JP3904402B2 - Home fuel cell system - Google Patents

Home fuel cell system Download PDF

Info

Publication number
JP3904402B2
JP3904402B2 JP2001092924A JP2001092924A JP3904402B2 JP 3904402 B2 JP3904402 B2 JP 3904402B2 JP 2001092924 A JP2001092924 A JP 2001092924A JP 2001092924 A JP2001092924 A JP 2001092924A JP 3904402 B2 JP3904402 B2 JP 3904402B2
Authority
JP
Japan
Prior art keywords
heat storage
amount
hot water
storage amount
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001092924A
Other languages
Japanese (ja)
Other versions
JP2002289239A (en
Inventor
雄治 澤田
一裕 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001092924A priority Critical patent/JP3904402B2/en
Publication of JP2002289239A publication Critical patent/JP2002289239A/en
Application granted granted Critical
Publication of JP3904402B2 publication Critical patent/JP3904402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気と熱とを発生させる燃料電池からの排熱により加熱された湯を貯湯槽に蓄えるとともに、燃料電池の発電電力量を制御する制御手段とを備えて構成した家庭用燃料電池システムに関する。
【0002】
【従来の技術】
この種の家庭用燃料電池システムでは、燃料電池の発電電力に応じて発生する熱を貯湯槽に一旦蓄え、給湯需要に応じて供給するようにしている。給湯需要が多くて、貯湯槽内の蓄熱量が不足した場合、別途設置したボイラーなどの補助加熱装置によって温水を補充している。
【0003】
【発明が解決しようとする課題】
しかしながら、従来一般に、使用電力に応じて発電電力量を制御する、いわゆる電主熱従運転が主体であり、給湯需要が少なくて、貯湯槽内に上限温度の湯が満杯に蓄えられた場合、燃料電池からの排熱を放熱しながら発電を継続しており、排熱の回収効率が低下して省エネルギー性が低下する欠点があった。
【0004】
また、放熱を回避するために、大型の貯湯槽を設けることも考えられたが、イニシャルコストが増大するとともに、貯湯槽およびそれに付帯する設備自体からの放熱量も多くなってエネルギーロスを生じやすく、省エネルギー性が低下する欠点があった。
【0005】
本発明は、このような事情に鑑みてなされたものであって、請求項1に係る発明は、燃料電池を継続して運転できながら、燃料電池からの排熱の放熱を極力減少させて省エネルギー性を向上できるようにすることを目的とし、また、請求項2に係る発明は、燃料電池を継続して運転できながら、燃料電池からの排熱の放熱を極力減少させて省エネルギー性を向上できるとともに給湯需要のピークに対して良好に対応できるようにすることを目的とする。
【0006】
【課題を解決するための手段】
請求項1に係る発明は、上述のような目的を達成するために、
電気と熱とを発生させる燃料電池と、
前記燃料電池からの排熱により加熱された湯を蓄える貯湯槽と、
前記燃料電池の発電電力量を制御する制御手段とを備えた家庭用燃料電池システムにおいて、
前記貯湯槽内に蓄えられた熱量を測定する蓄熱量センサと、
前記貯湯槽内の最大蓄熱量よりも低い蓄熱量を設定する蓄熱量設定手段と、
前記蓄熱量センサで測定される蓄熱量と前記蓄熱量設定手段で設定された蓄熱量とを比較し、測定蓄熱量が設定蓄熱量まで上昇したときに指令信号を出力する蓄熱量比較手段と、
前記指令信号に応答して前記制御手段による制御発電電力量が最大発電電力量よりも小さい設定電力量になるように調整する発電電力量調整手段とを備えて構成する。
【0007】
また、請求項2に係る発明は、前述のような目的を達成するために、
電気と熱とを発生させる燃料電池と、
前記燃料電池からの排熱により加熱された湯を蓄える貯湯槽と、
前記燃料電池の発電電力量を制御する制御手段とを備えた家庭用燃料電池システムにおいて、
前記貯湯槽内に蓄えられた熱量を測定する蓄熱量センサと、
前記貯湯槽内の最大蓄熱量よりも少ない二段階の高蓄熱量と低蓄熱量とを設定する蓄熱量設定手段と、
前記蓄熱量センサで測定される蓄熱量と前記蓄熱量設定手段で設定された低蓄熱量と高蓄熱量とを比較し、測定蓄熱量が設定低蓄熱量まで上昇したときに低蓄熱指令信号を、測定蓄熱量が設定高蓄熱量まで上昇したときに高蓄熱量指令信号をそれぞれ出力する蓄熱量比較手段と、
給湯需要の経時的変化から給湯需要のピークとなる時間帯を特定するピーク需要特定手段と、
前記低蓄熱指令信号に応答して、その信号出力時刻が前記ピーク需要特定手段で特定されているピークとなる時間帯の直前かどうかを判別し、直前のときに直前信号を出力する直前判別手段と、
前記低蓄熱指令信号に応答して、前記直前判別手段からの直前信号の有無を判別し、前記直前信号が無いときには、前記制御手段による制御発電電力量が最大発電電力量よりも小さい設定電力量になるように調整し、前記直前信号が有るときには、前記制御手段を作動させず、かつ、前記高蓄熱指令信号に応答して、前記制御手段による制御発電電力量が最大発電電力量よりも小さい設定電力量になるように調整する発電電力量調整手段とを備えて構成する。
【0008】
【作用】
請求項1に係る発明の家庭用燃料電池システムの構成によれば、貯湯槽内に蓄えられた熱量が増加していくときに、最大蓄熱量よりも低い設定蓄熱量になった時点で、燃料電池の発電電力量を最大発電電力量よりも小さい設定電力量になるように調整し、排熱量の発生量を抑えて貯湯槽内の蓄熱量が満杯になるまでの時間を延ばすことができる。
【0009】
また、請求項2に係る発明の家庭用燃料電池システムの構成によれば、給湯需要の経時的変化を考慮し、給湯需要のピークとなる時間帯に近くないときには、貯湯槽内に蓄えられた熱量が増加していくときに、最大蓄熱量よりも低い値に設定した高設定蓄熱量よりも更に低い低設定蓄熱量になった時点で、燃料電池の発電電力量を最大発電電力量よりも小さい設定電力量になるように調整し、排熱量の発生量を抑えて貯湯槽内の蓄熱量が満杯になるまでの時間を延ばすことができる。
一方、給湯需要のピークとなる時間帯に近いときには、貯湯槽内に蓄えられた熱量が増加していくときに、最大蓄熱量よりも低いが低設定蓄熱量よりも高い値に設定した高設定蓄熱量になった時点で、燃料電池の発電電力量を最大発電電力量よりも小さい設定電力量になるように調整し、排熱量の発生量を抑えて貯湯槽内の蓄熱量が満杯になるまでの時間を延ばすとともに、ピークとなる時間帯になったときに、極力多量の蓄熱量を確保しておくようにできる。
【0010】
【発明の実施の形態】
次に、本発明の実施例を図面に基づいて詳細に説明する。
図1は、本発明に係る家庭用燃料電池システムの第1実施例のシステム構成図であり、電気と熱とを発生させる燃料電池1と貯湯槽2とが、循環ポンプ3を介装した循環配管4を介して接続され、燃料電池1で発生する排熱により水を加熱して湯を得、その湯を貯湯槽2に蓄えるように構成されている。
【0011】
燃料電池1からの電力出力線5に負荷としての家電機器6が接続されるとともに、電力出力線5に商用電源7が系統連係され、燃料電池1からの発電電力を家電機器6に供給するとともに不足分の電力を商用電源7からの電力で補うように構成されている。
【0012】
貯湯槽2には給湯管8が接続され、台所や浴槽に注湯するように構成されている。貯湯槽2からの湯は、循環配管や熱交換器などを図示していないが、床暖房や浴槽乾燥の熱源としても利用できる。図中9は市水を供給する給水管を示している。
【0013】
貯湯槽2に、槽内に蓄えられた熱量を測定する蓄熱量センサとしての湯温を測定する湯温センサ10が設けられ、この湯温センサ10がコントローラ11に接続されるとともにコントローラ11が燃料電池1の発電電力量を制御する制御手段12(図2参照)に接続されている。
【0014】
コントローラ11には、図2の制御系のブロック図に示すように、蓄熱量比較手段13と発電電力量調整手段14とが備えられ、更に、コントローラ11に蓄熱量設定手段15が接続されている。
【0015】
蓄熱量設定手段15では、貯湯槽2内の最大蓄熱量[上限貯湯温度(例えば、70℃)]よりも少ない蓄熱量[貯湯温度(例えば、60℃)]を設定するようになっている。
【0016】
蓄熱量比較手段13では、湯温センサ10で測定される蓄熱量[湯の温度]と蓄熱量設定手段15で設定された蓄熱量[設定貯湯温度(例えば、60℃)]とを比較し、測定蓄熱量[湯の温度]が設定蓄熱量[設定貯湯温度(例えば、60℃)]まで上昇したときに指令信号を出力するようになっている。
【0017】
発電電力量調整手段14では、蓄熱量比較手段13からの指令信号に応答して制御手段12による制御発電電力量が最大発電電力量(上限出力)よりも小さい設定電力量になるように調整するようになっている。ここでいう最大発電電力量とは、制御手段12で出力する値の上限値であり、例えば、家電機器6の電力負荷がこの上限値より大きい値の場合は、燃料電池1は上限値の電力を出力し、一方、家電機器6の電力負荷が上限値より小さい値の場合は、燃料電池1は上限値まで出力せず、電力負荷に対応した値を出力することになる。
【0018】
これにより、図3の貯湯槽温度と燃料電池上限出力との相関のグラフに示すように、燃料電池1を最大発電電力量(上限出力)Max で運転している状態で、貯湯槽2内の温度が設定蓄熱量[設定貯湯温度]TLになった段階で、制御発電電力量を、最大発電電力量(上限出力)Max より、順次、蓄熱量(貯湯槽温度)の上昇とともに減少させ、上限側の設定蓄熱量[上限側の設定貯湯温度]Max になった段階で、最大発電電力量を小さい設定電力量Min となるように変更することにより、貯湯槽2内の温度が最大蓄熱量[上限貯湯温度]になるまで運転する。このため、貯湯槽2内の温度が最大蓄熱量になるまでの時間を延長することができる。
【0019】
図4は、本発明に係る家庭用燃料電池システムの第2実施例の制御系を示すブロック図であり、コントローラ11に、第1の比較手段21aと第2の比較手段21bとから成る蓄熱量比較手段21と、直前判別手段22と発電電力量調整手段23とが備えられ、そのコントローラ11に蓄熱量設定手段24とピーク需要特定手段25とが接続されている。
【0020】
蓄熱量設定手段24では、貯湯槽2内の最大蓄熱量[上限貯湯温度(例えば、70℃)]よりも少ない二段階の高蓄熱量[設定貯湯温度(例えば、60℃)]と低蓄熱量[設定貯湯温度(例えば、50℃)]を設定するようになっている。
【0021】
ピーク需要特定手段25では、給湯需要の経時的変化から、台所や浴槽への注湯など、給湯需要のピークとなる時間帯(例えば、午後6時から午後9時など)を特定するようになっている。
【0022】
蓄熱量比較手段21では、第1の比較手段21aにおいて、湯温センサ10で測定される蓄熱量[測定湯温]と蓄熱量設定手段24で設定された低蓄熱量[設定低貯湯温度(例えば、50℃)]とを比較し、測定蓄熱量[測定湯温]が設定低蓄熱量[設定低貯湯温度(例えば、50℃)]まで上昇したときに低蓄熱指令信号を出力するようになっている。
また、第2の比較手段21bにおいて、湯温センサ10で測定される蓄熱量[測定湯温]と蓄熱量設定手段24で設定された高蓄熱量[設定高貯湯温度(例えば、60℃)]とを比較し、測定蓄熱量[測定湯温]が設定高蓄熱量[設定高貯湯温度(例えば、60℃)]まで上昇したときに高蓄熱指令信号を出力するようになっている。
【0023】
直前判別手段22では、第1の比較手段21aからの低蓄熱指令信号に応答してその信号出力時刻が前記ピーク需要特定手段で特定されているピークとなる時間帯の直前かどうかを判別し、直前のときに直前信号を出力するようになっている。
【0024】
発電電力量調整手段23では、第1の比較手段21aからの低蓄熱指令信号に応答して、直前判別手段22からの直前信号の有無を判別し、前記直前信号が無いときには、制御手段12による制御発電電力量が最大発電電力量(上限出力)よりも小さい設定電力量になるように調整するようになっている。
一方、直前信号が有るときには、低蓄熱指令信号が出力されても制御手段12を作動させずに、高蓄熱指令信号に応答して、制御手段12による制御発電電力量が最大発電電力量(上限出力)よりも小さい設定電力量になるように調整するようになっている。
【0025】
これにより、図5の貯湯槽温度と燃料電池上限出力との相関のグラフに示すように、燃料電池1を最大発電電力量(上限出力)Max で運転している状態で、貯湯槽2内の蓄熱量[貯湯温度]が設定低蓄熱量[設定低貯湯温度]TLになった段階で、その時点が給湯需要のピークとなる時間帯の直前かどうかを判別し、直前であれば、そのまま最大発電電力量(上限出力)Max での運転を継続し、設定高蓄熱量[設定高貯湯温度(例えば、60℃)]THまで上昇したときに、制御発電電力量を、最大発電電力量(上限出力)Max より、順次、蓄熱量(貯湯槽温度)の上昇とともに減少させ、上限側の設定蓄熱量[上限側の設定貯湯温度]Max になった段階で、最大発電電力量を小さい設定電力量Min となるように変更することにより、貯湯槽2内の蓄熱量[貯湯温度]が最大蓄熱量[上限貯湯温度]になるまで運転する。このため、貯湯槽2内の蓄熱量[貯湯温度]を極力多くしながら、貯湯槽2内の蓄熱量[貯湯温度]が最大蓄熱量[上限貯湯温度]になるまでの時間を延長することができる。
【0026】
そして、燃料電池1を最大発電電力量(上限出力)Max で運転している状態で、貯湯槽2内の蓄熱量[貯湯温度]が設定低蓄熱量[設定低貯湯温度]TLになった段階で、給湯需要のピークとなる時間帯の直前で無いときには、制御発電電力量を、最大発電電力量(上限出力)Max より、順次、蓄熱量(貯湯槽温度)の上昇とともに減少させ、上限側の設定蓄熱量[上限側の設定貯湯温度]Max になった段階で、最大発電電力量を小さい設定電力量Min となるように変更することにより、貯湯槽2内の温度が最大蓄熱量[上限貯湯温度]になるまで運転する。このため、貯湯槽2内の蓄熱量[貯湯温度]が最大蓄熱量[上限貯湯温度]になるまでの時間を延長することができる。
【0027】
図6は、本発明に係る家庭用燃料電池システムの第3実施例のシステム構成図であり、第1実施例と異なるところは、次の通りである。
すなわち、貯湯槽2が成層貯湯タイプで構成されている。
【0028】
貯湯槽2に、その高温状態の湯の位置(成層境界位置)を検知して蓄熱量を測定する蓄熱量センサとしての3個の第1,第2および第3の接触センサT1,T2,T3が設けられ、その第1,第2および第3の接触センサT1,T2,T3がコントローラ11に接続されている。第1,第2および第3の接触センサT1,T2,T3として貯湯槽2内の湯の温度を測定する温度センサを用い、温度成層を形成する設定温度と比較し、測定温度が設定温度になったことを判別することにより高温状態の湯の位置(成層境界位置)を検知して蓄熱量を測定するように蓄熱量センサを構成しても良い。
【0029】
コントローラ11には、図7の制御系のブロック図に示すように、直前判別手段31と発電電力量調整手段32とが備えられ、そのコントローラ11にピーク需要特定手段33が接続されている。
【0030】
ピーク需要特定手段33では、給湯需要の経時的変化から、夕食や浴槽への注湯など、給湯需要のピークとなる時間帯(例えば、午後6時から午後9時など)を特定するようになっている。
【0031】
第1および第2の接触センサT1,T2は、蓄熱量設定手段34を構成するとともに蓄熱量センサを兼用するものである。
すなわち、第1の接触センサT1では、低蓄熱量として貯湯槽2内に、例えば、最大蓄熱量の30%が貯められた状態を設定するとともにその設定低蓄熱量を高温成層との接触によって測定できるようになっている。
第2の接触センサT2では、高蓄熱量として貯湯槽2内に、例えば、最大蓄熱量の60%が貯められた状態を設定するとともにその設定高蓄熱量を高温成層との接触によって測定できるようになっている。
【0032】
これにより、図8の貯湯槽温度と燃料電池上限出力との相関のグラフに示すように、燃料電池1を最大発電電力量(上限出力)Max で運転している状態で、第1の接触センサT1がONすることにより、貯湯槽2内の蓄熱量が設定低蓄熱量になったことを測定した段階で、その時点が給湯需要のピークとなる時間帯の直前かどうかを判別し、直前であれば、そのまま最大発電電力量(上限出力)Max での運転を継続する。そして、第2の接触センサT2がONすることにより、貯湯槽2内の蓄熱量が設定高蓄熱量になったことを測定した段階で、制御発電電力量を、最大発電電力量(上限出力)Max より、電力量P2に減少させ、上限側の設定蓄熱量[上限側の設定貯湯温度]を検出する第3の接触センサT3がONになった段階で、最大発電電力量を小さい設定電力量Min となるように変更することにより、貯湯槽2内の温度が最大蓄熱量[上限貯湯温度]になるまで運転する。このため、貯湯槽2内の蓄熱量を極力多くしながら、貯湯槽2内の蓄熱量が最大蓄熱量になるまでの時間を延長することができる。
【0033】
一方、燃料電池1を最大発電電力量(上限出力)Max で運転している状態で、第1の接触センサT1がONすることにより、貯湯槽2内の蓄熱量が設定低蓄熱量になったことを測定した段階で、その時点が給湯需要のピークとなるまでの時間帯の直前で無いときには、制御発電電力量を、最大発電電力量(上限出力)Max より、電力量P1に減少させ、さらに、第2の接触センサT2がONすることにより、貯湯槽2内の蓄熱量が設定高蓄熱量になったことを測定した段階で、制御発電電力量を、電力量P1から電力量P2に減少させ、上限側の設定蓄熱量[上限側の設定貯湯温度]を検出する第3の接触センサT3がONになった段階で、最大発電電力量を小さい設定電力量Min となるように変更することにより、貯湯槽2内の温度が最大蓄熱量[上限貯湯温度]になるまで運転する。このため、貯湯槽2内の蓄熱量が最大蓄熱量になるまでの時間を延長することができる。
【0034】
【発明の効果】
以上の説明から明らかなように、請求項1に係る発明の家庭用燃料電池システムによれば、貯湯槽内に蓄えられた熱量が最大蓄熱量よりも低い設定蓄熱量になった時点で、燃料電池の発電電力量を減少させて排熱量の発生量を抑え、貯湯槽内の蓄熱量が満杯になるまでの時間を延ばすから、燃料電池を継続して運転できながら、燃料電池からの排熱の放熱を極力減少させて省エネルギー性を向上できる。
【0035】
また、請求項2に係る発明の家庭用燃料電池システムによれば、給湯需要のピークとなる時間帯に近くないときには、貯湯槽内に蓄えられた熱量が最大蓄熱量よりも低い値に設定した高設定蓄熱量よりも更に低い低設定蓄熱量になった時点で、燃料電池の発電電力量を減少させて排熱量の発生量を抑え、貯湯槽内の蓄熱量が満杯になるまでの時間を延ばすから、燃料電池を継続して運転できながら、燃料電池からの排熱の放熱を極力減少させて省エネルギー性を向上できる。
一方、例えば、夕方で台所や浴槽に注湯するなど、給湯需要のピークとなる時間帯に近いときには、貯湯槽内に蓄えられた熱量が最大蓄熱量よりも低いが低設定蓄熱量よりも高い値に設定した高設定蓄熱量になった時点で、燃料電池の発電電力量を減少させて排熱量の発生量を抑え、貯湯槽内の蓄熱量が満杯になるまでの時間を延ばすから、燃料電池を継続して運転しながら、燃料電池からの排熱の放熱を極力減少させて省エネルギー性を向上でき、しかも、ピークとなる時間帯に近くないときよりも高い高設定蓄熱量で燃料電池の発電電力量を減少させるから、ピークとなる時間帯になったときに、極力多量の蓄熱量を確保しておけるようにでき、給湯需要のピークに対して良好に対応できる。
【図面の簡単な説明】
【図1】本発明に係る家庭用燃料電池システムの第1実施例のシステム構成図である。
【図2】制御系のブロック図である。
【図3】貯湯槽温度と燃料電池上限出力との相関を示すグラフである。
【図4】本発明に係る家庭用燃料電池システムの第1実施例の制御系のブロック図である。
【図5】貯湯槽温度と燃料電池上限出力との相関を示すグラフである。
【図6】本発明に係る家庭用燃料電池システムの第3実施例のシステム構成図である。
【図7】制御系のブロック図である。
【図8】貯湯槽温度と燃料電池上限出力との相関を示すグラフである。
【符号の説明】
1…燃料電池
2…貯湯槽
10…湯温センサ
12…制御手段
13,21…蓄熱量比較手段
14,23,32…発電電力量調整手段
15,24,34…蓄熱量設定手段
22,31…直前判別手段
25,33…ピーク需要特定手段
[0001]
BACKGROUND OF THE INVENTION
The present invention stores a hot water heated by exhaust heat from a fuel cell that generates electricity and heat in a hot water storage tank, and includes a control means for controlling the amount of electric power generated by the fuel cell. About the system.
[0002]
[Prior art]
In this type of household fuel cell system, heat generated according to the power generated by the fuel cell is temporarily stored in a hot water storage tank and supplied in accordance with hot water supply demand. When there is much demand for hot water supply and the amount of heat stored in the hot water storage tank is insufficient, hot water is replenished by an auxiliary heating device such as a separately installed boiler.
[0003]
[Problems to be solved by the invention]
However, generally, so-called main heat follow-up operation, which controls the amount of generated power according to the power used in general, is less demand for hot water supply, when hot water of the upper limit temperature is stored in the hot water tank full, Electricity generation is continued while dissipating the exhaust heat from the fuel cell, and there is a drawback that the efficiency of exhaust heat recovery decreases and the energy saving performance decreases.
[0004]
In order to avoid heat dissipation, it was considered to provide a large hot water storage tank, but the initial cost increased, and the amount of heat released from the hot water storage tank and the equipment attached thereto was likely to cause energy loss. There was a drawback that the energy saving performance was lowered.
[0005]
The present invention has been made in view of such circumstances, and the invention according to claim 1 saves energy by reducing the heat radiation of exhaust heat from the fuel cell as much as possible while continuously operating the fuel cell. The invention according to claim 2 can improve the energy saving by reducing the heat radiation of the exhaust heat from the fuel cell as much as possible while continuously operating the fuel cell. At the same time, it aims to be able to cope with the peak of hot water demand.
[0006]
[Means for Solving the Problems]
In order to achieve the above-described object, the invention according to claim 1
A fuel cell that generates electricity and heat;
A hot water storage tank for storing hot water heated by exhaust heat from the fuel cell;
In a household fuel cell system comprising a control means for controlling the amount of power generated by the fuel cell,
A heat storage sensor for measuring the amount of heat stored in the hot water tank;
A heat storage amount setting means for setting a heat storage amount lower than the maximum heat storage amount in the hot water storage tank;
A heat storage amount comparison unit that compares the heat storage amount measured by the heat storage amount sensor with the heat storage amount set by the heat storage amount setting unit, and outputs a command signal when the measured heat storage amount rises to the set heat storage amount;
And a generated power amount adjusting means for adjusting the control generated power amount by the control means to be a set power amount smaller than the maximum generated power amount in response to the command signal.
[0007]
In order to achieve the above-described object, the invention according to claim 2
A fuel cell that generates electricity and heat;
A hot water storage tank for storing hot water heated by exhaust heat from the fuel cell;
In a household fuel cell system comprising a control means for controlling the amount of power generated by the fuel cell,
A heat storage sensor for measuring the amount of heat stored in the hot water tank;
A heat storage amount setting means for setting a high heat storage amount and a low heat storage amount in two stages less than the maximum heat storage amount in the hot water storage tank,
Compare the heat storage amount measured by the heat storage amount sensor with the low heat storage amount set by the heat storage amount setting means and the high heat storage amount, and when the measured heat storage amount rises to the set low heat storage amount, the low heat storage command signal , A heat storage amount comparison means for outputting a high heat storage amount command signal when the measured heat storage amount rises to the set high heat storage amount,
A peak demand specifying means for specifying a time zone in which the hot water demand is peaked from a change in hot water demand over time,
In response to the low heat storage command signal, it is determined whether or not the signal output time is immediately before the peak time period specified by the peak demand specifying means, and immediately before determining means for outputting a previous signal immediately before When,
In response to the low heat storage command signal, the presence / absence of the immediately preceding signal from the immediately preceding determining unit is determined, and when there is no preceding signal, the control power generation amount controlled by the control unit is smaller than the maximum generated power amount When the immediately preceding signal is present, the control means is not operated, and the control generated power amount by the control means is smaller than the maximum generated power amount in response to the high heat storage command signal And a generated power amount adjusting means for adjusting to a set power amount.
[0008]
[Action]
According to the configuration of the domestic fuel cell system of the invention according to claim 1, when the amount of heat stored in the hot water storage tank increases, when the set heat storage amount is lower than the maximum heat storage amount, The amount of generated power of the battery can be adjusted to be a set power amount that is smaller than the maximum generated power amount, and the amount of heat generated in the hot water tank can be extended by suppressing the amount of heat generated.
[0009]
Further, according to the configuration of the domestic fuel cell system of the invention according to claim 2, when the hot water supply demand is taken into consideration, it is stored in the hot water storage tank when it is not close to the time zone when the hot water supply demand is peaked. When the amount of heat increases, when the low set heat storage amount is lower than the high set heat storage amount set to a value lower than the maximum heat storage amount, the power generation amount of the fuel cell is set to be less than the maximum power generation amount. It is possible to adjust the amount of electric power to be small and reduce the amount of generated heat to extend the time until the amount of heat stored in the hot water tank is full.
On the other hand, when the amount of heat stored in the hot water tank is increasing when it is close to the peak time of hot water demand, a high setting that is lower than the maximum heat storage amount but higher than the low heat storage amount is set. When the amount of heat storage is reached, the power generation amount of the fuel cell is adjusted to a set power amount that is smaller than the maximum power generation amount, and the amount of waste heat generation is suppressed, and the heat storage amount in the hot water tank is full. The amount of heat storage can be secured as much as possible when the peak time zone is reached.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a system configuration diagram of a first embodiment of a domestic fuel cell system according to the present invention, in which a fuel cell 1 for generating electricity and heat and a hot water tank 2 are circulated with a circulation pump 3 interposed therebetween. Connected via a pipe 4, the water is heated by exhaust heat generated in the fuel cell 1 to obtain hot water, and the hot water is stored in the hot water tank 2.
[0011]
The home electric appliance 6 as a load is connected to the electric power output line 5 from the fuel cell 1, and the commercial power source 7 is linked to the electric power output line 5 to supply the generated electric power from the fuel cell 1 to the electric home appliance 6. The shortage of power is supplemented with power from the commercial power source 7.
[0012]
A hot water supply pipe 8 is connected to the hot water tank 2 and is configured to pour hot water into a kitchen or a bathtub. The hot water from the hot water tank 2 can be used as a heat source for floor heating and bathtub drying, although a circulation pipe and a heat exchanger are not shown. In the figure, reference numeral 9 denotes a water supply pipe for supplying city water.
[0013]
The hot water storage tank 2 is provided with a hot water temperature sensor 10 for measuring the hot water temperature as a heat storage amount sensor for measuring the amount of heat stored in the tank. The hot water temperature sensor 10 is connected to the controller 11 and the controller 11 is a fuel. It is connected to the control means 12 (refer FIG. 2) which controls the electric power generation amount of the battery 1. FIG.
[0014]
As shown in the block diagram of the control system in FIG. 2, the controller 11 includes a heat storage amount comparison unit 13 and a generated power amount adjustment unit 14, and a heat storage amount setting unit 15 is connected to the controller 11. .
[0015]
The heat storage amount setting means 15 sets a heat storage amount [hot water storage temperature (for example, 60 ° C.)] smaller than the maximum heat storage amount [upper limit hot water storage temperature (for example, 70 ° C.)] in the hot water tank 2.
[0016]
The heat storage amount comparison means 13 compares the heat storage amount [hot water temperature] measured by the hot water temperature sensor 10 with the heat storage amount [set hot water storage temperature (for example, 60 ° C.)] set by the heat storage amount setting means 15. A command signal is output when the measured heat storage amount [hot water temperature] rises to the set heat storage amount [set hot water storage temperature (for example, 60 ° C.)].
[0017]
In the generated power amount adjusting means 14, the control generated power amount by the control means 12 is adjusted so as to be smaller than the maximum generated power amount (upper limit output) in response to the command signal from the heat storage amount comparing means 13. It is like that. The maximum amount of generated power here is the upper limit value of the value output by the control means 12. For example, when the power load of the home appliance 6 is larger than the upper limit value, the fuel cell 1 On the other hand, when the electric power load of the home appliance 6 is a value smaller than the upper limit value, the fuel cell 1 does not output the upper limit value, but outputs a value corresponding to the electric power load.
[0018]
As a result, as shown in the graph of the correlation between the hot water tank temperature and the fuel cell upper limit output in FIG. 3, the fuel cell 1 is operated in the maximum electric power generation amount (upper limit output) Max, When the temperature reaches the set heat storage amount [set hot water temperature] TL, the control power generation amount is gradually decreased from the maximum power generation amount (upper limit output) Max as the heat storage amount (hot water tank temperature) increases, and the upper limit is reached. When the set heat storage amount on the side [the set hot water temperature on the upper limit side] Max is reached, the maximum generated power amount is changed to a small set power amount Min, so that the temperature in the hot water storage tank 2 becomes the maximum heat storage amount [ Operate until the maximum hot water storage temperature is reached. For this reason, the time until the temperature in the hot water tank 2 reaches the maximum heat storage amount can be extended.
[0019]
FIG. 4 is a block diagram showing a control system of a second embodiment of the household fuel cell system according to the present invention, in which the controller 11 stores a heat storage amount comprising a first comparison means 21a and a second comparison means 21b. The comparison means 21, the immediately preceding determination means 22 and the generated power amount adjustment means 23 are provided, and the heat storage amount setting means 24 and the peak demand specifying means 25 are connected to the controller 11.
[0020]
In the heat storage amount setting means 24, two stages of high heat storage amounts [set hot water storage temperature (eg, 60 ° C.)] less than the maximum heat storage amount in the hot water tank 2 [upper hot water storage temperature (eg, 70 ° C.)] and low heat storage amounts [Set hot water storage temperature (for example, 50 ° C.)] is set.
[0021]
The peak demand specifying means 25 specifies a time zone (for example, from 6:00 pm to 9:00 pm, etc.) at which the hot water supply demand peaks, such as pouring water into the kitchen or bathtub, from the change in hot water demand over time. ing.
[0022]
In the heat storage amount comparison means 21, in the first comparison means 21a, the heat storage amount [measured hot water temperature] measured by the hot water temperature sensor 10 and the low heat storage amount set by the heat storage amount setting means 24 [set low hot water storage temperature (for example, , 50 ℃)], and when the measured heat storage amount [measured hot water temperature] rises to the set low heat storage amount [set low hot water storage temperature (for example, 50 ℃)], the low heat storage command signal is output. ing.
Further, in the second comparison means 21b, the heat storage amount [measured hot water temperature] measured by the hot water temperature sensor 10 and the high heat storage amount [set high hot water storage temperature (for example, 60 ° C.)] set by the heat storage amount setting means 24. And a high heat storage command signal is output when the measured heat storage amount [measured hot water temperature] rises to a set high heat storage amount [set high hot water storage temperature (for example, 60 ° C.)].
[0023]
The immediately preceding determining means 22 determines whether the signal output time is immediately before the peak time period specified by the peak demand specifying means in response to the low heat storage command signal from the first comparing means 21a, The immediately preceding signal is output immediately before.
[0024]
In response to the low heat storage command signal from the first comparing means 21a, the generated power amount adjusting means 23 determines the presence or absence of the immediately preceding signal from the immediately preceding determining means 22, and when there is no immediately preceding signal, the control means 12 The control power generation amount is adjusted so as to be a set power amount smaller than the maximum power generation amount (upper limit output).
On the other hand, when there is an immediately preceding signal, the control means 12 does not operate even if a low heat storage command signal is output, and the control generated power amount by the control means 12 is the maximum generated power amount (upper limit) in response to the high heat storage command signal. Adjustment is made so that the set power amount is smaller than (output).
[0025]
As a result, as shown in the graph of the correlation between the hot water tank temperature and the fuel cell upper limit output in FIG. 5, the fuel cell 1 is operated in the maximum electric power generation amount (upper limit output) Max, When the heat storage amount [hot water storage temperature] reaches the set low heat storage amount [setting low hot water storage temperature] TL, it is determined whether the time is immediately before the peak time of hot water supply demand. Continued operation at the maximum power generation amount (upper limit output) Max, and when the set high heat storage amount [set high hot water storage temperature (eg, 60 ° C)] TH rises to the control power generation amount, the maximum generation power amount (upper limit Output) From Max, reduce the heat storage amount (hot water storage tank temperature) sequentially, and at the stage where the upper limit set heat storage amount [upper limit set hot water temperature] Max is reached, the maximum generated power amount is set to a smaller set power amount. By changing to Min, the amount of heat stored in the hot water tank 2 [ Hot water temperature] is operated to the maximum heat storage amount Max hot water storage temperature. For this reason, it is possible to extend the time until the heat storage amount [hot water temperature] in the hot water tank 2 reaches the maximum heat storage amount [upper limit hot water temperature] while increasing the heat storage amount [hot water temperature] in the hot water tank 2 as much as possible. it can.
[0026]
Then, in a state where the fuel cell 1 is operated at the maximum power generation amount (upper limit output) Max, the heat storage amount [hot water temperature] in the hot water tank 2 becomes the set low heat storage amount [set low hot water temperature] TL. However, when it is not just before the peak time of hot water supply demand, the control power generation amount is gradually decreased from the maximum power generation amount (upper limit output) Max as the heat storage amount (hot water tank temperature) is increased. When the set heat storage amount [upper limit set hot water temperature] Max is reached, the maximum generated power amount is changed to become a smaller set power amount Min, so that the temperature in the hot water storage tank 2 becomes the maximum heat storage amount [upper limit Operate until hot water storage temperature is reached. For this reason, the time until the heat storage amount [hot water temperature] in the hot water tank 2 reaches the maximum heat storage amount [upper limit hot water temperature] can be extended.
[0027]
FIG. 6 is a system configuration diagram of a third embodiment of the household fuel cell system according to the present invention. The differences from the first embodiment are as follows.
That is, the hot water tank 2 is configured as a stratified hot water type.
[0028]
Three first, second and third contact sensors T1, T2 and T3 as heat storage amount sensors for measuring the amount of heat storage by detecting the position (stratification boundary position) of hot water in the hot water storage tank 2 The first, second and third contact sensors T1, T2, T3 are connected to the controller 11. A temperature sensor that measures the temperature of hot water in the hot water tank 2 is used as the first, second, and third contact sensors T1, T2, and T3, and the measured temperature is compared with the set temperature that forms the temperature stratification. The heat storage amount sensor may be configured to detect the position of the hot water in the high temperature state (stratification boundary position) and measure the heat storage amount by determining that it has become.
[0029]
As shown in the block diagram of the control system in FIG. 7, the controller 11 is provided with immediately preceding determining means 31 and generated power amount adjusting means 32, and a peak demand specifying means 33 is connected to the controller 11.
[0030]
The peak demand specifying means 33 specifies a time zone (for example, from 6:00 pm to 9:00 pm, etc.) at which the hot water supply demand is peaked, such as supper or pouring into a bathtub, from the change in hot water demand over time. ing.
[0031]
The first and second contact sensors T1, T2 constitute the heat storage amount setting means 34 and also serve as the heat storage amount sensor.
That is, in the first contact sensor T1, for example, a state in which 30% of the maximum heat storage amount is stored in the hot water storage tank 2 as a low heat storage amount is set and the set low heat storage amount is measured by contact with high temperature stratification. It can be done.
In the second contact sensor T2, for example, a state where 60% of the maximum heat storage amount is stored in the hot water storage tank 2 as a high heat storage amount can be set and the set high heat storage amount can be measured by contact with high temperature stratification. It has become.
[0032]
Accordingly, as shown in the graph of the correlation between the hot water tank temperature and the fuel cell upper limit output in FIG. 8, the first contact sensor is operated in a state where the fuel cell 1 is operated at the maximum generated power (upper limit output) Max. When T1 is turned on, when it is measured that the heat storage amount in the hot water storage tank 2 has reached the set low heat storage amount, it is determined whether or not that time is immediately before the peak time of hot water supply demand. If there is, continue operation at the maximum generated power (maximum output) Max. Then, when the second contact sensor T2 is turned on and the heat storage amount in the hot water tank 2 is measured to be the set high heat storage amount, the control power generation amount is set to the maximum power generation amount (upper limit output). From Max, when the third contact sensor T3 for detecting the upper limit set heat storage amount [the upper set hot water storage temperature] is turned ON, the maximum generated power amount is set to a smaller set power amount. By changing to Min, the operation is continued until the temperature in the hot water storage tank 2 reaches the maximum heat storage amount [upper limit hot water storage temperature]. For this reason, the time until the heat storage amount in the hot water tank 2 becomes the maximum heat storage amount can be extended while increasing the heat storage amount in the hot water tank 2 as much as possible.
[0033]
On the other hand, when the first contact sensor T1 is turned on while the fuel cell 1 is operated at the maximum generated power amount (upper limit output) Max, the heat storage amount in the hot water tank 2 becomes the set low heat storage amount. In the stage where the measured value is not immediately before the peak time of hot water supply demand, the control power generation amount is reduced from the maximum power generation amount (upper limit output) Max to the power amount P1, Further, when the second contact sensor T2 is turned ON, the amount of heat generated in the hot water tank 2 is measured to be the set high heat storage amount, and the control power generation amount is changed from the power amount P1 to the power amount P2. When the third contact sensor T3 that detects the upper limit side set heat storage amount [the upper limit side set hot water temperature] is turned on, the maximum generated power amount is changed to a smaller set power amount Min. Therefore, the temperature in the hot water tank 2 is the maximum heat storage It operated until the Maximum hot water storage temperature. For this reason, time until the heat storage amount in the hot water storage tank 2 becomes the maximum heat storage amount can be extended.
[0034]
【The invention's effect】
As is clear from the above description, according to the domestic fuel cell system of the invention according to claim 1, when the amount of heat stored in the hot water storage tank becomes a set heat storage amount lower than the maximum heat storage amount, By reducing the amount of power generated by the battery to reduce the amount of generated heat and extending the time until the amount of heat stored in the hot water tank becomes full, the exhaust heat from the fuel cell can be maintained while the fuel cell can continue to operate. The heat dissipation can be reduced as much as possible to improve energy saving.
[0035]
Moreover, according to the domestic fuel cell system of the invention according to claim 2, when it is not close to the time zone when the hot water supply demand is peak, the amount of heat stored in the hot water storage tank is set to a value lower than the maximum heat storage amount. When the low set heat storage amount is lower than the high set heat storage amount, the amount of power generated by the fuel cell is reduced to reduce the amount of generated heat, and the time until the heat storage amount in the hot water tank becomes full Therefore, while continuing to operate the fuel cell, the heat dissipation of the exhaust heat from the fuel cell can be reduced as much as possible to improve the energy saving performance.
On the other hand, the amount of heat stored in the hot water tank is lower than the maximum heat storage amount but higher than the low heat storage amount when it is close to the peak time of hot water supply demand, for example, pouring into the kitchen or bathtub in the evening When the high heat storage amount set to the value is reached, the amount of power generated by the fuel cell is reduced to reduce the amount of generated heat, and the time until the heat storage amount in the hot water tank is full is increased. While continuously operating the battery, the heat dissipation from the fuel cell can be reduced as much as possible to improve energy savings, and the fuel cell has a higher heat storage capacity than when it is not close to the peak time zone. Since the amount of generated power is reduced, it is possible to secure as much heat storage as possible when the peak time period is reached, and it is possible to cope with the peak demand for hot water supply.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a first embodiment of a household fuel cell system according to the present invention.
FIG. 2 is a block diagram of a control system.
FIG. 3 is a graph showing a correlation between hot water tank temperature and fuel cell upper limit output.
FIG. 4 is a block diagram of a control system of a first embodiment of a household fuel cell system according to the present invention.
FIG. 5 is a graph showing the correlation between hot water tank temperature and fuel cell upper limit output.
FIG. 6 is a system configuration diagram of a third embodiment of a household fuel cell system according to the present invention.
FIG. 7 is a block diagram of a control system.
FIG. 8 is a graph showing the correlation between hot water tank temperature and fuel cell upper limit output.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Fuel cell 2 ... Hot water storage tank 10 ... Hot water temperature sensor 12 ... Control means 13, 21 ... Heat storage amount comparison means 14, 23, 32 ... Electric power generation amount adjustment means 15, 24, 34 ... Heat storage amount setting means 22, 31 ... Immediately determining means 25, 33 ... Peak demand specifying means

Claims (2)

電気と熱とを発生させる燃料電池と、
前記燃料電池からの排熱により加熱された湯を蓄える貯湯槽と、
前記燃料電池の発電電力量を制御する制御手段とを備えた家庭用燃料電池システムにおいて、
前記貯湯槽内に蓄えられた熱量を測定する蓄熱量センサと、
前記貯湯槽内の最大蓄熱量よりも低い蓄熱量を設定する蓄熱量設定手段と、
前記蓄熱量センサで測定される蓄熱量と前記蓄熱量設定手段で設定された蓄熱量とを比較し、測定蓄熱量が設定蓄熱量まで上昇したときに指令信号を出力する蓄熱量比較手段と、
前記指令信号に応答して前記制御手段による制御発電電力量が最大発電電力量よりも小さい設定電力量になるように調整する発電電力量調整手段とを備えたことを特徴とする家庭用燃料電池システム。
A fuel cell that generates electricity and heat;
A hot water storage tank for storing hot water heated by exhaust heat from the fuel cell;
In a household fuel cell system comprising a control means for controlling the amount of power generated by the fuel cell,
A heat storage sensor for measuring the amount of heat stored in the hot water tank;
A heat storage amount setting means for setting a heat storage amount lower than the maximum heat storage amount in the hot water storage tank;
A heat storage amount comparison unit that compares the heat storage amount measured by the heat storage amount sensor with the heat storage amount set by the heat storage amount setting unit, and outputs a command signal when the measured heat storage amount rises to the set heat storage amount;
A fuel cell for home use, comprising: a power generation amount adjusting means for adjusting a control power generation amount by the control means to be a set power amount smaller than a maximum power generation amount in response to the command signal system.
電気と熱とを発生させる燃料電池と、
前記燃料電池からの排熱により加熱された湯を蓄える貯湯槽と、
前記燃料電池の発電電力量を制御する制御手段とを備えた家庭用燃料電池システムにおいて、
前記貯湯槽内に蓄えられた熱量を測定する蓄熱量センサと、
前記貯湯槽内の最大蓄熱量よりも少ない二段階の高蓄熱量と低蓄熱量とを設定する蓄熱量設定手段と、
前記蓄熱量センサで測定される蓄熱量と前記蓄熱量設定手段で設定された低蓄熱量と高蓄熱量とを比較し、測定蓄熱量が設定低蓄熱量まで上昇したときに低蓄熱指令信号を、測定蓄熱量が設定高蓄熱量まで上昇したときに高蓄熱量指令信号をそれぞれ出力する蓄熱量比較手段と、
給湯需要の経時的変化から給湯需要のピークとなる時間帯を特定するピーク需要特定手段と、
前記低蓄熱指令信号に応答して、その信号出力時刻が前記ピーク需要特定手段で特定されているピークとなる時間帯の直前かどうかを判別し、直前のときに直前信号を出力する直前判別手段と、
前記低蓄熱指令信号に応答して、前記直前判別手段からの直前信号の有無を判別し、前記直前信号が無いときには、前記制御手段による制御発電電力量が最大発電電力量よりも小さい設定電力量になるように調整し、前記直前信号が有るときには、前記制御手段を作動させず、かつ、前記高蓄熱指令信号に応答して、前記制御手段による制御発電電力量が最大発電電力量よりも小さい設定電力量になるように調整する発電電力量調整手段とを備えたことを特徴とする家庭用燃料電池システム。
A fuel cell that generates electricity and heat;
A hot water storage tank for storing hot water heated by exhaust heat from the fuel cell;
In a household fuel cell system comprising a control means for controlling the amount of power generated by the fuel cell,
A heat storage sensor for measuring the amount of heat stored in the hot water tank;
A heat storage amount setting means for setting a high heat storage amount and a low heat storage amount in two stages less than the maximum heat storage amount in the hot water storage tank,
Compare the heat storage amount measured by the heat storage amount sensor with the low heat storage amount set by the heat storage amount setting means and the high heat storage amount, and when the measured heat storage amount rises to the set low heat storage amount, the low heat storage command signal , A heat storage amount comparison means for outputting a high heat storage amount command signal when the measured heat storage amount rises to the set high heat storage amount,
A peak demand specifying means for specifying a time zone in which the hot water demand is peaked from a change in hot water demand over time,
In response to the low heat storage command signal, it is determined whether or not the signal output time is immediately before the peak time period specified by the peak demand specifying means, and immediately before determining means for outputting a previous signal immediately before When,
In response to the low heat storage command signal, the presence / absence of the immediately preceding signal from the immediately preceding determining unit is determined, and when there is no preceding signal, the control power generation amount controlled by the control unit is smaller than the maximum generated power amount When the immediately preceding signal is present, the control means is not operated, and the control generated power amount by the control means is smaller than the maximum generated power amount in response to the high heat storage command signal A household fuel cell system comprising a generated power amount adjusting means for adjusting to a set power amount.
JP2001092924A 2001-03-28 2001-03-28 Home fuel cell system Expired - Fee Related JP3904402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001092924A JP3904402B2 (en) 2001-03-28 2001-03-28 Home fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001092924A JP3904402B2 (en) 2001-03-28 2001-03-28 Home fuel cell system

Publications (2)

Publication Number Publication Date
JP2002289239A JP2002289239A (en) 2002-10-04
JP3904402B2 true JP3904402B2 (en) 2007-04-11

Family

ID=18947318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001092924A Expired - Fee Related JP3904402B2 (en) 2001-03-28 2001-03-28 Home fuel cell system

Country Status (1)

Country Link
JP (1) JP3904402B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4535694B2 (en) * 2003-06-19 2010-09-01 株式会社長府製作所 Output control device and output control method for cogeneration system
JP2005063748A (en) * 2003-08-08 2005-03-10 Hitachi Home & Life Solutions Inc Fuel cell system
JP4497396B2 (en) * 2003-08-11 2010-07-07 東京瓦斯株式会社 Fuel cell heat recovery device
JP4408770B2 (en) * 2004-08-17 2010-02-03 大阪瓦斯株式会社 Hot water storage heat recovery system
JP4887158B2 (en) * 2004-11-25 2012-02-29 アイシン精機株式会社 Fuel cell system
JP4690023B2 (en) * 2004-12-02 2011-06-01 アイシン精機株式会社 Fuel cell system
JP5236407B2 (en) * 2008-09-16 2013-07-17 パナソニック株式会社 Cogeneration system, operation control device, cogeneration system operation method and program
JP5105382B2 (en) * 2010-07-20 2012-12-26 アイシン精機株式会社 Cogeneration system
JP2010257993A (en) * 2010-08-05 2010-11-11 Aisin Seiki Co Ltd Fuel cell system
JP5252238B2 (en) * 2010-12-27 2013-07-31 Toto株式会社 Solid oxide fuel cell

Also Published As

Publication number Publication date
JP2002289239A (en) 2002-10-04

Similar Documents

Publication Publication Date Title
JP4907702B2 (en) Cogeneration system
JP3904402B2 (en) Home fuel cell system
JP2014166114A (en) Power generation system with hot water storage function
JP5829492B2 (en) Hot water storage type hot water supply system and operation control method thereof
JP2008051435A (en) Hot water storage type hot water supply system
JP4810786B2 (en) Fuel cell cogeneration system
JP2005076934A (en) Heat-recovery-combined heat pump water heater
JP2006071216A (en) Fuel cell cogeneration system
WO2018066037A1 (en) Storage type hot water supplying device, hot water supplying method, and program
JP2002298863A (en) Exhaust heat recovery system for fuel cell power generating equipment
JP4912837B2 (en) Cogeneration system
JP4549308B2 (en) Cogeneration system
JP3979770B2 (en) Hot water storage hot water supply system
JP5739510B2 (en) Bath bathing equipment
JP2002048005A (en) Cogeneration system
JP2006127867A (en) Co-generation system
JP2004296267A (en) Cogeneration system and its operation method
JP4359248B2 (en) Cogeneration system
JP2007333289A (en) Cogeneration system
JP3977980B2 (en) Cogeneration system
JP2004232914A (en) Water heater
JP2004186081A (en) Cogeneration system and its operating method
JP6057564B2 (en) Heat supply system
JP2001248907A (en) Cogeneration system
JP2003202156A (en) Cogeneration system, cogeneration system control method, program, and medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees