JP3908333B2 - Electrostatic chuck and semiconductor processing apparatus - Google Patents

Electrostatic chuck and semiconductor processing apparatus Download PDF

Info

Publication number
JP3908333B2
JP3908333B2 JP14243497A JP14243497A JP3908333B2 JP 3908333 B2 JP3908333 B2 JP 3908333B2 JP 14243497 A JP14243497 A JP 14243497A JP 14243497 A JP14243497 A JP 14243497A JP 3908333 B2 JP3908333 B2 JP 3908333B2
Authority
JP
Japan
Prior art keywords
electrostatic chuck
insulating layer
particles
electrode
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14243497A
Other languages
Japanese (ja)
Other versions
JPH10335438A (en
Inventor
守 石井
弘徳 石田
恵三 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP14243497A priority Critical patent/JP3908333B2/en
Publication of JPH10335438A publication Critical patent/JPH10335438A/en
Application granted granted Critical
Publication of JP3908333B2 publication Critical patent/JP3908333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Jigs For Machine Tools (AREA)
  • Ceramic Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、静電チャック及び半導体処理装置並びにそれらに好適な絶縁材料に係り、特に、電極上に絶縁層を有し、該電極に電圧を印加することにより該絶縁層上に半導体ウェハ等の試料を静電吸着する静電チャック及び該静電チャックを組み込んだ半導体処理装置並びにそれらに好適な絶縁材料に関する。
【0002】
【従来の技術】
減圧雰囲気中で半導体ウェハ等の試料を固定するための治具として、電極上に絶縁層を有し、該電極に電圧を印加することにより該絶縁層上に試料を静電吸着する静電チャックであって、ポリイミド等の樹脂やCaTiO3等の強誘電体セラミックスにより該絶縁層を形成したものが知られている。
【0003】
しかしながら、ポリイミド等の樹脂により絶縁層を形成した静電チャックは、耐久性、耐熱性等の点で問題があり、CaTiO3等の強誘電体セラミックスにより絶縁層を形成した静電チャックは、絶縁層の熱伝導性が低いためにエッチング工程等の半導体製造工程において試料の温度が不均一になるという問題がある。
【0004】
そこで、耐久性、耐熱性等が良好で、熱伝導性にも優れる窒化アルミニウムにより絶縁層を形成した静電チャックが注目されている。
【0005】
【発明が解決しようとする課題】
しかしながら、窒化アルミニウムは粒子間の結合が弱いため、絶縁層表面から窒化アルミニウムの粒子が脱落し易い。したがって、静電チャックに半導体ウェハ等の試料を接触させた際に、半導体ウェハの裏面がパーティクルにより汚染され易いだけでなく、発生したパーティクルがチャンバ−を汚染することにもなる。
【0006】
本発明は、上記の事情に鑑みてなされたものであり、吸着した試料の汚染が少なく、熱伝導性に優れた吸着面を有する静電チャック及び該静電チャックを組み込んだ半導体処理装置並びにそれらに好適な絶縁材料を提供することを1つの目的とする。
【0007】
【課題を解決するための手段】
本発明者等は、上記目的を達成するために鋭意研究した結果、窒化アルミニウム中に、体積割合で3.2〜20%の窒化チタン又は炭化ジルコニウムの粒子を略均一に分散させることにより、窒化アルミニウムの粒子間の結合を強固にし、これにより、窒化アルミニウム粒子の脱落が少なく、熱伝導性に優れた絶縁層が得られるとの知見を得て本発明を完成させた。
【0008】
すなわち、本発明に係る静電チャックは、電極上に絶縁層を有し、該電極に電圧を印加することにより該絶縁層上に試料を静電吸着する静電チャックであって、該絶縁層が、窒化アルミニウム中に体積割合で3.2〜20%の窒化チタン又は炭化ジルコニウムの粒子を略均一に分散させてなることを特徴とする。
【0009】
上記の静電チャックにおいて、窒化チタン又は炭化ジルコニウムの粒子の平均粒径は、3.0μm以下であることが好ましい。
【0016】
本発明に係る半導体処理装置は、上記の静電チャックを組み込んだことを特徴とする。
【0018】
【発明の実施の形態】
以下、図面を参照しながら本発明の好適な実施の形態を説明する。図1は、本発明の好適な実施の形態に係る静電チャックの概略構造を示す断面図である。
【0019】
絶縁層1は、窒化アルミニウムを主成分とし、窒化アルミニウムの粒子間の結合を強固にするための導電性粒子を窒化アルミニウム内に略均一に分散させてなる。これにより、窒化アルミニウムの粒子間の結合が強固になるため、半導体ウェハ等の試料10を吸着させる際に、摩擦等により窒化アルミニウムの粒子が脱落することを抑制し、試料10等の汚染を低減することができる。
【0020】
窒化アルミニウム中に分散させる粒子(以下、添加粒子)の構成物質(添加物質)は、4a族元素の窒化物又は炭化物が好適であり、その中でも、窒化チタンがより好適である。これは、窒化チタンは、窒化アルミニウムと反応しにくいため、窒化チタンの添加による絶縁層の熱伝導率の低下が小さいためである。なお、添加物質は、4a族元素の窒化物又は炭化物に限定されず、窒化アルミニウムの粒子間の結合を強固にし得る物質であれば、他の物質であってもよい。
【0021】
添加物質の添加量は、体積割合で3.2〜20%(5.1〜29.1重量%)であることが好ましい。3.2%未満では、窒化アルミニウムの粒子間の結合が十分に強固にならないために、パーティクルの発生を効果的に防止することができず、20%を越えると、添加粒子間が短絡する割合が高まり、絶縁性が低下するために、過大なリーク電流が半導体ウェハ(試料)に流れ、該ウェハに形成された素子を破損する可能性が生じるからである。
【0022】
図2は、窒化チタンの添加量と絶縁層1の品質との関係を示し、図3は、図2に示す数値をグラフ化した図である。図2及び図3において、「パーティクル数」は、直径8inchのシリコンウェハを図1に示す静電チャックの絶縁層1上に吸着させた際に、該シリコンウェハの裏面に付着したパーティクルの数をパーティクルカウンタによりカウントした結果である。すなわち、このパーティクル数は、絶縁層1から発生するパーティクルの数を間接的に示すものである。また、「体積抵抗率」は、常温における絶縁層1の体積抵抗率を測定した結果である。図3において、▲印はパーティクル数を示し、●印は体積抵抗率を示している。
【0023】
図2及び図3に示すように、窒化チタンの添加量(体積割合)が、3.2%より少なくなると、発生するパーティクル数が急激に増加し、静電チャックの品質を悪化させることが理解される。一方、絶縁層1の体積抵抗率は、窒化チタン(体積割合)が、19.0%を越える付近から低下し、20%を越えると、窒化チタンの添加量により体積抵抗率を微調整することが困難になる。ところで、静電チャックにおける試料の脱着特性は、体積抵抗率に依存し、体積抵抗率が108Ω・cm程度まで低下すると、静電チャックとしての実用性を失うことが知られている。この実験結果から、窒化チタンの添加量は、体積割合で、3.2〜20%であることが好ましいことが理解される。
【0024】
また、添加粒子の大きさは特に限定されるものではないが、その平均直径が3.0μm以下であることが好ましい。平均直径が3.0μmを越えると、添加粒子を均一に分散させることが困難になる他、添加粒子同士の接触により絶縁性が低下するからである。
【0025】
絶縁層1の下面には電極2が設けられており、この電極2に電圧を印加することにより、試料10を絶縁層1の吸着面に静電吸着することができる。
【0026】
静電チャックの構造は、例えば、電極2を形成したセラミックス板上に絶縁層1を形成した構造であっても良いし、例えば、絶縁層1に直接電極2を形成した構造でも良いし、他の構造であっても良い。
【0027】
電極2の構成材料としては、例えば、タングステン、モリブデン、銀、ニッケルその他の金属材料を採用し得る。また、電極2の形状は、単極型、双極型、櫛型のいずれをも採用し得る。
【0028】
また、この静電チャックは、エッチング装置、CVD装置その他の半導体処理装置の他、搬送装置等に好適であり、その用途に応じた形状を選択し得る。
【0029】
以上のように、窒化アルミニウムを主成分とし、窒化アルミニウムの粒子間の結合を強固にするために、体積割合で3.2〜20%の導電性粒子(特に、4a族元素の窒化物又は炭化物)を窒化アルミニウム内に略均一に分散させて絶縁層を形成することにより、窒化アルミニウム粒子の脱落が少なく、熱伝導性に優れた絶縁層を有する静電チャックが得られる。
【0030】
ところで、上記の絶縁層は、窒化アルミニウム粒子の脱落が少なく、熱伝導性に優れていることから、静電チャックのみならず、例えばヒータやサセプタ等の半導体処理装置の構成部品にも好適である。
【0031】
また、上記の静電チャックを備えた半導体処理装置並びに上記の絶縁層を一部に採用した半導体処理装置は、試料の汚染が少なく、試料の温度制御が容易であるという効果を奏する。
【0032】
以下に、本発明に係る静電チャックの好適な実施例及びその比較例を示す。
【0033】
[実施例1]
先ず、イットリアを含む窒化アルミニウム粉末90体積%と、窒化チタン粉末を10体積%とを混合し、粉砕媒体として直径約2mmのアルミナビーズを用い、これらの原料をボールミルにより100時間かけて粉砕し、窒化チタン粉末を窒化アルミニウム粉末中に略均一に分散させた。このとき、窒化チタン粉末の平均粒径は約0.5μmであった。
【0034】
次いで、窒素ガス雰囲気中において、温度1800℃、圧力20MPaの条件で1時間かけてホットプレス焼結し、図4(a)に示すような直径200mm(8inch)、厚さ1mmの円盤状の絶縁層1を作成した。この絶縁層1の体積抵抗率は4.2×10 14 Ω・cmであり、熱伝導率は140W/K・mであった。
【0035】
次いで、図4(b)に示すように、絶縁層1の一方の面に双極型の静電チャック用の電極2をニッケルメッキにより形成し、他方の面(試料の吸着面)を研磨して表面粗さRa1.2μmとした。
【0036】
次いで、図4(c)の断面図に示すように、アルミニウム台座3の表面をアノダイジング(酸化)してアルミナ膜3aを形成し、図4(d)の断面図に示すように、熱伝導性接着剤4によりアルミナ膜3a上に絶縁層1を貼り付けて静電チャックを完成させた。
【0037】
[実施例2〜6,比較例1〜4]
添加物質の種類、平均粒径、添加量を変更し、他の条件に関しては、実施例1と同様の条件で静電チャックを作成した。図5は、実施例1〜6及び比較例1〜4の静電チャックの製造条件を示す図である。
【0038】
[静電チャックの評価]
作成した各静電チャックをプラズマエッチング装置に組み込み、静電チャックの一方の電極に+300V、他方の電極に−300Vを印加して、シリコンウェハを吸着させ、該シリコンウェハ上に形成された回路素子が破損するか否かを調査した。また、静電チャックに吸着させたシリコンウェハの裏面のパーティクル数をパーティクルカウンタに利用してカウントした。
【0039】
図6は、実施例1〜6及び比較例1〜4に関しての実験結果を示す図である。同図に示すように、実施例1〜6及び比較例1,3においては、シリコンウェハ上に形成された回路に破損が認められなかったが、比較例2,4においては、破損した回路があった。回路を破損させた静電チャックは、添加物質の添加量が多いもの(比較例2)及び平均粒径が大きいもの(比較例4)であり、破損の原因は、絶縁層中の導電性粒子間の短絡に起因する絶縁性(体積抵抗率)の低下、すなわち、リーク電流の発生であると考えられる。
【0040】
また、実施例1〜6では、シリコンウェハ裏面のパーティクル数は、50個/8inchウェハ以下であった。一方、比較例1,3では、シリコンウェハ裏面のパーティクル数は、500個/8inchウェハ以上となった。
【0041】
【発明の効果】
本発明に拠れば、吸着した試料の汚染が少なく、熱伝導性に優れた吸着面を有する静電チャックを得ることができる。
【0043】
また、本発明に拠れば、試料の汚染が少なく、試料の温度制御が容易な半導体処理装置を得ることができる。
【0044】
【図面の簡単な説明】
【図1】本発明の好適な実施の形態に係る静電チャックの概略構造を示す断面図である。
【図2】窒化チタンの添加量と絶縁層の品質との関係を示す図である。
【図3】窒化チタンの添加量と絶縁層の品質との関係を示すグラフ図である。
【図4】静電チャックの製造工程を概略的に示す図である。
【図5】実施例1〜6及び比較例1〜4の静電チャックの製造条件を示す図である。
【図6】実施例1〜6及び比較例1〜4の静電チャックに関しての実験結果を示す図である。
【符号の説明】
1 絶縁層
2 電極
3 アルミニウム台座
3a アルミナ膜
4 W熱伝導性接着剤
10 試料
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrostatic chuck, a semiconductor processing apparatus, and an insulating material suitable for them, and in particular, has an insulating layer on an electrode, and a voltage such as a semiconductor wafer is applied on the insulating layer by applying a voltage to the electrode. The present invention relates to an electrostatic chuck for electrostatically attracting a sample, a semiconductor processing apparatus incorporating the electrostatic chuck, and an insulating material suitable for them.
[0002]
[Prior art]
An electrostatic chuck that has an insulating layer on an electrode as a jig for fixing a sample such as a semiconductor wafer in a reduced-pressure atmosphere and electrostatically adsorbs the sample on the insulating layer by applying a voltage to the electrode It is known that the insulating layer is formed of a resin such as polyimide or a ferroelectric ceramic such as CaTiO 3 .
[0003]
However, an electrostatic chuck having an insulating layer formed of a resin such as polyimide has problems in terms of durability and heat resistance, and an electrostatic chuck having an insulating layer formed of a ferroelectric ceramic such as CaTiO 3 is insulated. Since the thermal conductivity of the layer is low, there is a problem that the temperature of the sample becomes non-uniform in a semiconductor manufacturing process such as an etching process.
[0004]
In view of this, an electrostatic chuck in which an insulating layer is formed of aluminum nitride, which has good durability, heat resistance, etc., and excellent thermal conductivity, has attracted attention.
[0005]
[Problems to be solved by the invention]
However, since aluminum nitride has a weak bond between particles, the aluminum nitride particles easily fall off from the surface of the insulating layer. Therefore, when a sample such as a semiconductor wafer is brought into contact with the electrostatic chuck, not only the back surface of the semiconductor wafer is easily contaminated by particles, but also the generated particles contaminate the chamber.
[0006]
The present invention has been made in view of the above circumstances, and an electrostatic chuck having an adsorption surface with low contamination of the adsorbed sample and excellent in thermal conductivity, a semiconductor processing apparatus incorporating the electrostatic chuck, and those One object is to provide an insulating material suitable for the above.
[0007]
[Means for Solving the Problems]
As a result of diligent research to achieve the above-mentioned object, the inventors of the present invention obtained a nitridation by dispersing 3.2 to 20% of titanium nitride or zirconium carbide particles in aluminum nitride substantially uniformly. The present invention was completed with the knowledge that the bonding between the aluminum particles was strengthened, thereby obtaining an insulating layer with less aluminum nitride particle dropout and excellent thermal conductivity.
[0008]
That is, the electrostatic chuck according to the present invention is an electrostatic chuck that has an insulating layer on an electrode and electrostatically adsorbs a sample on the insulating layer by applying a voltage to the electrode. Is characterized in that particles of titanium nitride or zirconium carbide of 3.2 to 20% by volume in aluminum nitride are dispersed substantially uniformly.
[0009]
In the above electrostatic chuck, the average particle diameter of the titanium nitride or zirconium carbide particles is preferably 3.0 μm or less.
[0016]
A semiconductor processing apparatus according to the present invention incorporates the electrostatic chuck described above.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic structure of an electrostatic chuck according to a preferred embodiment of the present invention.
[0019]
The insulating layer 1 is made of aluminum nitride as a main component, and conductive particles for strengthening the bond between the aluminum nitride particles are dispersed substantially uniformly in the aluminum nitride. As a result, the bonding between the aluminum nitride particles becomes strong, so that when the sample 10 such as a semiconductor wafer is adsorbed, the aluminum nitride particles are prevented from falling off due to friction or the like, and the contamination of the sample 10 or the like is reduced. can do.
[0020]
The constituent material (additive material) of particles dispersed in aluminum nitride (hereinafter referred to as additive particles) is preferably a nitride or carbide of a group 4a element, and among these, titanium nitride is more preferable. This is because titanium nitride hardly reacts with aluminum nitride, and thus the decrease in thermal conductivity of the insulating layer due to the addition of titanium nitride is small. Note that the additive substance is not limited to the nitride or carbide of the group 4a element, and may be another substance as long as it can strengthen the bond between the aluminum nitride particles.
[0021]
The addition amount of the additive substance is preferably 3.2 to 20% (5.1 to 29.1% by weight) in volume ratio. If the content is less than 3.2%, the bonding between the aluminum nitride particles is not sufficiently strengthened, so that the generation of particles cannot be effectively prevented. This is because, since the insulating property is lowered and an excessive leakage current flows to the semiconductor wafer (sample), the element formed on the wafer may be damaged.
[0022]
FIG. 2 shows the relationship between the amount of titanium nitride added and the quality of the insulating layer 1, and FIG. 3 is a graph of the numerical values shown in FIG. 2 and 3, the “number of particles” is the number of particles adhering to the back surface of the silicon wafer when an 8 inch diameter silicon wafer is adsorbed on the insulating layer 1 of the electrostatic chuck shown in FIG. It is the result counted by the particle counter. That is, the number of particles indirectly indicates the number of particles generated from the insulating layer 1. The “volume resistivity” is a result of measuring the volume resistivity of the insulating layer 1 at room temperature. In FIG. 3, the ▲ mark indicates the number of particles, and the ● mark indicates the volume resistivity.
[0023]
As shown in FIG. 2 and FIG. 3, it is understood that when the addition amount (volume ratio) of titanium nitride is less than 3.2%, the number of generated particles rapidly increases and deteriorates the quality of the electrostatic chuck. Is done. On the other hand, the volume resistivity of the insulating layer 1 decreases from the vicinity where titanium nitride (volume ratio) exceeds 19.0%, and when it exceeds 20%, the volume resistivity is finely adjusted by the amount of titanium nitride added. Becomes difficult. By the way, it is known that the desorption characteristic of the sample in the electrostatic chuck depends on the volume resistivity, and when the volume resistivity is reduced to about 10 8 Ω · cm, the practicality as the electrostatic chuck is lost. From this experimental result, it is understood that the addition amount of titanium nitride is preferably 3.2 to 20% by volume.
[0024]
The size of the additive particles is not particularly limited, but the average diameter is preferably 3.0 μm or less. If the average diameter exceeds 3.0 μm, it will be difficult to uniformly disperse the additive particles, and the insulating properties will deteriorate due to contact between the additive particles.
[0025]
An electrode 2 is provided on the lower surface of the insulating layer 1, and the sample 10 can be electrostatically adsorbed to the adsorption surface of the insulating layer 1 by applying a voltage to the electrode 2.
[0026]
The structure of the electrostatic chuck may be, for example, a structure in which the insulating layer 1 is formed on a ceramic plate on which the electrode 2 is formed, for example, a structure in which the electrode 2 is directly formed on the insulating layer 1, or other It may be the structure.
[0027]
As a constituent material of the electrode 2, for example, tungsten, molybdenum, silver, nickel, or other metal materials can be adopted. In addition, the electrode 2 may be any of a monopolar type, a bipolar type, and a comb type.
[0028]
This electrostatic chuck is suitable for an etching apparatus, a CVD apparatus, and other semiconductor processing apparatuses, as well as a transfer apparatus, and the shape can be selected according to the application.
[0029]
As described above, conductive particles (particularly nitrides or carbides of group 4a elements) having a volume ratio of 3.2 to 20% in order to strengthen the bond between aluminum nitride particles, mainly composed of aluminum nitride. ) Is dispersed substantially uniformly in the aluminum nitride to form an insulating layer, whereby an electrostatic chuck having an insulating layer with less aluminum nitride particle dropout and excellent thermal conductivity can be obtained.
[0030]
By the way, the insulating layer described above is suitable not only for electrostatic chucks but also for components of semiconductor processing devices such as heaters and susceptors, because aluminum nitride particles are less dropped and excellent in thermal conductivity. .
[0031]
In addition, the semiconductor processing apparatus provided with the electrostatic chuck and the semiconductor processing apparatus partially adopting the insulating layer have the effect that the sample is less contaminated and the temperature of the sample can be easily controlled.
[0032]
Below, the suitable Example of the electrostatic chuck which concerns on this invention, and its comparative example are shown.
[0033]
[Example 1]
First, 90% by volume of aluminum nitride powder containing yttria and 10% by volume of titanium nitride powder are mixed, alumina beads having a diameter of about 2 mm are used as a grinding medium, and these raw materials are crushed by a ball mill for 100 hours. The titanium nitride powder was dispersed substantially uniformly in the aluminum nitride powder. At this time, the average particle diameter of the titanium nitride powder was about 0.5 μm.
[0034]
Next, in a nitrogen gas atmosphere, hot press sintering was performed for 1 hour under conditions of a temperature of 1800 ° C. and a pressure of 20 MPa, and a disc-shaped insulation having a diameter of 200 mm (8 inches) and a thickness of 1 mm as shown in FIG. Layer 1 was created. The volume resistivity of the insulating layer 1 was 4.2 × 10 14 Ω · cm, and the thermal conductivity was 140 W / K · m.
[0035]
Next, as shown in FIG. 4B, a bipolar electrostatic chuck electrode 2 is formed on one surface of the insulating layer 1 by nickel plating, and the other surface (sample adsorption surface) is polished. The surface roughness Ra was 1.2 μm.
[0036]
Next, as shown in the sectional view of FIG. 4C, the surface of the aluminum pedestal 3 is anodized (oxidized) to form an alumina film 3a. As shown in the sectional view of FIG. The insulating layer 1 was stuck on the alumina film 3a with the adhesive 4 to complete the electrostatic chuck.
[0037]
[Examples 2-6, Comparative Examples 1-4]
The electrostatic chuck was prepared under the same conditions as in Example 1 except that the kind of additive substance, the average particle diameter, and the addition amount were changed and the other conditions were changed. FIG. 5 is a diagram illustrating manufacturing conditions for the electrostatic chucks of Examples 1 to 6 and Comparative Examples 1 to 4.
[0038]
[Evaluation of electrostatic chuck]
Each created electrostatic chuck is incorporated in a plasma etching apparatus, +300 V is applied to one electrode of the electrostatic chuck, −300 V is applied to the other electrode, and the silicon wafer is adsorbed to form a circuit element formed on the silicon wafer. Was investigated whether or not. The number of particles on the back surface of the silicon wafer adsorbed on the electrostatic chuck was counted using a particle counter.
[0039]
FIG. 6 is a diagram illustrating experimental results regarding Examples 1 to 6 and Comparative Examples 1 to 4. As shown in the figure, in Examples 1 to 6 and Comparative Examples 1 and 3, no damage was found in the circuit formed on the silicon wafer, but in Comparative Examples 2 and 4, there was a broken circuit. there were. Electrostatic chucks with damaged circuits are those with a large amount of additive (Comparative Example 2) and those with a large average particle size (Comparative Example 4). The cause of the damage is the conductive particles in the insulating layer. It is considered that the insulation (volume resistivity) is reduced due to a short circuit between them, that is, a leak current is generated.
[0040]
In Examples 1 to 6, the number of particles on the back surface of the silicon wafer was 50/8 inch wafer or less. On the other hand, in Comparative Examples 1 and 3, the number of particles on the back surface of the silicon wafer was 500/8 inch wafer or more.
[0041]
【The invention's effect】
According to the present invention, it is possible to obtain an electrostatic chuck having an adsorption surface with less contamination of the adsorbed sample and excellent thermal conductivity.
[0043]
Further, according to the present invention, it is possible to obtain a semiconductor processing apparatus with less sample contamination and easy sample temperature control.
[0044]
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a schematic structure of an electrostatic chuck according to a preferred embodiment of the present invention.
FIG. 2 is a diagram showing the relationship between the amount of titanium nitride added and the quality of the insulating layer.
FIG. 3 is a graph showing the relationship between the amount of titanium nitride added and the quality of the insulating layer.
FIG. 4 is a diagram schematically showing a manufacturing process of an electrostatic chuck.
FIG. 5 is a diagram showing manufacturing conditions for the electrostatic chucks of Examples 1 to 6 and Comparative Examples 1 to 4;
6 is a diagram showing experimental results regarding the electrostatic chucks of Examples 1 to 6 and Comparative Examples 1 to 4. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insulating layer 2 Electrode 3 Aluminum base 3a Alumina film 4 W Thermal conductive adhesive 10 Sample

Claims (3)

電極上に絶縁層を有し、該電極に電圧を印加することにより該絶縁層上に試料を静電吸着する静電チャックにおいて、該絶縁層は、窒化アルミニウム中に体積割合で3.2〜20%の窒化チタン又は炭化ジルコニウムの粒子を略均一に分散させてなることを特徴とする静電チャック。In an electrostatic chuck having an insulating layer on an electrode and electrostatically adsorbing a sample on the insulating layer by applying a voltage to the electrode, the insulating layer is 3.2 to 3.2 in volume ratio in aluminum nitride. An electrostatic chuck comprising 20% titanium nitride or zirconium carbide particles dispersed substantially uniformly. 前記窒化チタン又は前記炭化ジルコニウムの粒子の平均粒径が3.0μm以下であることを特徴とする請求項1に記載の静電チャック。The electrostatic chuck according to claim 1, wherein an average particle size of the titanium nitride or zirconium carbide particles is 3.0 μm or less. 請求項1または2に記載の静電チャックを組み込んでなる半導体処理装置。Semiconductor processing apparatus comprising incorporating an electrostatic chuck according to claim 1 or 2.
JP14243497A 1997-05-30 1997-05-30 Electrostatic chuck and semiconductor processing apparatus Expired - Fee Related JP3908333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14243497A JP3908333B2 (en) 1997-05-30 1997-05-30 Electrostatic chuck and semiconductor processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14243497A JP3908333B2 (en) 1997-05-30 1997-05-30 Electrostatic chuck and semiconductor processing apparatus

Publications (2)

Publication Number Publication Date
JPH10335438A JPH10335438A (en) 1998-12-18
JP3908333B2 true JP3908333B2 (en) 2007-04-25

Family

ID=15315231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14243497A Expired - Fee Related JP3908333B2 (en) 1997-05-30 1997-05-30 Electrostatic chuck and semiconductor processing apparatus

Country Status (1)

Country Link
JP (1) JP3908333B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666960B2 (en) * 2004-06-28 2011-04-06 京セラ株式会社 Electrostatic chuck
JP6032022B2 (en) * 2013-01-16 2016-11-24 住友大阪セメント株式会社 Dielectric material
CN108878346B (en) * 2017-05-10 2021-03-02 北京北方华创微电子装备有限公司 Technological method for solving sticking problem of electrostatic chuck
CN116262666B (en) * 2022-12-29 2024-05-17 浙江省冶金研究院有限公司 Preparation method of aluminum nitride-based ceramic composite material and application of aluminum nitride-based ceramic composite material to electrostatic chuck

Also Published As

Publication number Publication date
JPH10335438A (en) 1998-12-18

Similar Documents

Publication Publication Date Title
US6215643B1 (en) Electrostatic chuck and production method therefor
JP2938679B2 (en) Ceramic electrostatic chuck
JP4744855B2 (en) Electrostatic chuck
TWI540672B (en) Electrostatic chuck device
KR100793676B1 (en) Electrostatic chuck and producing method thereof
JP2006287210A (en) Electrostatic chuck and manufacturing method thereof
JP4811608B2 (en) Wafer heating apparatus having electrostatic adsorption function
JP2008153194A (en) Heating device
EP1156522B1 (en) Electrostatic chuck with an insulating layer
JP2008091353A (en) Electrostatic chuck
JP3908333B2 (en) Electrostatic chuck and semiconductor processing apparatus
JP3348140B2 (en) Electrostatic chuck
JP2008042140A (en) Electrostatic chuck device
JP2008042138A (en) Electrostatic chuck device
JP3287996B2 (en) Electrostatic chuck device
JP4043219B2 (en) Electrostatic chuck
JPH06291175A (en) Electrostatic chuck
JP2006060040A (en) Electrostatically chucking plate, and manufacturing method thereof
JP2005524247A (en) Advanced platen for electrostatic wafer clamping equipment
JPH058140A (en) Electrostatic chuck
JP2756944B2 (en) Ceramic electrostatic chuck
JP3662909B2 (en) Wafer adsorption heating device and wafer adsorption device
JP2007299867A (en) Electrostatic chuck and its manufacturing method
JP3853960B2 (en) Electrostatic chuck
JP4439102B2 (en) Electrostatic chuck

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees