JP3906880B2 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
JP3906880B2
JP3906880B2 JP12558598A JP12558598A JP3906880B2 JP 3906880 B2 JP3906880 B2 JP 3906880B2 JP 12558598 A JP12558598 A JP 12558598A JP 12558598 A JP12558598 A JP 12558598A JP 3906880 B2 JP3906880 B2 JP 3906880B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
engine control
air
ion current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12558598A
Other languages
Japanese (ja)
Other versions
JPH11324881A (en
Inventor
達也 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP12558598A priority Critical patent/JP3906880B2/en
Publication of JPH11324881A publication Critical patent/JPH11324881A/en
Application granted granted Critical
Publication of JP3906880B2 publication Critical patent/JP3906880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃費向上、排気浄化率向上等を狙って内燃機関を安定運転限界に制御する内燃機関制御装置に関するものである。
【0002】
【従来の技術】
近年、内燃機関(エンジン)の気筒内で混合気が燃焼する際にイオンが発生する点に着目し、このイオン電流を点火プラグを介して検出することで、ノッキング、失火等を検出する技術が提案されている。更に、最近では、イオン電流の検出値から燃焼状態を判定して、それをエンジン制御に反映させるために、特開平6−249048号公報、特開平6−193514号公報に示すように、イオン電流の検出値から燃焼ラフネス値(燃焼のばらつき度合を表すパラメータ)を算出し、この燃焼ラフネス値が目標燃焼ラフネス値に一致するように燃料噴射量やEGR量(排気還流量)をフィードバック制御することが提案されている。
【0003】
【発明が解決しようとする課題】
しかし、イオン電流は、エンジン運転条件によって大きく変動するため、イオン電流の検出値から算出した燃焼ラフネス値には、エンジン運転条件によるイオン電流の変動の影響がそのまま含まれてしまい、燃焼ラフネス値の算出精度が悪く、混合気の燃焼状態を精度良く判定できない。従って、イオン電流の検出値から算出した燃焼ラフネス値を用いてエンジン制御を行ったのでは、エンジン制御に実際の燃焼状態を精度良く反映させることができない。
【0004】
また、特開平6−34491号公報に示すように、イオン電流がしきい値以上になる期間の長さやイオン電流のピーク値のばらつきの度合によってリーン限界を検出し、リーン限界付近で空燃比制御を行うことが提案されている。しかし、イオン電流がしきい値以上になる期間の長さやイオン電流のピーク値のばらつきの度合は、エンジン運転条件によるイオン電流の変動の影響を受けて変動してしまい、リーン限界を精度良く検出することができず、リーン限界付近で空燃比制御を精度良く行うことができない。
【0005】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、イオン電流の検出情報を用いて内燃機関の制御を精度良く行うことができる内燃機関制御装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の内燃機関制御装置によれば、イオン電流検出手段の出力信号からイオン電流の発生タイミングを発生タイミング判定手段により判定し、その判定結果に基づいて内燃機関の制御値(以下「機関制御値」という)を制御手段によって内燃機関の安定運転限界付近に制御する(以下、この制御を「安定運転限界制御」という)。例えば、空燃比を稀薄化したりEGR量を増加するに従って、混合気の燃焼時の火炎伝播速度が遅くなって燃焼期間が長くなり、更に、安定運転限界領域では、火炎伝播速度不良により未燃混合気が排気行程で燃焼する後燃え発生サイクルが発生する。イオン電流は、混合気の燃焼により発生するため、安定運転限界領域では、後燃え発生サイクルにより排気行程でもイオン電流が発生する。
【0007】
この特性に着目し、本発明では、イオン電流の発生タイミングから安定運転限界を判定して内燃機関の運転状態を安定運転限界付近に制御するものである。安定運転限界におけるイオン電流の発生タイミングは、エンジン運転条件によるイオン電流の増減変動の影響を受けないため、イオン電流の発生タイミングから安定運転限界を精度良く検出することができ、安定運転限界付近で安定した内燃機関の制御が可能となる。
【0008】
しかも、請求項1に係る発明では、イオン電流が排気行程中に発生したか否かを判定し、イオン電流が排気行程中に発生する状態を内燃機関の安定運転限界として機関制御値を制御するようにしている。これにより、失火寸前の状態(着火限界)となる、例えばリーン限界、EGR限界で安定した制御が可能となり、燃費低減、排気浄化率向上等を実現できる。
【0009】
更に、請求項2,3のように、発生タイミング判定手段の判定結果から内燃機関の運転状態が安定運転限界であるか否かを判定する手段と、その判定結果に応じて機関制御値を増減補正する手段とを有し、所定期間の機関制御値の変動幅が所定範囲内に収まる毎に該機関制御値の増減補正量を縮小するようにしても良い。このようにすれば、機関制御値を安定運転限界付近に収束させることができ、安定運転限界制御を更に安定させることができる。
【0010】
また、請求項4のように、学習手段によって所定期間の機関制御値の平均値やなまし値等を求めて、これを機関制御値の初期値として学習するようにしても良い。このようにすれば、安定運転限界制御を開始又は再開する際に、機関制御値の初期値(学習値)と安定運転限界値とのずれを少なくすることができ、機関制御値を安定運転限界付近に速やかに収束させることができる。
【0011】
また、請求項5のように、安定運転限界制御を空燃比フィードバック制御中に実行するようにしても良い。つまり、空燃比フィードバック制御が停止されている期間は、内燃機関の運転状態が比較的不安定であるため、この期間に安定運転限界制御を行うと、内燃機関の運転状態が更に不安定になるおそれがある。これを回避するため、安定運転限界制御を空燃比フィードバック制御中に実行するようにすれば、内燃機関の運転状態の安定性を損なうことなく、実効性の高い安定運転限界制御を行うことができる。
【0012】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。まず、図1に基づいて点火制御系及びイオン電流検出系の回路構成を説明する。点火コイル11の一次コイル12の一端は、バッテリ電圧VB が供給される電源供給端子(+B)に接続され、該一次コイル12の他端は、点火制御用のパワートランジスタ15のコレクタに接続されている。点火コイル11の二次コイル16の一端は点火プラグ17に接続され、該二次コイル16の他端は、2つのツェナーダイオード18,19を介してグランドに接続されている。
【0013】
2つのツェナーダイオード18,19は互いに逆向きに直列接続され、一方のツェナーダイオード18にコンデンサ20が並列に接続され、他方のツェナーダイオード19にイオン電流検出抵抗21が並列に接続されている。コンデンサ20とイオン電流検出抵抗21との間の電位Vinが抵抗22を介して増幅回路23の−入力端子に入力されて増幅される。イオン電流検出回路24(イオン電流検出手段)は、ツェナーダイオード18,19、コンデンサ20、イオン電流検出抵抗21、増幅回路23等から構成されている。このイオン電流検出回路24の出力電圧(増幅回路23の出力電圧)がイオン電流信号として信号処理回路28に入力される。
【0014】
エンジン運転中は、エンジン制御回路27から出力される点火信号IGtの立ち上がり/立ち下がりでパワートランジスタ15がオン/オフする。パワートランジスタ15がオンすると、バッテリ(図示せず)から一次コイル12に一次電流が流れ、その後、パワートランジスタ15がオフすると、一次コイル12の一次電流が遮断されて、二次コイル16に高電圧が電磁誘導され、この高電圧によって点火プラグ17の電極30,29間に火花放電が発生する。
【0015】
この際、火花放電電流は点火プラグ17の接地電極29から中心電極30へ流れ、二次コイル16を経てコンデンサ20に充電されると共に、ツェナーダイオード18,19を経てグランド側に流れる。コンデンサ20の充電後は、ツェナーダイオード18のツェナー電圧によって規制されるコンデンサ20の充電電圧を電源としてイオン電流検出回路24が駆動され、次のようにしてイオン電流が検出される。
【0016】
火花放電終了後は、コンデンサ20の充電電圧によって点火プラグ17の電極30,29間に電圧が印加され、混合気が燃焼する際に発生したイオンがイオン電流として点火プラグ17の電極30,29間に流れる。このイオン電流は、中心電極30から接地電極29へ流れ、更に、グランド側からイオン電流検出抵抗21を通ってコンデンサ20に流れる。
【0017】
この際、イオン電流検出抵抗21に流れるイオン電流の変化に応じて増幅回路23の入力電位Vinが変化し、この増幅回路23の出力端子からイオン電流に応じた電圧のイオン電流信号が信号処理回路28に出力される。
【0018】
この信号処理回路28には、ノイズマスク25と比較回路26とが設けられ、ノイズマスク25では、入力されるイオン電流信号から火花放電直後のLC共振ノイズを取り除き、比較回路26では、ノイズマスク25を通過したイオン電流信号Vion を所定のしきい値Vthと比較し、Vion ≧Vthの時にハイレベル信号をエンジン制御回路27に出力する。そして、エンジン制御回路27は、比較回路26の出力Vout がローレベルからハイレベルに反転するタイミング(ラッチ時間Tup)を検出することで、イオン電流の発生タイミングを判定する。尚、このラッチ時間Tupは、エンジン制御回路27のRAM(図示せず)に一時的に記憶される。
【0019】
次に、混合気の燃焼状態とイオン電流の発生タイミングとの関係を説明する。正常燃焼時には、図2に示すように、点火後の燃焼に伴って比較的大きなイオン電流が流れる。正常燃焼時には、膨張行程で燃焼室内の混合気が全て燃焼し終えるため、膨張行程のみにイオン電流が発生し、排気行程では、イオン電流は発生しない。
【0020】
正常燃焼領域でも、空燃比を稀薄化したりEGR量(排気還流量)を増加するに従って、混合気の燃焼時の火炎伝播速度が遅くなって燃焼期間が長くなると共に、イオン電流のピーク値が低下する。この傾向が更に進むと、膨張行程で、火炎伝播速度不良により燃焼室内の混合気の一部が燃焼せずに残り、その未燃混合気が排気行程で燃焼する後燃え発生サイクルが発生する。このような運転領域は、失火が発生する寸前の安定運転限界領域であり、空燃比をリーンにできる限界(リーン限界)であると共に、EGR量を増加できる限界(EGR限界)でもある。従って、空燃比やEGR量を安定運転限界付近に制御することで、燃費低減や排気浄化率向上が可能となる。
【0021】
この安定運転限界領域では、図3に示すように、膨張行程でイオン電流が発生すると共に、排気行程でも、後燃え発生サイクルによりイオン電流が発生する。このため、膨張行程と排気行程の双方でイオン電流信号Vion がしきい値Vthを越え、イオン電流が検出される。
【0022】
この安定運転限界領域より燃焼性が更に低下すると、膨張行程で火炎伝播不良により火炎が燃え広がる途中で消える“失火”が発生する。失火時には、膨張行程で火炎が途中で消えるまで、イオン電流が僅かに発生するが、イオン電流信号Vion がしきい値Vth以下であるため、イオン電流は検出されない。尚、完全失火時には、着火不良により混合気に全く着火されないため、イオン電流は全く発生しない。
【0023】
以上のようなイオン電流の発生タイミングと混合気の燃焼状態、安定運転限界との関係を考慮し、エンジン制御回路27は、イオン電流の発生タイミングから安定運転限界を判定して、機関制御値(例えば空燃比)を安定運転限界付近(リーン限界付近)に制御する。この安定運転限界制御は、エンジン制御回路27のROM(記憶媒体)に記憶された図5のイオン電流発生タイミング判定プログラムと図6の安定運転限界制御プログラムによって次のように実行される。
【0024】
図5のイオン電流発生タイミング判定プログラムは、例えば各気筒の排気行程終了毎に実行され、特許請求の範囲でいう発生タイミング判定手段としての役割を果たす。本プログラムが起動されると、まずステップ101で、点火後にイオン電流が検出されたか否か(つまり比較回路26からハイレベル信号Vout が出力されたか否か)を判定し、もし、イオン電流が検出されなかった場合(つまり失火が検出された場合)には、念のために空燃比をリッチ側に戻すために、ステップ105に進み、燃焼フラグIexを後述する安定運転限界時と同じく「1」にセットして本プログラムを終了する。
【0025】
これに対し、点火後にイオン電流が検出された場合には、ステップ102に進み、比較回路26の出力Vout がローレベルからハイレベルに反転したタイミング(ラッチ時間Tup)をエンジン制御回路27のRAM(図示せず)から読み込む。尚、点火後にイオン電流が複数回検出された場合には、最も遅い時期のラッチ時間Tupを読み込む。
【0026】
この後、ステップ103で、ラッチ時間Tupをクランク角に換算して、イオン電流の発生タイミングθupをクランク角で求める。この後、イオン電流の発生タイミングθupが排気行程中であるか否か、つまり、θ1 <θup<θ2 (θ1 は排気行程開始時のクランク角、θ2 は排気行程終了時のクランク角)であるか否かを判定し、イオン電流の発生タイミングθupが排気行程中であれば、ステップ105に進み、燃焼フラグIexを、安定運転限界(失火寸前の状態)を意味する「1」にセットして本プログラムを終了する。
【0027】
一方、イオン電流の発生タイミングθupが排気行程中でないと判定されれば、ステップ106に進み、燃焼フラグIexを、正常燃焼を意味する「0」にセットして本プログラムを終了する。
【0028】
図6の安定運転限界制御プログラムは、例えば噴射タイミング毎(所定クランク角毎)に実行され、特許請求の範囲でいう制御手段としての役割を果たす。本プログラムが起動されると、まずステップ201で、空燃比フィードバック制御中であるか否かを判定し、空燃比フィードバック制御中でなければ、以降の安定運転限界制御の処理を行わず、後述する補正回数カウンタiを初期値「1」にリセットして(ステップ202)、本プログラムを終了する。空燃比フィードバック制御の停止中は、エンジン運転状態が比較的不安定であるため、この期間に安定運転限界制御を行うと、エンジン運転状態が更に不安定になるおそれがあるためである。
【0029】
一方、空燃比フィードバック制御中であれば、ステップ203に進み、燃焼フラグIexをが安定運転限界(失火寸前の状態)を意味する「1」であるか否かを判定し、Iex=1(安定運転限界)であれば、ステップ204に進み、空燃比補正量ΔVを−v1 (リッチ側補正量)に設定し、Iex=0(正常燃焼)であれば、ステップ205に進み、空燃比補正量ΔVをv2 (リーン側補正量)に設定する。ここで、リッチ側補正量|−v1 |は、リーン側補正量|v2 |よりも大きい値に設定されている。空燃比補正量ΔVの設定後、ステップ206で、前回の空燃比Vi に空燃比補正量ΔVを加算して、空燃比Vi をリーン側又はリッチ側に補正する。ここで、空燃比Vi の添字のi は空燃比の補正回数を表す。
【0030】
そして、次のステップ207で、補正回数カウンタiが例えば「50」であるか否か、つまり、本プログラムによる空燃比Vi の補正回数が50回になったか否かを判定し、50回未満であれば、ステップ208に進み、補正回数カウンタiを1だけカウントアップして本プログラムを終了する。
【0031】
以上のようにして、空燃比フィードバック制御中に空燃比Vi の補正回数が50回になるまで、ステップ203〜206の処理により燃焼フラグIexの値に応じて空燃比Vi の増減補正を繰り返す。その後、空燃比Vi の補正回数が50回になると、ステップ207からステップ209に進み、過去50回の空燃比Vi の変動幅ΔVH、つまり空燃比Vi の最大値 (Vi)max と最小値 (Vi)min との差を算出する。
【0032】
この後、ステップ210で、空燃比の変動幅ΔVHが所定範囲内(A<ΔVH<B)であるか否かを判定し、所定範囲内であれば、空燃比が安定運転限界(リーン限界)の付近で比較的安定していると判断し、ステップ211に進み、空燃比補正量v1 ,v2 の縮小割合を決めるための係数a,bを共に例えば1/2に設定し、空燃比補正量v1 ,v2 を1/2に縮小する(ステップ213)。これにより、空燃比Vi を安定運転限界(リーン限界)付近に収束させる。尚、係数a,bは、1/2に限定されず、2/3、3/4等、他の値であっても良い。
【0033】
これに対し、上記ステップ210で、空燃比の変動幅ΔVHが所定範囲外(ΔVH≦A又はΔVH≧B)と判定された場合、つまり、空燃比の変動が大きすぎる場合、又は、空燃比の変動が十分に小さい場合は、空燃比補正量v1 ,v2 を縮小する必要がないので、ステップ212に進み、空燃比補正量v1 ,v2 を決めるための係数a,bを共に1に設定し、空燃比補正量v1 ,v2 を縮小しない(ステップ213)。
【0034】
この後、ステップ214で、過去50回の空燃比Vi の平均値を算出して、これを空燃比の初期値V0 として学習する。この空燃比の初期値V0 の学習値は、安定運転限界制御を開始又は再開する際の空燃比の初期値V0 として用いられる。このステップ214の処理が特許請求の範囲でいう学習手段として機能する。尚、空燃比の初期値V0 の学習値は、過去50回の空燃比Vi をなまし処理して求めても良い。学習終了後、ステップ215で、補正回数カウンタiを初期値「1」にリセットして、本プログラムを終了する。
【0035】
以上説明した安定運転限界制御の一例を図7に示すタイムチャートに従って説明する。空燃比フィードバック制御の停止中は、エンジン運転状態が比較的不安定であるため、安定運転限界制御は行われない。その後、空燃比フィードバック制御が開始されると同時に、安定運転限界制御が開始される。安定運転限界制御開始時の空燃比の初期値V0 は、図6のステップ214で学習した過去50回の空燃比Vi の平均値が用いられる。
【0036】
安定運転限界制御中(空燃比フィードバック制御中)は、Iex=0(正常燃焼)であれば、空燃比Vi を噴射タイミング毎にリーン側に小刻みに補正して(リーン側補正量=v2 )、空燃比Vi をリーン限界(安定運転限界)に近付ける。これにより、空燃比Vi がリーン限界まで補正されると、排気行程で後燃え発生サイクルによりイオン電流が発生し始めるため、燃焼フラグIexがリーン限界(失火寸前の状態)を意味する「1」にセットされる。
【0037】
Iex=1になると、空燃比Vi がリッチ側に補正される。この時のリッチ側補正量|−v1 |は、空燃比Vi がリーン限界内に確実に戻されるように、ある程度大きな値に設定されている。従って、空燃比Vi がリッチ側に補正されると、再び、Iex=0(正常燃焼)となり、以後、リーン限界付近で、上述した空燃比Vi のリーン側補正又はリッチ側補正が繰り返される。
【0038】
その後、空燃比Vi の補正回数が例えば50回になると、過去50回の空燃比Vi の変動幅ΔVH、つまり空燃比の最大値 (Vi)max と最小値 (Vi)min との差を算出し、空燃比の変動幅ΔVHが所定範囲内(A<ΔVH<B)であれば、空燃比がリーン限界付近で比較的安定していると判断し、空燃比のリーン側/リッチ側補正量を例えば1/2に縮小する(空燃比Vi の変動幅ΔVHが所定範囲外の場合にはリーン側/リッチ側補正量を縮小しない)。以後、このリーン側/リッチ側補正量を用いて、リーン限界付近で、上述した空燃比Vi のリーン側補正又はリッチ側補正を繰り返し、空燃比Vi をリーン限界付近に収束させる。
【0039】
以上説明した実施形態(1)では、イオン電流の発生タイミングからリーン限界を判定するようにしたので、エンジン運転条件によるイオン電流の増減変動の影響を受けずに、イオン電流の発生タイミングからリーン限界を精度良く検出することができ、リーン限界付近で安定した空燃比の制御が可能となる。しかも、所定期間の空燃比の変動幅が所定範囲内に収まる毎に空燃比補正量を縮小するようにしたので、空燃比をリーン限界付近に収束させることができ、空燃比制御の安定性を高めることができる。更に、所定期間の空燃比から空燃比の初期値を学習するようにしたので、安定運転限界制御を開始又は再開する際に、空燃比の初期値(学習値)とリーン限界値とのずれを少なくすることができ、空燃比をリーン限界付近に速やかに収束させることができる。
【0040】
尚、上記実施形態は、本発明を空燃比(燃料噴射量)のリーン限界制御に適用したものであるが、EGR量をEGR限界に制御するEGR限界制御に適用しても良く、その他、排気浄化用の触媒を点火時期の遅角により暖機する際に点火時期を遅角限界に制御する触媒暖機制御等に適用しても良い。
【図面の簡単な説明】
【図1】本発明の一実施形態における点火制御系及びイオン電流検出系の回路構成を示す図
【図2】正常燃焼時のイオン電流信号Vion と比較回路出力Vout の信号波形を示すタイムチャート
【図3】安定運転限界時のイオン電流信号Vion と比較回路出力Vout の信号波形を示すタイムチャート
【図4】失火時のイオン電流信号Vion と比較回路出力Vout の信号波形を示すタイムチャート
【図5】イオン電流発生タイミング判定プログラムの処理の流れを示すフローチャート
【図6】安定運転限界制御プログラムの処理の流れを示すフローチャート
【図7】安定運転限界制御の一例を示すタイムチャート
【符号の説明】
11…点火コイル、17…点火プラグ、21…イオン電流検出抵抗、24…イオン電流検出回路(イオン電流検出手段)、25…ノイズマスク、26…比較回路、27…エンジン制御回路(制御手段,発生タイミング判定手段,学習手段)、28…信号処理回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal combustion engine control apparatus that controls an internal combustion engine to a stable operation limit with the aim of improving fuel consumption and exhaust purification rate.
[0002]
[Prior art]
In recent years, focusing on the fact that ions are generated when the air-fuel mixture burns in a cylinder of an internal combustion engine (engine), a technique for detecting knocking, misfire, etc. by detecting this ionic current through an ignition plug has been developed. Proposed. Further, recently, in order to determine the combustion state from the detected value of the ion current and reflect it in the engine control, as shown in Japanese Patent Laid-Open Nos. 6-2449048 and 6-193514, A combustion roughness value (a parameter indicating the degree of variation in combustion) is calculated from the detected value of the fuel, and the fuel injection amount and the EGR amount (exhaust gas recirculation amount) are feedback controlled so that the combustion roughness value matches the target combustion roughness value. Has been proposed.
[0003]
[Problems to be solved by the invention]
However, since the ionic current varies greatly depending on the engine operating conditions, the combustion roughness value calculated from the detected value of the ionic current includes the influence of the fluctuation of the ionic current due to the engine operating conditions, and the combustion roughness value The calculation accuracy is poor, and the combustion state of the mixture cannot be accurately determined. Therefore, if the engine control is performed using the combustion roughness value calculated from the detected value of the ion current, the actual combustion state cannot be accurately reflected in the engine control.
[0004]
Further, as disclosed in Japanese Patent Application Laid-Open No. 6-34491, the lean limit is detected based on the length of the period during which the ion current is equal to or greater than the threshold value or the degree of variation in the peak value of the ion current, and the air-fuel ratio control is performed near the lean limit. Has been proposed to do. However, the length of the period during which the ion current exceeds the threshold and the degree of variation in the peak value of the ion current vary due to the influence of the fluctuation of the ion current due to engine operating conditions, and the lean limit is detected accurately. The air-fuel ratio control cannot be performed with high accuracy near the lean limit.
[0005]
The present invention has been made in view of such circumstances, and therefore, an object of the present invention is to provide an internal combustion engine control apparatus capable of accurately controlling an internal combustion engine using detection information of ion current. is there.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the internal combustion engine controller of claim 1 of the present invention, the generation timing of the ion current is determined from the output signal of the ion current detection means by the generation timing determination means, and based on the determination result. Then, the control value of the internal combustion engine (hereinafter referred to as “engine control value”) is controlled near the stable operation limit of the internal combustion engine by the control means (hereinafter, this control is referred to as “stable operation limit control”). For example, as the air-fuel ratio is diluted or the EGR amount is increased, the flame propagation speed at the time of combustion of the air-fuel mixture becomes slower and the combustion period becomes longer. Further, in the stable operation limit region, unburned mixture is caused by poor flame propagation speed. After-burning occurs in the exhaust stroke, a burn-up cycle occurs. Since the ion current is generated by the combustion of the air-fuel mixture, the ion current is also generated in the exhaust stroke by the afterburn generation cycle in the stable operation limit region.
[0007]
Focusing on this characteristic, in the present invention, the stable operation limit is determined from the generation timing of the ion current, and the operation state of the internal combustion engine is controlled near the stable operation limit. Since the ion current generation timing at the stable operation limit is not affected by fluctuations in the ion current due to engine operating conditions, the stable operation limit can be accurately detected from the ion current generation timing. Stable control of the internal combustion engine is possible.
[0008]
In addition, in the invention according to claim 1, it is determined whether or not an ionic current is generated during the exhaust stroke, and the engine control value is controlled with the state in which the ionic current is generated during the exhaust stroke as a stable operation limit of the internal combustion engine. I try to do it . As a result, it becomes possible to perform stable control at the lean limit or EGR limit, which is just before the misfire (ignition limit), and it is possible to reduce fuel consumption, improve the exhaust gas purification rate, and the like.
[0009]
Further, as in claims 2 and 3, the means for determining whether or not the operating state of the internal combustion engine is at the stable operation limit from the determination result of the generation timing determination means, and the engine control value is increased or decreased according to the determination result. The engine control value increase / decrease correction amount may be reduced every time the fluctuation range of the engine control value within a predetermined period falls within a predetermined range. In this way, the engine control value can be converged near the stable operation limit, and the stable operation limit control can be further stabilized.
[0010]
Further, as described in claim 4, the learning means may obtain an average value or a smoothed value of the engine control value for a predetermined period and learn it as an initial value of the engine control value. In this way, when starting or restarting stable operation limit control, the deviation between the initial value (learned value) of the engine control value and the stable operation limit value can be reduced, and the engine control value can be reduced to the stable operation limit control. It is possible to quickly converge to the vicinity.
[0011]
Further, as in claim 5, the stable operation limit control may be executed during the air-fuel ratio feedback control. In other words, since the operation state of the internal combustion engine is relatively unstable during the period when the air-fuel ratio feedback control is stopped, if the stable operation limit control is performed during this period, the operation state of the internal combustion engine becomes more unstable. There is a fear. In order to avoid this, if stable operation limit control is performed during air-fuel ratio feedback control, highly effective stable operation limit control can be performed without impairing the stability of the operating state of the internal combustion engine. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. First, the circuit configuration of the ignition control system and the ion current detection system will be described with reference to FIG. One end of the primary coil 12 of the ignition coil 11 is connected to the power supply terminal (+ B) to which the battery voltage VB is supplied, and the other end of the primary coil 12 is connected to the collector of the power transistor 15 for ignition control. Yes. One end of the secondary coil 16 of the ignition coil 11 is connected to the spark plug 17, and the other end of the secondary coil 16 is connected to the ground via two Zener diodes 18 and 19.
[0013]
The two Zener diodes 18 and 19 are connected in series in opposite directions, a capacitor 20 is connected in parallel to one Zener diode 18, and an ion current detection resistor 21 is connected in parallel to the other Zener diode 19. A potential Vin between the capacitor 20 and the ion current detection resistor 21 is input to the negative input terminal of the amplifier circuit 23 via the resistor 22 and amplified. The ion current detection circuit 24 (ion current detection means) is composed of Zener diodes 18 and 19, a capacitor 20, an ion current detection resistor 21, an amplifier circuit 23, and the like. The output voltage of the ion current detection circuit 24 (the output voltage of the amplifier circuit 23) is input to the signal processing circuit 28 as an ion current signal.
[0014]
During engine operation, the power transistor 15 is turned on / off at the rise / fall of the ignition signal IGt output from the engine control circuit 27. When the power transistor 15 is turned on, a primary current flows from a battery (not shown) to the primary coil 12. After that, when the power transistor 15 is turned off, the primary current of the primary coil 12 is cut off and a high voltage is applied to the secondary coil 16. Is generated by the high voltage and spark discharge is generated between the electrodes 30 and 29 of the spark plug 17.
[0015]
At this time, the spark discharge current flows from the ground electrode 29 of the spark plug 17 to the center electrode 30, charges the capacitor 20 through the secondary coil 16, and flows to the ground side through the Zener diodes 18 and 19. After the capacitor 20 is charged, the ion current detection circuit 24 is driven using the charging voltage of the capacitor 20 regulated by the Zener voltage of the Zener diode 18 as a power source, and the ion current is detected as follows.
[0016]
After the spark discharge is finished, a voltage is applied between the electrodes 30 and 29 of the spark plug 17 by the charging voltage of the capacitor 20, and ions generated when the air-fuel mixture burns are converted into an ionic current between the electrodes 30 and 29 of the spark plug 17. Flowing into. This ion current flows from the center electrode 30 to the ground electrode 29, and further flows from the ground side through the ion current detection resistor 21 to the capacitor 20.
[0017]
At this time, the input potential Vin of the amplifier circuit 23 changes according to the change of the ion current flowing through the ion current detection resistor 21, and an ion current signal having a voltage corresponding to the ion current is output from the output terminal of the amplifier circuit 23 to the signal processing circuit. 28 is output.
[0018]
The signal processing circuit 28 is provided with a noise mask 25 and a comparison circuit 26. The noise mask 25 removes LC resonance noise immediately after spark discharge from the input ion current signal, and the comparison circuit 26 has a noise mask 25. Is compared with a predetermined threshold value Vth, and a high level signal is output to the engine control circuit 27 when Vion ≧ Vth. The engine control circuit 27 determines the generation timing of the ion current by detecting the timing (latch time Tup) at which the output Vout of the comparison circuit 26 is inverted from the low level to the high level. The latch time Tup is temporarily stored in a RAM (not shown) of the engine control circuit 27.
[0019]
Next, the relationship between the combustion state of the air-fuel mixture and the generation timing of the ionic current will be described. At the time of normal combustion, as shown in FIG. 2, a relatively large ion current flows with combustion after ignition. During normal combustion, the air-fuel mixture in the combustion chamber is completely combusted in the expansion stroke, so that an ion current is generated only in the expansion stroke, and no ion current is generated in the exhaust stroke.
[0020]
Even in the normal combustion region, as the air-fuel ratio is diluted or the EGR amount (exhaust gas recirculation amount) is increased, the flame propagation speed during combustion of the air-fuel mixture becomes slower, the combustion period becomes longer, and the peak value of the ionic current decreases. To do. When this tendency further progresses, in the expansion stroke, a part of the air-fuel mixture in the combustion chamber remains unburned due to poor flame propagation speed, and a post-burn generation cycle occurs in which the unburned air-fuel mixture burns in the exhaust stroke. Such an operation region is a stable operation limit region immediately before the occurrence of misfire, and is a limit (lean limit) at which the air-fuel ratio can be made lean and a limit (EGR limit) at which the EGR amount can be increased. Therefore, by controlling the air-fuel ratio and EGR amount to near the stable operation limit, it becomes possible to reduce fuel consumption and improve exhaust purification rate.
[0021]
In this stable operation limit region, as shown in FIG. 3, an ionic current is generated in the expansion stroke, and an ionic current is generated in the afterburn generation cycle in the exhaust stroke. For this reason, the ion current signal Vion exceeds the threshold value Vth in both the expansion stroke and the exhaust stroke, and the ion current is detected.
[0022]
If the combustibility further decreases from the stable operation limit region, a “misfire” occurs in the expansion stroke and disappears in the middle of the flame spreading due to flame propagation failure. At the time of misfire, an ionic current is slightly generated until the flame disappears in the expansion stroke, but the ionic current is not detected because the ionic current signal Vion is below the threshold value Vth. At the time of complete misfire, no ionic current is generated because the air-fuel mixture is not ignited at all due to poor ignition.
[0023]
Considering the relationship between the generation timing of the ionic current, the combustion state of the mixture, and the stable operation limit as described above, the engine control circuit 27 determines the stable operation limit from the generation timing of the ionic current and determines the engine control value ( For example, the air-fuel ratio is controlled to be close to the stable operation limit (near the lean limit). This stable operation limit control is executed as follows by the ion current generation timing determination program of FIG. 5 and the stable operation limit control program of FIG. 6 stored in the ROM (storage medium) of the engine control circuit 27.
[0024]
The ion current generation timing determination program shown in FIG. 5 is executed, for example, every time the exhaust stroke of each cylinder ends, and serves as generation timing determination means in the claims. When this program is started, it is first determined in step 101 whether or not an ionic current has been detected after ignition (that is, whether or not a high level signal Vout has been output from the comparison circuit 26). If not (that is, if misfire is detected), in order to return the air-fuel ratio to the rich side just in case, the routine proceeds to step 105 and the combustion flag Iex is set to “1” as in the stable operation limit described later. Set this to quit this program.
[0025]
On the other hand, if an ionic current is detected after ignition, the process proceeds to step 102, and the timing (latch time Tup) at which the output Vout of the comparison circuit 26 is inverted from the low level to the high level is set in the RAM ( Read from (not shown). If the ion current is detected a plurality of times after ignition, the latest latch time Tup is read.
[0026]
Thereafter, in step 103, the latch time Tup is converted into a crank angle, and the ion current generation timing θup is obtained by the crank angle. After this, whether the ion current generation timing θup is in the exhaust stroke, that is, whether θ1 <θup <θ2 (θ1 is the crank angle at the start of the exhaust stroke, θ2 is the crank angle at the end of the exhaust stroke) If the ion current generation timing θup is in the exhaust stroke, the routine proceeds to step 105 where the combustion flag Iex is set to “1” which means a stable operation limit (a state just before the misfire). Exit the program.
[0027]
On the other hand, if it is determined that the ion current generation timing θup is not in the exhaust stroke, the routine proceeds to step 106, where the combustion flag Iex is set to “0” meaning normal combustion, and this program ends.
[0028]
The stable operation limit control program of FIG. 6 is executed, for example, at each injection timing (every predetermined crank angle), and plays a role as control means in the claims. When this program is started, it is first determined in step 201 whether or not the air-fuel ratio feedback control is being performed. If the air-fuel ratio feedback control is not being performed, the subsequent stable operation limit control processing is not performed and will be described later. The correction number counter i is reset to the initial value “1” (step 202), and this program ends. This is because the engine operating state is relatively unstable while the air-fuel ratio feedback control is stopped, and if the stable operation limit control is performed during this period, the engine operating state may be further unstable.
[0029]
On the other hand, if the air-fuel ratio feedback control is in progress, the routine proceeds to step 203, where it is determined whether or not the combustion flag Iex is “1” meaning a stable operation limit (a state just before the misfire), and Iex = 1 (stable If the operation limit), the process proceeds to step 204, where the air-fuel ratio correction amount ΔV is set to -v1 (rich side correction amount). If Iex = 0 (normal combustion), the process proceeds to step 205, where the air-fuel ratio correction amount. ΔV is set to v2 (lean side correction amount). Here, the rich side correction amount | −v1 | is set to a value larger than the lean side correction amount | v2 |. After setting the air-fuel ratio correction amount ΔV, in step 206, the air-fuel ratio correction amount ΔV is added to the previous air-fuel ratio Vi to correct the air-fuel ratio Vi to the lean side or the rich side. Here, the subscript i of the air-fuel ratio Vi represents the number of corrections of the air-fuel ratio.
[0030]
Then, in the next step 207, it is determined whether or not the correction number counter i is, for example, “50”, that is, whether or not the correction number of the air-fuel ratio Vi by this program has become 50 times. If there is, the process proceeds to step 208, where the correction number counter i is incremented by 1, and the program is terminated.
[0031]
As described above, during the air-fuel ratio feedback control, the increase / decrease correction of the air-fuel ratio Vi is repeated according to the value of the combustion flag Iex by the processing of steps 203 to 206 until the number of corrections of the air-fuel ratio Vi reaches 50. Thereafter, when the number of corrections of the air-fuel ratio Vi reaches 50, the process proceeds from step 207 to step 209, where the fluctuation range ΔVH of the air-fuel ratio Vi in the past 50 times, that is, the maximum value (Vi) max and minimum value (Vi) of the air-fuel ratio Vi. ) Calculate the difference from min.
[0032]
Thereafter, in step 210, it is determined whether or not the variation range ΔVH of the air-fuel ratio is within a predetermined range (A <ΔVH <B). If the variation range ΔVH is within the predetermined range, the air-fuel ratio is stable operation limit (lean limit). , The process proceeds to step 211, where both the coefficients a and b for determining the reduction ratio of the air-fuel ratio correction amounts v1 and v2 are set to 1/2, for example, and the air-fuel ratio correction amount is set. v1 and v2 are reduced to 1/2 (step 213). As a result, the air-fuel ratio Vi is converged to the vicinity of the stable operation limit (lean limit). The coefficients a and b are not limited to 1/2, and may be other values such as 2/3, 3/4.
[0033]
On the other hand, if it is determined in step 210 that the air-fuel ratio fluctuation range ΔVH is outside the predetermined range (ΔVH ≦ A or ΔVH ≧ B), that is, if the air-fuel ratio fluctuation is too large, If the fluctuation is sufficiently small, it is not necessary to reduce the air-fuel ratio correction amounts v1 and v2. Therefore, the process proceeds to step 212, and both the coefficients a and b for determining the air-fuel ratio correction amounts v1 and v2 are set to 1. The air-fuel ratio correction amounts v1 and v2 are not reduced (step 213).
[0034]
Thereafter, in step 214, an average value of the past 50 air-fuel ratios Vi is calculated and learned as an initial value V0 of the air-fuel ratio. The learned value of the initial value V0 of the air-fuel ratio is used as the initial value V0 of the air-fuel ratio when starting or restarting the stable operation limit control. The processing in step 214 functions as learning means in the claims. The learned value of the initial value V0 of the air-fuel ratio may be obtained by smoothing the past 50 air-fuel ratios Vi. After completion of learning, in step 215, the correction number counter i is reset to the initial value “1”, and this program is terminated.
[0035]
An example of the stable operation limit control described above will be described with reference to the time chart shown in FIG. While the air-fuel ratio feedback control is stopped, the engine operation state is relatively unstable, and thus stable operation limit control is not performed. Thereafter, the stable operation limit control is started simultaneously with the start of the air-fuel ratio feedback control. As the initial value V0 of the air-fuel ratio at the start of stable operation limit control, the average value of the past 50 air-fuel ratios Vi learned in step 214 of FIG. 6 is used.
[0036]
During stable operation limit control (air-fuel ratio feedback control), if Iex = 0 (normal combustion), the air-fuel ratio Vi is corrected to the lean side at every injection timing (lean side correction amount = v2), The air-fuel ratio Vi is brought close to the lean limit (stable operation limit). As a result, when the air-fuel ratio Vi is corrected to the lean limit, an ionic current starts to be generated by the afterburn generation cycle in the exhaust stroke, so the combustion flag Iex is set to “1” which means the lean limit (the state just before the misfire). Set.
[0037]
When Iex = 1, the air-fuel ratio Vi is corrected to the rich side. The rich side correction amount | -v1 | at this time is set to a large value to some extent so that the air-fuel ratio Vi is reliably returned to within the lean limit. Accordingly, when the air-fuel ratio Vi is corrected to the rich side, Iex = 0 (normal combustion) again, and thereafter the above-described lean-side correction or rich-side correction of the air-fuel ratio Vi is repeated near the lean limit.
[0038]
After that, when the number of corrections of the air-fuel ratio Vi becomes 50, for example, the fluctuation range ΔVH of the air-fuel ratio Vi in the past 50 times, that is, the difference between the maximum value (Vi) max and the minimum value (Vi) min of the air-fuel ratio is calculated. If the fluctuation range ΔVH of the air-fuel ratio is within a predetermined range (A <ΔVH <B), it is determined that the air-fuel ratio is relatively stable near the lean limit, and the lean-side / rich-side correction amount of the air-fuel ratio is set. For example, it is reduced to 1/2 (when the fluctuation range ΔVH of the air-fuel ratio Vi is outside the predetermined range, the lean side / rich side correction amount is not reduced). Thereafter, using the lean / rich side correction amount, the above-described lean side correction or rich side correction of the air-fuel ratio Vi is repeated near the lean limit, and the air-fuel ratio Vi is converged near the lean limit.
[0039]
In the embodiment (1) described above, since the lean limit is determined from the ion current generation timing, the lean limit is determined from the ion current generation timing without being affected by fluctuations in the ion current due to engine operating conditions. Can be detected with high accuracy, and the air-fuel ratio can be controlled stably near the lean limit. Moreover, since the air-fuel ratio correction amount is reduced every time the fluctuation range of the air-fuel ratio within the predetermined period falls within the predetermined range, the air-fuel ratio can be converged near the lean limit, and the stability of the air-fuel ratio control can be improved. Can be increased. Furthermore, since the initial value of the air-fuel ratio is learned from the air-fuel ratio for a predetermined period, when starting or restarting the stable operation limit control, the deviation between the initial value of the air-fuel ratio (learned value) and the lean limit value is detected. The air-fuel ratio can be quickly converged to the vicinity of the lean limit.
[0040]
In the above embodiment, the present invention is applied to the lean limit control of the air-fuel ratio (fuel injection amount), but may be applied to the EGR limit control for controlling the EGR amount to the EGR limit. The present invention may be applied to catalyst warm-up control for controlling the ignition timing to the retard limit when the purifying catalyst is warmed up by retarding the ignition timing.
[Brief description of the drawings]
FIG. 1 is a diagram showing circuit configurations of an ignition control system and an ion current detection system in an embodiment of the present invention. FIG. 2 is a time chart showing signal waveforms of an ion current signal Vion and a comparison circuit output Vout during normal combustion. 3 is a time chart showing the signal waveforms of the ion current signal Vion and the comparison circuit output Vout at the time of stable operation limit. FIG. 4 is a time chart showing the signal waveforms of the ion current signal Vion and the comparison circuit output Vout at the time of misfire. Flow chart showing the flow of processing of the ion current generation timing determination program FIG. 6 Flow chart showing the flow of processing of the stable operation limit control program FIG. 7 Time chart showing an example of stable operation limit control
DESCRIPTION OF SYMBOLS 11 ... Ignition coil, 17 ... Spark plug, 21 ... Ion current detection resistor, 24 ... Ion current detection circuit (ion current detection means), 25 ... Noise mask, 26 ... Comparison circuit, 27 ... Engine control circuit (control means, generation | occurrence | production) Timing determination means, learning means), 28... Signal processing circuit.

Claims (5)

混合気の燃焼時に発生するイオン電流を検出するイオン電流検出手段と、
前記イオン電流検出手段の出力信号から前記イオン電流の発生タイミングを判定する発生タイミング判定手段と、
前記発生タイミング判定手段の判定結果に基づいて内燃機関の制御値(以下「機関制御値」という)を該内燃機関の安定運転限界付近に制御する制御手段とを備えた内燃機関制御装置において、
前記発生タイミング判定手段は、前記イオン電流が排気行程中に発生したか否かを判定し、
前記制御手段は、前記イオン電流が排気行程中に発生する状態を内燃機関の安定運転限界として前記機関制御値を制御することを特徴とする内燃機関制御装置。
Ionic current detection means for detecting ionic current generated during combustion of the air-fuel mixture;
Generation timing determination means for determining the generation timing of the ion current from the output signal of the ion current detection means;
An internal combustion engine control device comprising control means for controlling a control value of the internal combustion engine (hereinafter referred to as "engine control value") near the stable operation limit of the internal combustion engine based on a determination result of the generation timing determination means ;
The generation timing determination means determines whether or not the ion current is generated during an exhaust stroke,
The control means controls the engine control value with a state where the ion current is generated during an exhaust stroke as a stable operation limit of the internal combustion engine.
前記制御手段は、前記発生タイミング判定手段の判定結果から内燃機関の運転状態が安定運転限界であるか否かを判定する手段と、その判定結果に応じて前記機関制御値を増減補正する手段とを有し、所定期間の機関制御値の変動幅が所定範囲内に収まる毎に該機関制御値の増減補正量を縮小することを特徴とする請求項1に記載の内燃機関制御装置。The control means determines from the determination result of the generation timing determination means whether or not the operating state of the internal combustion engine is at a stable operating limit; and means for correcting increase or decrease of the engine control value according to the determination result; the have internal combustion engine control apparatus according to claim 1, the variation width of the engine control value of the predetermined period, characterized in that to reduce the increase and decrease correction amount of the engine control value for each within a predetermined range. 混合気の燃焼時に発生するイオン電流を検出するイオン電流検出手段と、Ionic current detection means for detecting ionic current generated during combustion of the air-fuel mixture;
前記イオン電流検出手段の出力信号から前記イオン電流の発生タイミングを判定する発生タイミング判定手段と、Generation timing determination means for determining the generation timing of the ion current from the output signal of the ion current detection means;
前記発生タイミング判定手段の判定結果に基づいて内燃機関の制御値(以下「機関制御値」という)を該内燃機関の安定運転限界付近に制御する制御手段とを備えた内燃機関制御装置において、An internal combustion engine control device comprising control means for controlling a control value of the internal combustion engine (hereinafter referred to as "engine control value") near the stable operation limit of the internal combustion engine based on a determination result of the generation timing determination means;
前記制御手段は、前記発生タイミング判定手段の判定結果から内燃機関の運転状態が安定運転限界であるか否かを判定する手段と、その判定結果に応じて前記機関制御値を増減補正する手段とを有し、所定期間の機関制御値の変動幅が所定範囲内に収まる毎に該機関制御値の増減補正量を縮小することを特徴とする内燃機関制御装置。The control means determines from the determination result of the generation timing determination means whether or not the operating state of the internal combustion engine is at a stable operating limit; and means for correcting increase or decrease of the engine control value according to the determination result; And an engine control value increase / decrease correction amount is reduced every time the fluctuation range of the engine control value within a predetermined range falls within a predetermined range.
所定期間の前記機関制御値から前記機関制御値の初期値を学習する学習手段を備えていることを特徴とする請求項1乃至3のいずれかに記載の内燃機関制御装置。  4. The internal combustion engine control device according to claim 1, further comprising learning means for learning an initial value of the engine control value from the engine control value for a predetermined period. 前記制御手段は、前記機関制御値を内燃機関の安定運転限界に制御する安定運転限界制御を空燃比フィードバック制御中に実行することを特徴とする請求項1乃至4のいずれかに記載の内燃機関制御装置。  5. The internal combustion engine according to claim 1, wherein the control means executes stable operation limit control for controlling the engine control value to a stable operation limit of the internal combustion engine during air-fuel ratio feedback control. Control device.
JP12558598A 1998-05-08 1998-05-08 Internal combustion engine control device Expired - Fee Related JP3906880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12558598A JP3906880B2 (en) 1998-05-08 1998-05-08 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12558598A JP3906880B2 (en) 1998-05-08 1998-05-08 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JPH11324881A JPH11324881A (en) 1999-11-26
JP3906880B2 true JP3906880B2 (en) 2007-04-18

Family

ID=14913827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12558598A Expired - Fee Related JP3906880B2 (en) 1998-05-08 1998-05-08 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP3906880B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3894442B2 (en) 2003-05-14 2007-03-22 三菱電機株式会社 Internal combustion engine control device
JP4484627B2 (en) * 2004-08-20 2010-06-16 ダイハツ工業株式会社 Ignition timing control method for internal combustion engine
JP4333536B2 (en) * 2004-09-14 2009-09-16 株式会社デンソー Diesel engine control system
JP4975054B2 (en) * 2009-04-09 2012-07-11 三菱電機株式会社 Ignition diagnostic device for internal combustion engine

Also Published As

Publication number Publication date
JPH11324881A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
US6505605B2 (en) Control system for an internal combustion engine and method carried out by the same
JPH09324690A (en) Internal combustion engine control device
US6629520B2 (en) Ignition apparatus for internal combustion engine
US6512375B1 (en) Method of detecting spark plug fouling and ignition system having means for carrying out the same
JP2003328840A (en) Knock control system for internal combustion engine
CN110300845B (en) Ignition control system
JPH10148171A (en) Knocking control device for internal combustion engine
JPS6026138A (en) Fuel injection control method in internal-combustion engine
JP3906880B2 (en) Internal combustion engine control device
JP3552142B2 (en) Engine pre-ignition suppression device
JP4573048B2 (en) Misfire detection device for internal combustion engine
JPS6156419B2 (en)
JP4100492B2 (en) Misfire detection device for internal combustion engine
JP4180298B2 (en) Misfire detection device
US5069182A (en) Ignition timing control apparatus for an engine
JP2009203864A (en) Combustion state detection device and ignition control system
JPH05164033A (en) Misfire detection device for internal combustion engine
JP4230041B2 (en) Ignition device for internal combustion engine
JPH09317618A (en) Driving state detection device of internal combustion engine
JP2514446B2 (en) Fuel supply control device for internal combustion engine with knocking control function
JPH10299563A (en) Misfire detector and controller for direct injection spark ignition engine
JPH08261048A (en) Air-fuel ratio control device for internal combustion engine
JPH048285Y2 (en)
JP3707644B2 (en) Combustion state detection device for internal combustion engine
JP2002180948A (en) Multiple-ignition device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees