JP3906878B2 - Manufacturing method of liquid crystal element - Google Patents

Manufacturing method of liquid crystal element Download PDF

Info

Publication number
JP3906878B2
JP3906878B2 JP298198A JP298198A JP3906878B2 JP 3906878 B2 JP3906878 B2 JP 3906878B2 JP 298198 A JP298198 A JP 298198A JP 298198 A JP298198 A JP 298198A JP 3906878 B2 JP3906878 B2 JP 3906878B2
Authority
JP
Japan
Prior art keywords
liquid crystal
light
polarized
incident
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP298198A
Other languages
Japanese (ja)
Other versions
JPH11202335A (en
Inventor
誠 地崎
敬一 仁藤
浩一 川角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP298198A priority Critical patent/JP3906878B2/en
Publication of JPH11202335A publication Critical patent/JPH11202335A/en
Application granted granted Critical
Publication of JP3906878B2 publication Critical patent/JP3906878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高分子配向膜を有する液晶素子の製造方法に関するものである。
【0002】
【従来の技術】
液晶表示素子において、液晶を一方向に所定のチルト角で配向させるために、現在一般的に用いられている技術は、基板表面に高分子材料を製膜してから、その表面をレーヨンなどの布で一方向に擦るラビング方法である。その他に、水面に単分子膜を形成し、その膜を基板に移しとることにより、配向膜の機能をなすラングミュア・ブロジェット方法(LB法)や、SiO2 やAu、Al等をガラス基板に対して斜めに蒸着することにより、液晶を配向させる方法がある。
【0003】
ところが、LB法では、製膜に大幅に時間を費やすことが避けられないし、配向規制力も十分でない。蒸着法では、装置が大がかりであり、配向膜の作製に多くのエネルギーを消費することになるし、時間もラビング法に比べて大幅に費やすことになる。そこで、ラビング法が液晶配向技術として現在、主として用いられている。
【0004】
しかし、ラビング法では、配向膜表面を直接布が接触して擦るために、配向膜表面に静電気が生じて、ほこりを付着したり、パネルとして組んだ時に液晶中のイオンを吸着したりして、液晶表示素子の品質に悪影響を与える。また、TFT(Thin Film Transistor)素子を備える液晶表示素子にラビング法を適用すると、摩擦により生じる静電気がTFTを破壊して歩留りを下げる要因ともなる。
【0005】
【発明が解決しようとする課題】
そこで昨今、このラビング法に変わる液晶配向技術として、偏光した紫外線を有機物に照射して、液晶を配向させる光配向技術が開発されている(特開平9−5747号公報等)。
【0006】
しかし、大面積で、紫外線領域波長の光源から偏光度の高い偏光を得るのは、容易ではない。たとえば、天然の方解石を用いるグランテーラープリズムは、偏光度は高いが、大面積化は不可能である。また、誘電体多層膜を用いる偏光素子は、偏光可能な波長範囲が限定されるし、また、蒸着法で製膜されるために、大面積で均一な多層膜を得ることは困難である。もともと直線偏光であるレーザーを用いる場合でも、大面積を配向処理するには、レーザー光もしくは基板をスキャンするプロセスが必要になる。
【0007】
本発明の目的は、大面積でも偏光度の十分に高い偏光を用いて液晶配向性の良好な高分子液晶配向膜を作製できる、液晶素子の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
即ち、本発明は、互いに対向した複数の基板の対向面上に、電極及び液晶配向膜がこの順にそれぞれ形成され、前記対向面間に液晶が封入されている液晶素子を製造する方法において、
互いに所定の間隙を置いて配置された複数の透光板からなる偏光素子を前記基板の前 記電極上の高分子膜に対向させ、
前記複数の透光板のうち、一方の透光板の側からブリュースター角若しくはほぼブリ ュースター角で光を入射させ、他方の透光板の側から偏光された出射光を得、
この出射光を前記高分子膜に照射して液晶配向膜を形成し、
この液晶配向膜付きの基板の複数個を、その配向処理方向が前記対向面で反平行とな るように対向配置させ、
この状態で前記液晶の封入を行う
ことを特徴とする、液晶素子の製造方法に係るものである。
【0014】
本発明の液晶素子製造方法によれば、複数の透光板を互いに所定の間隙で以て配置し、一方の透光板の側からブリュースター角若しくはほぼブリュースター角で光を入射させ、他方の透光板の側から偏光された出射光を得ているので、入射光の透過及び反射を複数の透光板によって繰り返す間に目的とする偏光成分の割合を増加させることができる。従って、入射光を効率良く偏光させることができ、大面積であっても十分な偏光度の出射光を得ることができ、これによって、この偏光出射光の照射によって大面積の高分子膜を液晶配向に十分な状態となるように処理することが可能となる。
そして、この偏光処理された液晶配向膜付きの基板の複数個を、その配向処理方向が基板対向面で反平行となるように対向配置させ、この状態で液晶の封入を行うので、複数の基板間で液晶分子を一方向に均一なプレティルト角で高秩序に配向させることができる。
【0015】
このように液晶の配向を十分に制御できることにより、大面積において、特には200nm程度から400nm程度の広い紫外線波長領域の紫外線に偏光をかけ、配向膜材料に照射することが可能となる。また、特に後記の如くに、石英板間のスペーサが石英板間の距離を一定に保つために、高い偏光度の紫外線を配向膜材料に照射することが可能となる。石英板は紫外線をほとんど吸収しないので、透過率が大きく、偏光による照射強度の損失が理想的な50%に近い。これらの特性により、液晶配向処理の紫外線偏光装置として、この偏光素子を用いることにより、短時間で液晶配向に必要な照射エネルギーが得ることができ、液晶の配向秩序も高くできる。
【0016】
そして、上記の照射処理で得られた高分子配向膜は、ラビング処理を施さずに、液晶分子を一方向に、均一なプレティルト角で配向させることが可能となる。これにより、ラビング処理で問題となる、静電気の発生、TFT破壊が防止され、歩留りが向上して生産性が向上することは勿論である。
【0017】
【発明の実施の形態】
本発明の液晶素子の製造方法においては、前記複数の透光板の間にスペーサを設け、前記間隙を少なくとも光入射領域及び光出射領域において一定若しくはほぼ一定に保持することが望ましい。
【0018】
また、紫外線を透過する石英板、特に人工石英板の複数個を平行若しくはほぼ平行に配置し、前記光として無偏光の紫外線を入射させ、紫外線の直線偏光を得ることが望ましい。
【0019】
また、互いに所定の間隙を置いて配置された前記複数の透光板と、一方の透光板の側からブリュースター角若しくはほぼブリュースター角で光を入射させる光源とを有し、他方の透光板の側から偏光された出射光を得るように装置を構成するのがよい。
【0020】
次に、本発明の好ましい実施の形態を説明する。
【0021】
まず、本実施の形態において特徴となる紫外線の偏光方法及びその装置(又は偏光素子)を説明する。
【0022】
紫外線の偏光の原理は、光の性質の一つであるブリュースターの法則を用いるものである。ブリュースター角で光入射させる材料は、紫外線でも透過する人工石英板を用いる。
【0023】
この石英板にブリュースター角の分だけ傾けて紫外線を入射すると、S波は反射されて、P波は透過するので、無偏光の紫外線を入射させて偏光を取り出すことが可能となる。ブリュースター角は、次式で得ることができる。ここで、iがブリュースター角で、nが媒質の屈折率である。
tani=n・・・・・(式1)
【0024】
人工石英の屈折率は、237nmで1.51であり、404nmで1.47であるから、式(1)からブリュースター角は55.7度〜56.5度である。よって、紫外線領域の偏光に石英板を用いる場合には、入射角度としておよそ56度傾斜させて紫外線を入射させるのが好ましい。
【0025】
人工石英は、200nm付近の紫外線領域でも屈折率の虚部が小さく、光を吸収することはないので、透過率が50%程度の高い透過特性をもつ偏光素子を作製できる。また、偏光度を上げるためには、石英板の枚数を多くして、空気層を介して積層することが有効である。これは、複数の石英板を通過するごとに、入射光のS波成分をより多く反射させて透過成分を小さくし、P波のみを透過させることで、P波成分に対するS波成分を小さくする効果があるからである。
【0026】
そのときに高い偏光度を得るには、石英板間の平行度を保つことが要求される。このことは、図1及び図2から、容易に理解できる。
【0027】
一枚目の石英板8のみがブリュースター角θ1 で入射するように配置され、空気層9を介して一枚目8と対向(積層)された二枚目の石英板10が一枚目に対して平行でない場合をまず考える。
【0028】
図2に示すように、●で示すS波と───で示すP波を含む無偏光の紫外線1が石英板に入射すると、一枚目の石英板8では若干のS波(これは、より小さい●で示す:以下、同様)を含むP波が透過する。その透過した紫外線1Aは、二枚目の石英板10に入射するときには、二枚目の石英板10が平行ではないために、入射角θ2 がブリュースター角と異なる。これによって、S波が二枚目の石英板10を透過してしまう。また、二枚目の石英板10の表面で反射して、一枚目の石英板8の裏側でさらに反射して二枚目の石英板10の表面に進入する紫外線1B’を考えた場合には、その入射角θ3 もブリュースター角と異なるために、S波が透過してしまう。
【0029】
このように、石英板10が8に対して平行ではない場合においては、S波が透過してしまう可能性が高くなり、得られる出射紫外線1C’、1D’の偏光度が著しく小さくなってしまう。
【0030】
これと比較して、石英板間にスペーサを配置した偏光素子の場合を考えてみる。
【0031】
図1に示すように、二枚の石英板8、10が同じ大きさのスペーサ4で支えられているために、その間隙が一定に(即ち、石英板8と10が平行に)保たれる。そして、二枚目の石英板10の表面に直接入射する紫外線1Aも、多重反射で入射する紫外線1Bも、その入射角度θ1 はブリュースター角であるので、理想的にS波は全く透過できなくなり、得られた出射紫外線1C、1Dの偏光度は著しく高くなる。
【0032】
このように、多層の石英板8、10を平行に配置することにより、偏光度の高い紫外線偏光素子を作製できることが理解できる。
【0033】
そこで、複数の石英板を等間隔で保持するために、石英板間に、スペーサ4を散布してから両石英板を重ね合わせ、これらの石英板を組み合わせることにより、偏光度の高い偏光素子5を作製することが可能となる。
【0034】
この偏光素子の作製例を述べると、まず、面積10cm×10cm、厚さ1mmの石英板(例えば10)に液晶ディスプレイ作製用の乾式スペーサ散布装置で、10μm径のスペーサ4を散布する。このときの散布されるスペーサの量は、二枚の石英板を一定間隔で保持するのに最低限の散布量でよい。散布量が多いと、紫外線の透過率が低くなってしまうからである。
【0035】
次に、石英板の周辺に、10μm径のスペーサ入りの紫外線硬化樹脂をディスペンサで配置する。次に、スペーサが散布された石英板の上に、二枚目の石英板を配置し、二枚の石英板を加圧して、そのギャップを一様にしてから、紫外線を照射して接着する。このプロセスは、液晶表示素子の基板の重ね合わせ技術と同様なものである。
【0036】
その後、次々に、石英板を積層していき、20枚重ね終え、石英偏光素子を完成する。この偏光素子の有効面積の短辺は、10cmに56度の余弦をかけたものであるから、およそ5.6cmとなる。よって、この偏光素子は、10cm×5.6cmの面積の領域を偏光する素子となる。
【0037】
次に、この偏光素子5と、これを用いた液晶配向制御膜の製造方法及びその装置の具体例を説明する。
【0038】
図3に示すように、光源としては高圧水銀ランプ11を用いる。このランプから発光する紫外線1をコリメーターレンズ2で平行光に変換する。このとき紫外線は平行光ではあるが、偏光されてはいない。この平行光の平行度が高いほど、石英板通過後の偏光度が高くなるので、理想的には完全な平行光が得られれば最も好ましい。この平行光を上記した石英板8、10(ここでは符号3で各石英板を示す。)を一定間隔で積層した偏光素子5を通過させることにより偏光を得る。その偏光度は高く、また200nmの低波長の紫外線から400nmの高波長の紫外線を透過する。
【0039】
従って、この範囲のバンドパスフィルタや、カットフィルタと併用することで、任意の波長の偏光紫外線のみを液晶基板7上のポリイミド等の高分子膜6に照射し、液晶配向膜を得ることができる。また、任意の波長以上の偏光紫外線を配向膜に照射することが可能である。このように、本発明に基づく石英偏光素子を用いることで、自由度の高い紫外線偏光が可能となる。
【0040】
図4は、上記のようにして作製された液晶配向膜付きの液晶基板を用いて製造された液晶表示素子(セル)の構成例を示す。
【0041】
この液晶表示素子によれば、透明ガラス基板7A、7B(上記の7に相当)上に透明電極(例えばITO(Indium Tin Oxide))20A、20Bを設け、その上に、液晶配向膜としてポリイミド膜6A、6B(上記の6に相当)を形成し、これらの膜を上記した方法により偏光紫外線で照射処理し、液晶配向(制御)膜とする。
【0042】
このようにして作製した配向膜付きの基板を、その配向処理方向が対向面で反平行となるように組み、そのスペーサとして、目的ギャップ長に応じたガラスビーズ(真糸球)21を用いる。スペーサは、透明基板の大きさにより、小さい面積の場合は周囲を接着するシール材(UV硬化型の接着材)22中に分散させることにより、基板間のギャップを制御する。基板面積が大きい場合には、上記真糸球を基板上に散布したのち、ギャップをとり、セルの周囲に液晶の注入孔を確保して上記シール材でセル周囲を接着する。
【0043】
その後、例えば強誘電性液晶23を等方相温度あるいはカイラルネマチック相温度の流動性を示す状態で減圧下で注入する。液晶注入後、徐冷し、注入孔周囲のガラス基板上の液晶を除去したのち、接着剤で封止し、液晶素子24を作製する。
【0044】
上記した説明から明らかなように、本発明に基づく方法及び装置によれば、複数の人工石英板8、10をスペーサ4を介して一定間隙に保持して平行に配置し、一方の石英板8の側からブリュースター角θ1 で無偏光の紫外線1を入射させ、他方の石英板10の側から偏光された紫外線1C、1Dを得ているので、入射光の透過及び反射を複数の石英板によって繰り返す間に目的とする偏光成分の割合を増加させることができる。従って、入射光を効率良く偏光させることができ、大面積であっても十分な偏光度の出射光を得ることができ、この偏光出射光の照射によって大面積の高分子膜を液晶配向に十分な状態となるように処理することが可能となる。
【0045】
このように液晶の配向を十分に制御できることにより、大面積において、特には200nm程度から400nm程度の広い紫外線波長領域の紫外線に偏光をかけ、配向膜材料に照射することが可能となる。また、石英板8、10間のスペーサ4が石英板間の距離を一定に保つために、高い偏光度の紫外線を配向膜材料に照射することが可能となる。石英板は紫外線をほとんど吸収しないので、透過率が大きく、偏光による照射強度の損失が理想的な50%に近い。これらの特性により、液晶配向処理の紫外線偏光装置として、この偏光素子を用いることにより、短時間で液晶配向に必要な照射エネルギーを得ることができ、液晶の配向秩序も高くできる。
【0046】
以上に述べた本発明の実施の形態は、本発明の技術的思想に基づいて更に変形が可能である。
【0047】
例えば、使用する石英板の積層数や厚み、サイズ、形状等や、スペーサの形状、サイズ、紫外線の波長、配向膜の材質等は種々変更してよいし、偏光素子又は装置のその他の構成要素についても同様に変更してよい。石英板に代えて他の透光板が使用可能である。
【0048】
また、本発明が適用可能な液晶素子は、上述したもの(例えば、単純マトリクス方式)に限らず、TFTを用いるアクティブマトリクス方式等であってよく、いずれもラビングを要しない配向制御膜を設けることの利点を有している。
【0049】
【発明の効果】
本発明は、上述した如く、複数の透光板を互いに所定の間隙で以て配置し、一方の透光板の側からブリュースター角若しくはほぼブリュースター角で光を入射させ、他方の透光板の側から偏光された出射光を得ているので、入射光の透過及び反射を複数の透光板によって繰り返す間に目的とする偏光成分の割合を増加させることができる。従って、入射光を効率良く偏光させることができ、大面積であっても十分な偏光度の出射光を得ることができ、この偏光出射光の照射によって大面積の高分子膜を液晶配向に十分な状態となるように処理することが可能となる。
そして、この偏光処理された液晶配向膜付きの基板の複数個を、その配向処理方向が基板対向面で反平行となるように対向配置させ、この状態で液晶の封入を行うので、複数の基板間で液晶分子を一方向に均一なプレティルト角で高秩序に配向させることができる。
【図面の簡単な説明】
【図1】本発明に基づく偏光方法及び偏光素子を説明する概略図である。
【図2】比較の偏光素子の概略図である。
【図3】本発明に基づく液晶配向膜の製造方法及びその装置の概略図である。
【図4】本発明に基づいて製造された液晶素子の一例の概略断面図である。
【符号の説明】
1…無偏光の紫外線、1C、1D…偏光度の十分な紫外線、2…レンズ、
3…石英板、4…スペーサ、5…石英偏光素子、6…配向膜、7…基板、
8…石英板、9…空気層、10…石英板、11…水銀ランプ、
θ1 …入射角(ブリュースター角)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a liquid crystal element having a polymer alignment film.
[0002]
[Prior art]
In a liquid crystal display element, in order to align liquid crystal in one direction at a predetermined tilt angle, a technique that is generally used is to form a polymer material on a substrate surface and then apply the surface to a surface such as rayon. It is a rubbing method that rubs in one direction with a cloth. In addition, by forming a monomolecular film on the water surface and transferring the film to the substrate, the Langmuir-Blodgett method (LB method), which functions as an alignment film, or SiO 2 , Au, Al, etc., is applied to the glass substrate. On the other hand, there is a method of aligning the liquid crystal by vapor deposition obliquely.
[0003]
However, in the LB method, it is unavoidable to spend a great deal of time for film formation, and the alignment regulating force is not sufficient. In the vapor deposition method, the apparatus is large-scale, and much energy is consumed for producing the alignment film, and the time is greatly consumed as compared with the rubbing method. Therefore, the rubbing method is currently mainly used as a liquid crystal alignment technique.
[0004]
However, in the rubbing method, since the cloth directly contacts and rubs the alignment film surface, static electricity is generated on the alignment film surface, and dust is attached or ions in the liquid crystal are adsorbed when assembled as a panel. This adversely affects the quality of the liquid crystal display element. In addition, when the rubbing method is applied to a liquid crystal display element including a TFT (Thin Film Transistor) element, static electricity generated by friction also destroys the TFT and causes a decrease in yield.
[0005]
[Problems to be solved by the invention]
Therefore, recently, as a liquid crystal alignment technique that replaces this rubbing method, an optical alignment technique that aligns liquid crystals by irradiating organic matter with polarized ultraviolet rays has been developed (JP-A-9-5747, etc.).
[0006]
However, it is not easy to obtain polarized light with a high polarization degree from a light source having a large area and a wavelength in the ultraviolet region. For example, a Grand Taylor prism using natural calcite has a high degree of polarization, but cannot have a large area. In addition, a polarizing element using a dielectric multilayer film has a limited wavelength range in which light can be polarized, and is formed by a vapor deposition method, so that it is difficult to obtain a multilayer film having a large area. Even when a laser that is originally linearly polarized light is used, a process of scanning a laser beam or a substrate is required to align a large area.
[0007]
The objective of this invention is providing the manufacturing method of a liquid crystal element which can produce the polymer liquid crystal aligning film with favorable liquid crystal orientation using the polarization | polarized-light with a sufficiently high polarization degree even if it is large area.
[0008]
[Means for Solving the Problems]
That is, the present invention provides a method of manufacturing a liquid crystal element in which an electrode and a liquid crystal alignment film are respectively formed in this order on opposing surfaces of a plurality of substrates facing each other, and liquid crystal is sealed between the opposing surfaces.
A polarizing element comprising a plurality of light transmitting plate disposed together with a predetermined gap to face the polymer film on the front Symbol electrodes of said substrate,
Of the plurality of light transmitting plates, light is incident at a Brewster angle or almost a Brewster angle from one light transmitting plate side, and polarized outgoing light is obtained from the other light transmitting plate side,
Irradiate the emitted light to the polymer film to form a liquid crystal alignment film,
The a plurality of substrates with a liquid crystal alignment film, the alignment direction so that opposed to so that Do antiparallel with the opposing surface,
In this state, the liquid crystal is sealed
The present invention relates to a method for manufacturing a liquid crystal element .
[0014]
According to the method for manufacturing a liquid crystal element of the present invention, a plurality of light transmitting plates are arranged with a predetermined gap from each other, and light is incident at a Brewster angle or almost a Brewster angle from the side of one light transmitting plate, Since the polarized outgoing light is obtained from the other light transmitting plate side, the ratio of the target polarization component can be increased while the transmission and reflection of the incident light are repeated by the plurality of light transmitting plates. Therefore, incident light can be efficiently polarized, and output light with a sufficient degree of polarization can be obtained even with a large area. By this irradiation of polarized output light, a polymer film with a large area can be converted into a liquid crystal. It becomes possible to process so that it may be in a state sufficient for orientation.
Then, a plurality of substrates with the liquid crystal alignment film subjected to the polarization treatment are arranged to face each other so that the alignment treatment direction is antiparallel to the substrate facing surface, and the liquid crystal is sealed in this state. The liquid crystal molecules can be aligned in a highly ordered manner with a uniform pretilt angle in one direction.
[0015]
By sufficiently controlling the alignment of the liquid crystal in this way, it becomes possible to polarize ultraviolet rays in a large ultraviolet wavelength region of about 200 nm to about 400 nm in a large area and irradiate the alignment film material. In particular, as described later, since the spacers between the quartz plates keep the distance between the quartz plates constant, it is possible to irradiate the alignment film material with ultraviolet rays having a high degree of polarization. The quartz plate absorbs almost no ultraviolet rays, so the transmittance is large, and the loss of irradiation intensity due to polarized light is close to the ideal 50%. With these characteristics, by using this polarizing element as an ultraviolet polarizing device for liquid crystal alignment treatment, irradiation energy necessary for liquid crystal alignment can be obtained in a short time, and the alignment order of the liquid crystal can be increased.
[0016]
The polymer alignment film obtained by the irradiation treatment can align the liquid crystal molecules in one direction with a uniform pretilt angle without performing the rubbing treatment. As a result, the occurrence of static electricity and TFT breakdown, which are problems in the rubbing process, are prevented, and the yield is improved and the productivity is of course improved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In the method for manufacturing a liquid crystal element according to the present invention, it is preferable that a spacer is provided between the plurality of light transmitting plates, and the gap is kept constant or substantially constant at least in the light incident region and the light emitting region.
[0018]
In addition, it is desirable that a plurality of quartz plates that transmit ultraviolet rays, particularly artificial quartz plates , are arranged in parallel or substantially in parallel, and unpolarized ultraviolet rays are incident as the light to obtain ultraviolet linearly polarized light.
[0019]
In addition, the light transmitting plate includes a plurality of light transmitting plates arranged with a predetermined gap between each other, and a light source that makes light incident at a Brewster angle or almost a Brewster angle from the side of one light transmitting plate, and the other light transmitting plate. The apparatus is preferably configured to obtain polarized outgoing light from the side of the light plate.
[0020]
Next, a preferred embodiment of the present invention will be described.
[0021]
First, an ultraviolet polarization method and an apparatus (or a polarization element) that are characteristic in the present embodiment will be described.
[0022]
The principle of ultraviolet light polarization uses Brewster's law, which is one of the properties of light. An artificial quartz plate that transmits even ultraviolet rays is used as a material that makes light incident at a Brewster angle.
[0023]
When ultraviolet rays are incident on this quartz plate by tilting the Brewster angle, the S wave is reflected and the P wave is transmitted. Therefore, it is possible to extract the polarized light by entering non-polarized ultraviolet rays. The Brewster angle can be obtained by the following equation. Here, i is the Brewster angle and n is the refractive index of the medium.
tani = n (Formula 1)
[0024]
Since the refractive index of artificial quartz is 1.51 at 237 nm and 1.47 at 404 nm, the Brewster angle is 55.7 to 56.5 degrees from the equation (1). Therefore, when a quartz plate is used for polarized light in the ultraviolet region, it is preferable that the ultraviolet light is incident with an incident angle of approximately 56 degrees.
[0025]
Since artificial quartz has a small imaginary part of the refractive index even in the ultraviolet region near 200 nm and does not absorb light, a polarizing element having a high transmission characteristic with a transmittance of about 50% can be manufactured. In order to increase the degree of polarization, it is effective to increase the number of quartz plates and to stack them through an air layer. This is because each time a plurality of quartz plates are passed through, the S wave component of the incident light is reflected more to reduce the transmission component and only the P wave is transmitted, thereby reducing the S wave component for the P wave component. This is because there is an effect.
[0026]
In order to obtain a high degree of polarization at that time, it is required to maintain parallelism between the quartz plates. This can be easily understood from FIGS. 1 and 2.
[0027]
Only the first quartz plate 8 is arranged so as to be incident at the Brewster angle θ 1 , and the second quartz plate 10 facing (stacking) the first piece 8 through the air layer 9 is the first piece. First consider the case that is not parallel to.
[0028]
As shown in FIG. 2, when unpolarized ultraviolet light 1 including an S wave indicated by ● and a P wave indicated by-is incident on the quartz plate, a slight amount of S wave (this is Smaller P-waves including ● are also transmitted. When the transmitted ultraviolet light 1 </ b > A is incident on the second quartz plate 10, the incident angle θ 2 is different from the Brewster angle because the second quartz plate 10 is not parallel. As a result, the S wave passes through the second quartz plate 10. Further, when the ultraviolet ray 1B ′ reflected on the surface of the second quartz plate 10 and further reflected on the back side of the first quartz plate 8 and entering the surface of the second quartz plate 10 is considered. Since the incident angle θ 3 is also different from the Brewster angle, the S wave is transmitted.
[0029]
Thus, in the case where the quartz plate 10 is not parallel to 8, there is a high possibility that the S wave will be transmitted, and the degree of polarization of the resulting outgoing ultraviolet rays 1C ′ and 1D ′ will be significantly reduced. .
[0030]
Compared to this, consider the case of a polarizing element in which spacers are arranged between quartz plates.
[0031]
As shown in FIG. 1, since the two quartz plates 8 and 10 are supported by the spacers 4 of the same size, the gap is kept constant (that is, the quartz plates 8 and 10 are parallel). . In addition, since the incident angle θ 1 of the ultraviolet ray 1A directly incident on the surface of the second quartz plate 10 and the ultraviolet ray 1B incident by multiple reflection is a Brewster angle, the S wave can be transmitted at all ideally. The polarization degree of the obtained outgoing ultraviolet rays 1C and 1D is remarkably increased.
[0032]
Thus, it can be understood that an ultraviolet polarizing element having a high degree of polarization can be produced by arranging the multilayered quartz plates 8 and 10 in parallel.
[0033]
Therefore, in order to hold a plurality of quartz plates at equal intervals, a spacer 4 is dispersed between the quartz plates, and then both quartz plates are overlapped, and these quartz plates are combined, whereby a polarizing element 5 having a high degree of polarization. Can be produced.
[0034]
An example of manufacturing this polarizing element will be described. First, a spacer 4 having a diameter of 10 μm is sprayed on a quartz plate (for example, 10) having an area of 10 cm × 10 cm and a thickness of 1 mm using a dry spacer spraying apparatus for manufacturing a liquid crystal display. The amount of spacers to be dispersed at this time may be a minimum amount to be applied to hold the two quartz plates at regular intervals. This is because when the amount of application is large, the transmittance of ultraviolet rays is lowered.
[0035]
Next, an ultraviolet curable resin containing a spacer having a diameter of 10 μm is disposed around the quartz plate with a dispenser. Next, a second quartz plate is placed on the quartz plate on which the spacers are dispersed, and the two quartz plates are pressurized to make the gap uniform, and then bonded by irradiating with ultraviolet rays. . This process is similar to the technique for overlaying substrates of liquid crystal display elements.
[0036]
Thereafter, the quartz plates are stacked one after another, and the stacking of 20 sheets is completed to complete the quartz polarizing element. The short side of the effective area of this polarizing element is approximately 5.6 cm since it is obtained by multiplying 10 cm by a cosine of 56 degrees. Therefore, this polarizing element is an element that polarizes a region having an area of 10 cm × 5.6 cm.
[0037]
Next, a specific example of the polarizing element 5, a method for manufacturing a liquid crystal alignment control film using the polarizing element 5, and an apparatus therefor will be described.
[0038]
As shown in FIG. 3, a high pressure mercury lamp 11 is used as the light source. Ultraviolet light 1 emitted from this lamp is converted into parallel light by a collimator lens 2. At this time, the ultraviolet rays are parallel light, but are not polarized. The higher the parallelism of the parallel light, the higher the degree of polarization after passing through the quartz plate. Ideally, it is most preferable if perfect parallel light can be obtained. Polarized light is obtained by allowing the parallel light to pass through the polarizing element 5 in which the above-described quartz plates 8 and 10 (here, each quartz plate is indicated by reference numeral 3) are laminated at regular intervals. It has a high degree of polarization, and transmits ultraviolet light having a low wavelength of 200 nm to ultraviolet light having a high wavelength of 400 nm.
[0039]
Therefore, when used in combination with a bandpass filter or a cut filter in this range, a liquid crystal alignment film can be obtained by irradiating the polymer film 6 such as polyimide on the liquid crystal substrate 7 with only polarized ultraviolet rays having an arbitrary wavelength. . Further, it is possible to irradiate the alignment film with polarized ultraviolet light having an arbitrary wavelength or longer. As described above, by using the quartz polarizing element according to the present invention, it is possible to perform ultraviolet polarization with a high degree of freedom.
[0040]
FIG. 4 shows a configuration example of a liquid crystal display element (cell) manufactured using a liquid crystal substrate with a liquid crystal alignment film manufactured as described above.
[0041]
According to this liquid crystal display element, transparent electrodes (for example, ITO (Indium Tin Oxide)) 20A and 20B are provided on transparent glass substrates 7A and 7B (corresponding to the above 7), and a polyimide film as a liquid crystal alignment film thereon. 6A and 6B (corresponding to 6 above) are formed, and these films are irradiated with polarized ultraviolet rays by the above-described method to form liquid crystal alignment (control) films.
[0042]
The thus-prepared substrate with the alignment film is assembled so that the alignment treatment direction is antiparallel to the opposing surface, and glass beads (true yarn balls) 21 corresponding to the target gap length are used as the spacer. Depending on the size of the transparent substrate, the spacers are dispersed in a sealing material (UV curable adhesive) 22 that adheres the periphery when the area is small, thereby controlling the gap between the substrates. When the substrate area is large, the true yarn balls are spread on the substrate, a gap is formed, a liquid crystal injection hole is secured around the cell, and the cell periphery is bonded with the sealing material.
[0043]
Thereafter, for example, the ferroelectric liquid crystal 23 is injected under reduced pressure in a state where the fluidity of the isotropic phase temperature or the chiral nematic phase temperature is exhibited. After the liquid crystal is injected, the liquid crystal is slowly cooled to remove the liquid crystal on the glass substrate around the injection hole, and then sealed with an adhesive to produce the liquid crystal element 24.
[0044]
As is clear from the above description, according to the method and apparatus of the present invention, a plurality of artificial quartz plates 8 and 10 are arranged in parallel while being held in a fixed gap via the spacers 4, and one quartz plate 8 is arranged. The non-polarized ultraviolet ray 1 is incident from the side of the Brewster angle θ 1 and the polarized ultraviolet rays 1C and 1D are obtained from the other quartz plate 10 side. The ratio of the desired polarization component can be increased while repeating. Therefore, incident light can be efficiently polarized, and outgoing light with a sufficient degree of polarization can be obtained even with a large area. By irradiation with this polarized outgoing light, a polymer film with a large area is sufficient for liquid crystal alignment. It becomes possible to process so that it will be in a proper state.
[0045]
By sufficiently controlling the alignment of the liquid crystal in this way, it becomes possible to polarize ultraviolet rays in a large ultraviolet wavelength region of about 200 nm to about 400 nm in a large area and irradiate the alignment film material. Further, since the spacer 4 between the quartz plates 8 and 10 keeps the distance between the quartz plates constant, it becomes possible to irradiate the alignment film material with ultraviolet rays having a high degree of polarization. The quartz plate absorbs almost no ultraviolet rays, so the transmittance is large, and the loss of irradiation intensity due to polarized light is close to the ideal 50%. With these characteristics, by using this polarizing element as an ultraviolet polarizing device for liquid crystal alignment treatment, irradiation energy necessary for liquid crystal alignment can be obtained in a short time, and the alignment order of the liquid crystal can be increased.
[0046]
The embodiment of the present invention described above can be further modified based on the technical idea of the present invention.
[0047]
For example, the number of laminated quartz plates used, thickness, size, shape, etc., spacer shape, size, ultraviolet wavelength, alignment film material, etc. may be variously changed, and other components of the polarizing element or device You may change similarly about. Instead of the quartz plate, another light transmitting plate can be used.
[0048]
Further, the liquid crystal element to which the present invention can be applied is not limited to the above-described one (for example, a simple matrix method), but may be an active matrix method using a TFT, and an alignment control film that does not require rubbing is provided. Has the advantage of
[0049]
【The invention's effect】
In the present invention, as described above, a plurality of translucent plates are arranged with a predetermined gap therebetween, and light is incident from the side of one translucent plate at a Brewster angle or almost a Brewster angle, and the other translucent plate is transmitted. Since the polarized outgoing light is obtained from the plate side, it is possible to increase the ratio of the target polarization component while repeating the transmission and reflection of the incident light by the plurality of light transmission plates. Therefore, incident light can be efficiently polarized, and outgoing light with a sufficient degree of polarization can be obtained even with a large area. By irradiation with this polarized outgoing light, a polymer film with a large area is sufficient for liquid crystal alignment. It becomes possible to process so that it will be in a proper state.
Then, a plurality of substrates with the liquid crystal alignment film subjected to the polarization treatment are arranged to face each other so that the alignment treatment direction is antiparallel to the substrate facing surface, and the liquid crystal is sealed in this state. The liquid crystal molecules can be aligned in a highly ordered manner with a uniform pretilt angle in one direction.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a polarizing method and a polarizing element according to the present invention.
FIG. 2 is a schematic view of a comparative polarizing element.
FIG. 3 is a schematic view of a method and apparatus for producing a liquid crystal alignment film according to the present invention.
FIG. 4 is a schematic cross-sectional view of an example of a liquid crystal element manufactured according to the present invention.
[Explanation of symbols]
1 ... Non-polarized UV, 1C, 1D ... UV with sufficient degree of polarization, 2 ... Lens,
3 ... quartz plate, 4 ... spacer, 5 ... quartz polarizing element, 6 ... alignment film, 7 ... substrate,
8 ... quartz plate, 9 ... air layer, 10 ... quartz plate, 11 ... mercury lamp,
θ 1 ... Incident angle (Brewster angle)

Claims (3)

互いに対向した複数の基板の対向面上に、電極及び液晶配向膜がこの順にそれぞれ形成され、前記対向面間に液晶が封入されている液晶素子を製造する方法において、
互いに所定の間隙を置いて配置された複数の透光板からなる偏光素子を前記基板の前 記電極上の高分子膜に対向させ、
前記複数の透光板のうち、一方の透光板の側からブリュースター角若しくはほぼブリ ュースター角で光を入射させ、他方の透光板の側から偏光された出射光を得、
この出射光を前記高分子膜に照射して液晶配向膜を形成し、
この液晶配向膜付きの基板の複数個を、その配向処理方向が前記対向面で反平行とな るように対向配置させ、
この状態で前記液晶の封入を行う
ことを特徴とする、液晶素子の製造方法。
In a method of manufacturing a liquid crystal element in which an electrode and a liquid crystal alignment film are respectively formed in this order on opposing surfaces of a plurality of substrates facing each other, and liquid crystal is sealed between the opposing surfaces.
A polarizing element comprising a plurality of light transmitting plate disposed together with a predetermined gap to face the polymer film on the front Symbol electrodes of said substrate,
Of the plurality of light transmitting plates, light is incident at a Brewster angle or almost a Brewster angle from one light transmitting plate side, and polarized outgoing light is obtained from the other light transmitting plate side,
A liquid crystal alignment film to form the emitted light is irradiated to the polymer membrane,
The a plurality of substrates with a liquid crystal alignment film, the alignment direction so that opposed to so that Do antiparallel with the opposing surface,
In this state, the liquid crystal is sealed
A method for producing a liquid crystal element .
前記複数の透光板の間にスペーサを設け、前記間隙を少なくとも光入射領域及び光出射領域において一定若しくはほぼ一定に保持する、請求項に記載した液晶素子の製造方法。Wherein the spacer is provided in a plurality of light-transmitting plates, held constant or nearly constant at least the light incidence region and the light emission region of the gap, the method of manufacturing the liquid crystal device according to claim 1. 紫外線を透過する石英板の複数個を平行若しくはほぼ平行に配置し、前記光として無偏光の紫外線を入射させ、紫外線の直線偏光を得る、請求項に記載した液晶素子の製造方法。A plurality of quartz plates which transmits ultraviolet rays is arranged in parallel or substantially in parallel, is incident polarized ultraviolet light as the light, to obtain a linearly polarized UV, a method of manufacturing a liquid crystal device according to claim 1.
JP298198A 1998-01-09 1998-01-09 Manufacturing method of liquid crystal element Expired - Fee Related JP3906878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP298198A JP3906878B2 (en) 1998-01-09 1998-01-09 Manufacturing method of liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP298198A JP3906878B2 (en) 1998-01-09 1998-01-09 Manufacturing method of liquid crystal element

Publications (2)

Publication Number Publication Date
JPH11202335A JPH11202335A (en) 1999-07-30
JP3906878B2 true JP3906878B2 (en) 2007-04-18

Family

ID=11544562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP298198A Expired - Fee Related JP3906878B2 (en) 1998-01-09 1998-01-09 Manufacturing method of liquid crystal element

Country Status (1)

Country Link
JP (1) JP3906878B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3603758B2 (en) * 2000-07-12 2004-12-22 ウシオ電機株式会社 Polarizing element of polarized light irradiation device for photo-alignment of liquid crystal alignment film

Also Published As

Publication number Publication date
JPH11202335A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
KR101098202B1 (en) Polarized diffractive filter and layered polarized diffractive filter
JP2996897B2 (en) Liquid crystal alignment control method and apparatus, and liquid crystal display device having alignment film formed by the method
JP2001201635A (en) Porlarized light element
JPH11202336A (en) Method and device for radiating light and method and device for producing high molecular alignment layer
US8064021B2 (en) Light illuminating unit and method of fabricating a liquid crystal display device using same
JP3906878B2 (en) Manufacturing method of liquid crystal element
JPH06342169A (en) Optical switching element
WO1998033092A1 (en) Liquid crystal device and its manufacturing method
US11287685B2 (en) Optical element and image display device
JPH1090730A (en) Optical element, its drive method and display device
JP2001318373A (en) Liquid crystal display device
JP2000171676A (en) Polarizing device using large area polarizing plate
KR101221213B1 (en) light irradiating equipment
JP3280933B2 (en) Liquid crystal element and manufacturing method thereof
JP2001051277A (en) Liquid crystal device, production thereof, liquid crystal display device and method of driving the same
JP2009042597A (en) Polarized light irradiation apparatus, and method for producing liquid crystal device
JP7451244B2 (en) Lamp units, vehicle lighting systems
KR101661234B1 (en) Liquid crsytal display
JPH11326911A (en) Reflection type liquid crystal display element and its production
JPH01265228A (en) Liquid crystal display element
JP3591479B2 (en) Liquid crystal element
JP2001100253A (en) Liquid crystal display device
JPH10311969A (en) Light transmissive medium, space light modulation method and space light modulation element
KR20070062108A (en) A polarizing system, an uv irradiating apparatus and method of manufacturing a liquid crystal display device using the same
JP2796912B2 (en) Liquid crystal electro-optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041206

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060928

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20061003

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070109

LAPS Cancellation because of no payment of annual fees