JP3908060B2 - Mobile mounted antenna - Google Patents

Mobile mounted antenna Download PDF

Info

Publication number
JP3908060B2
JP3908060B2 JP2002053690A JP2002053690A JP3908060B2 JP 3908060 B2 JP3908060 B2 JP 3908060B2 JP 2002053690 A JP2002053690 A JP 2002053690A JP 2002053690 A JP2002053690 A JP 2002053690A JP 3908060 B2 JP3908060 B2 JP 3908060B2
Authority
JP
Japan
Prior art keywords
heat
collecting member
evaporation
antenna
heat collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002053690A
Other languages
Japanese (ja)
Other versions
JP2003258173A (en
Inventor
哲也 本田
一成 中尾
政明 村上
伊知郎 城川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002053690A priority Critical patent/JP3908060B2/en
Publication of JP2003258173A publication Critical patent/JP2003258173A/en
Application granted granted Critical
Publication of JP3908060B2 publication Critical patent/JP3908060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores

Description

【0001】
【発明の属する技術分野】
本発明は、移動体搭載用のアンテナに関し、詳しくは、実効的な重力の方向が変わり易い航空機等の移動体に搭載されるアンテナであって、アンテナ素子を制御するモジュールが集熱部材に配設され、このモジュールの熱を前記集熱部材内に設けられたヒートパイプの冷媒の蒸発部位から前記集熱部材の両端側に設けられたヒートパイプの冷媒の凝縮部位に導いてアンテナを冷却する冷却手段を備えた移動体搭載用アンテナに関する。
【0002】
【従来の技術】
従来の技術として、特開平11−317618号公報に掲載されたフェイズドアレイアンテナの冷却手段を、図8及び図9に基づいて説明する。図8はアンテナ素子を省略したアンテナの正面図、図9はヒートパイプの配設状態を示す斜視図である。
図8において、アンテナ20は、アンテナ21面に、例えば数十から数千個もの多数のアンテナ素子(図示せず)が並べられて形成されたアンテナ素子群22を有し、当該アンテナ素子群22を構成する各アンテナ素子毎に対応させて、当該アンテナ素子の近傍にモジュール23が配設されている。アンテナ素子はこのモジュール23によって制御され、その信号が処理されている。
【0003】
アンテナ素子を制御するモジュール23は発熱体であり、アンテナ特性はモジュール23の温度によって比較的大きく変化してしまうため、従来では、各モジュール23の発熱量を均一にすると共に各モジュール23に対する放熱特性も均一にして、モジュール群の温度分布を均一に保つ冷却手段を用いて、アンテナ素子群22の温度分布を均一化して、良好な信号の送受信を可能としていた。
【0004】
図8及び図9において、モジュール群延いてはアンテナ素子群22の温度分布を均一化させるアンテナの冷却手段は、次のように構成されていた。
即ち、各モジュール23を集熱部材としての金属プレート24に配列し、当該金属プレート24に集熱されたモジュール23の熱を、当該金属プレート24に内設されたヒートパイプ25(図9)の冷媒の蒸発部位で吸熱して、アンテナ20の左右外側に設けられたヒートパイプの冷媒の凝縮部位26、26にて放熱させる。
前記のヒートパイプ24に封入された冷媒が凝縮する凝縮部位26、26には、ヒートシンク27や当該ヒートシンク27に冷却風を送るためのファン28等が各々配設されている。
【0005】
図8に示すアンテナ20において、集熱部材としての金属プレート24は、アンテナ面21の中心を通る垂線を境にして、水平方向左右に分けて配設されているため、当該金属プレート24内のヒートパイプ25もまたアンテナ20の中央(垂線)を境にして左右に分かれている。
又、図9に示すヒートパイプ25は、U字型のヒートパイプ部分25Aと2本の直線型のヒートパイプ部分25B、25Cとに分けて描かれているが、U字型のヒートパイプ部分25Aの両端にそれぞれ直線型のヒートパイプ部分25B、25Cが接続されて作動する。尚、金属プレート24は金属材24aと24bとの張り合わせである。
【0006】
【発明が解決しようとする課題】
前記のような従来のアンテナは、一般に安定した設置状態、即ちヒートパイプに封入された冷媒に対して作用する重力の方向が一定に設置されるため、問題なく使用することができる。
しかし、航空機等その設置状態が変化する移動体に搭載する場合には、機体の傾き等の飛行姿勢の変化によって、冷媒に対する実効的な重力の方向(地球の重力加速度と遠心力等が合成された力の作用する方向)が変化してしまう。
他方、ヒートパイプに封入された液状態の冷媒は、当該ヒートパイプ内の蒸発部位と凝縮部位との間を自由に移動できるため、前記のように重力の方向が変化すると、即ち、重力方向において集熱部材内に設けられたヒートパイプの蒸発部位が凝縮部位よりも上になって高低の差が生じると、冷媒が低い方に移動してヒートパイプの凝縮部位に溜まり、当該部位の冷却機能が失われて局所的に集熱部材の温度が上がってしまう。
【0007】
図8に示す例では、偶然にも、アンテナ面21の縦中央にて、水平方向左右に集熱部材としての金属プレート24と金属プレート24とが、分かれて配置されているが、これでも、図において、仮に時計回り方向にヒートパイプ(金属プレート24)が傾くと、右側の全てのヒートパイプ24の冷媒は右側の凝縮部位26に集まってしまい、金属プレート24側には必要な冷媒がなくなって、冷却機能が失なわれる。
他方、図において左側の全てのヒートパイプ24の液状態の冷媒は、各ヒートパイプの蒸発部位の終端側、即ちアンテナ面21の縦中央側に溜まるため、冷却機能が維持される。
【0008】
この結果、アンテナ面21の右半面側領域と左半面側領域との温度差が著しくなって、右半面側のアンテナ素子群と左半面側のアンテナ素子群との双方の特性が大きく異なるため、アンテナ全体の特性が低下し、良好な信号の送受信が不能となってしまう。
このため、従来のこの種のアンテナをそのまま重力の方向が変化する移動体に搭載することができなかった。
【0009】
本発明は、実効的な重力の方向が変わり易い航空機等の移動体に搭載しても、良好な信号の送受信が可能な冷却手段を備えた移動体搭載用アンテナの提供を目的とする。
【0010】
【課題を解決するための手段】
本発明は、アンテナ素子を制御するモジュールが集熱部材に配設され、前記モジュールの熱を前記集熱部材内に設けられたヒートパイプの冷媒の蒸発部位から前記集熱部材の両端側に設けられた前記ヒートパイプの冷媒の凝縮部位に導いて、アンテナを冷却する冷却手段を備えた移動体搭載用アンテナにおいて、
両端側に凝縮部位を有し中央側に蒸発部位を有し、蒸発部位の終端を近接させた2本一対のヒートパイプを、当該両ヒートパイプの凝縮部位が前記集熱部材の両端側に各々位置し、両ヒートパイプの蒸発部位が前記集熱部材の全長にわたって熱的に接続された状態に配設し、両ヒートパイプの蒸発部位の終端は前記集熱部材に熱的に接続された別の2本一対のヒートパイプの蒸発部位の終端とは各ヒートパイプの延在方向で異なる位置としたことを内容とする。
【0012】
又、本発明は、終端は、一本のヒートパイプの途中に設けられた隔壁で冷媒が一方側から他方側に互いに移動しないように仕切られて構成されたことを内容とする。
【0013】
又、本発明は、一対のヒートパイプの少なくとも何れか一方の蒸発部位と熱的に接続された更に別のヒートパイプを集熱部材内に追加して設けたことを内容とする。
【0014】
又、本発明は、一対のヒートパイプの蒸発部位又は凝縮部位は、上下方向に平行に配設されたことを内容とする。
【0015】
又、本発明は、アンテナ素子を制御するモジュールが集熱部材に配設され、前記モジュールの熱を前記集熱部材内に設けられたヒートパイプの冷媒の蒸発部位から前記集熱部材の両端側に設けられたヒートパイプの冷媒の凝縮部位に導いて、アンテナを冷却する冷却手段を備えた移動体搭載用アンテナにおいて、
一方端側に凝縮部位を有し他方端側に蒸発部位を有する2本一対のヒートパイプを、互いの凝縮部位が前記集熱部材の両端側に各々位置し、互いの蒸発部位を前記集熱部材に熱的に接続すると共に、互いの蒸発部位の終端を近接させ、水平状態において、両ヒートパイプの蒸発部位の終端が両ヒートパイプの凝縮部位よりも低く設定し、両ヒートパイプの凝縮部位の蒸発部位を略V字型に配設したことを内容とする。
【0016】
【発明の実施の形態】
実施の形態1.
以下、実施の形態1を図1及び図2に基づいて説明する。図1はヒートパイプの配設状態を示す断面図、図2はヒートパイプが左に傾いた状態を示す断面図である。
図1及び図2において、1は一方端側に蒸発部位1aを他方端側に凝縮部位1bを有する第1のヒートパイプ、2もまた同様に、一方端側に蒸発部位2aを他方端側に凝縮部位2bを有する第2のヒートパイプである。3は表面に多数のモジュール(図示せず)が配設された集熱部材である。
前記の蒸発部位1a、2aは、各々前記第1、第2のヒートパイプ1、2に封入された液状態の冷媒4、5が集熱部材3に集熱されたモジュール(図示せず)の熱を吸熱して蒸発する部位であり、凝縮部位1b、2bは、前記第1、第2のヒートパイプ1、2の冷媒4、5が前記蒸発部位1a、2aで吸熱した熱を放熱して液状態に凝縮する部位、即ち放熱部である。
【0017】
第1及び第2のヒートパイプ1、2は、その凝縮部位1b、2bが互いに集熱部材3の延在方向の両端外側に各々対称に位置されており、蒸発部位1a、2aは集熱部材3内において、当該集熱部材3の全長(図において左右方向)にわたって平行に延在するように配設されている。
尚、本明細書における平行とは、厳密な意味での平行に限らず、略同方向に向てヒートパイプが延在する状態も含む広い意味で用いる。
【0018】
これにより、集熱部材3は、その長さ方向(図の左右方向)の全長にわたって、少なくとも何れかのヒートパイプ1、2の冷媒4、5によって吸熱されるので、局所的な高温部を生じることなく、温度が効率よく均一される。
【0019】
更に、この実施の形態1によれば、第1のヒートパイプ1の凝縮部位1bと第2のヒートパイプ2の凝縮部位2bとを、集熱部材3を中央にして当該集熱部材3の延在方向の両外側に対称の位置関係で設置することにより、集熱部材3に集熱されたモジュール(図示せず)の熱を、2本の蒸発部位1a、2aの冷媒4、5で効率よく吸熱することができ、しかも、2本のヒートパイプ1、2の動作によって効率よく速やかに、集熱部材3の熱を当該集熱部材3の両側に配設された凝縮部位1b、2bに移動させて、外気等に放熱することができる。
【0020】
又、第1及び第2ヒートパイプ1、2に傾きが無い通常のヒートパイプ動作では、蒸発部位1a、2aの温度がほぼ均一に維持されるため、集熱部材3は内設された蒸発部位1a、2aの長さ方向に沿って温度がほぼ均一となる。その結果、各モジュール延いては各アンテナ素子の温度がほぼ均一に保たれて、良好な信号の送受信ができる。
【0021】
図2において、第1及び第2のヒートパイプ1、2が、移動体と共に左側に傾いた場合(重力方向からずれた場合のほか遠心力等により冷媒に対する実効的な重力の方向が変化する場合を含む)、第2のヒートパイプ2の液状態の冷媒5は凝縮部位2bに移動して滞留するため、蒸発部位2aでは必要な液状態の冷媒5が枯渇して冷却機能が失われる。
しかし、この実施の形態1では、第1のヒートパイプ1の冷媒4が蒸発部位1aの終端に液状態で滞留するので、第1のヒートパイプ1に十分な熱処理能力があれば、集熱部材3全体の温度をほぼ均一にさせる冷却機能を維持させることができる。
【0022】
これとは逆に、第1及び第2のヒートパイプ1、2が、移動体と共に右側に傾いた場合、図示されてはいないが、第1のヒートパイプ1の液状態の冷媒4が凝縮部位1bに移動して滞留するため、蒸発部位1aでは必要な液状態の冷媒4が枯渇して冷却機能が失われる。
しかし、この場合でも、第2のヒートパイプ2の冷媒5が蒸発部位2aの終端に液状態で滞留するので、第2のヒートパイプ2に十分な熱処理能力があれば、集熱部材3全体の温度をほぼ均一にさせる冷却機能を維持させることができる。
【0023】
従って、この実施の形態1によれば、ヒートパイプ1、2が左右何れに傾いても、モジュール群延いてはアンテナ素子群の温度を均一な状態に保つことができ、アンテナを正常に機能させることができる。
【0024】
実施の形態2.
以下、実施の形態2を図3及び図4に基づいて説明する。図3はヒートパイプの配設状態を示す断面図、図4はヒートパイプが左に傾いた状態を示す断面図である。
この実施の形態3は、図3に示す通り、前記実施の形態1における第1のヒートパイプ1と第2のヒートパイプ2との各々の蒸発部位1a、2aの終端を、集熱部材3の内部に止まるように、各々の凝縮部位1b、2b側からの長さを短く形成したものであり、短く形成されたこれらの各蒸発部位1a、2aの終端に対して、各々熱的に接続された状態で、凝縮部位6b、7bを有する第3、第4のヒートパイプ6、7の蒸発部位6a、7aの終端を配設して、第1及び第3のヒートパイプ1、6と第2及び第4のヒートパイプ2、7とによる2本一対のヒートパイプラインを平行に形成したものである。
【0025】
図3に示す例では、計4本のヒートパイプ即ち第1のヒートパイプ1、第2のヒートパイプ2、第3のヒートパイプ6、第4のヒートパイプ7を用いて、2本一対のヒートパイプライン、即ち、第1のヒートパイプ1と第3のヒートパイプ6とによるパイプライン、第2のヒートパイプ2と第4のヒートパイプ7とによるパイプラインが形成されている。
尚、図中の8及び9は第3及び第4のヒートパイプ6、7に封入された液状態の冷媒である。又、これら4本のヒートパイプ1及び6と2及び7の蒸発部位(1a及び6aと2a及び7a)は、集熱部材3内において平行間隔を保ちつつも、互いに熱的に接続された状態に配設している。又、各々の他方端側の凝縮部位6b、7bは集熱部材3の両外側に位置するように設けられている。
【0026】
前記の第3及び第4のヒートパイプ6、7は、集熱部材3内において、各々蒸発部位6a、7aの終端が、前記第1及び第2のヒートパイプ1、2の蒸発部位1a、2aの終端に対して熱的に接続するように近接されている。
図示の例では、同軸的に突き合わされた第1のヒートパイプ1と第3のヒートパイプ6とのパイプラインが、集熱部材3の内部全長にわたって、蒸発部位1aと蒸発部位6aとにより分断されてはいるが、熱的には1本の第1の蒸発部位ラインとして形成された第1の蒸発部位ライン(蒸発部位1a、6a)と、この第1の蒸発部位ラインの両端側の凝縮部位1b、6bが集熱部材3の両端側に配置されて、1本の第1のヒートパイプラインが形成されている。
又、同様に、同軸的に突き合わされた第2及び第4のヒートパイプ2、7とで、集熱部材3の内部全長にわたって、蒸発部位2aと蒸発部位7aとにより分断されてはいるが熱的には1本の第2の蒸発部位ラインが形成され、この第2の蒸発部位ライン(蒸発部位2a、7a)の両端側の凝縮部位2b、7bが集熱部材3の両端側に配置されて、1本の第2のヒートパイプラインが形成されている。
【0027】
この実施の形態2によれば、前記のように構成することによって、4本のヒートパイプ1、2、6、7に傾きが無い通常のヒートパイプ動作では、集熱部材3が、平行に延在する蒸発部位1a及び6aと蒸発部位2a及び7aに沿った集熱部材3の全長にわたって、冷媒4及び8と冷媒5及び9が滞留するので、集熱部材3の全長にわたって温度がほぼ均一に維持される結果、各モジュール延いては各アンテナ素子の温度がほぼ均一に保たれて、良好な信号の送受信ができる。
【0028】
他方、図4に示すように、ヒートパイプ1、2、6、7が左に傾いた場合には、4本のヒートパイプ1、2、6、7のうち少なくとも2本、図示の例では左側に傾いているため、第1と第4のヒートパイプ1、7の各々の蒸発部位1a、7aの終端に液状態の冷媒4、9が滞留する。しかも、両冷媒4、9の滞留位置が集熱部材3内において、互いに離れた位置としているため、集熱部材3の比較的広い領域、図示の場合は、集熱部材3の全長の半分を超える領域(図中の1a、7a)にわたって、冷却機能を維持することができる。
【0029】
逆に、図示されていないが、ヒートパイプ1、2、6、7が右に傾いた場合には、4本のヒートパイプ1、2、6、7のうち少なくとも2本、即ち第2と第3のヒートパイプ2、6の各々の蒸発部位2a、6aの終端に液状態の冷媒5、8が滞留する。しかも、両冷媒5、8の滞留位置が集熱部材3内において、互いに離れた位置としているため、集熱部材3の比較的広い領域、図示の場合は、集熱部材3の全長の半分を超える領域(図中の2a、6a)にわたって、冷却機能を維持することができる。
【0030】
このように、この実施の形態2によれば、ヒートパイプ1、2、6、7が左右何れに傾いても、そのうち何れか2本のヒートパイプ(1と6、又は2と7)の液状態の冷媒(4と9又は5と8)が、集熱部材3の長手方向において、当該集熱部材3の熱を均一且つ効率的に吸熱できるよう予め設定しておくことによって、集熱部材3の局所的な温度上昇を防止することができる。
【0031】
図3及び図4に示す例は、蒸発部位の一方端側に凝縮部位を有するヒートパイプを4本用いて構成してあるが、これに限らず、例えば、蒸発部位の両端側に凝縮部位を有するヒートパイプ(図示せず)2本を、前記の2本一対のヒートパイプラインとして配設し、集熱部材3の内部全長にわたって平行に延在された第1の蒸発部位ライン(図示せず)と第2の蒸発部ライン(図示せず)のパイプ途中に、冷媒の通過を阻止する隔壁を設けて、両蒸発部位を各々左右に分断すると共に、その分断位置、即ち、傾いた状態において冷媒が滞留する位置を、当該集熱部材3において、均一に吸熱できるよう互いに離した位置に設けるよう構成してもよい。
【0032】
実施の形態3.
実施の形態3は、前記実施の形態2において、2本一対のヒートパイプラインが形成された集熱部材3内に、更に、第5のヒートパイプ10を前記一対のヒートパイプラインと平行に追加して設けたものである。これを図5及び図6に基づいて説明する。図5はヒートパイプが左に傾いた状態を示す断面図、図6は図5のヒートパイプが右に傾いた状態を示す断面図である。
【0033】
追加して設けられる第5のヒートパイプ10(以下、追加ヒートパイプ10ともいう)は当該集熱部材3に熱的に接続されて配設する。
尚、追加ヒートパイプ10は集熱部材3の延在方向に一致して配設されていれば、集熱部材3のどの位置にあってもよい。
【0034】
この場合、何れかに傾いた3本のヒートパイプ(1と7と10又は2と6と11)の下端側に溜まる3つの液状冷媒(4、9、11又は5、8、11)の位置は、集熱部材3の長手方向において、当該集熱部材3の熱を効率よく均一に吸収するように分散配置されている。
例えば、図5及び図6に示す例では、ヒートパイプ1、2、6、7、10が左右何れの方向に傾いても、傾いた際に生ずる液状冷媒(4、9、11又は5、8、11)が溜まる3つの位置、即ち蒸発部位1a、7a、10又は蒸発部位2a、6a、10の3つの終端のうち、2つが集熱部材3の両端側に位置し、残る1つが集熱部材3の中央に位置するように分散配置している。
【0035】
この実施の形態3によれば、第5のヒートパイプ10を追加したので、図5に示すように、ヒートパイプ1、2、6、7、10が左に傾いた場合には、第2のヒートパイプ2と第3のヒートパイプ6による冷却が行え難くなった集熱部材3の領域(図中の6a)の熱を、第5のヒートパイプ10の液状態の冷媒11で吸熱することができる。こうして、吸熱された熱は、例えば、熱的に接続された位置にある第4のヒートパイプ7の冷媒9を介して凝縮部位7bにて、又は第1のヒートパイプ1の冷媒4を介して凝縮部位1bにて放熱される。
【0036】
逆に、図6に示すように、ヒートパイプ1、2、6、7、10が右に傾いた場合には、第1のヒートパイプ1と第4のヒートパイプ7による冷却が行え難くなった集熱部材3の領域(図中の1a)の熱を第5のヒートパイプ10の液状態の冷媒11で吸熱することができる。吸熱された熱は、例えば、熱的に接続された位置にある第2のヒートパイプ2の冷媒5を介して凝縮部位2bにて、又は第3のヒートパイプ6の冷媒8を介して凝縮部位6b放熱される。
【0037】
この実施の形態3によれば、前記実施の形態2と同様の作用効果を発揮するだけでなく、前記実施の形態2に比べて、集熱部材3の温度分布を更に効率よく均一化することができ、アンテナ特性を正常に保つことができる。
【0038】
実施の形態4.
実施の形態4を図7に基づいて説明する。図7はヒートパイプが左に傾いた状態を示す断面図である。
図7において、水平状態の集熱部材3に対し、当該集熱部材3の両側に配置されるヒートパイプ(1、7及び2、6)の凝縮部位(1b、7b及び2b、6b)を集熱部材3の水平位置よりも高い位置に設定されるよう、前記ヒートパイプ(1、7及び2、6)の蒸発部位(1a、7a及び2a、6a)を、集熱部材3の長さ方向の内部中央に向けて斜めに傾斜させて配設する。
【0039】
集熱部材3の内部中央側に、下り傾斜で向いた各ヒートパイプ(1、7及び2、6)の蒸発部位(1a、7a及び2a、6a)及びその各終端は、前記凝縮部位(1b、7b及び2b、6b)より低くい。従って、左右に配設された一対の平行なヒートパイプ(1と7、及び2と6)は略V字型となり、略V字型に配設された各ヒートパイプ(1、2、6、7)の蒸発部位(1a、2a、6a、7a)の各終端間、及び左右に各々配設された蒸発部位(1aと6a、及び2aと7a)相互の平行間隔間は互いに熱的に接続された状態に配設する。
【0040】
この実施の形態4によれば、集熱部材3が水平状態において、左右の各ヒートパイプ(1、7と2、6)が集熱部材3の内部中央を下端側として傾斜させて配設されているので、左右何れかのヒートパイプ(1、7又は2、6)が水平状態に近くなるまで傾いたとしても、左右のヒートパイプ(1、7及び2、6)内の冷媒(4、9、及び5、8)が、蒸発部位(1a、7a、及び2a、6a)の終端、即ち集熱部材3の内部中央に滞留するため、4つに分散された全ての冷媒(4、9、及び5、8)が、その冷却機能を維持することができ、従って、アンテナ特性を正常に保つことができる。
【0041】
又、仮に、左右何れか一方が水平状態となるまで傾いたとしても、他方のヒートパイプ(1、7又は2、6)の蒸発部位(1a、7a、又は2a、6a)の終端には必ず冷媒(4、9又は5、8)が滞留する。又、水平状態となったヒートパイプ(1、7又は2、6)内の冷媒(4、9又は5、8)は、当該ヒートパイプ(1、7又は2、6)の延在方向に均一に延在することができるため、4つに分散された全ての冷媒(4、9、及び5、8)が、その冷却機能を維持することができるだけでなく、却って、効率よく集熱部材3の熱を吸熱することができる。
【0042】
尚、図示の例では、4本の、一方端側に凝縮部位1b、2b、6b、7bを有するヒートパイプ1、2、6、7を、左右に各々2本づつ平行に配設しているが、これに限らず、左右にわたって延在する1本のヒートパイプを所要のV字型に折り曲げ、折り曲げた部位に、内部の冷媒が一方側から他方側に移動(流通)させない隔壁を設けて、分断させてもよい(図示せず)。
又、図示の例では、ヒートパイプ1、2、6、7を左右に2本づつ(1、7と2、6)平行に配設しているが、何れか1本づつでもよい。
【0043】
この実施の形態4によれば、略V字型に配設されたヒートパイプ(1、7、2、6)が、左右何れか一方が水平状態となるまで傾いたとしても、必ず、他方のヒートパイプ(1、7、又は2、6)の蒸発部位(1a、7a又は2a、6a)の終端側(集熱部材3の内部中央)に冷媒(4、9又は5、8)が滞留し、しかも滞留する位置が集熱部材3の中央側であるため、集熱部材3の全長の半分を超える領域において、冷却機能を維持することができ、アンテナ特性を正常に保つことができる。
【0044】
【発明の効果】
本発明によれば、 移動体と共にヒートパイプが傾いた場合、一部のヒートパイプは液状態の冷媒が凝縮部位に移動して冷却機能を失ったとしても、他のヒートパイプの冷媒が蒸発部位に液状態で残留して冷却機能を維持することができので、アンテナ特性を正常に保つことができる。
【0045】
又、本発明によれば、移動体と共にヒートパイプが傾いた場合、一部のヒートパイプが冷却機能を失うために生じる部分的な吸熱不足が、集熱部材内に追加されたヒートパイプにより解消されるので、アンテナの正常動作を維持することができる。
【0046】
又、本発明によれば、ヒートパイプを略V字型に配設してあるので、左右何れかのヒートパイプが水平状態にまで傾いても、液状態の冷媒が集熱部材の中央に滞留することができるので、集熱部材の全域にわたって冷却機能を維持することができ、アンテナの正常動作を維持することができる。
【0047】
又、従来の各ヒートパイプの冷媒の蒸発部位終端分には、冷媒を封入するために金属製の栓等が設けられているため、当該栓の部分に冷媒が到達できないため吸熱作用が劣り、冷却手段が傾かなくても、冷却不足によって局所的に高温部が生じていたが、本発明によれば、このような局所的な高温化を緩和することができ、アンテナの正常動作を維持することができる。
【図面の簡単な説明】
【図1】 実施の形態1のヒートパイプの配設状態を示す断面図である。
【図2】 実施の形態1のヒートパイプが左に傾いた状態を示す断面図である。
【図3】 実施の形態2のヒートパイプの配設状態を示す断面図である。
【図4】 実施の形態2のヒートパイプが左に傾いた状態を示す断面図である。
【図5】 実施の形態3のヒートパイプが左に傾いた状態を示す断面図である。
【図6】 実施の形態3のヒートパイプが右に傾いた状態を示す断面図である。
【図7】 実施の形態4のヒートパイプが左に傾いた状態を示す断面図である。
【図8】 アンテナ素子を省略した従来のアンテナの正面図である。
【図9】 従来のヒートパイプの配設状態を示す斜視図である。
【符号の説明】
1 第1のヒートパイプ、2 第2のヒートパイプ、3 集熱部材、4、5、8、9、11 冷媒、6 第3のヒートパイプ、7 第4のヒートパイプ、10第5のヒートパイプ(追加ヒートパイプ)、1a、2a、6a、7a 蒸発部位、1b、2b、6b、7b 凝縮部位。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an antenna for mounting on a moving body, and more specifically, an antenna mounted on a moving body such as an aircraft whose effective gravity direction is easily changed, and a module for controlling the antenna element is disposed on a heat collecting member. The cooling of the antenna is conducted by guiding the heat of this module from the refrigerant evaporating part of the heat pipe provided in the heat collecting member to the refrigerant condensing part of the heat pipe provided on both ends of the heat collecting member. The present invention relates to an antenna for mounting on a moving body provided with a cooling means.
[0002]
[Prior art]
As a conventional technique, a cooling means for a phased array antenna described in Japanese Patent Application Laid-Open No. 11-317618 will be described with reference to FIGS. FIG. 8 is a front view of the antenna from which the antenna element is omitted, and FIG. 9 is a perspective view showing a heat pipe arrangement state.
In FIG. 8, the antenna 20 has an antenna element group 22 formed by arranging a large number of antenna elements (not shown), for example, several tens to thousands on the surface of the antenna 21, and the antenna element group 22. The module 23 is disposed in the vicinity of the antenna element corresponding to each antenna element constituting the. The antenna element is controlled by this module 23 and the signal is processed.
[0003]
Since the module 23 for controlling the antenna element is a heating element, and the antenna characteristics change relatively greatly depending on the temperature of the module 23, conventionally, the heat generation amount of each module 23 is made uniform and the heat dissipation characteristics for each module 23 are obtained. The temperature distribution of the antenna element group 22 is made uniform by using a cooling unit that keeps the temperature distribution of the module group uniform and makes it possible to send and receive good signals.
[0004]
In FIG. 8 and FIG. 9, the antenna cooling means for making the temperature distribution of the module group and thus the antenna element group 22 uniform is configured as follows.
That is, each module 23 is arranged on a metal plate 24 as a heat collecting member, and the heat of the module 23 collected on the metal plate 24 is transferred to a heat pipe 25 (FIG. 9) installed in the metal plate 24. Heat is absorbed at the refrigerant evaporation site, and is dissipated at the refrigerant condensation sites 26 and 26 of the heat pipe provided on the left and right outer sides of the antenna 20.
A heat sink 27, a fan 28 for sending cooling air to the heat sink 27, and the like are disposed at the condensation portions 26 and 26 where the refrigerant sealed in the heat pipe 24 is condensed.
[0005]
In the antenna 20 shown in FIG. 8, the metal plate 24 as a heat collecting member is arranged separately on the left and right in the horizontal direction with a perpendicular passing through the center of the antenna surface 21. The heat pipe 25 is also divided into left and right with the center (perpendicular line) of the antenna 20 as a boundary.
The heat pipe 25 shown in FIG. 9 is divided into a U-shaped heat pipe portion 25A and two linear heat pipe portions 25B and 25C, but the U-shaped heat pipe portion 25A is drawn. The linear heat pipe portions 25B and 25C are respectively connected to both ends of each of the two and operate. The metal plate 24 is a laminate of the metal materials 24a and 24b.
[0006]
[Problems to be solved by the invention]
Conventional antennas as described above can be used without problems because they are generally installed in a stable state, that is, the direction of gravity acting on the refrigerant sealed in the heat pipe is fixed.
However, when mounted on a moving body such as an aircraft whose installation state changes, the effective gravity direction (the Earth's gravitational acceleration, centrifugal force, etc.) is synthesized by the change in flight attitude such as the inclination of the aircraft. The direction in which the applied force changes).
On the other hand, since the liquid refrigerant sealed in the heat pipe can freely move between the evaporation site and the condensation site in the heat pipe, if the direction of gravity changes as described above, that is, in the direction of gravity. When the evaporation part of the heat pipe provided in the heat collecting member is above the condensation part and a difference in height occurs, the refrigerant moves to the lower side and accumulates in the condensation part of the heat pipe, and the cooling function of the part Is lost and the temperature of the heat collecting member rises locally.
[0007]
In the example shown in FIG. 8, the metal plate 24 and the metal plate 24 as heat collecting members are arranged separately at the horizontal center in the vertical center of the antenna surface 21 by chance. In the figure, if the heat pipe (metal plate 24) is tilted in the clockwise direction, the refrigerant of all the right heat pipes 24 gathers in the right condensation part 26, and there is no necessary refrigerant on the metal plate 24 side. The cooling function is lost.
On the other hand, since the refrigerant in the liquid state of all the heat pipes 24 on the left side in the drawing is accumulated at the terminal end side of the evaporation portion of each heat pipe, that is, the longitudinal center side of the antenna surface 21, the cooling function is maintained.
[0008]
As a result, the temperature difference between the right half surface side region and the left half surface side region of the antenna surface 21 becomes significant, and the characteristics of both the right half surface side antenna element group and the left half surface side antenna element group are greatly different. The characteristics of the entire antenna are deteriorated, and good signal transmission / reception becomes impossible.
For this reason, it has been impossible to mount a conventional antenna of this type on a moving body in which the direction of gravity changes.
[0009]
An object of the present invention is to provide an antenna for mounting on a moving body equipped with a cooling means capable of transmitting and receiving a good signal even when mounted on a moving body such as an aircraft whose effective gravity direction is easily changed.
[0010]
[Means for Solving the Problems]
In the present invention, a module for controlling an antenna element is disposed on a heat collecting member, and heat of the module is provided on both ends of the heat collecting member from a refrigerant evaporation portion of a heat pipe provided in the heat collecting member. In the antenna for mounting on a moving body provided with a cooling means for guiding the refrigerant to the condensed portion of the heat pipe and cooling the antenna,
A pair of two having condensing sites at both ends, an evaporation site at the center, and the ends of the evaporation sites being close to each other The heat pipes are arranged in such a manner that the condensation sites of the heat pipes are located on both ends of the heat collecting member, and the evaporation sites of both heat pipes are thermally connected over the entire length of the heat collecting member. And the end of the evaporation part of both heat pipes was made into a different position in the extending direction of each heat pipe from the end of the evaporation part of another pair of heat pipes thermally connected to the heat collecting member. The content.
[0012]
In addition, the present invention is characterized in that the end is configured to be partitioned by a partition wall provided in the middle of one heat pipe so that the refrigerant does not move from one side to the other side.
[0013]
In addition, the present invention is characterized in that a further heat pipe thermally connected to the evaporation site of at least one of the pair of heat pipes is additionally provided in the heat collecting member.
[0014]
Further, the present invention is characterized in that the evaporation sites or the condensation sites of the pair of heat pipes are arranged in parallel in the vertical direction.
[0015]
Further, according to the present invention, a module for controlling the antenna element is disposed on the heat collecting member, and heat of the module from both sides of the heat collecting member from a refrigerant evaporation portion of a heat pipe provided in the heat collecting member In the antenna for mounting on a moving body provided with a cooling means for guiding the refrigerant to the condensation part of the heat pipe provided in
Two pairs of heat pipes having a condensing site on one end side and an evaporating site on the other end side, each condensing site is located on both ends of the heat collecting member, and each evaporating site is the heat collecting site. In addition to being thermally connected to the members, the ends of the evaporation sites are close to each other, and in the horizontal state, the evaporation sites of both heat pipes are set lower than the condensation sites of both heat pipes. The evaporating part is arranged in a substantially V shape.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
The first embodiment will be described below with reference to FIGS. FIG. 1 is a cross-sectional view showing a heat pipe arrangement state, and FIG. 2 is a cross-sectional view showing a state where the heat pipe is tilted to the left.
1 and 2, reference numeral 1 denotes a first heat pipe 2 having an evaporation site 1a on one end side and a condensation site 1b on the other end side. Similarly, an evaporation site 2a is set on the other end side. It is the 2nd heat pipe which has condensation part 2b. Reference numeral 3 denotes a heat collecting member having a large number of modules (not shown) disposed on the surface.
The evaporation parts 1a and 2a are provided in a module (not shown) in which liquid refrigerants 4 and 5 sealed in the first and second heat pipes 1 and 2 are collected by the heat collecting member 3, respectively. It is a part that absorbs heat and evaporates, and the condensation parts 1b and 2b dissipate the heat absorbed by the refrigerants 4 and 5 of the first and second heat pipes 1 and 2 at the evaporation parts 1a and 2a. It is the site | part condensed to a liquid state, ie, a thermal radiation part.
[0017]
The first and second heat pipes 1 and 2 have their condensing parts 1b and 2b symmetrically positioned on the outer sides of both ends in the extending direction of the heat collecting member 3, and the evaporation parts 1a and 2a are heat collecting members. 3, the heat collecting member 3 is disposed so as to extend in parallel over the entire length (left and right direction in the drawing).
In addition, parallel in this specification is not limited to parallel in a strict sense, but is used in a broad sense including a state in which the heat pipe extends in substantially the same direction.
[0018]
Thereby, since the heat collecting member 3 is absorbed by the refrigerants 4 and 5 of at least one of the heat pipes 1 and 2 over the entire length in the length direction (left and right direction in the figure), a local high temperature portion is generated. And the temperature is made uniform efficiently.
[0019]
Further, according to the first embodiment, the condensing part 1b of the first heat pipe 1 and the condensing part 2b of the second heat pipe 2 are extended with the heat collecting member 3 in the center. By installing in a symmetrical positional relationship on both outer sides in the current direction, the heat of the module (not shown) collected by the heat collecting member 3 is efficiently transferred by the refrigerants 4 and 5 of the two evaporation parts 1a and 2a. The heat collecting member 3 can absorb heat well, and the heat of the heat collecting member 3 can be quickly and efficiently transferred to the condensation sites 1b and 2b disposed on both sides of the heat collecting member 3 by the operation of the two heat pipes 1 and 2. It can be moved to dissipate heat to the outside air.
[0020]
Further, in the normal heat pipe operation in which the first and second heat pipes 1 and 2 are not inclined, the temperature of the evaporation parts 1a and 2a is maintained substantially uniform, so that the heat collecting member 3 is provided inside the evaporation part. The temperature becomes substantially uniform along the length direction of 1a and 2a. As a result, the temperature of each module and each antenna element can be kept substantially uniform, and good signal transmission and reception can be achieved.
[0021]
In FIG. 2, when the first and second heat pipes 1 and 2 are tilted to the left together with the moving body (when the effective gravity direction with respect to the refrigerant changes due to centrifugal force or the like in addition to the case where it deviates from the gravity direction) Since the refrigerant 5 in the liquid state of the second heat pipe 2 moves and stays in the condensing part 2b, the necessary refrigerant 5 is depleted in the evaporation part 2a and the cooling function is lost.
However, in the first embodiment, since the refrigerant 4 of the first heat pipe 1 stays in the liquid state at the end of the evaporation site 1a, if the first heat pipe 1 has sufficient heat treatment capability, the heat collecting member It is possible to maintain a cooling function that makes the temperature of the whole 3 substantially uniform.
[0022]
On the contrary, when the first and second heat pipes 1 and 2 are tilted to the right together with the moving body, the liquid state refrigerant 4 of the first heat pipe 1 is condensed, although not shown. Since it moves to 1b and stays, in the evaporation part 1a, the necessary liquid state refrigerant 4 is depleted and the cooling function is lost.
However, even in this case, since the refrigerant 5 of the second heat pipe 2 stays in the liquid state at the end of the evaporation site 2a, if the second heat pipe 2 has sufficient heat treatment capability, the entire heat collecting member 3 A cooling function that makes the temperature substantially uniform can be maintained.
[0023]
Therefore, according to the first embodiment, even if the heat pipes 1 and 2 are inclined to the left or right, the temperature of the module group and the antenna element group can be kept uniform, and the antenna functions normally. be able to.
[0024]
Embodiment 2. FIG.
Hereinafter, the second embodiment will be described with reference to FIGS. FIG. 3 is a cross-sectional view showing a heat pipe arrangement state, and FIG. 4 is a cross-sectional view showing a state where the heat pipe is tilted to the left.
In the third embodiment, as shown in FIG. 3, the ends of the evaporation sites 1 a and 2 a of the first heat pipe 1 and the second heat pipe 2 in the first embodiment are connected to the heat collecting member 3. The length from each condensation site | part 1b, 2b side is formed short so that it may stop inside, and it is thermally connected to the terminal of each of these evaporation site | parts 1a, 2a formed short, respectively. In this state, the end portions of the evaporation portions 6a and 7a of the third and fourth heat pipes 6 and 7 having the condensation portions 6b and 7b are disposed, and the first and third heat pipes 1 and 6 and the second heat pipes In addition, a pair of two heat pipes formed by the fourth heat pipes 2 and 7 are formed in parallel.
[0025]
In the example shown in FIG. 3, a total of four heat pipes, that is, a first heat pipe 1, a second heat pipe 2, a third heat pipe 6, and a fourth heat pipe 7 are used. A pipeline, that is, a pipeline composed of the first heat pipe 1 and the third heat pipe 6 and a pipeline composed of the second heat pipe 2 and the fourth heat pipe 7 are formed.
In the figure, 8 and 9 are liquid refrigerants sealed in the third and fourth heat pipes 6 and 7. In addition, the four heat pipes 1, 6 and 2 and 7 evaporation portions (1a and 6a and 2a and 7a) are thermally connected to each other while maintaining a parallel interval in the heat collecting member 3. It is arranged. Further, the condensing sites 6 b and 7 b on the other end side are provided so as to be located on both outer sides of the heat collecting member 3.
[0026]
In the heat collecting member 3, the third and fourth heat pipes 6 and 7 have the evaporation sites 6a and 7a terminated at the evaporation sites 1a and 2a of the first and second heat pipes 1 and 2, respectively. In close proximity to thermally connect to the end of the.
In the illustrated example, the pipeline of the first heat pipe 1 and the third heat pipe 6 that are coaxially abutted is divided by the evaporation site 1a and the evaporation site 6a over the entire inner length of the heat collecting member 3. However, the first evaporation part line (evaporation part 1a, 6a) formed as one first evaporation part line thermally and the condensation part on both ends of the first evaporation part line 1b and 6b are arrange | positioned at the both ends of the heat collecting member 3, and the one 1st heat pipeline is formed.
Similarly, the second and fourth heat pipes 2 and 7 that are coaxially abutted with each other are divided by the evaporation portion 2a and the evaporation portion 7a over the entire inner length of the heat collecting member 3, but are heated. Specifically, one second evaporation part line is formed, and the condensation parts 2b and 7b on both ends of the second evaporation part line (evaporation parts 2a and 7a) are arranged on both ends of the heat collecting member 3. Thus, one second heat pipeline is formed.
[0027]
According to the second embodiment, the heat collecting member 3 extends in parallel in the normal heat pipe operation in which the four heat pipes 1, 2, 6, and 7 are not inclined by being configured as described above. Since the refrigerants 4 and 8 and the refrigerants 5 and 9 stay over the entire length of the heat collecting member 3 along the existing evaporation parts 1a and 6a and the evaporation parts 2a and 7a, the temperature is almost uniform over the entire length of the heat collecting member 3. As a result, the temperature of each module and each antenna element can be kept substantially uniform, so that a good signal can be transmitted and received.
[0028]
On the other hand, as shown in FIG. 4, when the heat pipes 1, 2, 6, and 7 are tilted to the left, at least two of the four heat pipes 1, 2, 6, and 7, on the left side in the illustrated example Therefore, the refrigerants 4 and 9 in the liquid state stay at the end of the evaporation sites 1a and 7a of the first and fourth heat pipes 1 and 7, respectively. In addition, since the residence positions of the refrigerants 4 and 9 are separated from each other in the heat collecting member 3, a relatively wide area of the heat collecting member 3, in the illustrated case, half of the total length of the heat collecting member 3 is used. The cooling function can be maintained over the exceeding region (1a, 7a in the figure).
[0029]
Conversely, although not shown, when the heat pipes 1, 2, 6, 7 are tilted to the right, at least two of the four heat pipes 1, 2, 6, 7, ie, the second and second The refrigerants 5 and 8 in the liquid state stay at the end of the evaporation sites 2a and 6a of the three heat pipes 2 and 6, respectively. In addition, since the residence positions of the refrigerants 5 and 8 are separated from each other in the heat collecting member 3, a relatively wide area of the heat collecting member 3, in the illustrated case, half of the total length of the heat collecting member 3 is used. A cooling function can be maintained over the area | region (2a, 6a in a figure).
[0030]
As described above, according to the second embodiment, even if the heat pipes 1, 2, 6, and 7 are inclined to the left and right, any two of the heat pipes (1 and 6 or 2 and 7) are liquids. The refrigerant (4 and 9 or 5 and 8) in the state is set in advance so that the heat of the heat collecting member 3 can be absorbed uniformly and efficiently in the longitudinal direction of the heat collecting member 3. 3 local temperature rise can be prevented.
[0031]
The example shown in FIGS. 3 and 4 is configured by using four heat pipes having a condensing part on one end side of the evaporation part. However, the present invention is not limited to this. For example, condensing parts are provided on both end sides of the evaporation part. Two heat pipes (not shown) are arranged as a pair of the two heat pipes, and a first evaporation site line (not shown) extending in parallel over the entire inner length of the heat collecting member 3. ) And a second evaporating section line (not shown) in the middle of the pipe, a partition wall for preventing the passage of the refrigerant is provided to divide both evaporation parts to the left and right, and in the divided position, that is, in an inclined state You may comprise so that the position where a refrigerant | coolant stagnates may be provided in the heat collection member 3 in the position away from each other so that it can absorb heat uniformly.
[0032]
Embodiment 3 FIG.
In the third embodiment, a fifth heat pipe 10 is further added in parallel with the pair of heat pipelines in the heat collecting member 3 in which two pairs of heat pipelines are formed in the second embodiment. It is provided. This will be described with reference to FIGS. 5 is a cross-sectional view showing a state in which the heat pipe is tilted to the left, and FIG. 6 is a cross-sectional view showing a state in which the heat pipe in FIG. 5 is tilted to the right.
[0033]
An additional fifth heat pipe 10 (hereinafter, also referred to as an additional heat pipe 10) is thermally connected to the heat collecting member 3 and disposed.
The additional heat pipe 10 may be located at any position on the heat collecting member 3 as long as the additional heat pipe 10 is disposed so as to coincide with the extending direction of the heat collecting member 3.
[0034]
In this case, the positions of the three liquid refrigerants (4, 9, 11 or 5, 8, 11) accumulated on the lower end side of the three heat pipes (1 and 7 and 10 or 2 and 6 and 11) inclined to one of them Are distributed in the longitudinal direction of the heat collecting member 3 so as to efficiently and uniformly absorb the heat of the heat collecting member 3.
For example, in the example shown in FIGS. 5 and 6, even if the heat pipes 1, 2, 6, 7, 10 are tilted in any direction, the liquid refrigerant (4, 9, 11 or 5, 8 generated when tilted) 11), two of the three ends of the evaporation sites 1a, 7a and 10 or the evaporation sites 2a, 6a and 10 are located at both ends of the heat collecting member 3, and the remaining one is the heat collecting member. The members 3 are arranged in a distributed manner so as to be located at the center.
[0035]
According to the third embodiment, since the fifth heat pipe 10 is added, as shown in FIG. 5, when the heat pipes 1, 2, 6, 7, 10 are inclined to the left, the second heat pipe 10 is added. The heat of the region of the heat collecting member 3 (6a in the figure) that has become difficult to cool by the heat pipe 2 and the third heat pipe 6 can be absorbed by the liquid state refrigerant 11 of the fifth heat pipe 10. it can. Thus, the absorbed heat is, for example, at the condensing part 7b via the refrigerant 9 of the fourth heat pipe 7 located at the thermally connected position or via the refrigerant 4 of the first heat pipe 1. Heat is dissipated at the condensation site 1b.
[0036]
Conversely, as shown in FIG. 6, when the heat pipes 1, 2, 6, 7, 10 are tilted to the right, it becomes difficult to perform cooling by the first heat pipe 1 and the fourth heat pipe 7. The heat of the region (1a in the drawing) of the heat collecting member 3 can be absorbed by the liquid state refrigerant 11 of the fifth heat pipe 10. The absorbed heat is, for example, condensed at the condensing part 2b via the refrigerant 5 of the second heat pipe 2 at the thermally connected position or condensed through the refrigerant 8 of the third heat pipe 6. 6b is dissipated.
[0037]
According to the third embodiment, not only the same effects as those of the second embodiment are exhibited, but also the temperature distribution of the heat collecting member 3 is made more efficient and uniform as compared with the second embodiment. The antenna characteristics can be kept normal.
[0038]
Embodiment 4 FIG.
The fourth embodiment will be described with reference to FIG. FIG. 7 is a cross-sectional view showing a state in which the heat pipe is tilted to the left.
In FIG. 7, the condensing sites (1b, 7b and 2b, 6b) of the heat pipes (1, 7, and 2, 6) disposed on both sides of the heat collecting member 3 are collected with respect to the heat collecting member 3 in the horizontal state. The evaporating sites (1a, 7a and 2a, 6a) of the heat pipes (1, 7 and 2, 6) are set in the longitudinal direction of the heat collecting member 3 so as to be set at a position higher than the horizontal position of the heat member 3. It is inclined and arranged toward the center of the interior.
[0039]
The evaporation part (1a, 7a and 2a, 6a) of each heat pipe (1, 7 and 2, 6) facing downwardly inclined toward the inner center side of the heat collecting member 3 and its end are connected to the condensation part (1b 7b and 2b, 6b). Therefore, a pair of parallel heat pipes (1 and 7, and 2 and 6) arranged on the left and right sides are substantially V-shaped, and each heat pipe (1, 2, 6, 7) between the end portions of the evaporation sites (1a, 2a, 6a, 7a) and between the parallel intervals of the evaporation sites (1a and 6a and 2a and 7a) disposed on the left and right sides, are thermally connected to each other. It arranges in the state where it is done.
[0040]
According to the fourth embodiment, when the heat collecting member 3 is in a horizontal state, the left and right heat pipes (1, 7, 2 and 6) are disposed so as to be inclined with the inner center of the heat collecting member 3 as the lower end side. Therefore, even if one of the left and right heat pipes (1, 7 or 2, 6) is tilted until it approaches a horizontal state, the refrigerant (4, 9, 5, 8) stays at the end of the evaporation site (1 a, 7 a, 2 a, 6 a), that is, the inner center of the heat collecting member 3, so that all the refrigerants dispersed in four (4, 9 , And 5, 8) can maintain its cooling function, and therefore the antenna characteristics can be kept normal.
[0041]
Also, even if either the left or right side is tilted until it becomes horizontal, the end of the evaporation site (1a, 7a or 2a, 6a) of the other heat pipe (1, 7 or 2, 6) must be The refrigerant (4, 9 or 5, 8) stays. In addition, the refrigerant (4, 9 or 5, 8) in the heat pipe (1, 7, or 6, 6) in a horizontal state is uniform in the extending direction of the heat pipe (1, 7, or 2, 6). Therefore, all the refrigerants (4, 9, and 5, 8) dispersed in four can not only maintain the cooling function but also efficiently collect the heat collecting member 3. Can absorb the heat.
[0042]
In the example shown in the figure, four heat pipes 1, 2, 6, and 7 each having condensing sites 1b, 2b, 6b, and 7b on one end side are arranged in parallel on the left and right sides. However, the present invention is not limited to this, and a partition that prevents the internal refrigerant from moving (circulating) from one side to the other side is provided at the bent portion of a single heat pipe that extends over the left and right sides. , May be divided (not shown).
In the illustrated example, two heat pipes 1, 2, 6, and 7 are arranged in parallel on the left and right sides (1, 7 and 2, 6), but any one of them may be provided.
[0043]
According to the fourth embodiment, even if the heat pipe (1, 7, 2, 6) arranged in a substantially V shape is inclined until either one of the left and right is in a horizontal state, Refrigerant (4, 9 or 5, 8) stays at the terminal side (inside the center of the heat collecting member 3) of the evaporation part (1a, 7a or 2a, 6a) of the heat pipe (1, 7, or 2, 6). Moreover, since the staying position is on the center side of the heat collecting member 3, the cooling function can be maintained in a region exceeding half the total length of the heat collecting member 3, and the antenna characteristics can be kept normal.
[0044]
【The invention's effect】
According to the present invention, when the heat pipe is tilted together with the moving body, even if some of the heat pipes lose the cooling function due to the liquid refrigerant moving to the condensation site, Therefore, the antenna characteristics can be maintained normally.
[0045]
Further, according to the present invention, when the heat pipe is tilted together with the moving body, the partial heat absorption shortage caused by the loss of the cooling function of some heat pipes is solved by the heat pipe added in the heat collecting member. Therefore, the normal operation of the antenna can be maintained.
[0046]
Further, according to the present invention, since the heat pipe is arranged in a substantially V shape, the liquid refrigerant stays in the center of the heat collecting member even if either the left or right heat pipe is inclined to the horizontal state. So that the cooling function can be maintained over the entire area of the heat collecting member, and the normal operation of the antenna can be maintained. In wear.
[0047]
In addition, since the end of the evaporation site of the refrigerant of each conventional heat pipe is provided with a metal plug or the like to enclose the refrigerant, the refrigerant cannot reach the plug portion, so the endothermic action is inferior, Even if the cooling means is not tilted, the high temperature portion is locally generated due to insufficient cooling. However, according to the present invention, such local high temperature can be alleviated and the normal operation of the antenna is maintained. be able to.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an arrangement state of a heat pipe according to a first embodiment.
FIG. 2 is a cross-sectional view showing a state where the heat pipe of the first embodiment is tilted to the left.
FIG. 3 is a cross-sectional view showing an arrangement state of a heat pipe according to a second embodiment.
FIG. 4 is a cross-sectional view showing a state where the heat pipe of the second embodiment is tilted to the left.
FIG. 5 is a cross-sectional view showing a state in which the heat pipe of the third embodiment is tilted to the left.
FIG. 6 is a cross-sectional view showing a state in which the heat pipe of the third embodiment is tilted to the right.
FIG. 7 is a cross-sectional view showing a state where the heat pipe of the fourth embodiment is tilted to the left.
FIG. 8 is a front view of a conventional antenna in which an antenna element is omitted.
FIG. 9 is a perspective view showing an arrangement state of a conventional heat pipe.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st heat pipe, 2nd 2nd heat pipe, 3 Heat collecting member 4, 5, 8, 9, 11 Refrigerant, 6 3rd heat pipe, 7th 4th heat pipe, 10th 5th heat pipe (Additional heat pipe) 1a, 2a, 6a, 7a Evaporation site, 1b, 2b, 6b, 7b Condensation site.

Claims (5)

アンテナ素子を制御するモジュールが集熱部材に配設され、前記モジュールの熱を前記集熱部材内に設けられたヒートパイプの冷媒の蒸発部位から前記集熱部材の両端側に設けられた前記ヒートパイプの冷媒の凝縮部位に導いて、アンテナを冷却する冷却手段を備えた移動体搭載用アンテナにおいて、
両端側に凝縮部位を有し中央側に蒸発部位を有し、蒸発部位の終端を近接させた2本一対のヒートパイプを、当該両ヒートパイプの凝縮部位が前記集熱部材の両端側に各々位置し、両ヒートパイプの蒸発部位が前記集熱部材の全長にわたって熱的に接続された状態に配設し、両ヒートパイプの蒸発部位の終端は前記集熱部材に熱的に接続された別の2本一対のヒートパイプの蒸発部位の終端とは各ヒートパイプの延在方向で異なる位置としたことを特徴とする移動体搭載用アンテナ。
The module for controlling the antenna element is disposed on the heat collecting member, and the heat provided on the both ends of the heat collecting member from the evaporation portion of the refrigerant of the heat pipe provided in the heat collecting member. In the antenna for mounting on a moving body, which is provided with a cooling means for cooling the antenna by guiding the refrigerant to the condensation part of the pipe
A pair of heat pipes having a condensing part on both ends, an evaporation part on the center side, and the end of the evaporation part being close to each other, and the condensing parts of both heat pipes on the both ends of the heat collecting member, respectively Located in a state where the evaporation parts of both heat pipes are thermally connected over the entire length of the heat collecting member, and the terminal ends of the evaporation parts of both heat pipes are separately connected to the heat collecting member. An antenna for mounting on a moving body, characterized in that the position of the evaporation part of the pair of two heat pipes is different in the extending direction of each heat pipe.
終端は、一本のヒートパイプの途中に設けられた隔壁で冷媒が一方側から他方側に互いに移動しないように仕切られて構成されたことを特徴とする請求項1に記載の移動体搭載用アンテナ。  2. The moving body mounting device according to claim 1, wherein the end is configured to be partitioned by a partition wall provided in the middle of one heat pipe so that the refrigerant does not move from one side to the other side. antenna. 一対のヒートパイプの少なくとも何れか一方の蒸発部位と熱的に接続された更に別のヒートパイプを集熱部材内に追加して設けたことを特徴とする請求項1又は請求項2に記載の移動体搭載用アンテナ。  3. The heat collecting member according to claim 1, further comprising another heat pipe thermally connected to at least one of the evaporation parts of the pair of heat pipes. Mobile mounting antenna. 一対のヒートパイプの蒸発部位又は凝縮部位は、上下方向に平行に配設されたことを特徴とする請求項1乃至請求項3の何れか1項に記載の移動体搭載用アンテナ。Evaporation site or condensation site of the pair of heat pipes, the mobile mounting antenna according to any one of claims 1 to 3, characterized in that disposed in parallel in the vertical direction. アンテナ素子を制御するモジュールが集熱部材に配設され、前記モジュールの熱を前記集熱部材内に設けられたヒートパイプの冷媒の蒸発部位から前記集熱部材の両端側に設けられたヒートパイプの冷媒の凝縮部位に導いて、アンテナを冷却する冷却手段を備えた移動体搭載用アンテナにおいて、
一方端側に凝縮部位を有し他方端側に蒸発部位を有する2本一対のヒートパイプを、互いの凝縮部位が前記集熱部材の両端側に各々位置し、互いの蒸発部位を前記集熱部材に熱的に接続すると共に、互いの蒸発部位の終端を近接させ、水平状態において、両ヒートパイプの蒸発部位の終端が両ヒートパイプの凝縮部位よりも低く設定し、両ヒートパイプの凝縮部位の蒸発部位を略V字型に配設したことを特徴とする移動体搭載用アンテナ。
A module for controlling the antenna element is disposed on the heat collecting member, and heat pipes provided on both ends of the heat collecting member from the refrigerant evaporation portion of the heat pipe provided in the heat collecting member In the antenna for mounting on a moving body provided with a cooling means for guiding the refrigerant to the condensation site of the
Two pairs of heat pipes having a condensing site on one end side and an evaporating site on the other end side, each condensing site is located on both ends of the heat collecting member, and each evaporating site is the heat collecting site. In addition to being thermally connected to the members, the ends of the evaporation sites are close to each other, and in the horizontal state, the evaporation sites of both heat pipes are set lower than the condensation sites of both heat pipes. An antenna for mounting on a moving body, characterized in that the evaporating part is arranged in a substantially V shape.
JP2002053690A 2002-02-28 2002-02-28 Mobile mounted antenna Expired - Fee Related JP3908060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053690A JP3908060B2 (en) 2002-02-28 2002-02-28 Mobile mounted antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053690A JP3908060B2 (en) 2002-02-28 2002-02-28 Mobile mounted antenna

Publications (2)

Publication Number Publication Date
JP2003258173A JP2003258173A (en) 2003-09-12
JP3908060B2 true JP3908060B2 (en) 2007-04-25

Family

ID=28665053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053690A Expired - Fee Related JP3908060B2 (en) 2002-02-28 2002-02-28 Mobile mounted antenna

Country Status (1)

Country Link
JP (1) JP3908060B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5765047B2 (en) * 2011-05-02 2015-08-19 富士通株式会社 Multi-loop heat pipe and electronic device
US9606586B2 (en) * 2012-01-23 2017-03-28 Microsoft Technology Licensing, Llc Heat transfer device
JP6203165B2 (en) * 2014-12-05 2017-09-27 三菱電機株式会社 Array module
JP2020106207A (en) * 2018-12-27 2020-07-09 川崎重工業株式会社 Loop-type heat pipe and transporter
JP7050996B2 (en) * 2019-02-22 2022-04-08 三菱電機株式会社 Cooling device and power conversion device

Also Published As

Publication number Publication date
JP2003258173A (en) 2003-09-12

Similar Documents

Publication Publication Date Title
US7174950B2 (en) Heat transfer system for a satellite including an evaporator
JP4929400B2 (en) Electronic system with free space optical elements
KR100436970B1 (en) Cooling device for electrical parts in box of moving object
EP1599081A2 (en) Thermal management system and method for electronic equipment mounted on coldplates
KR102329245B1 (en) A cooling apparatus for electronic elements
TWI741592B (en) Heat sink
JP3908060B2 (en) Mobile mounted antenna
JPS59154B2 (en) electronic equipment housing
CN108736094A (en) Battery system for motor vehicle
JP2021039980A (en) Electronic controller
CN101156126B (en) Cooling system for electronic devices, in particular computers
JPH07243782A (en) Heat pipe type radiator
JP2001504207A (en) Containers for housing devices that generate heat
CN110679207B (en) Cooling device
KR102366925B1 (en) Antenna apparatus
CN106061180B (en) Airborne control box
US7239514B2 (en) Heat transfer structure for electronic devices
JP5624771B2 (en) Heat pipe and heat sink with heat pipe
KR100605484B1 (en) Loop-type heat pipe having td-pcm cold storage module containing condenser and cooling apparatus using the heat pipe
EP4023469A1 (en) Cooling device and vehicle including the same
JP4011272B2 (en) Semiconductor cooling device
CN214469442U (en) Heat exchanger
JP2011002175A (en) Cooling system
CN117215382A (en) Multi-surface heat dissipation piece and chassis
CN114650696A (en) Thermosiphon radiator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees