JP3907822B2 - Ice heat storage device and method of operating ice heat storage device - Google Patents

Ice heat storage device and method of operating ice heat storage device Download PDF

Info

Publication number
JP3907822B2
JP3907822B2 JP08835298A JP8835298A JP3907822B2 JP 3907822 B2 JP3907822 B2 JP 3907822B2 JP 08835298 A JP08835298 A JP 08835298A JP 8835298 A JP8835298 A JP 8835298A JP 3907822 B2 JP3907822 B2 JP 3907822B2
Authority
JP
Japan
Prior art keywords
water
ice
cooling coil
stored
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08835298A
Other languages
Japanese (ja)
Other versions
JPH11287487A (en
Inventor
泰男 井口
尚紀 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP08835298A priority Critical patent/JP3907822B2/en
Publication of JPH11287487A publication Critical patent/JPH11287487A/en
Application granted granted Critical
Publication of JP3907822B2 publication Critical patent/JP3907822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、氷蓄熱装置および氷蓄熱装置の運転方法に関し、さらに詳しくは冷水利用運転中の冷却能力不足を防止することのできる氷蓄熱装置および氷蓄熱装置の運転方法に関する。
【0002】
【従来の技術】
氷蓄熱装置は、蓄熱に深夜電力を利用できるだけでなく、蓄熱能力が非常に高いものであるため、近年では広く用いられている。かかる氷蓄熱装置として、冷却コイルと、この冷却コイルの下方に水面が維持される貯水槽とを備え、製氷運転の際に貯水槽からの貯留水を冷却コイル外面に受けて冷却し、冷却コイル外面に氷を形成しかつ貯え、冷水利用運転の際には貯水槽の貯留水を冷水利用部に供給して利用したのち、利用済みの水を冷却コイル外面の氷表面を巡りつつ流下させて冷却し、冷却した水を貯水槽に循環させるタイプの氷蓄熱装置が知られている。本出願人による特開平5−240538号公報(特公平8−20152号公報)に示す流下液膜式氷蓄熱装置がこのタイプに該当する。
【0003】
図3は従来の流下液膜式氷蓄熱装置の具体例100を示しており、このものは、ケーシング104の下部を貯水槽102とし、ケーシング104内における、貯水槽102の水面の上方に製氷用冷媒の通る冷却コイル101を配設し、かつ冷却コイル101の上方に複数の散水器を配設してなるものである。冷却コイル101はケーシング104外部の冷凍機105と連結しており、この冷凍機105との間で製氷用冷媒を循環させるようになっている。
【0004】
そして、製氷時には、貯水槽102内の水を製氷用給水ポンプ106により直接に散水器103に供給し、散水器103から冷却コイル101上に散布する。散布された水は冷却コイル101の外表面を上部から下部へと巡りながら流下する過程で、冷却コイル101内を循環する製氷用冷媒により冷却され氷となる。この着氷位置は冷却コイル101の下部から上部へとしだいに進み、最終的には冷却コイル101全体に及ぶ。このようにして、冷却コイル101外面に氷が貯えられる。
【0005】
一方、冷水利用運転時には、貯水槽102内の冷水を冷水供給ポンプ111により冷水利用部110に供給し、当該冷水利用部110において利用(熱交換)する。次いで、利用済みの水を散水器103に供給し、この散水器103から散布する。散布された水は冷却コイル101表面に貯えられた氷の表面を巡りながら流下する過程で冷却され、しかる後貯水槽102に戻される。この際、冷却コイル101から剥離して落下する氷もあり、この落下氷は貯水槽102内の水を冷却する。
【0006】
従来、かかる流下液膜式の氷蓄熱装置では、冷水利用運転の際に冷水利用部110で必要とする水温の冷水を常に得るために、1回の冷水利用運転に必要とされる量よりも多い量(以下、余分貯氷量ともいう)の氷を製造して貯えていた。この場合、冷水利用運転を終えたときにもある程度の氷が冷却コイル101外面に融け残ることになる。
【0007】
他方、流下液膜式の氷蓄熱装置では、冷却コイル101に貯えた氷の量だけ貯水槽102の貯水量が減少する。また、貯氷量および貯水量の和は初期貯水量(氷量が0の場合の貯水量)と等しく、かつ一定である。よって、従来は、例えば製氷運転開始前に、貯水槽102の貯水量を測定し、この貯水量と初期貯水量との差をとることで冷却コイル101の残氷量を求め、この残氷量に基づいて当該製氷運転の際の製氷量を決定していた。
【0008】
【発明が解決しようとする課題】
しかしながら、かかる従来の流下液膜式の氷蓄熱装置では、冷水利用運転中に冷却能力が不足し、所望の温度の冷水を得られないことがあった。
【0009】
そこで、本発明の主たる課題は、流下液膜式の氷蓄熱装置において生ずる、冷水利用運転中の冷却能力不足を防止することにある。
【0010】
【課題を解決するための手段】
上記課題を解決した本発明のうち、請求項1記載の氷蓄熱装置は、冷却コイルと、この冷却コイルの下方に水面が維持される貯水槽とを備え、
製氷運転時、前記貯水槽からの貯留水を前記冷却コイル外面に受けて冷却し、前記冷却コイル外面に氷を形成しかつ貯え、
冷水利用運転時、前記貯水槽の貯留水を冷水利用部に供給して利用したのち、利用済みの水を前記冷却コイル外面の氷表面を巡りつつ流下させて冷却し、冷却した水を前記貯水槽に循環させる氷蓄熱装置において;
前記貯水槽に対して外部から補給水を供給する補給手段と、前記冷水利用部へ供給する水の温度を測定する水温測定手段とを設け、
前記冷水利用運転中に前記水温測定手段による測定水温が設定温度を超えた場合、その後に前記補給手段により前記貯水槽に対して補給水を供給するとともに、前記貯水槽の貯留水を前記冷却コイル外面の残氷表面を巡りつつ流下させてその残氷を融解させるように構成したことを特徴とするものである。
【0011】
また、請求項2記載の氷蓄熱装置は、冷却コイルと、この冷却コイルの下方に水面が維持される貯水槽とを備え、
製氷運転時、前記貯水槽からの貯留水を前記冷却コイル外面に受けて冷却し、前記冷却コイル外面に氷を形成しかつ貯え、
冷水利用運転時、前記貯水槽の貯留水を冷水利用部に供給して利用したのち、利用済みの水を前記冷却コイル外面の氷表面を巡りつつ流下させて冷却し、冷却した水を前記貯水槽に循環させる氷蓄熱装置において;
前記貯水槽に対して外部から補給水を供給する補給手段と、
前記貯水槽における貯水量調節手段と、
前記冷水利用部へ供給する水の温度を測定する水温測定手段と、を設け、
前記冷却コイル外面に残氷がある時点で、前記補給手段により前記貯水槽に対して補給水を供給するとともに、前記貯水槽の貯留水を前記冷却コイル外面の残氷表面を巡りつつ流下させてその残氷を融解させ、融解後の前記貯水槽における貯水量を前記貯水量調節手段によって所定量に調節するように構成し、かつ、前記冷水利用運転中に前記水温測定手段による測定水温が設定温度を超えた場合、その後に前記補給手段により前記貯水槽に対して補給水を供給するとともに、前記貯水槽の貯留水を前記冷却コイル外面の残氷表面を巡りつつ流下させてその残氷を融解させ、融解後の前記貯水槽における貯水量を前記貯水量調節手段によって所定量に調節するように構成したことを特徴とするものである。
【0012】
一方、請求項3記載の氷蓄熱装置の運転方法は、冷却コイルと、この冷却コイルの下方に水面が維持される貯水槽とを備え、
製氷運転時、前記貯水槽からの貯留水を前記冷却コイル外面に受けて冷却し、前記冷却コイル外面に氷を形成しかつ貯え、
冷水利用運転時、前記貯水槽の貯留水を冷水利用部に供給して利用したのち、利用済みの水を前記冷却コイル外面の氷表面を巡りつつ流下させて冷却し、冷却した水を前記貯水槽に循環させる氷蓄熱装置を用い;
前記冷水利用運転中に前記冷水利用部へ供給する水の温度を測定し、その測定水温が設定温度を超えた場合、その後に前記貯水槽に対して外部から補給水を供給するとともに、前記貯水槽の貯留水を前記冷却コイル外面の残氷表面を巡りつつ流下させてその残氷を融解させるように構成したことを特徴とする方法である。
【0013】
<作用>
本発明者は、流下液膜式の氷蓄熱装置において生ずる冷水利用運転中の冷却能力不足が、少なくとも下記の2つの原因によることを知見している。
【0014】
(イ)第1の原因
第1の原因として、冷却コイルにおけるブリッジングがある。すなわち、このタイプの氷蓄熱装置では、前述のように冷水利用運転によって氷を全て使いきることなく、冷却コイルに氷を残したままで次の製氷運転を行う。すると、この製氷運転においては残氷部分の上にも着氷するため、当該残氷部分が周囲よりも厚肉な氷に成長する。また、この厚肉な氷は続く冷水利用運転時において当然に融け難いので、当該運転終了後、より厚肉な氷として残存する。このようにして、製氷運転と冷水製造運転とを繰り返すにつれ、冷却コイルの特定部位に、冷却コイル間に跨る大きな氷塊が形成される。
【0015】
そして、かかるブリッジングを生ずると、氷の表面積が極端に小さくなり、氷塊の内部が実質的に冷却に寄与しなくなること、および氷塊部分に氷が偏在しているので、氷に接触せずに又は接触するが殆ど冷却されずに貯水槽に至る水が多くなることによって、冷却能力が著しく低下する。その結果、冷却コイルに必要十分量の氷が残存しているにもかかわらず、冷水利用運転の際に冷却能力が不足し、所望の温度の冷水を得られなくなるのである。以下、このような冷却に実質的に寄与しない氷または氷部分を無効氷といい、逆に冷却に実質的に寄与する有効な氷または氷部分を有効氷ともいう。
【0016】
この水温上昇現象を経時的にみると、図4に示すグラフのようになる。製氷運転(実線)および冷水利用運転(点線)を繰り返し行っていると、貯氷量に異常はないものの、その実、時が経つに連れて二点鎖線で示すように無効氷が増加し、有効氷が減少していく。そして、冷水利用運転中において冷却コイルに有効氷が無くなり無効氷だけになると、見かけ上冷水を製造・供給するのに十分な量の氷を冷却コイルに貯えているにもかかわらず、貯水槽から冷水利用部に供給する水の温度が急に上昇するのである。
【0017】
(ロ)第2の原因
第2の原因としては、水循環経路外への水の蒸発、漏出等による保有水の一部消失がある。すなわち、従来は、例えば製氷運転開始前に貯水量を測定し、この測定結果と「初期貯水量=貯水量+貯氷量」の関係に基づき残氷量を求め、この残氷量に基づいて、当該製氷運転における製氷量を決定していた。したがって、保有水の一部が消失していた場合、残氷量を多めに見積ることにより製氷量を少なめにしてしまい、その結果次の冷水利用運転中に冷却能力不足を生じていたのである。
【0018】
本発明は、これらの知見に基づきなされたものであって、先ず請求項1記載の氷蓄熱装置は、水温測定手段により冷水利用部へ供給する水の温度を測定し、その測定水温が設定温度を超えた場合、冷却コイルには無効氷が残っているだけであるので、その後に補給手段により貯水槽に対して補給水を供給するとともに、貯水槽の貯留水を冷却コイル外面の残氷表面を巡りつつ流下させることにより、その残っている無効氷を融解させるものである。
【0019】
このように残氷を融解させることで無効氷が無くなりまたは減り、無効氷の増加(前述の第1の原因)による冷水利用運転中の冷却能力不足を防止することができる。また、冷水利用運転中に残氷が無効氷だけになったことを条件として残氷を融解させると、無駄な残氷融解を行わなくて済み、装置の運転コストを最小限度に抑えることができる。
【0020】
次に、請求項2記載の氷蓄熱装置は、冷却コイル外面に残氷がある時点で、補給手段により貯水槽に対して補給水を供給するとともに、貯水槽の貯留水を冷却コイル外面の残氷表面を巡りつつ流下させてその残氷を融解させるだけでなく、融解後の貯水槽における貯水量を貯水量調節手段によって所定量に調節するものである。
【0021】
このように、補給水により残氷を融解させるとともに、融解後の貯水槽における貯水量を貯水量調節手段によって所定量に調節することにより、保有水量が確実にリセットされ、保有水の一部が消失している場合には、その消失分の水が補給される。
【0022】
よって、この氷蓄熱装置では、残氷を融解させることで無効氷が無くなりまたは減り、無効氷の増加(前述の第1の原因)による冷水利用運転中の冷却能力不足を防止することができるだけでなく、保有水量をリセットすることにより保有水の一部消失(前述の第2の原因)による冷却能力不足を防止することができる。
【0023】
また、上記請求項2記載の氷蓄熱装置においては、冷水利用部へ供給する水の温度を測定する水温測定手段を設け、冷水利用運転中に水温測定手段による測定水温が設定温度を超えた場合、その後に補給手段により貯水槽に対して補給水を供給するとともに、貯水槽の貯留水を冷却コイル外面の残氷表面を巡りつつ流下させてその残氷を融解させ、融解後の貯水槽における貯水量を貯水量調節手段によって所定量に調節する。
【0024】
よって、この氷蓄熱装置においては、残氷の融解により無効氷の増加による冷水利用運転中の冷却能力不足を防止でき、保有水量をリセットすることにより保有水の一部消失による冷却能力不足を防止でき、さらに、冷水利用運転中に残氷が無効氷だけになったことを条件として残氷を融解させることで、無駄な残氷融解を行わなくて済み、装置の運転コストを最小限度に抑えることができる。
【0025】
請求項3記載の氷蓄熱装置の運転方法については、上記請求項1記載の氷蓄熱装置の作用と同様であるので、ここでは敢えて説明を略す。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態について添付図面を参照しつつ詳述する。
図1は、本発明に係る流下液膜式の氷蓄熱装置10を用いた氷蓄熱式空調システム1のフロー図を示している。この氷蓄熱装置10は、ケーシング14の下部を貯水槽12とし、ケーシング14内における、貯水槽12の水面の上方に製氷用冷媒の通る冷却コイル11を配設し、かつ冷却コイル11の上方に複数の散水器を配設してなるものである。また、ケーシング14内には、貯水槽12の水位を測定する水位測定手段16が設けられている。この水位測定手段16としては、超音波センサなどの非接触型センサを用いるのが好ましいが、接触型センサを用いることもできる。一方、ケーシング14の外には冷却コイル11内に製氷用冷媒を流通・循環させる冷凍機15が設置されている。P1は製氷用冷媒循環ポンプを示している。
【0027】
本システム1では、かかる氷蓄熱装置10の貯水槽12と冷水利用部たる空調機2とが冷水供給ポンプP2を有する冷水供給路R1により連結され、空調機2と散水器13とが温水返送路R2により連結されて、冷水利用運転時の水循環経路が形成されている。また、これら冷水供給路R1と温水返送路R2とが製氷用給水路R3により連結されて製氷運転時の水循環経路が形成されており、この製氷用給水路R3には製氷用給水ポンプP3が配設されている。
【0028】
そして、かかる構成の下で、本発明に従って貯水槽12から空調機2へ供給する水の温度を測定するべく、冷水供給路R1の貯水槽12寄りに水温測定手段19を設けている。また、補給手段として、補給水調整弁B1を有し、貯水槽12の上側においてケーシング14内に通じる補給水路17を設け、貯水量調節手段として、貯水槽12内の貯水量が所定量(例えば初期貯水量)よりも多くなると少なくとも残氷の融解後において貯水槽12内の貯留水を外部に排出するオーバーフロー路18を設けている。
【0029】
以下、この氷蓄熱式空調システム1の運転方法について説明する。
<製氷運転>
製氷時には、製氷用冷媒循環ポンプP1により、冷凍機15と冷却コイル11との間で製氷用冷媒を循環させるとともに、貯水槽12内の水を冷水供給路R1、製氷用給水路R3および温水返送路R2を介して散水器13に供給し、この散水器13からコイル状冷却コイル11に向けて散布する。散布された水は冷却コイル11の表面を上部から下部へと巡りながら流下する過程で、冷却コイル11内を通る製氷用冷媒により冷却され氷となる。この着氷位置は冷却コイル11の下部から上部へと徐々に移動していく。通常の場合、冷却コイル11全体に着氷する。このようにして、冷却コイル11表面に氷が貯えられる。
【0030】
貯氷量が1回の冷水利用運転に必要な量(すなわち、1回の冷水利用運転中、冷水利用部の許容水温範囲内の冷水を送り続けることができる氷量)に余分貯氷量を加えた量に達したならば、製氷運転を終える。
【0031】
なお、この製氷量は当該製氷運転開始前の残氷量に応じて定める。この残氷量は、従来例と同様に製氷運転開始前の貯水量と初期貯水量との差より求めることができる。すなわち、図2に示すように、水位測定手段16により貯水槽12の水位を測定し、この測定水位と初期水位(貯氷量が0の時の製氷部の水位)との差を求め、この水位差と貯水槽12のサイズとに基づいて貯水槽12の貯水量と初期貯水量との差を求め、これを残氷量とする。
【0032】
<冷水利用運転>
冷水利用時には、貯水槽12内の冷水を冷水供給路R1を介して空調機2に供給し、この空調機2において利用(熱交換)させる。次いで、利用済みの水を温水返送路R2を介して散水器13に供給し、この散水器13から冷却コイル11上に散布する。散布された水は冷却コイル11外面に貯えられた氷の表面を巡りながら流下する過程で徐々に冷却され、しかる後貯水槽12に落下供給される。この際、冷却コイル11に付着した氷は融解する。また融解により冷却コイル11から剥離して落下する氷もあり、この落下氷によって貯水槽12内の水も冷却される。冷却され貯水槽12に戻された水は、再び空調機2へ供給される。なお、例えば貯氷量の不足により空調機2が必要とする温度の冷水を送ることができない場合には製氷運転を同時に行うことができる。
また、かかる冷水利用運転の際、貯水槽12から空調機2へ供給する冷水の温度を水温測定手段19により測定し、この測定水温と設定温度(例えば空調機2で必要な冷水温度の上限、さらに具体的には7℃)との比較を定期的または連続的に行う。その結果、冷水利用運転中に水温測定手段19の測定水温が設定温度を超えなかった場合には、冷水利用運転終了後に再び製氷運転を行う。
【0033】
一方、冷水利用運転の際に水温測定手段19の測定水温が設定温度を超えた場合、その後、例えば当該冷水利用運転終了後に次述の残氷融解および保有水量リセット運転を行う。
【0034】
<残氷融解および保有水量リセット運転>
本運転においては、先ず補給水調整弁B1を開け、補給水路17を介して補給水(例;水道水等の常温または高温の水)を外部から貯水槽12に対して供給する。貯水槽12の貯水量がオーバーフローレベルに達すると、オーバーフロー路18を介して貯水槽12内の水が排出される。この排水が始まったならば補給水調整弁B1を閉じるとともに、製氷用給水ポンプP3を作動させて貯水槽12内の水を冷水供給路R1、製氷用給水路R3、温水返送路R2、散水器13、冷却コイル11配設部、貯水槽12の順に循環させる。この場合、冷水供給ポンプP2を作動させて、貯水槽12内の水を冷水供給路R1、空調機2、温水返送路R2、散水器13、冷却コイル11、貯水槽12の順に循環させることもできる。
【0035】
この循環水は、冷却コイル11配設部において、冷却コイル外面の残氷表面を巡りつつ流下し、その流下過程で冷却コイル11外面に付着残存する無効氷を融解させる。また、貯水槽12の貯留水に浮遊する氷も融解する。残氷が融解してくると循環水量は増えるが、この増加分の水はオーバーフロー路18を介して排出される。この水循環は、残氷量に応じて残氷が完全に融解するまで行われる。残氷が融解したならば、製氷用給水ポンプP3(空調機2を介して水循環を行った場合は冷水供給ポンプP2)を停止させる。オーバーフロー路18からの排水が止まったならば、本運転を終了する。このようにして、冷却コイル11に残氷の全く無い、かつ保有水量の過不足の無い状態となる。本運転終了後、再び製氷運転を開始する。
【0036】
なお、本発明者の実験によると、かかる残氷融解および保有水リセットを行うことになるのは、設定温度が7℃の場合で、多くても月に1、2回程度であり、給水量は初期保有水量の5%程度であることを知見している。
【0037】
<その他>
(イ)上記例では、冷水利用運転中に水温測定手段19の測定水温が設定温度を超えたことを条件として残氷融解等を行うこととしたが、かかる水温測定手段19を設けずに、必要に応じて残氷融解等を行うようにしても良い。特に、無効氷の増加速度および保有水量の消失速度は、装置毎に略一定となる傾向があるので、予め無効氷量が無い状態から余分貯氷量を超えるまでの期間や保有水量をリセットしてから保有水量の消失により冷却能力不足を生ずるまでの期間を求めておき、これらの期間に応じて定期的に残氷の融解や保有水量のリセットを行うこともできる。
【0038】
また、上記例のように、冷水利用運転中に水温測定手段19の測定水温が設定温度を超えたことのみを残氷融解等の条件とすると、残氷融解等では解決しない原因により冷却能力不足が生じた場合にも残氷融解等を行ってしまう。そこで、冷水利用運転中に水温測定手段による温度測定を行うとともに、前述の方法により貯氷量を求め、水温測定手段による測定水温が設定温度を超え、かつ貯氷量が所定量を超えている場合に、前述の残氷融解を行うことも提案する。この場合、より確実に、冷水利用運転中に残氷が無効氷だけになったことを検出できる。
【0039】
(ロ)本発明では、水温測定手段の配設部位は、貯水槽から冷水利用部へ供給する水の温度を測定しうる位置であれば適宜定めることができる。例えば、上記例の氷蓄熱装置10において、水温測定手段19を貯水槽12内の冷水送出部分近傍に設けることもできる。
【0040】
(ハ)上記例は、補給水路17により貯水槽12に直接に補給水を供給するものである。しかし、本発明では、貯水槽12に対して外部から補給水を供給できれば良く、従って間接的に貯水槽に補給水を供給しても良い。上記例でいうならば、散水器13、冷水供給路R1、温水返送路R2、製氷用給水路R3等を介して、外部から補給水を貯水槽12に対して供給するように構成しても良い。
【0041】
(ニ)上記例では、水量調節手段として、貯水槽12の貯水量が所定量以上になると貯留水を排水させるオーバーフロー路18を設けたが、本発明の貯水量調節手段はこれに限定されない。例えば図1に示すように、貯水槽12の適宜の位置(例えば側壁下端部または底壁)に排水路20を連通させ、この排水路20に排水調整弁21を配設し、水位測定手段16の水位測定結果より貯水量を求め、この貯水量が所定量(例えば初期貯水量)以上である場合には排水調整弁21を開けて貯水槽12の貯留水を排水路20を介して排出させ、貯水量が所定量となったならば排水調整弁21を閉じるようにして、水量調節を行っても良い。
【0042】
【発明の効果】
以上の通り、本発明によれば、流下液膜式の氷蓄熱装置において生ずる、冷水利用運転時の冷却能力不足を防止することができる。
【図面の簡単な説明】
【図1】 本発明に係る氷蓄熱装置を用いた氷蓄熱式空調システムのフロー図である。
【図2】 貯氷量の測定原理を示す説明図である。
【図3】 従来の氷蓄熱装置の概要図である。
【図4】 装置運転中の貯氷量および無効氷量の変化を示すグラフである。
【符号の説明】
1…氷蓄熱式空調システム、2…空調機、10…氷蓄熱装置、11…コイル状冷却コイル、12…貯水槽、13…散水器、14…ケーシング、15…冷凍機、16…水位測定手段、17…補給水路、18…オーバーフロー路、19…水温測定手段、R1…冷水供給路、R2…温水返送路、R3…製氷用給水路、P1…製氷用冷媒循環ポンプ、P2…冷水供給ポンプ、P3…製氷用給水ポンプ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ice heat storage device and an operation method of the ice heat storage device, and more particularly to an ice heat storage device and an operation method of the ice heat storage device that can prevent a lack of cooling capacity during operation using cold water.
[0002]
[Prior art]
An ice heat storage device has been widely used in recent years because it can not only use late-night power for heat storage but also has a very high heat storage capacity. As such an ice heat storage device, a cooling coil and a water storage tank whose water surface is maintained below the cooling coil are provided, and the stored water from the water storage tank is received on the outer surface of the cooling coil during ice making operation to cool the cooling coil. Ice is formed and stored on the outer surface, and in cold water operation, the water stored in the water tank is supplied to the cold water utilization section and used, and then the used water is allowed to flow around the ice surface on the outer surface of the cooling coil. An ice heat storage device of a type that cools and circulates the cooled water to a water storage tank is known. A falling liquid film type ice heat storage device disclosed in Japanese Patent Laid-Open No. 5-240538 (Japanese Patent Publication No. 8-20152) by the present applicant corresponds to this type.
[0003]
FIG. 3 shows a specific example 100 of a conventional falling liquid film type ice heat storage device, in which a lower part of a casing 104 is a water storage tank 102 and the inside of the casing 104 is used for making ice above the water surface of the water storage tank 102. A cooling coil 101 through which the refrigerant passes is disposed, and a plurality of watering devices are disposed above the cooling coil 101. The cooling coil 101 is connected to a refrigerator 105 outside the casing 104, and an ice-making refrigerant is circulated between the cooling coil 101 and the refrigerator 105.
[0004]
At the time of ice making, water in the water storage tank 102 is directly supplied to the sprinkler 103 by the ice-making water supply pump 106 and sprayed from the sprinkler 103 onto the cooling coil 101. In the process of flowing down the outer surface of the cooling coil 101 from the upper part to the lower part, the sprayed water is cooled by the ice-making refrigerant circulating in the cooling coil 101 to become ice. The icing position gradually advances from the lower part to the upper part of the cooling coil 101 and finally reaches the entire cooling coil 101. In this way, ice is stored on the outer surface of the cooling coil 101.
[0005]
On the other hand, during the cold water use operation, the cold water in the water storage tank 102 is supplied to the cold water use unit 110 by the cold water supply pump 111 and is used (heat exchange) in the cold water use unit 110. Next, the used water is supplied to the sprinkler 103 and sprayed from the sprinkler 103. The sprayed water is cooled while flowing down around the surface of the ice stored on the surface of the cooling coil 101, and then returned to the water storage tank 102. At this time, some ice peels off from the cooling coil 101 and falls, and this falling ice cools the water in the water storage tank 102.
[0006]
Conventionally, in such a falling liquid film type ice heat storage device, in order to always obtain cold water having a water temperature required in the cold water utilization unit 110 during cold water utilization operation, it is more than the amount required for one cold water utilization operation. A large amount of ice (hereinafter also referred to as extra ice storage) was produced and stored. In this case, a certain amount of ice remains on the outer surface of the cooling coil 101 even after the cold water operation is finished.
[0007]
On the other hand, in the falling liquid film type ice heat storage device, the amount of water stored in the water storage tank 102 is reduced by the amount of ice stored in the cooling coil 101. Further, the sum of the ice storage amount and the water storage amount is equal to the initial water storage amount (the water storage amount when the ice amount is 0) and is constant. Therefore, conventionally, for example, before the start of ice making operation, the amount of water stored in the water storage tank 102 is measured, and the amount of remaining ice in the cooling coil 101 is obtained by taking the difference between this amount of stored water and the initial amount of stored water. Based on the above, the amount of ice making during the ice making operation was determined.
[0008]
[Problems to be solved by the invention]
However, in such a conventional falling liquid film type ice heat storage device, the cooling capacity is insufficient during the operation using cold water, and cold water having a desired temperature may not be obtained.
[0009]
Therefore, a main problem of the present invention is to prevent a lack of cooling capacity during operation using cold water, which occurs in a falling film type ice heat storage device.
[0010]
[Means for Solving the Problems]
Of the present invention that has solved the above problems, the ice heat storage device according to claim 1 includes a cooling coil and a water storage tank in which a water surface is maintained below the cooling coil.
During the ice making operation, the stored water from the water storage tank is received and cooled by the outer surface of the cooling coil, and ice is formed and stored on the outer surface of the cooling coil,
During cold water use operation, the water stored in the water tank is supplied to the cold water use section and used, and then the used water is cooled while flowing around the ice surface on the outer surface of the cooling coil, and the cooled water is stored in the water storage In an ice storage device to be circulated in the tank;
A replenishing means for supplying makeup water from the outside to the water tank, and a water temperature measuring means for measuring the temperature of the water to be supplied to the cold water utilization unit,
If the measured water temperature by the water temperature measuring means exceeds a set temperature during the cold water use operation, then supply water is supplied to the water tank by the replenishing means, and the water stored in the water tank is supplied to the cooling coil. It is characterized in that the remaining ice is melted by flowing down the remaining ice surface on the outer surface.
[0011]
The ice heat storage device according to claim 2 includes a cooling coil and a water storage tank in which a water surface is maintained below the cooling coil.
During the ice making operation, the stored water from the water storage tank is received and cooled by the outer surface of the cooling coil, and ice is formed and stored on the outer surface of the cooling coil,
During cold water use operation, the water stored in the water tank is supplied to the cold water use section and used, and then the used water is cooled while flowing around the ice surface on the outer surface of the cooling coil, and the cooled water is stored in the water storage In an ice storage device to be circulated in the tank;
Replenishing means for supplying makeup water from the outside to the water tank;
Water storage amount adjusting means in the water tank;
Water temperature measuring means for measuring the temperature of the water supplied to the cold water utilization unit,
When there is residual ice on the outer surface of the cooling coil, supply water is supplied to the water storage tank by the replenishing means, and the water stored in the water storage tank is allowed to flow around the residual ice surface of the outer surface of the cooling coil. The residual ice is melted, and the amount of water stored in the water tank after melting is adjusted to a predetermined amount by the water storage amount adjusting means, and the water temperature measured by the water temperature measuring means is set during the cold water use operation. When the temperature is exceeded, supply water is then supplied to the water storage tank by the replenishing means, and the water stored in the water storage tank is allowed to flow around the remaining ice surface on the outer surface of the cooling coil to remove the residual ice. The water storage amount in the water storage tank after being melted is adjusted to a predetermined amount by the water storage amount adjusting means.
[0012]
On the other hand, the operation method of the ice heat storage device according to claim 3 includes a cooling coil and a water storage tank in which a water surface is maintained below the cooling coil,
During the ice making operation, the stored water from the water storage tank is received and cooled by the outer surface of the cooling coil, and ice is formed and stored on the outer surface of the cooling coil,
During cold water use operation, the water stored in the water tank is supplied to the cold water use section and used, and then the used water is cooled while flowing around the ice surface on the outer surface of the cooling coil, and the cooled water is stored in the water storage Using an ice storage device to circulate in the tank;
Measure the temperature of the water supplied to the cold water utilization unit during the cold water utilization operation, and when the measured water temperature exceeds a set temperature, then supply makeup water from the outside to the water tank, and The method is characterized in that the water stored in the tank is made to flow down around the surface of the remaining ice on the outer surface of the cooling coil to melt the remaining ice.
[0013]
<Action>
The present inventor has found that the cooling capacity deficiency during the cold water use operation that occurs in the falling film type ice heat storage device is due to at least the following two causes.
[0014]
(A) First cause The first cause is bridging in the cooling coil. That is, in this type of ice heat storage device, the next ice making operation is performed while leaving the ice in the cooling coil without using up all the ice by the cold water operation as described above. Then, in this ice making operation, the remaining ice portion is also icing, so that the remaining ice portion grows into thicker ice than the surroundings. In addition, since this thick ice is naturally difficult to melt in the subsequent operation using cold water, it remains as thicker ice after the operation. As described above, as the ice making operation and the cold water production operation are repeated, a large ice block straddling the cooling coils is formed at a specific portion of the cooling coil.
[0015]
And when such bridging occurs, the surface area of ice becomes extremely small, the inside of the ice block does not substantially contribute to cooling, and the ice is unevenly distributed in the ice block part, so that it does not contact the ice. Alternatively, the cooling capacity is remarkably lowered by increasing the amount of water that comes into contact but is hardly cooled and reaches the water storage tank. As a result, even though a necessary and sufficient amount of ice remains in the cooling coil, the cooling capacity is insufficient during the operation using cold water, and cold water having a desired temperature cannot be obtained. Hereinafter, such ice or ice portion that does not substantially contribute to cooling is referred to as invalid ice, and conversely, effective ice or ice portion that substantially contributes to cooling is also referred to as effective ice.
[0016]
When this water temperature rise phenomenon is seen over time, a graph shown in FIG. 4 is obtained. When ice making operation (solid line) and cold water use operation (dotted line) are repeated, there is no abnormality in the amount of ice stored, but as the time goes by, invalid ice increases as indicated by the two-dot chain line, and effective ice increases. Will decrease. And if there is no effective ice in the cooling coil during the operation using cold water and there is only invalid ice, it seems that the ice is stored in the cooling coil in spite of the apparent amount of ice stored in the cooling coil. The temperature of the water supplied to the cold water utilization section suddenly rises.
[0017]
(B) Second cause As a second cause, there is a partial disappearance of retained water due to evaporation, leakage, etc. of water outside the water circulation path. That is, conventionally, for example, the amount of stored water is measured before the start of ice making operation, the amount of remaining ice is obtained based on the relationship between this measurement result and “initial amount of stored water = stored amount + ice stored amount”, and based on this amount of remaining ice, The amount of ice making in the ice making operation was determined. Therefore, when a part of the retained water has disappeared, the amount of ice making is reduced by estimating the amount of remaining ice too much, resulting in insufficient cooling capacity during the next cold water operation.
[0018]
The present invention has been made on the basis of these findings. First, the ice heat storage device according to claim 1 measures the temperature of the water supplied to the cold water utilization section by the water temperature measuring means, and the measured water temperature is the set temperature. In this case, only the invalid ice remains in the cooling coil, so that the supply water is supplied to the water storage tank by the replenishing means, and the water stored in the water storage tank is used as the remaining ice surface on the outer surface of the cooling coil. The remaining ineffective ice is melted by flowing down the water.
[0019]
By melting the remaining ice in this manner, the invalid ice is eliminated or reduced, and a lack of cooling capacity during the operation of using cold water due to the increase in the invalid ice (the first cause described above) can be prevented. In addition, if the remaining ice is melted on the condition that the remaining ice becomes only invalid ice during the operation using cold water, it is not necessary to melt unnecessary ice, and the operating cost of the apparatus can be minimized. .
[0020]
Next, the ice heat storage device according to claim 2 supplies replenishment water to the water storage tank by the replenishment means at the time when there is residual ice on the outer surface of the cooling coil, and the stored water in the water storage tank In addition to melting the remaining ice while flowing down the ice surface, the amount of water stored in the water storage tank after melting is adjusted to a predetermined amount by the storage amount adjusting means.
[0021]
In this way, the residual ice is melted with the makeup water, and the stored water amount in the storage tank after melting is adjusted to a predetermined amount by the stored water amount adjusting means, so that the retained water amount is surely reset, and a part of the retained water is If it has disappeared, water for that disappearance is replenished.
[0022]
Therefore, in this ice heat storage device, the invalid ice is eliminated or reduced by melting the residual ice, and it is only possible to prevent the lack of cooling capacity during the operation of using cold water due to the increase in invalid ice (the first cause described above). Without resetting the amount of retained water, it is possible to prevent a lack of cooling capacity due to partial disappearance of the retained water (the second cause described above).
[0023]
Further, in the ice heat storage device according to claim 2, when water temperature measuring means for measuring the temperature of the water supplied to the cold water utilization unit is provided, and the measured water temperature by the water temperature measuring means exceeds the set temperature during the cold water use operation Then, the replenishing means supplies the replenishing water to the water storage tank, and the stored water in the water storage tank flows down around the remaining ice surface on the outer surface of the cooling coil to melt the residual ice, and in the water storage tank after melting The stored water amount is adjusted to a predetermined amount by the stored water amount adjusting means.
[0024]
Therefore, in this ice heat storage device, it is possible to prevent insufficient cooling capacity during cold water use operation due to the increase in invalid ice due to melting of residual ice, and to prevent insufficient cooling capacity due to partial loss of retained water by resetting the amount of retained water In addition, by melting the remaining ice on the condition that the remaining ice becomes only invalid ice during the operation using cold water, it is not necessary to thaw unnecessary residual ice and minimize the operating cost of the device. be able to.
[0025]
Since the operation method of the ice heat storage device according to the third aspect is the same as the operation of the ice heat storage device according to the first aspect, a description thereof is omitted here.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows a flow chart of an ice thermal storage air conditioning system 1 using a falling liquid film type ice thermal storage device 10 according to the present invention. In this ice heat storage device 10, a lower portion of a casing 14 is a water storage tank 12, a cooling coil 11 through which ice-making refrigerant passes is disposed above the water surface of the water storage tank 12 in the casing 14, and above the cooling coil 11. A plurality of watering devices are provided. In the casing 14, a water level measuring means 16 for measuring the water level of the water storage tank 12 is provided. As the water level measuring means 16, a non-contact type sensor such as an ultrasonic sensor is preferably used, but a contact type sensor can also be used. On the other hand, outside the casing 14, a refrigerator 15 that circulates and circulates ice-making refrigerant in the cooling coil 11 is installed. P1 represents an ice-making refrigerant circulation pump.
[0027]
In the present system 1, the water storage tank 12 of the ice heat storage device 10 and the air conditioner 2 serving as the cold water use section are connected by a cold water supply path R1 having a cold water supply pump P2, and the air conditioner 2 and the water sprinkler 13 are connected to the hot water return path. Connected by R2, a water circulation path during cold water use operation is formed. Further, the cold water supply path R1 and the hot water return path R2 are connected by an ice making water supply path R3 to form a water circulation path during ice making operation, and an ice making water supply pump P3 is arranged in the ice making water supply path R3. It is installed.
[0028]
And in this structure, in order to measure the temperature of the water supplied from the water storage tank 12 to the air conditioner 2 according to the present invention, the water temperature measuring means 19 is provided near the water storage tank 12 of the cold water supply path R1. Further, as a replenishing means, a replenishing water adjusting valve B1 is provided, a replenishing water channel 17 leading to the inside of the casing 14 is provided on the upper side of the water storage tank 12, and a water storage amount in the water storage tank 12 is set to a predetermined amount (for example, a water storage amount adjusting means). An overflow path 18 is provided for discharging the stored water in the water storage tank 12 to the outside at least after the remaining ice melts when the amount exceeds the initial water storage amount.
[0029]
Hereinafter, the operation method of the ice heat storage type air conditioning system 1 will be described.
<Ice making operation>
During ice making, the ice making refrigerant circulation pump P1 circulates the ice making refrigerant between the refrigerator 15 and the cooling coil 11, and the water in the water storage tank 12 is returned to the cold water supply path R1, the ice making water supply path R3, and the hot water return. The water is supplied to the sprinkler 13 via the path R <b> 2, and is sprayed from the sprinkler 13 toward the coiled cooling coil 11. In the process of flowing down the surface of the cooling coil 11 from the upper part to the lower part, the sprayed water is cooled by the ice-making refrigerant passing through the cooling coil 11 to become ice. This icing position gradually moves from the lower part to the upper part of the cooling coil 11. In a normal case, the entire cooling coil 11 is iced. In this way, ice is stored on the surface of the cooling coil 11.
[0030]
Extra ice storage amount was added to the amount of ice storage required for one cold water use operation (ie, the amount of ice that can continue to send cold water within the allowable water temperature range of the cold water use section during one cold water use operation) When the amount is reached, finish the ice making operation.
[0031]
This ice making amount is determined according to the remaining ice amount before the start of the ice making operation. This residual ice amount can be obtained from the difference between the water storage amount before the start of the ice making operation and the initial water storage amount as in the conventional example. That is, as shown in FIG. 2, the water level measurement means 16 measures the water level of the water storage tank 12, determines the difference between this measured water level and the initial water level (the water level of the ice making section when the ice storage amount is 0). Based on the difference and the size of the water storage tank 12, a difference between the water storage amount of the water storage tank 12 and the initial water storage amount is obtained, and this is defined as the amount of remaining ice.
[0032]
<Cold water operation>
When using cold water, the cold water in the water storage tank 12 is supplied to the air conditioner 2 via the cold water supply path R1 and used (heat exchange) in the air conditioner 2. Next, the used water is supplied to the sprinkler 13 via the hot water return path R <b> 2 and sprayed onto the cooling coil 11 from the sprinkler 13. The sprayed water is gradually cooled in the process of flowing down the surface of the ice stored on the outer surface of the cooling coil 11, and then dropped and supplied to the water storage tank 12. At this time, the ice adhering to the cooling coil 11 melts. There is also ice that peels off from the cooling coil 11 due to melting and falls, and the water in the water storage tank 12 is cooled by the falling ice. The water cooled and returned to the water storage tank 12 is supplied to the air conditioner 2 again. In addition, for example, when cold water having a temperature required by the air conditioner 2 cannot be sent due to a shortage of ice storage, ice making operation can be performed simultaneously.
Further, during such cold water use operation, the temperature of the cold water supplied from the water storage tank 12 to the air conditioner 2 is measured by the water temperature measuring means 19, and the measured water temperature and the set temperature (for example, the upper limit of the cold water temperature necessary for the air conditioner 2, More specifically, the comparison with 7 ° C. is performed periodically or continuously. As a result, if the measured water temperature of the water temperature measuring means 19 does not exceed the set temperature during the cold water operation, the ice making operation is performed again after the cold water operation.
[0033]
On the other hand, when the measured water temperature of the water temperature measuring means 19 exceeds the set temperature during the cold water use operation, for example, after the cold water use operation is completed, the following residual ice melting and retained water amount reset operation are performed.
[0034]
<Remaining ice melting and retained water volume reset operation>
In the actual operation, first, the makeup water adjustment valve B1 is opened, and makeup water (eg, normal temperature or high temperature water such as tap water) is supplied from the outside to the water storage tank 12 through the makeup water channel 17. When the amount of water stored in the water storage tank 12 reaches the overflow level, the water in the water storage tank 12 is discharged via the overflow path 18. When this drainage begins, the make-up water adjustment valve B1 is closed and the ice making water supply pump P3 is operated to supply the water in the water storage tank 12 to the cold water supply path R1, the ice making water supply path R3, the hot water return path R2, and the water sprinkler. 13, the cooling coil 11 arrangement part, and the water storage tank 12 are circulated in this order. In this case, the cold water supply pump P2 is operated to circulate the water in the water storage tank 12 in the order of the cold water supply path R1, the air conditioner 2, the hot water return path R2, the sprinkler 13, the cooling coil 11, and the water storage tank 12. it can.
[0035]
This circulating water flows down around the remaining ice surface on the outer surface of the cooling coil at the portion where the cooling coil 11 is disposed, and melts inactive ice adhering to the outer surface of the cooling coil 11 in the flow-down process. In addition, ice floating in the water stored in the water storage tank 12 is also melted. When the remaining ice melts, the amount of circulating water increases, but this increased amount of water is discharged through the overflow path 18. This water circulation is performed until the residual ice is completely melted according to the amount of residual ice. If the remaining ice melts, the ice making water supply pump P3 (or the cold water supply pump P2 when water circulation is performed via the air conditioner 2) is stopped. If the drainage from the overflow path 18 stops, the operation is terminated. In this way, there is no residual ice in the cooling coil 11 and there is no excess or deficiency of the retained water amount. After the main operation, the ice making operation is started again.
[0036]
According to the experiments of the present inventor, the residual ice melting and the retained water reset are performed when the set temperature is 7 ° C., and at most once or twice a month. Knows that it is about 5% of the initial water content.
[0037]
<Others>
(B) In the above example, the remaining ice was melted on the condition that the measured water temperature of the water temperature measuring means 19 exceeded the set temperature during the operation using cold water, but without providing the water temperature measuring means 19, You may make it perform residual ice melting | fusing etc. as needed. In particular, the rate of increase of invalid ice and the rate of disappearance of retained water tend to be approximately constant for each device. It is also possible to obtain a period until the cooling capacity is insufficient due to the disappearance of the retained water amount, and to periodically melt the remaining ice and reset the retained water amount according to these periods.
[0038]
Further, as in the above example, if only the condition that the measured water temperature of the water temperature measuring means 19 exceeds the set temperature during the operation using cold water is a condition such as the remaining ice melting, the cooling capacity is insufficient due to a cause that cannot be solved by the remaining ice melting or the like. If this happens, the remaining ice will melt. Therefore, when the temperature is measured by the water temperature measuring means during the operation using cold water, the ice storage amount is obtained by the above-described method, and the measured water temperature by the water temperature measuring means exceeds the set temperature and the ice storage amount exceeds the predetermined amount. It is also proposed to perform the aforementioned residual ice melting. In this case, it can be detected more reliably that the remaining ice is only invalid ice during the cold water operation.
[0039]
(B) In the present invention, the location where the water temperature measuring means is disposed can be appropriately determined as long as the temperature of the water supplied from the water storage tank to the cold water utilization unit can be measured. For example, in the ice heat storage device 10 of the above example, the water temperature measuring means 19 can be provided in the vicinity of the cold water delivery portion in the water storage tank 12.
[0040]
(C) In the above example, makeup water is directly supplied to the water storage tank 12 through the makeup water channel 17. However, in the present invention, it is only necessary to supply makeup water to the water storage tank 12 from the outside. Therefore, makeup water may be indirectly supplied to the water storage tank. In the above example, makeup water may be supplied from the outside to the water storage tank 12 through the sprinkler 13, the cold water supply path R1, the hot water return path R2, the ice making water supply path R3, and the like. good.
[0041]
(D) In the above example, as the water amount adjusting means, the overflow path 18 is provided for draining the stored water when the water storage amount of the water storage tank 12 exceeds a predetermined amount, but the water storage amount adjusting means of the present invention is not limited to this. For example, as shown in FIG. 1, a drainage channel 20 is communicated with an appropriate position (for example, the lower end of the side wall or the bottom wall) of the water storage tank 12, and a drainage adjustment valve 21 is provided in the drainage channel 20, The water storage amount is obtained from the water level measurement result of the water, and when the water storage amount is equal to or greater than a predetermined amount (for example, the initial water storage amount), the drainage adjustment valve 21 is opened to discharge the stored water in the water storage tank 12 through the drainage channel 20. When the water storage amount reaches a predetermined amount, the water amount adjustment may be performed by closing the drainage adjustment valve 21.
[0042]
【The invention's effect】
As described above, according to the present invention, it is possible to prevent a lack of cooling capacity during operation using cold water, which occurs in a falling film type ice heat storage device.
[Brief description of the drawings]
FIG. 1 is a flow diagram of an ice heat storage air conditioning system using an ice heat storage device according to the present invention.
FIG. 2 is an explanatory diagram showing the principle of measuring the amount of ice stored.
FIG. 3 is a schematic view of a conventional ice heat storage device.
FIG. 4 is a graph showing changes in ice storage amount and invalid ice amount during operation of the apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ice thermal storage type | formula air conditioning system, 2 ... Air conditioner, 10 ... Ice thermal storage apparatus, 11 ... Coiled cooling coil, 12 ... Water tank, 13 ... Sprinkler, 14 ... Casing, 15 ... Refrigerator, 16 ... Water level measurement means 17 ... Supply water channel, 18 ... Overflow channel, 19 ... Water temperature measuring means, R1 ... Cold water supply channel, R2 ... Warm water return channel, R3 ... Water supply channel for ice making, P1 ... Cooling water circulation pump for ice making, P2 ... Cool water supply pump, P3 ... Water supply pump for ice making.

Claims (3)

冷却コイルと、この冷却コイルの下方に水面が維持される貯水槽とを備え、
製氷運転時、前記貯水槽からの貯留水を前記冷却コイル外面に受けて冷却し、前記冷却コイル外面に氷を形成しかつ貯え、
冷水利用運転時、前記貯水槽の貯留水を冷水利用部に供給して利用したのち、利用済みの水を前記冷却コイル外面の氷表面を巡りつつ流下させて冷却し、冷却した水を前記貯水槽に循環させる氷蓄熱装置において;
前記貯水槽に対して外部から補給水を供給する補給手段と、前記冷水利用部へ供給する水の温度を測定する水温測定手段とを設け、
前記冷水利用運転中に前記水温測定手段による測定水温が設定温度を超えた場合、その後に前記補給手段により前記貯水槽に対して補給水を供給するとともに、前記貯水槽の貯留水を前記冷却コイル外面の残氷表面を巡りつつ流下させてその残氷を融解させるように構成したことを特徴とする氷蓄熱装置。
A cooling coil and a water storage tank whose water surface is maintained below the cooling coil;
During the ice making operation, the stored water from the water storage tank is received and cooled by the outer surface of the cooling coil, and ice is formed and stored on the outer surface of the cooling coil,
During cold water use operation, the water stored in the water tank is supplied to the cold water use section and used, and then the used water is cooled while flowing around the ice surface on the outer surface of the cooling coil, and the cooled water is stored in the water storage In an ice storage device to be circulated in the tank;
A replenishing means for supplying makeup water from the outside to the water tank, and a water temperature measuring means for measuring the temperature of the water to be supplied to the cold water utilization unit,
If the measured water temperature by the water temperature measuring means exceeds a set temperature during the cold water use operation, then supply water is supplied to the water tank by the replenishing means, and the water stored in the water tank is supplied to the cooling coil. An ice heat storage device configured to melt down the remaining ice by flowing down the remaining ice surface on the outer surface.
冷却コイルと、この冷却コイルの下方に水面が維持される貯水槽とを備え、
製氷運転時、前記貯水槽からの貯留水を前記冷却コイル外面に受けて冷却し、前記冷却コイル外面に氷を形成しかつ貯え、
冷水利用運転時、前記貯水槽の貯留水を冷水利用部に供給して利用したのち、利用済みの水を前記冷却コイル外面の氷表面を巡りつつ流下させて冷却し、冷却した水を前記貯水槽に循環させる氷蓄熱装置において;
前記貯水槽に対して外部から補給水を供給する補給手段と、
前記貯水槽における貯水量調節手段と、
前記冷水利用部へ供給する水の温度を測定する水温測定手段と、を設け、
前記冷却コイル外面に残氷がある時点で、前記補給手段により前記貯水槽に対して補給水を供給するとともに、前記貯水槽の貯留水を前記冷却コイル外面の残氷表面を巡りつつ流下させてその残氷を融解させ、融解後の前記貯水槽における貯水量を前記貯水量調節手段によって所定量に調節するように構成し、かつ、前記冷水利用運転中に前記水温測定手段による測定水温が設定温度を超えた場合、その後に前記補給手段により前記貯水槽に対して補給水を供給するとともに、前記貯水槽の貯留水を前記冷却コイル外面の残氷表面を巡りつつ流下させてその残氷を融解させ、融解後の前記貯水槽における貯水量を前記貯水量調節手段によって所定量に調節するように構成したことを特徴とする氷蓄熱装置。
A cooling coil and a water storage tank whose water surface is maintained below the cooling coil;
During the ice making operation, the stored water from the water storage tank is received and cooled by the outer surface of the cooling coil, and ice is formed and stored on the outer surface of the cooling coil,
During cold water use operation, the water stored in the water tank is supplied to the cold water use section and used, and then the used water is cooled while flowing around the ice surface on the outer surface of the cooling coil, and the cooled water is stored in the water storage In an ice storage device to be circulated in the tank;
Replenishing means for supplying makeup water from the outside to the water tank;
Water storage amount adjusting means in the water tank;
Water temperature measuring means for measuring the temperature of the water supplied to the cold water utilization unit,
When there is residual ice on the outer surface of the cooling coil, supply water is supplied to the water storage tank by the replenishing means, and the water stored in the water storage tank is allowed to flow around the residual ice surface of the outer surface of the cooling coil. The residual ice is melted, and the amount of water stored in the water tank after melting is adjusted to a predetermined amount by the water storage amount adjusting means, and the water temperature measured by the water temperature measuring means is set during the cold water use operation. When the temperature is exceeded, supply water is then supplied to the water storage tank by the replenishing means, and the water stored in the water storage tank is allowed to flow around the remaining ice surface on the outer surface of the cooling coil to remove the residual ice. An ice heat storage device configured to be melted and to adjust a water storage amount in the water storage tank after melting to a predetermined amount by the water storage amount adjusting means.
冷却コイルと、この冷却コイルの下方に水面が維持される貯水槽とを備え、
製氷運転時、前記貯水槽からの貯留水を前記冷却コイル外面に受けて冷却し、前記冷却コイル外面に氷を形成しかつ貯え、
冷水利用運転時、前記貯水槽の貯留水を冷水利用部に供給して利用したのち、利用済みの水を前記冷却コイル外面の氷表面を巡りつつ流下させて冷却し、冷却した水を前記貯水槽に循環させる氷蓄熱装置を用い;
前記冷水利用運転中に前記冷水利用部へ供給する水の温度を測定し、その測定水温が設定温度を超えた場合、その後に前記貯水槽に対して外部から補給水を供給するとともに、前記貯水槽の貯留水を前記冷却コイル外面の残氷表面を巡りつつ流下させてその残氷を融解させるように構成したことを特徴とする氷蓄熱装置の運転方法。
A cooling coil and a water storage tank whose water surface is maintained below the cooling coil;
During the ice making operation, the stored water from the water storage tank is received and cooled by the outer surface of the cooling coil, and ice is formed and stored on the outer surface of the cooling coil,
During cold water use operation, the water stored in the water tank is supplied to the cold water use section and used, and then the used water is cooled while flowing around the ice surface on the outer surface of the cooling coil, and the cooled water is stored in the water storage Using an ice storage device to circulate in the tank;
Measure the temperature of the water supplied to the cold water utilization unit during the cold water utilization operation, and when the measured water temperature exceeds a set temperature, then supply makeup water from the outside to the water tank, and An operation method of the ice heat storage device, wherein the water stored in the tank is made to flow down around the surface of the remaining ice on the outer surface of the cooling coil to melt the remaining ice.
JP08835298A 1998-04-01 1998-04-01 Ice heat storage device and method of operating ice heat storage device Expired - Lifetime JP3907822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08835298A JP3907822B2 (en) 1998-04-01 1998-04-01 Ice heat storage device and method of operating ice heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08835298A JP3907822B2 (en) 1998-04-01 1998-04-01 Ice heat storage device and method of operating ice heat storage device

Publications (2)

Publication Number Publication Date
JPH11287487A JPH11287487A (en) 1999-10-19
JP3907822B2 true JP3907822B2 (en) 2007-04-18

Family

ID=13940438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08835298A Expired - Lifetime JP3907822B2 (en) 1998-04-01 1998-04-01 Ice heat storage device and method of operating ice heat storage device

Country Status (1)

Country Link
JP (1) JP3907822B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102734887A (en) * 2012-07-04 2012-10-17 张敬冲 Fan ice tray
CN104154416B (en) * 2014-07-29 2015-12-30 浙江润祁节能科技有限公司 A kind of ice-reserving method and device of utilizing cold energy of liquefied natural gas with atmospheric tower
CN110567211B (en) * 2019-10-14 2024-09-20 广东腾源蓄冷节能科技有限公司 Ice storage device and ice removing method using air temperature
CN110819376A (en) * 2019-11-20 2020-02-21 中国石油大学(华东) Petroleum distillation experimental apparatus convenient to operation

Also Published As

Publication number Publication date
JPH11287487A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
WO2008053975A1 (en) Automatic ice making machine and operation method therefor
JP3907822B2 (en) Ice heat storage device and method of operating ice heat storage device
JP4437262B2 (en) cooling tower
US4785641A (en) Drain valve control for ice cube machine
US4550572A (en) Ice machine anti-block control
JP2003185190A (en) Outdoor unit for air conditioning apparatus
JP3712402B2 (en) Cooling tower water supply / drainage control device
US6988373B2 (en) Method for operating automatic ice-making machine
JP4147026B2 (en) Cold beverage supply device
JP4529531B2 (en) Water heater
JP4110612B2 (en) Ice storage device and operation control method of ice storage device
JPS6211274B2 (en)
JP4445688B2 (en) Cold beverage supply device
JPH08233426A (en) Cold water supply device
JP2003185319A (en) Cold water supply device
JP2001002193A (en) Beverage feeder
JPH0334626Y2 (en)
JP4060140B2 (en) Ice thickness control method for beverage cooling device
JPH0674626A (en) Flowing down type ice making machine
JPH08284223A (en) Cold water supply device
JPH038925Y2 (en)
JP3249898B2 (en) Cold water supply device
JPH0447580Y2 (en)
JP2005077028A (en) Ice making machine
JPS63260653A (en) Method for controlling roll temperature in continuous casting machine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

EXPY Cancellation because of completion of term