JP3905283B2 - Rotating shaft support structure - Google Patents

Rotating shaft support structure Download PDF

Info

Publication number
JP3905283B2
JP3905283B2 JP2000122523A JP2000122523A JP3905283B2 JP 3905283 B2 JP3905283 B2 JP 3905283B2 JP 2000122523 A JP2000122523 A JP 2000122523A JP 2000122523 A JP2000122523 A JP 2000122523A JP 3905283 B2 JP3905283 B2 JP 3905283B2
Authority
JP
Japan
Prior art keywords
ball
curvature
raceway
groove
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000122523A
Other languages
Japanese (ja)
Other versions
JP2001304273A (en
Inventor
孝 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2000122523A priority Critical patent/JP3905283B2/en
Publication of JP2001304273A publication Critical patent/JP2001304273A/en
Application granted granted Critical
Publication of JP3905283B2 publication Critical patent/JP3905283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • F16C19/166Four-point-contact ball bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/76Osculation, i.e. relation between radii of balls and raceway groove

Description

【0001】
【発明の属する技術分野】
この発明は、耐モーメント荷重性やモーメント剛性が優れた軽量でコンパクトな4点接触玉軸受を有する回転軸支持構造に関する。
【0002】
【従来の技術】
自動車用エアコンディショナーで使用される電磁クラッチ用軸受あるいはプーリ用軸受には、耐モーメント荷重性やモーメント剛性が要求されるので、単列深溝玉軸受を採用できず、内,外輪一体タイプの複列斜接玉軸受が使用されている。
【0003】
【発明が解決しようとする課題】
ところが、近年、周辺部品の設計自由度や軽量化,コストダウンの要求が強く、軸受を単列化する必要性が生じている。
【0004】
しかし、通常の単列軸受では、上述のような厳しい条件では、使用できなかった。
【0005】
そこで、この発明の目的は、耐モーメント荷重性やモーメント剛性が優れ、耐剥離性,耐焼付き性も優れた4点接触玉軸受を有する回転軸支持構造を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、この発明の回転軸支持構造は、単列の玉軸受でモーメント荷重を含む荷重を支持する回転軸支持構造であって、
上記玉軸受は、
玉の中心の軸方向位置から軸方向の両側に延在する軌道溝を有する内輪と、上記玉の中心の軸方向位置から軸方向の両側に延在する軌道溝を有する外輪とを有する4点接触玉軸受であり、
上記内輪の軌道溝の軌道面の溝曲率半径を玉径の52〜53.5%とし、
上記外輪の軌道溝の軌道面の溝曲率半径を玉径の53.5〜56%とし、
かつ、上記内輪の軌道溝の軌道面の溝曲率半径を上記外輪の軌道溝の軌道面の溝曲率半径よりも小さくして、上記内輪の軌道溝の面圧と上記外輪の軌道溝の面圧とをバランスさせることを特徴としている。
【0007】
この発明の回転軸支持構造では、4点接触玉軸受内(外)輪の溝曲率半径を玉径の52(53.5)%以上にしたから、玉の肩乗り上げや焼付き寿命の低下を招くことがなく、内(外)輪の溝曲率半径を玉径の53.5(56)%以下としたから、剥離寿命やモーメント剛性を確保できる。これに対し、内(外)輪の溝曲率半径を玉径の52(53.5)%未満にすると、玉と内,外輪との接触楕円が大となり、差動すべりが大となって、発熱が大きくなったり、軌道溝からの離脱、いわゆる肩乗り上げが発生する。
【0008】
また、一実施形態では、接触角を20°以上にしたから、モーメント剛性の低下を招くことが無く、接触角を30°以下にしたから、玉のスピンに起因する発熱や玉の肩乗り上げの問題を回避できる。これに対し、接触角が20°を下回ると、アキシャルガタが大きくなって、モーメント剛性が小さくなる一方、接触角が30°を上回ると、玉のスピンが増加して、発熱が大きくなる。
【0009】
また、内輪の軌道面の溝曲率半径を52〜53.5Bd%(Bd%は玉の直径に対する百分率)として、外輪の軌道面の溝曲率半径(53.5〜56Bd%)よりも小さくしたから、内輪の軌道面の面圧と外輪の軌道面の面圧とをバランスさせて、剥離寿命の向上を図ることができる。なお、内輪の軌道面は、軸直角面で切断した断面が玉に対して凸であるのに対し、外輪の軌道面は、軸直角面で切断した断面が玉に対して凹であるから、外輪の溝曲率半径と内輪の溝曲率半径とを同じにすると、外輪よりも内輪の面圧の方が大きくなって、面圧がアンバランスになって、寿命が低下する。
【0010】
したがって、この発明によれば、耐モーメント荷重性やモーメント剛性が優れ、耐剥離性,耐焼付き性も優れた4点接触玉軸受を有する回転軸支持構造を実現できる。
【0011】
【発明の実施の形態】
以下、この発明を図示の実施の形態により詳細に説明する。
【0012】
図1に、この発明の回転軸支持構造が有する4点接触玉軸受の実施形態の断面を示す。この実施形態は、内輪1と外輪2の間に複数の玉3が周方向に所定の間隔を隔てて配列されており、この玉3は保持器5で保持されている。外輪2の軸方向の両端部にはシール部材6が固定され、このシール部材6のシールリップ7は内輪1の軸方向両端に形成された窪みに摺接している。
【0013】
内輪1は軌道溝11を有し、この軌道溝11は、玉3の中心P0から所定寸法(例えば、玉3の直径Bdの1%)だけ軸方向の両側へ位置ずれした2つの曲率中心P11,P12を有している。図1において、右方へ位置ずれした曲率中心P12は、図1において、玉中心P0の左方の軌道溝11Bの軌道面の曲率中心であり、左方へ位置ずれした曲率中心P11は、図において、玉中心P0の右方の軌道溝11Aの軌道面の曲率中心である。また、上記軌道溝11A,11Bの曲率半径R1は、玉3の直径Bdの53.0%とした。そして、この玉3と軌道溝11Aとの接触角θ2を25°とし、玉3と軌道溝11Bとの接触角θ2を25°とした。
【0014】
また、外輪2は、軌道溝12を有し、この軌道溝12は、玉3の中心P0から所定寸法(例えば、玉3の直径Bdの1%)だけ軸方向の両側へ位置ずれした2つの曲率中心P21,P22を有している。図1において、右方へ位置ずれした曲率中心P22は、図1において、玉中心P0の左方の軌道溝12Bの軌道面の曲率中心であり、左方へ位置ずれした曲率中心P21は、図において、玉中心P0の右方の軌道溝12Aの軌道面の曲率中心である。また、上記軌道溝12A,12Bの曲率半径R2は、玉3の直径Bdの55.0%とした。そして、この玉3と軌道溝12Aとの接触角θ1を25°とし、玉3と軌道溝12Bとの接触角θ1を25°とした。
【0015】
この実施形態の4点接触玉軸受によれば、内輪1の溝曲率半径R1を53.0Bd%(52Bd%以上で53.5Bd%以下)にし、外輪2の溝曲率半径R2を55.0Bd%(53.5Bd%以上で56Bd%以下)にした。これにより、玉3の肩乗り上げや焼付き寿命の低下を招くことなく、剥離寿命やモーメント剛性を確保できる。なお、内(外)輪1(2)の溝曲率半径R1(R2)を52(53.5)%Bd未満にすると、玉3と内,外輪1,2との接触楕円が大となり、作動すべりが大となって、発熱が大きくなったり肩乗り上げが発生する。
【0016】
また、軌道溝11の軌道溝11A,11Bと玉3との接触角θ2を25°(20°〜30°)とし、軌道溝12の軌道溝12A,12Bと玉3との接触角θ1を25°としたから、モーメント剛性の低下を招くこと無く、玉3のスピンに起因する発熱や玉3の肩乗り上げの問題を回避できる。なお、接触角θ12が20°を下回ると、アキシャルガタが大きくなって、モーメント剛性も小さくなる一方、接触角θ12が30°を上回ると、玉3のスピンが増加して、発熱が大きくなる。
【0017】
また、内輪1の軌道溝11A,11Bの溝曲率半径R1(53.0Bd%)を外輪2の軌道溝12A,12Bの溝曲率半径(55Bd%)よりも小さくしたから、内輪1の軌道溝11A,11Bの面圧と外輪2の軌道溝12A,12Bの面圧とをバランスさせて、剥離寿命を向上を図ることができる。なお、内輪1の軌道溝11は、軸直角面で切断した断面が玉3に対して凸であるのに対し、外輪2の軌道溝12は、軸直角面で切断した断面が玉3に対して凹である。このため、外輪2の溝曲率半径R2と内輪1の溝曲率半径R1とを同じにすると、外輪2よりも内輪1の面圧の方が大きくなって、面圧がアンバランスになって、寿命が低下する。
【0018】
上記説明したように、この実施形態によれば、耐モーメント荷重性やモーメント剛性が優れ、耐剥離性や耐焼付き性も優れた4点接触玉軸受を有する回転軸支持構造を実現できる。
【0019】
尚、上記実施形態では、内輪1の軌道溝11の曲率半径を玉の直径の53%としたが、52〜53.5%の範囲内に設定すれば、上述の効果が得られる。また、外輪2の軌道溝12の曲率半径を玉の直径の53.5%〜56%の範囲内に設定すれば、同様の効果を得ることができる。
【0020】
【発明の効果】
以上より明らかなように、この発明の回転軸支持構造の4点接触玉軸受は、内(外)輪の溝曲率半径を52(53.5)Bd%以上にしたから、玉の肩乗り上げや焼付き寿命の低下を招くことがなく、内(外)輪の溝曲率半径を53.5(56)Bd%以下としたから、剥離寿命やモーメント剛性を確保できる。
【0021】
また、一実施形態では、接触角を20°以上にしたから、モーメント剛性の低下を招くことが無く、接触角を30°以下にしたから、玉のスピンに起因する発熱や玉の肩乗り上げの問題を回避できる。
【0022】
また、内輪の軌道面の溝曲率半径(52〜53.5Bd%)を外輪の軌道面の溝曲率半径(53.5〜56Bd%)よりも小さくしたから、内輪の軌道面の面圧と外輪の軌道面の面圧とをバランスさせて、剥離寿命を向上を図ることができる。
【0023】
したがって、この発明によれば、耐モーメント荷重性やモーメント剛性が優れ、耐剥離性や耐焼付き性が優れた4点接触玉軸受を有する回転軸支持構造を実現できる。
【図面の簡単な説明】
【図1】 この発明の4点接触玉軸受を有する回転軸支持構造の実施の形態の断面図である。
【符号の説明】
1…内輪、2…外輪、3…玉、5…保持器、6…シール部材、
7…シールリップ、11,12…軌道溝、
0…玉中心、P11,P12,P21,P22…曲率中心、θ12…接触角。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotating shaft support structure having a lightweight and compact four-point contact ball bearing having excellent moment load resistance and moment rigidity.
[0002]
[Prior art]
Bearings for electromagnetic clutches or pulleys used in automotive air conditioners require moment load resistance and moment rigidity, so single row deep groove ball bearings cannot be used. Oblique contact ball bearings are used.
[0003]
[Problems to be solved by the invention]
However, in recent years, there are strong demands for design freedom, weight reduction, and cost reduction of peripheral parts, and there is a need for a single row bearing.
[0004]
However, ordinary single row bearings could not be used under the severe conditions described above.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to provide a rotating shaft support structure having a four-point contact ball bearing that is excellent in moment load resistance and moment rigidity, and excellent in peeling resistance and seizure resistance.
[0006]
[Means for Solving the Problems]
To achieve the above object, the rotating shaft support structure of the present invention is a rotating shaft support structure that supports a load including a moment load with a single row ball bearing,
The above ball bearing
Four points having an inner ring having a raceway groove extending from the axial position at the center of the ball to both sides in the axial direction and an outer ring having a raceway groove extending from the axial position at the center of the ball to both sides in the axial direction Contact ball bearings,
The radius of curvature of the raceway surface of the raceway groove of the inner ring is 52-53.5% of the ball diameter,
The radius of curvature of the raceway surface of the raceway groove of the outer ring is 53.5 to 56% of the ball diameter,
Further, the groove radius of curvature of the raceway surface of the inner ring raceway groove is made smaller than the radius of curvature of the raceway surface of the raceway groove of the outer ring, and the surface pressure of the raceway groove of the inner ring and the surface pressure of the raceway groove of the outer ring. It is characterized by balancing .
[0007]
In the rotary shaft support structure of the present invention, the groove radius of curvature of the inner (outer) ring of the four-point contact ball bearing is set to 52 (53.5)% or more of the ball diameter, so that the ball rides on the shoulder and the seizure life is reduced. Since the groove radius of curvature of the inner (outer) ring is 53.5 (56)% or less of the ball diameter, the peeling life and moment rigidity can be secured. On the other hand, if the groove radius of curvature of the inner (outer) ring is less than 52 (53.5)% of the ball diameter, the contact ellipse between the ball and the inner and outer rings becomes large, and the differential slip becomes large. Heat generation becomes large and separation from the raceway groove, so-called shoulder climbing, occurs.
[0008]
In one embodiment, since the contact angle is set to 20 ° or more, the moment rigidity is not reduced, and the contact angle is set to 30 ° or less. The problem can be avoided. On the other hand, when the contact angle is less than 20 °, the axial backlash is increased and the moment rigidity is reduced. On the other hand, when the contact angle is more than 30 °, the spin of the ball is increased and the heat generation is increased.
[0009]
Also, the groove radius of curvature of the inner ring raceway surface is 52-53.5 Bd% (Bd% is a percentage of the ball diameter), which is smaller than the groove radius of curvature of the outer ring raceway surface (53.5-56 Bd%). It is possible to improve the peeling life by balancing the surface pressure of the raceway surface of the inner ring and the surface pressure of the raceway surface of the outer ring. In addition, the raceway surface of the inner ring is convex with respect to the ball, and the cross section cut along the plane perpendicular to the axis is convex with respect to the ball. If the groove radius of curvature of the outer ring and the groove radius of curvature of the inner ring are the same, the surface pressure of the inner ring becomes larger than that of the outer ring, the surface pressure becomes unbalanced, and the life is shortened.
[0010]
Therefore, according to the present invention, it is possible to realize a rotating shaft support structure having a four-point contact ball bearing that is excellent in moment load resistance and moment rigidity, and excellent in peeling resistance and seizure resistance.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
[0012]
FIG. 1 shows a cross section of an embodiment of a four-point contact ball bearing included in the rotating shaft support structure of the present invention. In this embodiment, a plurality of balls 3 are arranged at a predetermined interval in the circumferential direction between the inner ring 1 and the outer ring 2, and the balls 3 are held by a cage 5. Seal members 6 are fixed to both ends of the outer ring 2 in the axial direction, and seal lips 7 of the seal member 6 are in sliding contact with recesses formed at both ends of the inner ring 1 in the axial direction.
[0013]
The inner ring 1 has a raceway groove 11, and this raceway groove 11 has two curvature centers that are displaced from the center P 0 of the ball 3 to both sides in the axial direction by a predetermined dimension (for example, 1% of the diameter Bd of the ball 3). P 11 and P 12 are included. In FIG. 1, the center of curvature P 12 displaced to the right is the center of curvature of the track surface of the track groove 11B on the left side of the ball center P 0 in FIG. 1, and the center of curvature P 11 displaced to the left. , in the figure, a center of curvature of the raceway surface of the raceway groove 11A of the right side of the ball center P 0. Further, the radius of curvature R1 of the raceway grooves 11A and 11B is 53.0% of the diameter Bd of the ball 3. Then, the balls 3 and the contact angle theta 2 between the raceway grooves 11A was a 25 °, the contact angle theta 2 between the balls 3 and the raceway groove 11B was 25 °.
[0014]
Further, the outer ring 2 has a raceway groove 12, the raceway grooves 12, a predetermined dimension from the center P 0 of the balls 3 (e.g., 1% of the diameter Bd of the balls 3) misaligned to only the axial direction on both sides 2 It has two curvature centers P 21 and P 22 . In FIG. 1, the center of curvature P 22 displaced to the right is the center of curvature of the track surface of the track groove 12B on the left of the ball center P 0 in FIG. 1, and the center of curvature P 21 displaced to the left. , in the figure, a center of curvature of the raceway surface of the raceway groove 12A of the right side of the ball center P 0. The radius of curvature R2 of the raceway grooves 12A and 12B was 55.0% of the diameter Bd of the ball 3. Then, the contact angle theta 1 between the balls 3 and the raceway groove 12A and 25 °, the contact angle theta 1 between the ball 3 and the raceway groove 12B was 25 °.
[0015]
According to the four-point contact ball bearing of this embodiment, the groove curvature radius R1 of the inner ring 1 is 53.0 Bd% (52 Bd% or more and 53.5 Bd% or less), and the groove curvature radius R2 of the outer ring 2 is 55.0 Bd%. (53.5 Bd% or more and 56 Bd% or less). Thereby, the peeling life and moment rigidity can be ensured without causing the ball 3 to ride on the shoulder and the seizure life to decrease. If the groove curvature radius R1 (R2) of the inner (outer) ring 1 (2) is less than 52 (53.5)% Bd, the contact ellipse between the ball 3 and the inner and outer rings 1, 2 becomes large, and the operation Slip becomes large, fever increases, and shoulder climbing occurs.
[0016]
Further, the contact angle θ 2 between the raceway grooves 11A and 11B of the raceway groove 11 and the ball 3 is set to 25 ° (20 ° to 30 °), and the contact angle θ 1 between the raceway grooves 12A and 12B of the raceway groove 12 and the ball 3 is set. Since the angle is set to 25 °, it is possible to avoid the problem of heat generation due to the spin of the ball 3 and the shoulder climb of the ball 3 without causing a decrease in moment rigidity. When the contact angles θ 1 and θ 2 are less than 20 °, the axial backlash increases and the moment rigidity decreases. On the other hand, when the contact angles θ 1 and θ 2 exceed 30 °, the spin of the ball 3 increases. As a result, heat generation increases.
[0017]
In addition, since the groove curvature radius R1 (53.0 Bd%) of the raceway grooves 11A and 11B of the inner ring 1 is made smaller than the groove curvature radius (55Bd%) of the raceway grooves 12A and 12B of the outer ring 2, the raceway groove 11A of the inner ring 1 is set. , 11B and the surface pressure of the raceway grooves 12A, 12B of the outer ring 2 can be balanced to improve the peeling life. The raceway groove 11 of the inner ring 1 is convex with respect to the ball 3 in a cross section cut along a plane perpendicular to the axis, whereas the raceway groove 12 of the outer ring 2 has a cross section cut along a plane perpendicular to the axis with respect to the ball 3. It is concave. For this reason, when the groove radius of curvature R2 of the outer ring 2 and the groove radius of curvature R1 of the inner ring 1 are the same, the surface pressure of the inner ring 1 becomes larger than the outer ring 2, the surface pressure becomes unbalanced, and the service life is increased. Decreases.
[0018]
As described above, according to this embodiment, it is possible to realize a rotating shaft support structure having a four-point contact ball bearing that is excellent in moment load resistance and moment rigidity, and excellent in peeling resistance and seizure resistance.
[0019]
In the above embodiment, the radius of curvature of the raceway groove 11 of the inner ring 1 is set to 53% of the diameter of the ball. However, if the radius is set in the range of 52 to 53.5%, the above-described effect can be obtained. Moreover, if the curvature radius of the raceway groove | channel 12 of the outer ring | wheel 2 is set in the range of 53.5%-56% of the diameter of a ball | bowl, the same effect can be acquired.
[0020]
【The invention's effect】
As is clear from the above, the four-point contact ball bearing of the rotating shaft support structure of the present invention has a groove radius of curvature of the inner (outer) ring of 52 (53.5) Bd% or more. Since the seizure life is not shortened and the groove radius of curvature of the inner (outer) ring is set to 53.5 (56) Bd% or less, the peeling life and moment rigidity can be secured.
[0021]
In one embodiment, since the contact angle is set to 20 ° or more, the moment rigidity is not reduced, and the contact angle is set to 30 ° or less. The problem can be avoided.
[0022]
Further, the groove radius of curvature of the inner ring raceway surface (52-53.5 Bd%) is made smaller than the groove radius of curvature of the raceway surface of the outer ring (53.5-56 Bd%). It is possible to improve the peeling life by balancing the surface pressure of the track surface.
[0023]
Therefore, according to the present invention, it is possible to realize a rotating shaft support structure having a four-point contact ball bearing that is excellent in moment load resistance and moment rigidity, and excellent in peel resistance and seizure resistance.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an embodiment of a rotary shaft support structure having a four-point contact ball bearing of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inner ring, 2 ... Outer ring, 3 ... Ball, 5 ... Cage, 6 ... Sealing member,
7 ... Seal lip, 11,12 ... Track groove,
P 0 ... ball center, P 11 , P 12 , P 21 , P 22 ... curvature center, θ 1 , θ 2 ... contact angle.

Claims (1)

単列の玉軸受でモーメント荷重を含む荷重を支持する回転軸支持構造であって、
上記玉軸受は、
玉の中心の軸方向位置から軸方向の両側に延在する軌道溝を有する内輪と、上記玉の中心の軸方向位置から軸方向の両側に延在する軌道溝を有する外輪とを有する4点接触玉軸受であり、
上記内輪の軌道溝の軌道面の溝曲率半径を玉径の52〜53.5%とし、
上記外輪の軌道溝の軌道面の溝曲率半径を玉径の53.5〜56%とし、
かつ、上記内輪の軌道溝の軌道面の溝曲率半径を上記外輪の軌道溝の軌道面の溝曲率半径よりも小さくして、上記内輪の軌道溝の面圧と上記外輪の軌道溝の面圧とをバランスさせることを特徴とする回転軸支持構造
A rotating shaft support structure that supports a load including moment load with a single row ball bearing,
The above ball bearing
Four points having an inner ring having a raceway groove extending from the axial position at the center of the ball to both sides in the axial direction and an outer ring having a raceway groove extending from the axial position at the center of the ball to both sides in the axial direction Contact ball bearings,
The radius of curvature of the raceway surface of the raceway groove of the inner ring is 52-53.5% of the ball diameter,
The radius of curvature of the raceway surface of the raceway groove of the outer ring is 53.5 to 56% of the ball diameter,
Further, the groove radius of curvature of the raceway surface of the inner ring raceway groove is made smaller than the radius of curvature of the raceway surface of the raceway groove of the outer ring, and the surface pressure of the raceway groove of the inner ring and the surface pressure of the raceway groove of the outer ring. Rotating shaft support structure characterized by balancing
JP2000122523A 2000-04-24 2000-04-24 Rotating shaft support structure Expired - Fee Related JP3905283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000122523A JP3905283B2 (en) 2000-04-24 2000-04-24 Rotating shaft support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000122523A JP3905283B2 (en) 2000-04-24 2000-04-24 Rotating shaft support structure

Publications (2)

Publication Number Publication Date
JP2001304273A JP2001304273A (en) 2001-10-31
JP3905283B2 true JP3905283B2 (en) 2007-04-18

Family

ID=18632987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000122523A Expired - Fee Related JP3905283B2 (en) 2000-04-24 2000-04-24 Rotating shaft support structure

Country Status (1)

Country Link
JP (1) JP3905283B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104956105A (en) * 2013-01-30 2015-09-30 日本精工株式会社 Multipoint contact ball bearing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827496B2 (en) * 2001-08-28 2004-12-07 Koyo Seiko Co., Ltd. Four-point contact ball bearing
US20060013519A1 (en) * 2002-12-16 2006-01-19 Masafumi Fukunaga Four-point contact ball bearing
CN104141691B (en) * 2013-05-07 2017-06-27 襄阳汽车轴承股份有限公司 A kind of commercial car penetrating bridge exports end bearing
CN106763157A (en) * 2016-11-29 2017-05-31 江苏万达特种轴承有限公司 The single spherical structure roller bearing of linear contact formula
CN106640559B (en) * 2017-01-10 2019-01-08 河南科技大学 The setting method and device of asymmetric double four-point contact ball asymmetry angle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104956105A (en) * 2013-01-30 2015-09-30 日本精工株式会社 Multipoint contact ball bearing

Also Published As

Publication number Publication date
JP2001304273A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
JP6268711B2 (en) Multi-point contact ball bearing and manufacturing method thereof
CA2553650A1 (en) Double-row rolling bearing
JPWO2003071142A1 (en) Rotation support device for pulley for compressor
JP3905283B2 (en) Rotating shaft support structure
JP2002349593A (en) Constant velocity universal joint
KR102311257B1 (en) A Rolling Bearing Having Variable Rated Capacity And A Roller Therefor
US20210102576A1 (en) Self-aligning roller bearing
JP4067191B2 (en) Constant velocity joints and rolling bearing units with constant velocity joints
US20070104403A1 (en) Bearing apparatus for supporting pinion shaft
JP2003042160A (en) Angular contact ball bearing and main bearing
JP2013082293A (en) Bearing device for driving wheel
JP2000161368A (en) Bearing for wheel
JP3767168B2 (en) Constant velocity joints and rolling bearing units for wheels with constant velocity joints
JP2014084907A (en) Hub unit bearing
JP2008082506A (en) Roll bearing and supercharger using it
JP3892213B2 (en) 4-point contact ball bearing
JP4131099B2 (en) Double row radial ball bearing
AU4599399A (en) Pure rolling bearing
CN211343713U (en) Special combination bearing of car fan
JP2019173918A (en) Four-point contact ball bearing and cage for ball bearing using the same
US20220324255A1 (en) Wheel hub assembly with optimized raceways
US11898603B2 (en) Bearing unit with retaining cage
JP4228178B2 (en) Water pump bearing
JP2598916Y2 (en) Constant velocity ball joint
JP2000158905A (en) Wheel bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees