oxygen gas to the oxygen gas flow path 25, the catalyst included in the positive electrode 18. Adsorb oxygen molecules (O 2 ). Thereby, electrons (e ) can flow as shown by the arrows to generate a current.
Incidentally, obtained when generating the current, hydrogen molecules (H 2) and oxygen molecules (O 2) because product water (H 2 O).
[0015]
FIG. 2 is a cross-sectional view showing an electrolyte membrane formed by the fuel cell electrolyte membrane forming method according to the present invention. The negative electrode 14 is provided on the negative substrate 13 to form the negative electrode plate 12, and the negative electrode 14 and the negative substrate 13 are formed. The state which covered the surface site | part 13a which protruded from the circumference | surroundings of the negative electrode 14 of each with the electrolyte membrane 15 is shown.
The negative substrate 13 is a sheet material (carbon paper) formed of carbon, and includes a negative electrode 14 on one surface 13b. The negative electrode 14 contains a catalyst, and hydrogen molecules (H 2 ) are adsorbed on the catalyst.
The positive substrate 17 shown in FIG. 1 is a sheet material (carbon paper) formed of carbon similarly to the negative electrode plate 13 and includes a positive electrode 18 on one surface. The positive electrode 18 contains a catalyst, and oxygen molecules (O 2 ) are adsorbed on the catalyst.
[0016]
The electrolyte membrane 15 is formed by applying a resin solution (HC polymer solution as an example) to a surface portion 13a protruding from the periphery of the negative electrode 14 of the negative electrode 14 and the negative substrate 13, and drying the resin solution after the application. This is a membrane for ion exchange obtained in 1.
[0017]
FIGS. 3A and 3B are first process explanatory views illustrating a method for forming an electrolyte membrane for a fuel cell according to the present invention.
In (a), a negative electrode plate (electrode plate) 12 in which a negative electrode (electrode) 14 is applied to a negative substrate (substrate) 13 is prepared, and the negative electrode plate 12 is mounted on a mounting table 30.
[0018]
In (b), the outer regulating wall member 32 is disposed along the outer periphery 12 a of the negative electrode plate 12 so that the outer regulating wall member 32 surrounds the negative electrode plate 12. The outer regulation wall member 32 is composed of left and right outer regulation wall members 33 and 34 divided into two.
After enclosing the negative electrode plate 12 with the two divided outer regulating wall members 33, 34, the coating agents 35, 35 are applied to the inner walls 33a, 34a of the two divided outer regulating wall members 33, 34.
[0019]
Subsequently, the spraying means 38 is disposed above the negative electrode plate 12 (for example, above the one end 13c of the negative substrate 13). Thereafter, the positive charge imparting means 41 is adjusted so as to impart a positive charge to the negative electrode plate 12, and the negative charge imparting means 42 is imparted to the resin solution sprayed from the nozzle 39 of the spray means 38. Adjust.
[0020]
4 (a) and 4 (b) are explanatory views of a second step for explaining a method for forming an electrolyte membrane for a fuel cell according to the present invention.
In (a), the resin solution containing gas is sprayed from the nozzle 39 of the spraying means 38. This spray-like resin solution (hereinafter referred to as “spray-like resin solution”) 45 is given a negative charge by the negative charge applying means 42. In this state, by moving the spraying means 38 along the negative electrode plate 12 as indicated by the arrow (1), the surface portion 13a of the negative substrate 13 between one end 13c of the negative substrate 13 and one end 14a of the negative electrode 14 is obtained. A resin solution 46 is applied to the substrate.
[0021]
When the resin solution 46 is applied, a negative charge is applied to the sprayed resin solution 45 and a positive charge is applied to the negative electrode plate 12, so that the sprayed resin solution 45 is preferably uniformly applied to the surface of the negative substrate 13. The resin solution 46 can be applied to the part 13a.
[0022]
In (b), the spray means 38 is continuously moved as indicated by the arrow (1). At this time, the spray pressure of the spray-like resin solution 45 is generated at the periphery of the one end 14a of the negative electrode 14. However, since the spray-like resin solution 45 contains gas, the spray pressure of the spray-like resin solution 45 is suppressed. Can do.
[0023]
Thereby, when the resin solution 46 is applied to the periphery of the one end 14 a of the negative electrode 14, the spray pressure generated at the periphery of the one end 14 a of the negative electrode 14, that is, the shearing force can be kept small. For this reason, it is possible to prevent the surface layer 14b of the negative electrode 14 from being displaced horizontally as in the prior art.
[0024]
FIGS. 5A and 5B are explanatory diagrams of a third step for explaining the method for forming an electrolyte membrane for a fuel cell according to the present invention.
In (a), the spray means 38 is continuously moved as indicated by the arrow (1). At this time, although the spray pressure of the spray-like resin solution 45 is generated on the surface layer 14b of the negative electrode 14, the spray pressure acts perpendicularly to the surface layer 14b of the negative electrode 14, and therefore the surface layer 14b of the negative electrode 14 is the conventional technology. Thus, it is possible to prevent horizontal displacement.
[0025]
Further, when the spraying means 38 reaches the other end 14c of the negative electrode 14, the spray pressure of the sprayed resin solution 45 is generated at the periphery of the other end 14c of the negative electrode 14, but the sprayed resin solution 45 contains gas. Therefore, the spray pressure of the spray resin solution 45 can be suppressed.
[0026]
Thereby, when apply | coating the resin solution 46 to the periphery of the other end 14 of the negative electrode 14, the spray pressure which generate | occur | produces in the periphery of the other end 14c of the negative electrode 14, ie, a shear force, can be restrained small.
For this reason, it is possible to prevent the surface layer 14b of the negative electrode 14 from being displaced horizontally as in the prior art.
[0027]
In (b), the spray means 38 is moved from the other end 14 c of the negative electrode 14 to the other end 13 d of the substrate 13, so that the surface portion 13 a of the substrate between the other end 14 c of the negative electrode 14 and the other end 13 d of the substrate 13 is obtained. Resin solution 46 is applied. This completes the coating process.
[0028]
Here, by enclosing the negative electrode plate 12 with the outer regulating member 32, the resin solution 46 can be molded along the outer regulating member 46 when the resin solution 46 is applied. For this reason, the outer periphery of the resin solution 46, that is, the outer periphery 15a of the electrolyte membrane 15 (see FIG. 2) can be suitably formed.
[0029]
Further, by applying a positive charge to the negative electrode plate 12 and applying a negative charge to the sprayed resin solution 45 sprayed from the spraying means 38, it is possible to prevent uneven application of the resin solution 46. Thereby, the resin solution 46 can be apply | coated to uniform thickness.
[0030]
If it is difficult to apply the resin solution 46 to a uniform thickness only by moving the spraying means 38 in the direction of the arrow (1), the spraying means 38 applies the thin part of the resin solution 46 again. By doing so, the thickness of the resin solution 46 can be applied uniformly.
[0031]
Further, as another method, the thickness of the resin solution 46 can be uniformly applied by adjusting the discharge amount of the spray-like resin solution 45 from the spray means 38.
As an example, when there is a portion where the thickness of the resin solution 46 becomes thin when the spray-like resin solution 45 is applied, a large amount of the spray-like resin solution 45 is discharged at that portion, thereby The thickness can be applied uniformly.
[0032]
FIG. 6 is an explanatory diagram of a fourth step for explaining the method for forming an electrolyte membrane for a fuel cell according to the present invention.
After completion of the coating process, the spray means 38 (shown in FIG. 5) is retracted from above the resin solution 46. Next, by cooling the outer regulating wall member 32 (left and right outer regulating wall members 33 and 34), the outer peripheral portion 46a of the resin solution 46 is cooled and solidified to some extent. In this state, the left and right outer regulating wall members 33 and 34 are removed from the mounting table 30 as indicated by the arrow (2).
[0033]
Since the coating agents 35 and 35 are respectively applied to the inner walls 33a and 34a of the left and right outer regulating wall members 33 and 34, the releasability from the resin solution 46 can be suitably maintained.
In addition, by cooling the outer peripheral portion 46a of the resin solution 46 and solidifying it to some extent, when the outer regulating wall member 32 (left and right outer regulating wall members 33, 34) is removed, the outer circumferential portion 46a of the resin solution 46 is removed. Deformation can be prevented.
[0034]
In the above embodiment, the example in which the spraying means 38 is moved from one end of the negative electrode plate 12 to the other end has been described. However, the present invention is not limited to this, and the spraying means 38 is located at the center of the spraying means 38 (that is, the negative electrode). It is also possible to apply by other moving methods such as moving from the center of 14 toward the end.
[0035]
Moreover, although the said embodiment demonstrated the example which apply | coats the resin solution 46 to the negative electrode plate 12, even if it applies not only to this but the resin solution 46 to the positive electrode plate 16, the same effect can be acquired. it can.
Furthermore, although the said embodiment demonstrated the example which apply | coated the coating agents 35 and 35 to the inner walls 33a and 34a of the left and right outer side control wall members 33 and 34, it is not necessary to apply the coating agents 35 and 35.
[0036]
In addition, the example in which the outer restriction wall member 32 is divided into the left and right outer restriction wall members 33 and 34 has been described. However, the outer restriction wall member 32 can be divided into a plurality of two or more parts. The wall member 32 may be integrated without being divided.
[0037]
Furthermore, while an example has been described in which a positive charge is applied to the negative electrode plate 12 and a negative charge is applied to the sprayed resin solution 45 sprayed from the nozzle 39 of the spraying means 38, the present invention is not limited to this. It is also possible not to give an electric charge to the plate 12 or the atomized resin solution 45.
[0038]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
According to the first aspect of the present invention, the spraying means is disposed above the electrode, and the resin solution is sprayed from the spraying means to apply the resin solution to the electrode, thereby preventing generation of shearing force on the electrode. In addition, the spray pressure can be suppressed by spraying the resin solution containing gas.
Thereby, when apply | coating a resin solution to an electrode, it can prevent that the surface of an electrode slip | deviates.
[0039]
In addition, by spraying the resin solution containing gas, when spraying the resin solution on the periphery of the electrode, the spray pressure generated at the periphery of the electrode, that is, the shearing force, can be suppressed to a small value. Thereby, since the shearing force which generate | occur | produces in an electrode can be restrained small, it can prevent that the surface layer part of an electrode shift | deviates.
Thus, by preventing the surface layer portion of the electrode from shifting, the quality can be stabilized, and thus productivity can be increased.
[0040]
Further, by enclosing the electrode with the outer regulating member, the resin solution can be molded along the outer regulating member when the resin solution is applied. For this reason, since the periphery of an electrolyte membrane can be formed suitably and stability of quality can be aimed at, productivity can be raised further.
Further, according to the second aspect of the present invention, after the spraying is completed, the outer regulating wall member is cooled, so that the outer regulating wall member can be removed from the mounting table in a state where the outer peripheral portion of the resin solution is cooled and solidified to some extent. it can.
In addition, the third aspect of the present invention can favorably maintain the releasability from the resin solution by applying a coating agent to the inner wall of the outer regulating wall member.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a fuel cell having an electrolyte membrane formed by the method for forming an electrolyte membrane for fuel cells according to the present invention. FIG. 2 is formed by the method for forming an electrolyte membrane for fuel cells according to the present invention. FIG. 3 is a cross-sectional view showing an electrolyte membrane. FIG. 3 is a first process explanatory view illustrating a method for forming an electrolyte membrane for a fuel cell according to the present invention. FIG. 4 is a diagram illustrating a method for forming an electrolyte membrane for a fuel cell according to the present invention. FIG. 5 is an explanatory diagram of a third step for explaining a method for forming an electrolyte membrane for a fuel cell according to the present invention. FIG. 6 is a fourth step for explaining a method for forming an electrolyte membrane for a fuel cell according to the present invention. FIG. 7 is an explanatory view showing a conventional fuel cell. FIG. 8 is an explanatory view showing a method of forming an electrolyte membrane constituting the conventional fuel cell.
DESCRIPTION OF SYMBOLS 11 ... Fuel cell, 12 ... Negative electrode plate, 12a ... Outer periphery of negative electrode plate (electrode outer periphery), 13 ... Negative substrate, 14 ... Negative electrode (electrode), 15 ... Electrolyte membrane, 16 ... Positive electrode plate, 17 ... Positive Substrate, 18 ... positive electrode (electrode), 30 ... mounting table, 32 ... outer regulating wall member , 35 ... coating agent , 38 ... spraying means, 45 ... sprayed resin solution, 46 ... resin solution.

Claims (3)

載置台に電極を載置する工程と、この電極の外周に沿って外側規制壁部材を配置することにより、この外側規制壁部材で電極を囲う工程と、この電極の上方に配置した噴霧手段から、樹脂溶液を噴霧するとともに、この噴霧手段を前記電極に沿わせて移動することにより、電極に樹脂溶液を塗布する工程と、からなる燃料電池用電解質膜の成形方法であって、
前記樹脂溶液に気体を含ませて噴霧することにより、樹脂溶液の噴霧圧を抑えることを特徴とする燃料電池用電解質膜の成形方法
From the step of placing the electrode on the mounting table, the step of surrounding the electrode with the outer regulating wall member by arranging the outer regulating wall member along the outer periphery of the electrode, and the spraying means disposed above the electrode , with spraying the tree butter solution, by moving and along the spray means to the electrode, a step and the molding method of the fuel cell electrolyte membrane comprising applying a resin solution to the electrode,
A method for forming an electrolyte membrane for a fuel cell, wherein the spray pressure of the resin solution is suppressed by spraying the resin solution with gas .
前記噴霧完了後、前記外側規制壁部材を冷却した状態で前記載置台から取除くことを特徴とする請求項1記載の燃料電池用電解質膜の成形方法。2. The method for forming an electrolyte membrane for a fuel cell according to claim 1, wherein after the spraying is completed, the outer regulating wall member is removed from the mounting table in a cooled state . 前記外側規制壁部材の内壁にコーティング剤を塗布したことを特徴とする請求項1又は請求項2記載の燃料電池用電解質膜の成形方法。The method for forming an electrolyte membrane for a fuel cell according to claim 1 or 2, wherein a coating agent is applied to the inner wall of the outer regulating wall member.
JP2001366598A 2001-11-30 2001-11-30 Method for forming electrolyte membrane for fuel cell Expired - Fee Related JP3910425B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001366598A JP3910425B2 (en) 2001-11-30 2001-11-30 Method for forming electrolyte membrane for fuel cell
KR1020047005453A KR100909759B1 (en) 2001-11-30 2002-11-26 Manufacturing Method of Electrode for Fuel Cell
DE60236614T DE60236614D1 (en) 2001-11-30 2002-11-26 METHOD FOR PRODUCING AN ELECTRODE FOR A FUEL CELL
US10/494,866 US20050019649A1 (en) 2001-11-30 2002-11-26 Method for manufacturing electrode for fuel cell
CA2462303A CA2462303C (en) 2001-11-30 2002-11-26 Fuel cell electrode manufacturing method
PCT/JP2002/012301 WO2003047018A1 (en) 2001-11-30 2002-11-26 Method for manufacturing electrode for fuel cell
CNB028238184A CN1321474C (en) 2001-11-30 2002-11-26 Method for manufacturing electrode for fuel cell
AU2002355028A AU2002355028A1 (en) 2001-11-30 2002-11-26 Method for manufacturing electrode for fuel cell
EP02788648A EP1450426B1 (en) 2001-11-30 2002-11-26 Method for manufacturing electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001366598A JP3910425B2 (en) 2001-11-30 2001-11-30 Method for forming electrolyte membrane for fuel cell

Publications (2)

Publication Number Publication Date
JP2003168447A JP2003168447A (en) 2003-06-13
JP3910425B2 true JP3910425B2 (en) 2007-04-25

Family

ID=19176471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001366598A Expired - Fee Related JP3910425B2 (en) 2001-11-30 2001-11-30 Method for forming electrolyte membrane for fuel cell

Country Status (1)

Country Link
JP (1) JP3910425B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4217891B2 (en) * 2003-10-17 2009-02-04 信越化学工業株式会社 Fuel cell electrolyte membrane and method for producing fuel cell electrolyte membrane / electrode assembly
JP4897206B2 (en) * 2004-09-30 2012-03-14 本田技研工業株式会社 Manufacturing method of membrane electrode assembly for fuel cell

Also Published As

Publication number Publication date
JP2003168447A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
US7022638B2 (en) Method and apparatus for manufacturing a fuel cell electrode
US8389165B2 (en) Printed fuel cell with integrated gas channels
KR100909759B1 (en) Manufacturing Method of Electrode for Fuel Cell
EP2064767B1 (en) Processes. framed membranes and masks for forming catalyst coated membranes and membrane electrode assemblies
JP4746317B2 (en) Method for making a membrane electrode assembly
EP1229602A4 (en) Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
CN101932754A (en) Single-phase fluid imprint lithography method
JP5002874B2 (en) Method for forming electrode catalyst layer of fuel cell
JP2015138619A (en) Method for manufacturing negative electrode of nonaqueous electrolyte secondary battery, and device for manufacturing negative electrode of nonaqueous electrolyte secondary battery
JP3910425B2 (en) Method for forming electrolyte membrane for fuel cell
WO2020145214A1 (en) Method for manufacturing all-solid-state battery
KR101434733B1 (en) Battery electrode manufacturing method and battery manufacturing method
JP3827653B2 (en) Method for producing electrode for fuel cell
JP5899522B2 (en) Manufacturing method and manufacturing apparatus for membrane electrode assembly for fuel cell
JP2004139846A (en) Manufacturing method and manufacturing device of fuel cell electrode
CN100530774C (en) Process for forming functional film, and process for producing electrode and secondary battery
JP3898569B2 (en) Manufacturing method of fuel cell
EP1749321B1 (en) System and method for forming a membrane electrode assembly for fuel cells
JP3910426B2 (en) Method for forming ion exchange membrane for fuel cell
JP4133791B2 (en) Method for producing fuel cell electrode-membrane assembly
JP3887219B2 (en) Method for forming ion exchange membrane for fuel cell
JPH1142764A (en) Manufacture of electronic component
JP3992968B2 (en) Method for forming electrolyte membrane for fuel cell
JP3961983B2 (en) Manufacturing method of fuel cell
JP2010251033A (en) Method of manufacturing membrane-catalyst assembly, membrane-catalyst assembly, and fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees