JP3908114B2 - Installation structure of tiled solar panel - Google Patents

Installation structure of tiled solar panel Download PDF

Info

Publication number
JP3908114B2
JP3908114B2 JP2002227322A JP2002227322A JP3908114B2 JP 3908114 B2 JP3908114 B2 JP 3908114B2 JP 2002227322 A JP2002227322 A JP 2002227322A JP 2002227322 A JP2002227322 A JP 2002227322A JP 3908114 B2 JP3908114 B2 JP 3908114B2
Authority
JP
Japan
Prior art keywords
tile
dimension
working
solar cell
cell panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002227322A
Other languages
Japanese (ja)
Other versions
JP2004068353A (en
Inventor
充朗 藤家
美佐雄 岡本
隆 河戸
浩一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui House Ltd
Original Assignee
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui House Ltd filed Critical Sekisui House Ltd
Priority to JP2002227322A priority Critical patent/JP3908114B2/en
Publication of JP2004068353A publication Critical patent/JP2004068353A/en
Application granted granted Critical
Publication of JP3908114B2 publication Critical patent/JP3908114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]

Landscapes

  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、瓦と一体的に葺き上げる瓦型太陽電池パネルの葺設構造に関する。
【0002】
【従来の技術】
近年、瓦葺き屋根用の太陽光発電システムとして、瓦と互換性を有する形状の太陽電池パネル(太陽電池モジュール)を、通常の瓦と一体的に葺き上げる工法が普及しつつある。この種の瓦型太陽電池パネルは、瓦1枚分、ないしは瓦を横方向に数枚分並べた大きさに形成され、その働き寸法が、流れ方向にあっては瓦の働き寸法と等しく、幅方向にあっては瓦の働き寸法の整数倍となるように設計されている。
【0003】
瓦葺き屋根に用いられる一般的な瓦の働き寸法は、幅方向が303mm ないし306mm であり、流れ方向が280mm 前後である。したがって、屋根勾配が5寸勾配のとき、流れ方向の働き寸法の水平投影寸法は約250mm となる。
【0004】
【発明が解決しようとする課題】
ところで、寄棟屋根などのように、少なくとも直交する2方向に傾斜した屋根面を有する屋根においては、前記のような働き寸法の瓦及び瓦型太陽電池パネルで屋根を葺き上げようとすると、割り付けの基準となる瓦の流れ方向の働き寸法の水平投影寸法と幅方向の働き寸法とが異なるために、屋根の縁部近傍で瓦の割り付けが不揃いになってしまうという不都合がある。つまり、図4に示すように、寄棟屋根9の隅棟付近を真上から見ると、それぞれの屋根面の軒先ラインに対して隅棟が45度の角度をなし、瓦91の横方向の配列幅は、一段ごとに流れ方向の働き寸法の水平投影寸法の2倍ずつ変化するのに対して、瓦の幅方向の働き寸法が前記各段の変化分と整合しないために、隅棟近傍に端数寸法の特殊な瓦を配するなど各段ごとの割り付け幅を調整する必要がある。
【0005】
したがって、前記従来のような働き寸法の瓦と、その瓦の働き寸法を基準にして設計された太陽電池パネル92とを一緒に葺き上げた場合、図示のように、太陽電池パネルの葺設領域の縁部が隅棟と平行にならず、また各段における前記葺設領域の縁部のラインに凸凹が生じて、屋根の外観が悪くなってしまう。このような問題は、隅棟の近傍だけでなく、例えば直交する2本以上の棟を有する屋根の谷部近傍においても同様に発生する。
【0006】
そこで本発明は、少なくとも直交する2方向に傾斜した屋根面を有する屋根においても、瓦型太陽電池パネルの葺設領域を、屋根の隅棟あるいは谷のラインと平行に、かつ整然と配列できるようにした瓦型太陽電池パネルの葺設構造を提供することを解決課題としている。
【0007】
【課題を解決するための手段】
前記課題を解決するため、本発明の瓦型太陽電池パネルの葺設構造は、少なくとも直交する2方向に同勾配tanθで傾斜する屋根面上に、流れ方向の働き寸法Lの水平投影寸法Lcosθと幅方向の働き寸法とが整合しない瓦と、複数枚の瓦型太陽電池パネルとを一緒に葺き上げる葺設構造において、瓦型太陽電池パネルの寸法を以下のように設定し、屋根の隅棟または谷近傍における瓦と瓦型太陽電池パネルとの納まりを各段で揃えることにより、瓦型太陽電池パネルの葺設領域の縁部に外接するラインを前記隅棟または谷のラインと平行にしたことを特徴とする。
(a)瓦型太陽電池パネルの流れ方向の働き寸法は前記瓦の流れ方向の働き寸法Lと等しくする。
(b)瓦型太陽電池パネルの幅方向の働き寸法Wは瓦の流れ方向の働き寸法Lの水平投影寸法Lcosθのn倍(nは1以上の整数)とする。
(c)瓦型太陽電池パネルの幅方向の働き寸法Wについては複数種類を設定し、少なくとも1種類の瓦型太陽電池パネルについては、幅方向の働き寸法Wを瓦の流れ方向の働き寸法Lの水平投影寸法Lcosθの2倍とする。
【0009】
また、本発明の瓦型太陽電池パネルの葺設構造は、少なくとも直交する2方向に同勾配tanθで傾斜する屋根面上に、流れ方向の働き寸法Lの水平投影寸法Lcosθと幅方向の働き寸法とが整合しない瓦と、複数枚の瓦型太陽電池 パネルとを一緒に葺き上げる葺設構造において、瓦型太陽電池パネルの寸法を以下のように設定し、屋根の隅棟または谷近傍における瓦と瓦型太陽電池パネルとの納まりを各段で揃えることにより、瓦型太陽電池パネルの葺設領域の縁部に外接するラインを前記隅棟または谷のラインと平行にしたことを特徴とする。
(a)瓦型太陽電池パネルの流れ方向の働き寸法は前記瓦の流れ方向の働き寸法Lと等しくする。
(b)瓦型太陽電池パネルの幅方向の働き寸法Wは瓦の流れ方向の働き寸法Lの水平投影寸法Lcosθのn倍(nは1以上の整数)とする。
(d)瓦型太陽電池パネルの幅方向の働き寸法Wについては複数種類を設定し、少なくとも2種類の瓦型太陽電池パネルは、互いの幅方向の働き寸法Wの差が、瓦の流れ方向の働き寸法Lの水平投影寸法Lcosθの2倍となるように形成する。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しつつ説明する。
【0011】
図1は、5寸勾配の寄棟屋根に瓦と瓦型太陽電池パネルとを葺き上げた場合の屋根伏図である。また、図2は、前記寄棟屋根における隅棟近傍の拡大図である。
【0012】
例示した寄棟屋根1においては、日照方向に対応して、図示下側の平側屋根面1aと図示右側の妻側屋根面1bに、それぞれほぼ全面にわたって瓦型太陽電池パネル3を葺設し、図示上側の平側屋根面1cと図示左側の妻側屋根面1dには、瓦のみを千鳥配置で葺設している。
【0013】
図2に示すように、屋根の傾斜角をθ( 度) とすると、屋根勾配はtan θで表せる。また、瓦の割り付けの基準となる流れ方向の働き寸法をLとすると、その水平投影寸法はLcos θとなる。したがって、5寸勾配の屋根では、tan θ=0.5 であり、θ=tan -10.5 ≒26.565である。また、瓦2aの流れ方向の働き寸法Lが例えば280(mm) であるとすると、その水平投影寸法Lcos θは、280 ×cos26.565 ≒250(mm) となる。
【0014】
そして、例示した寄棟屋根1のように、直交する2方向に傾斜した屋根面(平側屋根面1a,1cと妻側屋根面1b,1d)の勾配が等しい場合、各屋根面の境界に現れる隅棟は、真上から見たとき、軒先ラインに対して45度の角度をなす。したがって、各屋根面1a,1b,1c,1dにおける流れ方向の割り付けを水平かつ等間隔に揃えると、各段の横幅は、一段ごとに、前記水平投影寸法Lcos θの2倍(約500mm )ずつ変化する。
【0015】
なお、このような寄棟屋根1における隅棟の位置には、通常、直交する2方向に傾斜した流れ面を有する隅瓦2bが配置される。この隅瓦2bは、いずれの流れ面についても、流れ方向の働き寸法が前記各段の流れ方向の働き寸法Lと同寸になる。また、それぞれの流れ面における幅方向の働き寸法については、水上側の働き寸法に対して、水下側の働き寸法が、前記水平投影寸法Lcos θだけ大きくなる。ただし、この隅瓦の幅方向の寸法は、一般部の瓦2aの幅方向の寸法とは関係なく、大棟や隅棟の納まり、屋根の下地構造等によって決定される。
【0016】
本発明では、瓦型太陽電池パネル3の流れ方向の働き寸法を前記した瓦の流れ方向の働き寸法Lに等しくするとともに、瓦型太陽電池パネル3の幅方向の働き寸法Wを、前記水平投影寸法Lcos θの整数倍、つまり、W=n×Lcos θとなるように設計して瓦の割り付けと整合させている。
【0017】
これにより、各屋根面において割り付けの基準となる特定の段(例えば建物躯体のモジュール心上に位置する段、あるいは最下段等)の両隅瓦を除く横幅が前記水平投影寸法Lcos θの整数倍であれば、図1に示したように、当該特定の段を含む全ての段の横幅を、瓦型太陽電池パネル3のみで整然と割り付けることができる。
【0018】
前記整数nには、1以上の任意の整数を選択できるが、瓦型太陽電池パネル3の製造効率や発電効率、施工効率等を考慮すると、nは2ないし6くらいの範囲で複数タイプ設定されるのが実用的である。ただし、前記したように各段の横幅の変化分はLcos θ×2 となるので、少なくとも1種類の瓦型太陽電池パネル3aについては、その幅方向の働き寸法Wが前記水平投影寸法Lcos θの2倍分の大きさ(2倍タイプ:W≒500mm )となるように設計されるのが好ましい。すると、各段の横幅の変化分を、2倍タイプの瓦型太陽電池パネル3a・1枚で過不足なく割り付けることができる。
【0019】
あるいは、少なくとも2種類の瓦型太陽電池パネル3が、互いの幅方向の働き寸法Wを前記水平投影寸法Lcos θの2倍分の大きさだけ相違させるように設計されてもよい。これによると、例えば幅方向の働き寸法Wが前記水平投影寸法Lcos θの4倍分の大きさのもの(4倍タイプ:W≒1000mm)と、同じく6倍分の大きさのもの(6倍タイプ:W≒1500mm)というような2タイプの使い分けによって、各段の横幅の変化分を容易に調整することができる。
【0020】
このように本発明によれば、隅棟に配置された隅瓦に隣接させて、各段の横幅一杯に整然と瓦型太陽電池パネル3を葺設することができるので、隅棟近傍の納まりが棟端から軒先まで一定であれば、瓦型太陽電池パネル3の葺設領域の縁部に外接するラインを隅棟のラインと平行に揃えることができる。そして、棟ライン、軒先ライン、隅棟ライン等で囲まれる台形状または三角形状の屋根面に対して、瓦型太陽電池パネル3の葺設領域を略相似形に仕上げることができる。
【0021】
隅棟の納まりについては、前記した隅瓦のような役物を使わずに、一般部用の瓦2aを略三角形状に現場カットして隅棟に沿って葺設し、その上に隅棟鉄板等のカバー部材を被せて仕上げる場合もある。この場合でも、カットする瓦の形状を同一にして隅棟の納まりを棟端から軒先まで揃えれば、前記と同様に、両端の隅部を除く各段の横幅一杯に瓦型太陽電池パネル3を葺設することができる。
【0022】
また、図3に示すように、例えば2本以上の棟が直交して谷部1cが形成されるような屋根10においても、前記と同様に、谷部に沿って瓦型太陽電池パネル3を整然と葺設することができる。したがって、図示のように複雑な形状の各屋根面を有する屋根においても、瓦型太陽電池パネル3の葺設領域を美しく仕上げることができる。
【0023】
以上に述べたように、本発明によれば、隅棟や谷部近傍の納まりには関係なく、瓦型太陽電池パネル3の葺設領域を隅棟や谷のラインと平行に、かつ各段の横幅一杯に形成することができるので、良好な美観が得られるとともに、最大限の受光面積を確保して発電効率を高めることができる。また、従来のように各段ごとの端数調整をする必要がないので、施工性も向上する。
【0024】
なお、本発明は、例示した5寸勾配の屋根だけでなく、これ以外の任意の勾配を有する屋根にも適用可能である。
【0025】
【発明の効果】
本発明の瓦型太陽電池パネルの葺設構造は、瓦型太陽電池パネルの幅方向の働き寸法Wが、瓦の流れ方向の働き寸法Lを水平に投影した寸法Lcos θの整数倍に設定されるので、寄棟その他、直交する2方向に傾斜した屋根面を有する屋根においても、瓦型太陽電池パネルが隅棟や谷の直近部分まで整然とした割り付けで葺設される。これにより、瓦型太陽電池パネルの葺設領域の縁部に外接するラインが隅棟や谷のラインと平行になって、良好な美観が形成される。
【0026】
また、瓦型太陽電池パネルを隅棟や谷の直近部分まで葺設することができるので、最大限の受光面積を確保することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す図であり、5寸勾配の寄棟屋根に瓦と瓦型太陽電池パネルを一体的に葺き上げた場合の屋根伏図である。
【図2】図1の寄棟屋根における隅棟近傍の部分拡大図であり、( a) は伏図、( b) は側面図である。
【図3】本発明の他の実施の形態にかかる特殊な形状の屋根伏図である。
【図4】従来一般の瓦と瓦型太陽電池パネルによって寄棟屋根を葺き上げた場合の問題点を示す屋根伏図である。
【符号の説明】
1 寄棟屋根
1c 谷部
2a 瓦
2b 隅瓦
3(3a,3b) 瓦型太陽電池パネル
L 瓦の流れ方向の働き寸法
W 瓦型太陽電池パネルの幅方向の働き寸法
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an installation structure of a tile-type solar cell panel that is rolled up integrally with a tile.
[0002]
[Prior art]
In recent years, as a photovoltaic power generation system for a tiled roof, a method of spreading a solar cell panel (solar cell module) having a shape compatible with a tile integrally with a normal tile is becoming widespread. This type of tile-type solar cell panel is formed in a size corresponding to one tile or several tiles arranged in the horizontal direction, and its working dimension is equal to the working dimension of the tile in the flow direction, In the width direction, it is designed to be an integral multiple of the tile's working dimension.
[0003]
The working dimensions of common tiles used for tiled roofs are 303mm to 306mm in the width direction and around 280mm in the flow direction. Therefore, when the roof gradient is 5 inch, the horizontal projection size of the working dimension in the flow direction is about 250 mm.
[0004]
[Problems to be solved by the invention]
By the way, in a roof having a roof surface inclined in at least two directions orthogonal to each other, such as a dormitory roof, if the roof is to be lifted up with tiles and tile type solar cell panels having the working dimensions as described above, allocation is performed. Since the horizontal projected dimension of the working direction in the flow direction of the roof tile and the working dimension in the width direction are different from each other, there is an inconvenience that the tiles are unevenly arranged near the edge of the roof. That is, as shown in FIG. 4, when the vicinity of the corner ridge of the dormitory roof 9 is viewed from directly above, the corner ridge forms an angle of 45 degrees with respect to the eaves line of each roof surface, The array width changes by twice the horizontal projected dimension of the working dimension in the flow direction for each stage, whereas the working dimension in the width direction of the tile does not match the change in each stage, It is necessary to adjust the allocation width for each step, such as placing a special roof tile with a fractional dimension.
[0005]
Therefore, when the roof tile having the conventional working size and the solar cell panel 92 designed on the basis of the working size of the roof tile are lifted together, as shown in FIG. The edges of the ridges are not parallel to the corner ridges, and irregularities occur in the lines of the edges of the erection area at each stage, resulting in poor appearance of the roof. Such a problem occurs not only in the vicinity of the corner ridge but also in the vicinity of the trough of the roof having two or more ridges that are orthogonal to each other, for example.
[0006]
Therefore, the present invention is such that, even in a roof having a roof surface inclined in at least two orthogonal directions, the tiled solar cell panel installation area can be arranged in an orderly manner in parallel with the corner ridges or valley lines of the roof. The problem to be solved is to provide a tiled solar cell panel installation structure.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the tiled solar cell panel installation structure of the present invention has a horizontal projected dimension Lcosθ of a working dimension L in the flow direction on a roof surface inclined at the same gradient tanθ in at least two orthogonal directions. In the installation structure in which tiles that do not match the working dimensions in the width direction and a plurality of tile-type solar panels are rolled up together, the dimensions of the tile-type solar panels are set as follows, and the corner building of the roof Or, by aligning the storage of tiles and tile-type solar panels in the vicinity of the valleys at each stage, the line circumscribing the edge of the installation area of the tile-type solar panels is made parallel to the corner ridge or valley line It is characterized by that.
(A) The working dimension in the flow direction of the tile-type solar cell panel is made equal to the working dimension L in the flow direction of the tile.
(B) The working dimension W in the width direction of the tile-type solar cell panel is set to n times the horizontal projected dimension Lcosθ of the working dimension L in the tile flow direction (n is an integer of 1 or more).
(C) A plurality of types of working dimensions W in the width direction of the tile-shaped solar cell panel are set. For at least one tile-shaped solar cell panel, the working dimension W in the width direction is set to a working size L in the tile flow direction. The horizontal projection dimension Lcosθ is set to be twice.
[0009]
Moreover, the tiled solar cell panel installation structure of the present invention has a horizontal projected dimension Lcosθ of the working dimension L in the flow direction and a working dimension in the width direction on the roof surface inclined at the same gradient tanθ in at least two orthogonal directions. In the installation structure in which tiles that are not aligned with each other and a plurality of tile-type solar panels are rolled up together, the dimensions of the tile-type solar panels are set as follows, and the tiles near the corner ridges or valleys of the roof And the tile-shaped solar cell panel are aligned at each stage so that the line circumscribing the edge of the installation area of the tile-shaped solar cell panel is parallel to the corner ridge or valley line. .
(A) The working dimension in the flow direction of the tile-type solar cell panel is made equal to the working dimension L in the flow direction of the tile.
(B) The working dimension W in the width direction of the tile-type solar cell panel is set to n times the horizontal projected dimension Lcosθ of the working dimension L in the tile flow direction (n is an integer of 1 or more).
(D) A plurality of types of working dimensions W in the width direction of the tile-shaped solar cell panel are set, and at least two types of tile-shaped solar cell panels have a difference in the working size W in the width direction between them. It is formed so as to be twice the horizontal projection dimension Lcosθ of the working dimension L.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0011]
FIG. 1 is a roof plan view when a tile and a tile-type solar cell panel are rolled up on a five-slope inclined roof. FIG. 2 is an enlarged view of the vicinity of the corner building on the dormitory roof.
[0012]
In the illustrated dormitory roof 1, tile-type solar panels 3 are installed almost entirely on the flat side roof surface 1 a on the lower side in the figure and the wife side roof surface 1 b on the right side in the figure corresponding to the direction of sunlight. Only tiles are provided in a staggered arrangement on the flat roof surface 1c on the upper side in the figure and the wife side roof surface 1d on the left side in the figure.
[0013]
As shown in FIG. 2, when the inclination angle of the roof is θ (degrees), the roof gradient can be expressed by tan θ. If the working dimension in the flow direction, which is a reference for tile allocation, is L, the horizontal projection dimension is Lcos θ. Therefore, for a 5-slope roof, tan θ = 0.5 and θ = tan −1 0.5 ≈26.565. If the working dimension L in the flow direction of the roof tile 2a is, for example, 280 (mm), the horizontal projection dimension Lcos θ is 280 × cos26.565≈250 (mm).
[0014]
And when the gradient of the roof surface (flat side roof surface 1a, 1c and wife side roof surface 1b, 1d) inclined in two orthogonal directions is equal like the dormitory roof 1 illustrated, it is in the boundary of each roof surface. The corner building that appears appears at an angle of 45 degrees to the eaves line when viewed from directly above. Therefore, when the flow direction assignments on the roof surfaces 1a, 1b, 1c, and 1d are horizontally and equally spaced, the horizontal width of each step is twice (about 500 mm) the horizontal projection dimension Lcos θ for each step. Change.
[0015]
In addition, the corner tile 2b which has the flow surface inclined in two orthogonal directions is normally arrange | positioned in the position of the corner ridge in such a dormitory roof 1. FIG. The corner tile 2b has a working dimension in the flow direction equal to the working dimension L in the flow direction of each stage on any flow surface. Regarding the working dimension in the width direction on each flow surface, the working dimension on the water side is larger than the working dimension on the water side by the horizontal projection dimension Lcos θ. However, the dimension of the corner tile in the width direction is determined by the size of the large ridge or corner ridge, the foundation structure of the roof, etc., regardless of the dimension in the width direction of the roof tile 2a of the general part.
[0016]
In the present invention, the working dimension in the flow direction of the tile-shaped solar cell panel 3 is made equal to the working dimension L in the flow direction of the tile, and the working dimension W in the width direction of the tile-shaped solar cell panel 3 is set to the horizontal projection. It is designed to be an integral multiple of the dimension Lcos θ, that is, W = n × Lcos θ, and is matched with the tile allocation.
[0017]
As a result, the horizontal width excluding both corner tiles of a specific step (for example, the step located on the module core of the building frame or the lowermost step) serving as a reference for allocation on each roof surface is an integral multiple of the horizontal projected dimension Lcos θ. Then, as shown in FIG. 1, the horizontal widths of all the stages including the specific stage can be neatly allocated only by the tile-shaped solar cell panel 3.
[0018]
As the integer n, any integer greater than or equal to 1 can be selected. However, in consideration of the manufacturing efficiency, power generation efficiency, construction efficiency, etc. of the tile-shaped solar cell panel 3, n is set in a range of 2 to 6 types. Is practical. However, as described above, the change in the horizontal width of each stage is Lcos θ × 2, and therefore, for at least one type of roof tile-type solar cell panel 3a, the working dimension W in the width direction is equal to the horizontal projection dimension Lcos θ. It is preferable that the size is doubled (double type: W≈500 mm). Then, the change in the width of each step can be allocated without excess or deficiency with the double-type roof tile solar cell panel 3a.
[0019]
Alternatively, at least two types of roof tile-type solar cell panels 3 may be designed so that the working dimension W in the width direction is different from the horizontal projection dimension Lcos θ by two times. According to this, for example, the working dimension W in the width direction is 4 times the horizontal projection dimension Lcos θ (4 times type: W≈1000 mm) and 6 times the same (6 times as large). The change in the width of each stage can be easily adjusted by properly using two types such as (type: W≈1500 mm).
[0020]
As described above, according to the present invention, the tile-type solar cell panel 3 can be installed in an orderly manner with the full width of each step adjacent to the corner tiles arranged in the corner building. If it is constant from the ridge end to the eaves edge, the line circumscribing the edge of the tiled solar cell panel 3 can be aligned in parallel with the corner ridge line. And the installation area | region of the tile-shaped solar cell panel 3 can be finished in a substantially similar shape with respect to the trapezoid shape or triangular roof surface enclosed by a ridge line, an eaves line, a corner ridge line, etc.
[0021]
Regarding the storage of the corner building, instead of using the above-mentioned corner tiles, the general-purpose roof tile 2a is cut into a substantially triangular shape on the spot and installed along the corner building. In some cases, a cover member such as an iron plate is put on and finished. Even in this case, if the shapes of the tiles to be cut are made the same and the corner ridges are aligned from the ridge edge to the eaves edge, the tile-type solar panel 3 is filled to the full width of each step except for the corners at both ends, as described above. Can be installed.
[0022]
In addition, as shown in FIG. 3, for example, in the roof 10 in which two or more ridges are orthogonal to each other and the valley portion 1 c is formed, the tile solar cell panel 3 is arranged along the valley portion in the same manner as described above. It can be installed neatly. Therefore, even in the roof having each complicated roof surface as shown in the figure, the installation area of the tile-type solar cell panel 3 can be finished beautifully.
[0023]
As described above, according to the present invention, the installation area of the tile-type solar cell panel 3 is parallel to the corner ridges and valley lines, and is arranged in each step, regardless of the space near the corner ridges or valleys. Therefore, a good aesthetic appearance can be obtained, and the maximum light receiving area can be secured to increase the power generation efficiency. Moreover, since it is not necessary to adjust the fraction for each step as in the conventional case, the workability is also improved.
[0024]
In addition, this invention is applicable not only to the roof of 5 dimension gradient illustrated but to the roof which has arbitrary gradients other than this.
[0025]
【The invention's effect】
In the tile-shaped solar cell panel installation structure of the present invention, the working dimension W in the width direction of the tile-shaped solar panel is set to an integral multiple of the dimension Lcos θ obtained by horizontally projecting the working dimension L in the tile flow direction. Therefore, even in a dormitory or other roofs having roof surfaces that are inclined in two orthogonal directions, tile-type solar cell panels are installed in an orderly manner up to the corner ridge and the immediate vicinity of the valley. As a result, the line circumscribing the edge of the tiled solar cell panel installation area is parallel to the corner ridge or valley line, and a good aesthetic appearance is formed.
[0026]
Moreover, since the tile-type solar cell panel can be installed up to the corner ridge and the immediate vicinity of the valley, the maximum light receiving area can be secured.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention, and is a roof plan view when a tile and a tile-type solar cell panel are integrally lifted on a 5-sloped dormitory roof.
2 is a partially enlarged view of the vicinity of a corner ridge in the dormitory roof of FIG. 1, (a) is a bottom view, and (b) is a side view. FIG.
FIG. 3 is a plan view of a specially shaped roof according to another embodiment of the present invention.
FIG. 4 is a roof plan view showing a problem when a dormitory roof is lifted up by a conventional general tile and a tile-type solar cell panel.
[Explanation of symbols]
1 Roofing roof 1c Valley 2a Tile 2b Corner tile 3 (3a, 3b) Tile type solar panel L Tile flow direction work dimension W Tile type solar panel width direction work dimension

Claims (2)

少なくとも直交する2方向に同勾配tanθで傾斜する屋根面上に、流れ方向の働き寸法 Lの水平投影寸法Lcosθと幅方向の働き寸法とが整合しない瓦と、複数枚の瓦型太陽電池 パネルとを一緒に葺き上げる葺設構造において、瓦型太陽電池パネルの寸法を以下のように設定し、屋根の隅棟または谷近傍における瓦と瓦型太陽電池パネルとの納まりを各段で揃えることにより、瓦型太陽電池パネルの葺設領域の縁部に外接するラインを前記隅棟または谷のラインと平行にしたことを特徴とする瓦型太陽電池パネルの葺設構造。
(a)瓦型太陽電池パネルの流れ方向の働き寸法は前記瓦の流れ方向の働き寸法Lと等しくする。
(b)瓦型太陽電池パネルの幅方向の働き寸法Wは瓦の流れ方向の働き寸法Lの水平投影寸法Lcosθのn倍(nは1以上の整数)とする。
(c)瓦型太陽電池パネルの幅方向の働き寸法Wについては複数種類を設定し、少なくとも1種類の瓦型太陽電池パネルについては、幅方向の働き寸法Wを瓦の流れ方向の働き寸法Lの水平投影寸法Lcosθの2倍とする。
On the roof surface inclined at the same gradient tanθ in at least two directions orthogonal to each other, a tile whose horizontal projected dimension Lcosθ does not match the working dimension in the flow direction and the working dimension in the width direction, and a plurality of tile-type solar panels, By setting the dimensions of the tile-type solar panel as follows and aligning the roof and the tile-type solar panel in the corner ridge or near the valley of the roof A tiled solar cell panel installation structure, characterized in that a line circumscribing the edge of the tiled solar cell panel installation region is parallel to the corner ridge or valley line.
(A) The working dimension in the flow direction of the tile-type solar cell panel is made equal to the working dimension L in the flow direction of the tile.
(B) The working dimension W in the width direction of the tile-type solar cell panel is set to n times the horizontal projected dimension Lcosθ of the working dimension L in the tile flow direction (n is an integer of 1 or more).
(C) A plurality of types of working dimensions W in the width direction of the tile-shaped solar cell panel are set. For at least one tile-shaped solar cell panel, the working dimension W in the width direction is set to a working size L in the tile flow direction. The horizontal projection dimension Lcosθ is set to be twice.
少なくとも直交する2方向に同勾配tanθで傾斜する屋根面上に、流れ方向の働き寸法 Lの水平投影寸法Lcosθと幅方向の働き寸法とが整合しない瓦と、複数枚の瓦型太陽電池 パネルとを一緒に葺き上げる葺設構造において、瓦型太陽電池パネルの寸法を以下のように設定し、屋根の隅棟または谷近傍における瓦と瓦型太陽電池パネルとの納まりを各段で揃えることにより、瓦型太陽電池パネルの葺設領域の縁部に外接するラインを前記隅棟または谷のラインと平行にしたことを特徴とする瓦型太陽電池パネルの葺設構造。
(a)瓦型太陽電池パネルの流れ方向の働き寸法は前記瓦の流れ方向の働き寸法Lと等しくする。
(b)瓦型太陽電池パネルの幅方向の働き寸法Wは瓦の流れ方向の働き寸法Lの水平投影寸法Lcosθのn倍(nは1以上の整数)とする。
(d)瓦型太陽電池パネルの幅方向の働き寸法Wについては複数種類を設定し、少なくとも2種類の瓦型太陽電池パネルは、互いの幅方向の働き寸法Wの差が、瓦の流れ方向の働き寸法Lの水平投影寸法Lcosθの2倍となるように形成する。
On the roof surface inclined at the same gradient tanθ in at least two directions orthogonal to each other, a tile whose horizontal projected dimension Lcosθ does not match the working dimension in the flow direction and the working dimension in the width direction, and a plurality of tile-type solar panels, By setting the dimensions of the tile-type solar panel as follows and aligning the roof and the tile-type solar panel in the corner ridge or near the valley of the roof A tiled solar cell panel installation structure, characterized in that a line circumscribing the edge of the tiled solar cell panel installation region is parallel to the corner ridge or valley line.
(A) The working dimension in the flow direction of the tile-type solar cell panel is made equal to the working dimension L in the flow direction of the tile.
(B) The working dimension W in the width direction of the tile-type solar cell panel is set to n times the horizontal projected dimension Lcosθ of the working dimension L in the tile flow direction (n is an integer of 1 or more).
(D) A plurality of types of working dimensions W in the width direction of the tile-shaped solar cell panel are set, and at least two types of tile-shaped solar cell panels have a difference in the working size W in the width direction between them. It is formed so as to be twice the horizontal projection dimension Lcosθ of the working dimension L.
JP2002227322A 2002-08-05 2002-08-05 Installation structure of tiled solar panel Expired - Lifetime JP3908114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002227322A JP3908114B2 (en) 2002-08-05 2002-08-05 Installation structure of tiled solar panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002227322A JP3908114B2 (en) 2002-08-05 2002-08-05 Installation structure of tiled solar panel

Publications (2)

Publication Number Publication Date
JP2004068353A JP2004068353A (en) 2004-03-04
JP3908114B2 true JP3908114B2 (en) 2007-04-25

Family

ID=32014396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002227322A Expired - Lifetime JP3908114B2 (en) 2002-08-05 2002-08-05 Installation structure of tiled solar panel

Country Status (1)

Country Link
JP (1) JP3908114B2 (en)

Also Published As

Publication number Publication date
JP2004068353A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP2006500488A (en) Roofing board assembly
CN109339354B (en) Current collection photovoltaic tile, connection structure, roof structure and roof construction method
JP3240653U (en) Rooftop Solar Cell Substrates, Rooftop Solar Cells, and Photovoltaic Roofs
JP3908114B2 (en) Installation structure of tiled solar panel
EP2072708A1 (en) Panel structure for roofs and the like
CN116591401A (en) Photovoltaic roof
JP2014047461A (en) Snow guard structure for solar battery panel
JP4328437B2 (en) Roof with solar cells
JP4146752B2 (en) building
JP4365569B2 (en) Arrangement structure of solar cell array
JP3092078B2 (en) Roof device using solar cells
JP2002088993A (en) Roof structure having solar energy conversion panel and execution method therefor
JPH032568Y2 (en)
JP4608521B2 (en) Roof with solar cells
JP5596953B2 (en) Solar cell construction structure
JP3847163B2 (en) Solar cell module and solar cell array using the same
JP2009019365A (en) Roof structure of photovoltaic power system
JP7514645B2 (en) How to construct a building roof
JP2520897Y2 (en) Roof panel
JP2538481Y2 (en) Sheet metal tile roof
JP2000160790A (en) Roof with solar battery
JP4142834B2 (en) Solar panel
JP2542811Y2 (en) Lighting roof structure
JP2011179232A (en) Building and roof
CN2575206Y (en) Roof-covering tiles installing & connecting mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

R150 Certificate of patent or registration of utility model

Ref document number: 3908114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160126

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term