JP3977980B2 - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
JP3977980B2
JP3977980B2 JP2000063751A JP2000063751A JP3977980B2 JP 3977980 B2 JP3977980 B2 JP 3977980B2 JP 2000063751 A JP2000063751 A JP 2000063751A JP 2000063751 A JP2000063751 A JP 2000063751A JP 3977980 B2 JP3977980 B2 JP 3977980B2
Authority
JP
Japan
Prior art keywords
hot water
heating
water storage
exhaust heat
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000063751A
Other languages
Japanese (ja)
Other versions
JP2001248909A (en
Inventor
義孝 栢原
伸 岩田
桂嗣 滝本
豊 吉田
道久 末平
英明 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2000063751A priority Critical patent/JP3977980B2/en
Publication of JP2001248909A publication Critical patent/JP2001248909A/en
Application granted granted Critical
Publication of JP3977980B2 publication Critical patent/JP3977980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Control For Baths (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発電機とガスエンジンとを一体化したものとか燃料電池といった熱電併給装置で発生する排熱を利用して、温度成層を形成する状態で貯湯タンク内に湯を貯めるとともに室内暖房や床暖房などの暖房を行えるように構成したコージェネレーションシステムに関する。
【0002】
【従来の技術】
近年、例えば、特開平10−185314号公報に、ガスエンジン発電機からの排熱を排熱回収器で回収し、回収した排熱を貯湯槽や他の外部負荷(例えば、床暖房装置)に投入することが開示されているように、前述したような熱電併給装置で発生する排熱を貯湯や他用途に利用することが開示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、暖房の場合、一般に、室内温度を測定し、その測定室内温度が設定温度よりも低くなったときに暖房を開始し、設定温度を越えたときに暖房を停止するといったように、暖房加熱要求信号で暖房運転を制御するように構成される。
【0004】
室内温度を設定温度に良好に維持しようとすると、暖房加熱要求信号のON/OFFの時間間隔が比較的短くならざるを得ず、それに合わせて熱電併給装置をON/OFFすると、熱電併給装置の連続運転時間が短く、排熱の利用効率が低くなる欠点があった。
【0005】
すなわち、熱電併給装置からの排熱を利用する場合、熱電併給装置の筐体が大きいため、その運転開始時から所定の時間までの立ち上がりにおいて、発生した排熱が筐体や排熱を供給する配管などに吸収され、利用できる排熱量が少ない。そのような排熱量の少ない状態での加熱を行うと、排熱利用の目的である本来の省エネルギー性や経済性が損なわれるのである。
【0006】
本発明は、このような事情に鑑みてなされたものであって、請求項1に係る発明は、暖房の加熱要求があったときに、熱電併給装置の連続運転時間が所定時間以上確保できるときにのみ排熱を利用して暖房を行い、省エネルギー性および経済性を向上できるようにすることを目的とし、また、請求項2に係る発明は、学習機能や予約設定などによって特定時刻における貯湯タンク内への必要貯湯量が予め特定される場合に、そのことを考慮して熱電併給装置の連続運転時間が所定時間以上確保できるときにのみ排熱を利用して暖房を行い、省エネルギー性および経済性を向上できるようにすることを目的とし、また、請求項3に係る発明は、風呂の追炊き要求があったときに、追炊きを考慮して熱電併給装置の連続運転時間が所定時間以上確保できるときにのみ排熱を利用して追炊きを行い、省エネルギー性および経済性を向上できるようにすることを目的とする。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、上述のような目的を達成するために、
下部から取り出して上部から供給する循環配管を付設して温度成層を形成する状態で貯湯を行う貯湯タンクと、
前記循環配管に設けられて前記貯湯タンクから取り出した水を加熱する加熱手段と、
前記循環配管に設けられて前記貯湯タンクから水を取り出すとともに加熱後の湯を前記貯湯タンクに供給する循環ポンプと、
前記貯湯タンクと並列に前記循環配管に接続されて前記加熱手段を経た湯を取り出す循環用分岐配管と、
前記循環用分岐配管に設けられて暖房加熱要求信号に応答して暖房装置に供給される湯を前記加熱手段で加熱された湯によって加熱する暖房用熱交換器とを備えたコージェネレーションシステムにおいて、
前記加熱手段が、少なくとも熱電併給装置の排熱を熱源とする排熱加熱手段を含み、
前記貯湯タンクに設けられて前記貯湯タンク内の湯の貯湯量を検出する貯湯量検出手段と、
前記暖房加熱要求信号に応答して前記貯湯タンクの全容量から前記貯湯量検出手段で算出された湯の貯湯量を減算して前記貯湯タンクへの貯湯可能湯量を算出する貯湯可能湯量算出手段と、
前記貯湯可能湯量算出手段で算出された貯湯可能湯量分の加熱量を前記排熱加熱手段で得るに足る排熱加熱時間を算出する排熱加熱時間算出手段と、
前記排熱加熱時間算出手段で算出された排熱加熱時間と、前記熱電併給装置の特性を生かすに足る排熱連続運転時間とを比較して排熱加熱時間が排熱連続運転時間よりも長いときに排熱加熱信号を出力する比較手段と、
前記比較手段からの排熱加熱信号に応答して前記排熱加熱手段の運転許可信号を出力し、前記暖房加熱要求信号が停止しても貯湯可能湯量分の加熱を行った後に運転許可信号を停止する加熱制御手段とを備えて構成する。
【0008】
ここで、熱電併給装置の特性を生かすに足る排熱連続運転時間とは、用いる熱電併給装置によって設定されるものである。
すなわち、その筐体の容積に伴う運転開始からの排熱の温度の立ち上がり状況と、立ち上がり後の連続運転時間とから、排熱回収効率と発電効率とを求め、それらから省エネルギー性および経済性の面から有用となる全体としての連続運転時間が排熱連続運転時間として設定される。
【0009】
また、請求項2に係る発明は、前述のような目的を達成するために、
下部から取り出して上部から供給する循環配管を付設して温度成層を形成する状態で貯湯を行う貯湯タンクと、
前記循環配管に設けられて前記貯湯タンクから取り出した水を加熱する加熱手段と、
前記循環配管に設けられて前記貯湯タンクから水を取り出すとともに加熱後の湯を前記貯湯タンクに供給する循環ポンプと、
前記貯湯タンクと並列に前記循環配管に接続されて前記加熱手段を経た湯を取り出す循環用分岐配管と、
前記循環用分岐配管に設けられて暖房加熱要求信号に応答して暖房装置に供給される湯を前記加熱手段で加熱された湯によって加熱する暖房用熱交換器とを備えたコージェネレーションシステムにおいて、
前記加熱手段が、少なくとも熱電併給装置の排熱を熱源とする排熱加熱手段を含み、
特定時刻における前記貯湯タンク内への必要貯湯量が予め特定されているものであり、
前記貯湯タンクに設けられて前記貯湯タンク内の湯の貯湯量を検出する貯湯量検出手段と、
前記暖房加熱要求信号に応答して前記貯湯タンクの全容量から前記貯湯量検出手段で算出された湯の貯湯量を減算して前記貯湯タンクへの貯湯可能湯量を算出する貯湯可能湯量算出手段と、
前記貯湯可能湯量算出手段で算出された貯湯可能湯量分の加熱量を前記排熱加熱手段で得るに足る排熱加熱時間を算出する排熱加熱時間算出手段と、
暖房加熱要求信号に応答して、その時刻とそれ以降の直近の前記特定時刻との時間差を算出する時間差算出手段と、
前記時間差算出手段で算出された時間差と、放熱の影響を考慮して設定された先取り時間とを比較して、時間差が先取り時間よりも小さいときに先取り信号を出力する先取り手段と、
前記先取り信号に応答して、直近の特定時刻における必要貯湯量を前記排熱加熱手段で得るに足る必要加熱時間を算出する必要加熱時間算出手段と、
前記必要加熱時間算出手段で算出された必要加熱時間を前記排熱加熱時間算出手段で算出された排熱加熱時間に加算して許容加熱時間を算出する許容加熱時間算出手段と、
前記許容加熱時間算出手段で算出された許容加熱時間と排熱連続運転時間とを比較して許容加熱時間が排熱連続運転時間よりも長いときに排熱加熱信号を出力する第2の比較手段と、
前記第2の比較手段からの排熱加熱信号に応答して前記排熱加熱手段の運転許可信号を出力し、前記暖房加熱要求信号が停止しても貯湯可能湯量に必要貯湯量を加えた分の加熱を行った後に運転許可信号を停止する第2の加熱制御手段とを備えて構成する。
【0010】
特定時刻における貯湯タンク内への必要貯湯量が予め特定されるとは、例えば、学習機能によって、前日とか1週間前の同じ曜日の必要貯湯量の変動パターンによって特定するとか、予約機能などスケジュールタイマで設定した必要貯湯量の変動パターンによって特定するといったことである。
【0011】
また、放熱の影響を考慮して設定された先取り時間としては、貯湯タンク内に全容量の貯湯を行った場合に、その時点から貯湯タンクの湯の使用予定がある時までの時間で、放熱によるロスを問題にしなくても済む時までの時間が設定される。
【0012】
また、請求項3に係る発明は、前述のような目的を達成するために、
下部から取り出して上部から供給する循環配管を付設して温度成層を形成する状態で貯湯を行う貯湯タンクと、
前記循環配管に設けられて前記貯湯タンクから取り出した水を加熱する加熱手段と、
前記循環配管に設けられて前記貯湯タンクから水を取り出すとともに加熱後の湯を前記貯湯タンクに供給する循環ポンプと、
前記貯湯タンクと並列に前記循環配管に接続されて前記加熱手段を経た湯を取り出す循環用分岐配管と、
前記循環用分岐配管に設けられて暖房加熱要求信号に応答して暖房装置に供給される湯を前記加熱手段で加熱された湯によって加熱する暖房用熱交換器とを備えたコージェネレーションシステムにおいて、
前記加熱手段が、少なくとも熱電併給装置の排熱を熱源とする排熱加熱手段を含み、
前記貯湯タンクに設けられて前記貯湯タンク内の湯の貯湯量を検出する貯湯量検出手段と、
前記暖房加熱要求信号に応答して前記貯湯タンクの全容量から前記貯湯量検出手段で算出された湯の貯湯量を減算して前記貯湯タンクへの貯湯可能湯量を算出する貯湯可能湯量算出手段と、
前記貯湯可能湯量算出手段で算出された貯湯可能湯量分の加熱量を前記排熱加熱手段で得るに足る排熱加熱時間を算出する排熱加熱時間算出手段と、
前記循環用分岐配管に設けられて追焚き信号に応答して浴槽内の湯を循環させて加熱する追焚き用熱交換器と、
前記浴槽内の湯の温度を測定する浴槽温度センサと、
前記浴槽内の湯の量を測定する湯量センサと、
前記浴槽内の湯の沸かし上げ温度を設定する沸かし上げ温度設定手段と、
前記追焚き信号に応答して、前記浴槽温度センサで測定される前記浴槽内の湯の温度と、前記沸かし上げ温度設定手段で設定された沸かし上げ温度と、前記湯量センサで測定される前記浴槽内の湯量とに基づいて前記排熱加熱手段で加熱した場合に沸かし上げ温度に達するのに必要な追い焚き量を得る沸かし上げ時間を算出する沸かし上げ時間算出手段と、
前記沸かし上げ時間算出手段で算出された沸かし上げ時間を前記排熱加熱時間算出手段で算出された排熱加熱時間に加算して追焚き・貯湯加熱時間を算出する追焚き・貯湯加熱時間算出手段と、
前記追焚き・貯湯加熱時間算出手段で算出された追焚き・貯湯加熱時間と排熱連続運転時間とを比較して追焚き・貯湯加熱時間が排熱連続運転時間よりも長いときに排熱加熱信号を出力する第3の比較手段と、
前記第3の比較手段からの排熱加熱信号に応答して前記排熱加熱手段の運転許可信号を出力し、前記暖房加熱要求信号が停止しても貯湯可能湯量に追い焚き量を加えた分の加熱を行った後に運転許可信号を停止する第3の加熱制御手段とを備えて構成する。
【0013】
【作用】
請求項1に係る発明のコージェネレーションシステムの構成によれば、暖房加熱要求信号が出力されると、貯湯タンク内に実際に貯められている湯量、すなわち貯湯量を貯湯タンクの全容量から差し引いて、貯湯タンク内に貯湯可能な湯量を求める。
その貯湯可能湯量を排熱加熱手段で得るために必要な排熱加熱時間を求め、その排熱加熱時間と、熱電併給装置の特性を生かすに足る排熱連続運転時間とを比較し、貯湯可能湯量を得るために排熱加熱手段を運転したときに、省エネルギー性および経済性の面から有用かどうかを判断し、有用であると判断したとき、排熱加熱手段の運転許可信号を出力して排熱加熱手段の運転を許容し、省エネルギー性および経済性の面での有用性を確保した状態で排熱を暖房に利用することができる。
【0014】
また、請求項2に係る発明のコージェネレーションシステムの構成によれば、学習機能や予約機能などによって、浴槽への湯張りや、食器の洗浄や乾燥などのための湯が必要であるなど、特定時刻における貯湯タンク内への必要貯湯量が予め特定されているときに、暖房加熱要求信号に基づき、その時点から、放熱が問題とならない先取り時間内に必要貯湯量を得ることが判っている場合、その必要貯湯量を排熱加熱手段で得るために必要な加熱時間を求め、その必要加熱時間に貯湯可能湯量を排熱加熱手段で得るために必要な排熱加熱時間を加え、得られた許容加熱時間と、熱電併給装置の特性を生かすに足る排熱連続運転時間とを比較し、排熱加熱手段を運転したときに、省エネルギー性および経済性の面から有用かどうかを判断し、有用であると判断したとき、排熱加熱手段の運転許可信号を出力して排熱加熱手段の運転を許容し、省エネルギー性および経済性の面での有用性を確保した状態で排熱を暖房に利用することができる。
【0015】
また、請求項3に係る発明のコージェネレーションシステムの構成によれば、追焚き信号が出力されると、その時点で必要な追焚き量を排熱加熱手段で得るために必要な沸かし上げ時間を求め、その沸かし上げ時間に貯湯可能湯量を排熱加熱手段で得るために必要な排熱加熱時間を加え、得られた追焚き・貯湯加熱時間と、熱電併給装置の特性を生かすに足る排熱連続運転時間とを比較し、排熱加熱手段を運転したときに、省エネルギー性および経済性の面から有用かどうかを判断し、有用であると判断したとき、排熱加熱手段の運転許可信号を出力して排熱加熱手段の運転を許容し、省エネルギー性および経済性の面での有用性を確保した状態で排熱を追焚きに利用することができる。
【0016】
【発明の実施の形態】
次に、本発明の実施例を図面に基づいて詳細に説明する。
図1は、本発明に係るコージェネレーションシステムの実施例を示す概略構成図であり、ガスエンジンによって発電機を駆動するように構成した熱電併給装置1と貯湯給湯器2とが、ジャケット冷却水の循環配管3と第1の熱交換器4とを介して接続され、貯湯、給湯および暖房に熱電併給装置1からの排熱を利用できるように構成されている。このジャケット冷却水の循環配管3と第1の熱交換器4とによって熱電併給装置1からの排熱を利用する構成をして排熱加熱手段と称する(後述する図2、図3および図4それぞれでは、便宜上排熱加熱手段の図番として熱電併給装置1と同じにして示す)。
【0017】
貯湯給湯器2には、貯湯タンク5と、補助熱源機6と、補給水タンク7とが備えられている。
貯湯タンク5の下部から上部にわたって、循環ポンプ8を介装した循環配管9が設けられ、この循環配管9に第1の熱交換器4と補助熱源機6とが直列に設けられている。
【0018】
以上の構成により、貯湯タンク5の下部から水を取り出し、熱電併給装置1からの排熱によって加熱し、その加熱後の湯を貯湯タンク5の上部から供給し、温度成層を形成する状態で貯湯を行うようになっている。
【0019】
循環配管9には流量センサ10と流量制御弁11とが設けられている。
補助熱源機6は、加熱能力が高い専用熱源として都市ガスにより燃焼加熱するように構成され、熱電併給装置1からの排熱による加熱を行わないときに、または併用して、補助熱源機6による加熱を行い、貯湯、給湯および暖房用の湯を得るように構成されている。前述排熱加熱手段と補助熱源機6とによって、貯湯タンク5から取り出した水を加熱する加熱手段が構成されている。
【0020】
循環配管9には、第1の熱交換器4および補助熱源機6と並列に出力用循環配管13が接続され、その出力用循環配管13に暖房用熱交換器14と追い焚き用熱交換器15が設けられている。
【0021】
暖房用熱交換器14には、補給水タンク7に接続される状態で第1のポンプ付き配管16が接続され、第1のポンプ付き配管16に取り出しヘッダー17および戻りヘッダー18を介して図示していない床暖房機や室内暖房機などの暖房装置や浴室乾燥機などが接続されている。
【0022】
追い焚き用熱交換器15には、第2のポンプ付き配管19を介して浴槽20が接続され、追い焚きを行うように構成されている。
第2のポンプ付き配管19には、浴槽20内に貯められている実際の湯の量を測定する湯量センサとしての圧力センサ21aと浴槽20内の湯の温度を測定する浴槽温度センサ21bとが設けられている。
【0023】
循環配管9および出力用循環配管13と並列に、貯湯タンク5に給湯管22が接続され、給湯管22に分配弁22a、流量制御弁22b、流量センサ22cおよび開閉弁22dが設けられるとともに、その給湯管22が第2のポンプ付き配管19に接続されている。これにより、貯湯タンク5から給湯管22および第2のポンプ付き配管19を介して浴槽20内に所望温度の湯を供給できるように、すなわち、湯張りを行えるように構成されている。
【0024】
給湯管22の途中箇所には、シャワーに接続されるシャワー配管22eが接続されている。分配弁22aには、給水管23が接続され、湯量と給水量との分配比を調節することにより湯張り時の湯温度を調節できるようになっている。
【0025】
貯湯タンク5に上下方向に間隔を隔てて5個の温度センサ24a,24b,24c,24d,24eが設けられ、例えば、80℃などの設定温度を感知した温度センサの位置によって貯湯タンク5内の湯の貯湯量を検出する貯湯量検出手段25(図2参照)が構成されている。
【0026】
浴室(図示せず)の側壁に取り付けられたタッチパネルに、追焚きを行うときに沸かし上げ温度を設定する沸かし上げ温度設定手段26(図4参照)が設けられている。また、タッチパネルには、追焚きスイッチ部が設けられ、この追焚きスイッチ部に対する操作で追焚き信号を出力するようになっている。
【0027】
図2の第1実施例のブロック図に示すように、貯湯量検出手段25がマイクロコンピュータ27に接続され、そのマイクロコンピュータ27に排熱加熱手段としての熱電併給装置1が接続されている。
【0028】
マイクロコンピュータ27には、貯湯可能湯量算出手段28、排熱加熱時間算出手段29、比較手段30、加熱制御手段31が備えられている。
【0029】
前述した暖房装置では、室内温度を測定する室内サーモスタットが設けられ、設定温度との比較によりON/OFFされ、設定温度よりも低くなったときに暖房加熱要求信号を出力するようになっている。
【0030】
貯湯可能湯量算出手段28は、暖房加熱要求信号に応答して貯湯タンク5の全容量から貯湯量検出手段25で算出された湯の貯湯量を減算して貯湯タンク5への貯湯可能湯量を算出するようになっている。
【0031】
排熱加熱時間算出手段29は、貯湯可能湯量算出手段28で算出された貯湯可能湯量分の加熱量を排熱加熱手段としての熱電併給装置1で得るに足る排熱加熱時間を算出するようになっている。
【0032】
比較手段30は、排熱加熱時間算出手段29で算出された排熱加熱時間と、熱電併給装置1の特性を生かすに足る排熱連続運転時間とを比較して排熱加熱時間が排熱連続運転時間よりも長いときに排熱加熱信号を出力するようになっている。
【0033】
上記排熱連続運転時間は、用いる熱電併給装置1に応じてその熱電併給装置1の特性を生かすに足るように設定されるものである。
すなわち、熱電併給装置1を構成する筐体の容積に伴う運転開始からの排熱の温度の立ち上がり状況と、立ち上がり後の連続運転時間とから、排熱回収効率と発電効率とを求め、それらから省エネルギー性および経済性の面から有用となる全体としての連続運転時間が排熱連続運転時間として設定される。
【0034】
加熱制御手段31は、比較手段30からの排熱加熱信号に応答して排熱加熱手段としての熱電併給装置1の運転許可信号を出力し、暖房加熱要求信号が停止しても貯湯可能湯量分の加熱を行った後に運転許可信号を停止するようになっている。
【0035】
これにより、熱電併給装置1の特性を生かすに足る排熱連続運転時間が確保できるときに、その熱電併給装置1からの排熱を暖房に利用でき、熱エネルギー性および経済性を向上できる。
【0036】
なお、上述した運転許可信号に応答しての運転動作としては、次の2形態のいずれかが採用される。このことは、以下の実施例でも同じである。
▲1▼運転許可信号に応答して熱電併給装置1および循環ポンプ8を運転する。
▲2▼運転許可信号に応答して、電力負荷が予め定められた設定値よりも大きいかどうか判断し、電力負荷が設定値よりも大きければ、熱電併給装置1および循環ポンプ8を運転し、電力負荷が設定値よりも小さければ、熱電併給装置1で発電される電力が消費されずに捨てられることとなって無駄になるため、運転許可信号を受けても、熱電併給装置1および循環ポンプ8を運転しないようにして経済性の向上を図る。
【0037】
図3は、第2実施例を示すブロック図である。
例えば、学習機能によって、前日とか1週間前の同じ曜日の必要貯湯量の変動パターンとか、予約機能などスケジュールタイマで設定した必要貯湯量の変動パターンなどによって特定される、特定時刻における貯湯タンク内への必要貯湯量がメモリ32に記憶されるようになっており、このメモリ32と時計33とがマイクロコンピュータ27に接続され、マイクロコンピュータ27に排熱加熱手段としての熱電併給装置1が接続されている。
【0038】
マイクロコンピュータ27には、排熱加熱時間算出手段29、時間差算出手段34、先取り手段35、必要加熱時間算出手段36、許容加熱時間算出手段37、第2の比較手段38、第2の加熱制御手段39が備えられている。
【0039】
排熱加熱時間算出手段29は第1実施例と同じであり、貯湯可能湯量算出手段28で算出された貯湯可能湯量分の加熱量を排熱加熱手段としての熱電併給装置1で得るに足る排熱加熱時間を算出するようになっている。
【0040】
時間差算出手段34は、暖房加熱要求信号に応答して、時計33から入力されるとの時点の時刻と、メモリ32から入力されるそれ以降の貯湯タンク5内への必要貯湯量が予め特定されている直近の特定時刻との時間差を算出するようになっている。
【0041】
先取り手段35は、時間差算出手段34で算出された時間差と、放熱の影響を考慮して設定された先取り時間とを比較して、時間差が先取り時間よりも小さいときに先取り信号を出力するようになっている。
【0042】
放熱の影響を考慮して設定された先取り時間としては、貯湯タンク5内に全容量の貯湯を行った場合に、その時点から貯湯タンク5の湯の使用予定がある時までの時間で、放熱によるロスを問題にしなくても済む時までの時間(例えば、10分間など)が設定される。
【0043】
必要加熱時間算出手段36は、前記先取り信号に応答して、直近の特定時刻における必要貯湯量を排熱加熱手段としての熱電併給装置1で得るに足る必要加熱時間を算出するようになっている。
【0044】
許容加熱時間算出手段37は、必要加熱時間算出手段36で算出された必要加熱時間を排熱加熱時間算出手段29で算出された排熱加熱時間に加算して許容加熱時間を算出するようになっている。
【0045】
第2の比較手段38は、許容加熱時間算出手段37で算出された許容加熱時間と排熱連続運転時間とを比較して許容加熱時間が排熱連続運転時間よりも長いときに排熱加熱信号を出力するようになっている。
【0046】
第2の加熱制御手段39は、第2の比較手段38からの排熱加熱信号に応答して排熱加熱手段としての熱電併給装置1の運転許可信号を出力し、暖房加熱要求信号が停止しても貯湯可能湯量に必要貯湯量を加えた分の加熱を行った後に運転許可信号を停止するようになっている。
【0047】
この第2実施例によれば、暖房加熱要求信号が出力された時点で排熱連続運転時間が確保できないようなときでも、その直後などに貯湯タンク5内の湯が使用されることが判っている場合には、その分を考慮することにより排熱連続運転時間が確保でき、熱電併給装置1からの排熱を暖房に利用でき、熱エネルギー性および経済性を向上できる。
【0048】
図4は、第3実施例を示すブロック図である。
前記湯量センサ(圧力センサ)21aと浴槽温度センサ21bと沸かし上げ温度設定手段25ととがマイクロコンピュータ27に接続され、マイクロコンピュータ27に排熱加熱手段としての熱電併給装置1が接続されている。
【0049】
マイクロコンピュータ27には、排熱加熱時間算出手段29、沸かし上げ時間算出手段40、追焚き貯湯・加熱時間算出手段41、第3の比較手段42、第3の加熱制御手段43が備えられている。
【0050】
排熱加熱時間算出手段29は第1実施例と同じであり、貯湯可能湯量算出手段28で算出された貯湯可能湯量分の加熱量を排熱加熱手段としての熱電併給装置1で得るに足る排熱加熱時間を算出するようになっている。
【0051】
沸かし上げ時間算出手段40は、追焚き信号に応答して、浴槽温度センサ21bで測定される浴槽20内の湯の温度と、沸かし上げ温度設定手段26で設定された沸かし上げ温度と、湯量センサ(圧力センサ)21aで測定される浴槽20内の湯量とに基づいて排熱加熱手段としての熱電併給装置1で加熱した場合に沸かし上げ温度に達するのに必要な追い焚き量を得る沸かし上げ時間を算出するようになっている。
【0052】
追焚き・貯湯加熱時間算出手段41は、沸かし上げ時間算出手段40で算出された沸かし上げ時間を排熱加熱時間算出手段29で算出された排熱加熱時間に加算して追焚き・貯湯加熱時間を算出するようになっている。
【0053】
第3の比較手段42は、追焚き・貯湯加熱時間算出手段41で算出された追焚き・貯湯加熱時間と排熱連続運転時間とを比較して追焚き・貯湯加熱時間が排熱連続運転時間よりも長いときに排熱加熱信号を出力するようになっている。
【0054】
第3の加熱制御手段43は、第3の比較手段42からの排熱加熱信号に応答して排熱加熱手段としての熱電併給装置1の運転許可信号を出力し、暖房加熱要求信号が停止しても貯湯可能湯量に追い焚き量を加えた分の加熱を行った後に運転許可信号を停止するようになっている。
【0055】
この第3実施例によれば、熱電併給装置1の特性を生かすに足る排熱連続運転時間が確保できるときに、その熱電併給装置1からの排熱を追焚きに利用でき、熱エネルギー性および経済性を向上できる。
【0056】
本発明としては、前述第1実施例、第2実施例および第3実施例のすべてを備えてコージェネレーションシステムを構成するものでも良い。
【0057】
【発明の効果】
以上の説明から明らかなように、請求項1に係る発明のコージェネレーションシステムによれば、暖房の加熱要求があったときに、そのことだけで排熱加熱手段を運転すると室内サーモスタットがOFFになって短時間で排熱加熱手段の運転が停止され、熱電併給装置の特性を生かすに足る排熱連続運転時間を確保できないが、そのときに、排熱連続運転時間以上の加熱時間を必要とするだけの貯湯可能湯量が貯湯タンク内にある場合に、排熱加熱手段の運転を許容し、排熱を利用して暖房を行うことができるから、省エネルギー性および経済性を向上できる。
【0058】
また、請求項2に係る発明のコージェネレーションシステムによれば、学習機能や予約機能などによって、浴槽への湯張りや、食器の洗浄や乾燥などのための湯が必要であるなど、特定時刻における貯湯タンク内への必要貯湯量が予め特定されているときに、その特定時刻が直近で放熱ロスの問題を生じず、かつ、必要貯湯量を排熱加熱手段で得るために必要な加熱時間に貯湯可能湯量を排熱加熱手段で得るために必要な排熱加熱時間を加算した許容加熱時間が排熱連続運転時間以上である場合に、排熱加熱手段の運転を許容し、排熱を利用して暖房を行うことができるから、貯湯タンク内の貯湯可能湯量だけでは排熱連続運転時間以上の加熱時間を確保できない場合でも、暖房に排熱を利用でき、省エネルギー性および経済性を一層向上できる
【0059】
また、請求項3に係る発明のコージェネレーションシステムによれば、追焚き信号が出力されて風呂の追炊き要求があったときに、その時点で必要な追焚き量を排熱加熱手段で得るために必要な沸かし上げ時間を求め、その沸かし上げ時間に貯湯可能湯量を排熱加熱手段で得るために必要な排熱加熱時間を加えた追焚き・貯湯加熱時間が、熱電併給装置の特性を生かすに足る排熱連続運転時間以上である場合に、排熱加熱手段の運転を許容し、排熱を利用して追炊きを行うことができるから、貯湯タンク内の貯湯可能湯量だけでは排熱連続運転時間以上の加熱時間を確保できない場合でも、追焚きに排熱を利用でき、省エネルギー性および経済性を一層向上できる。
【図面の簡単な説明】
【図1】本発明に係るコージェネレーションシステムの概略構成図である。
【図2】第1実施例を示すブロック図である。
【図3】第2実施例を示すブロック図である。
【図4】第2実施例を示すブロック図である。
【符号の説明】
1…熱電併給装置
4…第1の熱交換器
5…貯湯タンク
8…循環ポンプ
9…循環配管
20…浴槽
21…湯量センサとしての圧力センサ
25…貯湯量検出手段
26…沸かし上げ温度設定手段
28…貯湯可能湯量算出手段
29…排熱加熱時間算出手段
30…比較手段
31…加熱制御手段
34…時間差算出手段
35…先取り手段
36…必要加熱時間算出手段
37…許容加熱時間算出手段
38…第2の比較手段
39…第2の加熱制御手段
40…沸かし上げ時間算出手段
41…追焚き貯湯・加熱時間算出手段
42…第3の比較手段
43…第3の加熱制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention uses exhaust heat generated by a combined heat and power device such as a generator and a gas engine or a fuel cell to store hot water in a hot water storage tank in a state in which temperature stratification is formed, The present invention relates to a cogeneration system configured to perform heating such as floor heating.
[0002]
[Prior art]
In recent years, for example, in JP-A-10-185314, exhaust heat from a gas engine generator is recovered by an exhaust heat recovery device, and the recovered exhaust heat is applied to a hot water tank or other external load (for example, a floor heating device). As disclosed, it is disclosed that exhaust heat generated in the combined heat and power supply device as described above is used for hot water storage or other purposes.
[0003]
[Problems to be solved by the invention]
However, in the case of heating, generally, the room temperature is measured, heating is started when the measured room temperature becomes lower than the set temperature, and heating is stopped when the set temperature is exceeded. It is configured to control the heating operation with the request signal.
[0004]
In order to maintain the room temperature at the set temperature, the ON / OFF time interval of the heating / heating request signal has to be relatively short, and if the heat / power supply device is turned ON / OFF accordingly, the heat / power supply device The continuous operation time is short, and there is a disadvantage that the utilization efficiency of exhaust heat is low.
[0005]
That is, when using the exhaust heat from the combined heat and power supply device, since the housing of the combined heat and power supply device is large, the generated exhaust heat supplies the housing and the exhaust heat from the start of operation until a predetermined time. The amount of waste heat that can be absorbed and used by piping is low. When heating is performed in such a state where the amount of exhaust heat is small, the original energy saving and economic efficiency, which are the purpose of exhaust heat utilization, are impaired.
[0006]
This invention is made | formed in view of such a situation, and when the invention which concerns on Claim 1 has the heating request | requirement of heating, when the continuous operation time of a cogeneration apparatus can be ensured more than predetermined time, The purpose of the present invention is to improve the energy saving and economic efficiency by heating only by using exhaust heat, and the invention according to claim 2 is a hot water storage tank at a specific time by a learning function or a reservation setting. When the required hot water storage amount is specified in advance, considering that fact, heating is performed using exhaust heat only when the continuous operation time of the combined heat and power supply unit can be secured for a predetermined time or more, thereby saving energy and economy. The invention according to claim 3 is designed so that the continuous operation time of the combined heat and power supply apparatus is not less than a predetermined time in consideration of additional cooking when there is a request for additional cooking of the bath. Sure Only performed additionally cook using the waste heat when it aims to allow improved energy saving and economy.
[0007]
[Means for Solving the Problems]
In order to achieve the above-described object, the invention according to claim 1
A hot water storage tank that stores hot water in a state where a temperature stratification is formed by attaching a circulation pipe that is taken out from the lower part and supplied from the upper part,
Heating means provided in the circulation pipe for heating water taken out from the hot water storage tank;
A circulation pump which is provided in the circulation pipe and takes out water from the hot water storage tank and supplies hot water after heating to the hot water storage tank;
A branch pipe for circulation that is connected to the circulation pipe in parallel with the hot water storage tank and takes out the hot water that has passed through the heating means;
In the cogeneration system provided with the heat exchanger for heating, which is provided in the branch piping for circulation and is heated by the hot water heated by the heating means in response to the heating heating request signal, and supplied to the heating device,
The heating means includes at least exhaust heat heating means using the exhaust heat of the combined heat and power supply device as a heat source,
A hot water storage amount detecting means provided in the hot water storage tank for detecting the hot water storage amount of the hot water in the hot water storage tank;
Hot water storage capacity calculation means for subtracting the hot water storage amount calculated by the hot water storage amount detection means from the total capacity of the hot water storage tank in response to the heating / heating request signal to calculate the hot water storage capacity of the hot water storage tank; ,
Exhaust heat heating time calculating means for calculating an exhaust heat heating time sufficient to obtain a heating amount for the hot water storage possible hot water amount calculated by the hot water storage hot water amount calculating means by the exhaust heat heating means,
The waste heat heating time is longer than the waste heat continuous operation time by comparing the waste heat heating time calculated by the waste heat heating time calculation means with the waste heat continuous operation time sufficient to make use of the characteristics of the combined heat and power supply device. Comparison means that sometimes outputs a waste heat heating signal;
In response to the exhaust heat heating signal from the comparison means, the operation permission signal of the exhaust heat heating means is output, and after the heating heating request signal is stopped, the operation permission signal is output after heating for the amount of hot water that can be stored. And a heating control means for stopping.
[0008]
Here, the exhaust heat continuous operation time sufficient to make use of the characteristics of the combined heat and power supply apparatus is set by the combined heat and power supply apparatus used.
In other words, exhaust heat recovery efficiency and power generation efficiency are obtained from the rising state of exhaust heat temperature from the start of operation according to the volume of the casing and the continuous operation time after the start, and energy saving and economic efficiency are obtained from them. The continuous operation time as a whole which is useful from the aspect is set as the exhaust heat continuous operation time.
[0009]
In order to achieve the above-described object, the invention according to claim 2
A hot water storage tank that stores hot water in a state where a temperature stratification is formed by attaching a circulation pipe that is taken out from the lower part and supplied from the upper part,
Heating means provided in the circulation pipe for heating water taken out from the hot water storage tank;
A circulation pump which is provided in the circulation pipe and takes out water from the hot water storage tank and supplies hot water after heating to the hot water storage tank;
A branch pipe for circulation that is connected to the circulation pipe in parallel with the hot water storage tank and takes out the hot water that has passed through the heating means;
In the cogeneration system provided with the heat exchanger for heating, which is provided in the branch piping for circulation and is heated by the hot water heated by the heating means in response to the heating heating request signal, and supplied to the heating device,
The heating means includes at least exhaust heat heating means using the exhaust heat of the combined heat and power supply device as a heat source,
The required hot water storage amount in the hot water storage tank at a specific time is specified in advance,
A hot water storage amount detecting means provided in the hot water storage tank for detecting the hot water storage amount of the hot water in the hot water storage tank;
Hot water storage capacity calculation means for subtracting the hot water storage amount calculated by the hot water storage amount detection means from the total capacity of the hot water storage tank in response to the heating / heating request signal to calculate the hot water storage capacity of the hot water storage tank; ,
Exhaust heat heating time calculating means for calculating an exhaust heat heating time sufficient to obtain a heating amount for the hot water storage possible hot water amount calculated by the hot water storage hot water amount calculating means by the exhaust heat heating means,
In response to the heating / heating request signal, a time difference calculating means for calculating a time difference between that time and the most recent specific time thereafter;
A time difference calculated by the time difference calculation means and a preemption time set in consideration of the influence of heat radiation, and a preemption means for outputting a prefetch signal when the time difference is smaller than the preemption time;
In response to the prefetch signal, required heating time calculation means for calculating a necessary heating time sufficient to obtain the required hot water storage amount at the most specific time by the exhaust heat heating means,
An allowable heating time calculating means for calculating an allowable heating time by adding the required heating time calculated by the required heating time calculating means to the exhaust heat heating time calculated by the exhaust heat heating time calculating means;
Second comparing means for comparing the allowable heating time calculated by the allowable heating time calculating means with the exhaust heat continuous operation time and outputting an exhaust heat heating signal when the allowable heating time is longer than the exhaust heat continuous operation time. When,
In response to the exhaust heat heating signal from the second comparison means, an operation permission signal for the exhaust heat heating means is output, and the required hot water storage amount is added to the hot water storage capacity even when the heating heating request signal is stopped. And a second heating control means for stopping the operation permission signal after heating.
[0010]
The required hot water storage amount in the hot water storage tank at a specific time is specified in advance, for example, by a learning function, specified by the fluctuation pattern of the required hot water storage amount on the same day of the previous day or one week ago, or a schedule timer such as a reservation function It is specified by the fluctuation pattern of the required hot water storage amount set in.
[0011]
The pre-emption time set in consideration of the effects of heat dissipation is the time from when the hot water in the hot water storage tank is scheduled to be used to the time when the hot water is stored in the hot water tank. The time until the time when the loss due to is not a problem is set.
[0012]
In order to achieve the above-described object, the invention according to claim 3
A hot water storage tank that stores hot water in a state where a temperature stratification is formed by attaching a circulation pipe that is taken out from the lower part and supplied from the upper part,
Heating means provided in the circulation pipe for heating water taken out from the hot water storage tank;
A circulation pump which is provided in the circulation pipe and takes out water from the hot water storage tank and supplies hot water after heating to the hot water storage tank;
A branch pipe for circulation that is connected to the circulation pipe in parallel with the hot water storage tank and takes out the hot water that has passed through the heating means;
In the cogeneration system provided with the heat exchanger for heating, which is provided in the branch piping for circulation and is heated by the hot water heated by the heating means in response to the heating heating request signal, and supplied to the heating device,
The heating means includes at least exhaust heat heating means using the exhaust heat of the combined heat and power supply device as a heat source,
A hot water storage amount detecting means provided in the hot water storage tank for detecting the hot water storage amount of the hot water in the hot water storage tank;
Hot water storage capacity calculation means for subtracting the hot water storage amount calculated by the hot water storage amount detection means from the total capacity of the hot water storage tank in response to the heating / heating request signal to calculate the hot water storage capacity of the hot water storage tank; ,
Exhaust heat heating time calculating means for calculating an exhaust heat heating time sufficient to obtain a heating amount for the hot water storage possible hot water amount calculated by the hot water storage hot water amount calculating means by the exhaust heat heating means,
A heat exchanger for reheating that is provided in the branch piping for circulation and circulates and heats hot water in the bathtub in response to a reheating signal;
A bathtub temperature sensor for measuring the temperature of hot water in the bathtub;
A hot water sensor for measuring the amount of hot water in the bathtub;
Boiling temperature setting means for setting the boiling temperature of hot water in the bathtub;
In response to the chasing signal, the temperature of the hot water in the bathtub measured by the bathtub temperature sensor, the boiling temperature set by the boiling temperature setting means, and the bathtub measured by the hot water amount sensor Boil-up time calculating means for calculating a boil-up time to obtain a reheating amount required to reach a boil-up temperature when heated by the exhaust heat heating means based on the amount of hot water in the inside,
The reheating / hot water heating time calculating means for calculating the reheating / hot water heating time by adding the boiling time calculated by the boiling time calculating means to the exhaust heat heating time calculated by the exhaust heat heating time calculating means. When,
Comparing the reheating / hot water heating time calculated by the reheating / hot water heating time calculation means with the exhaust heat continuous operation time, and exhaust heat heating when the reheating / hot water heating time is longer than the exhaust heat continuous operation time. Third comparison means for outputting a signal;
In response to the exhaust heat heating signal from the third comparison means, an operation permission signal for the exhaust heat heating means is output, and even if the heating heating request signal is stopped, the amount of reheating is added to the amount of hot water that can be stored. And a third heating control means for stopping the operation permission signal after the heating is performed.
[0013]
[Action]
According to the configuration of the cogeneration system of the first aspect of the present invention, when the heating / heating request signal is output, the amount of hot water actually stored in the hot water storage tank, that is, the hot water storage amount is subtracted from the total capacity of the hot water storage tank. Find the amount of hot water that can be stored in the hot water storage tank.
Obtain the exhaust heat heating time required to obtain the amount of hot water that can be stored with the exhaust heat heating means, compare the exhaust heat heating time with the exhaust heat continuous operation time sufficient to make use of the characteristics of the combined heat and power supply, and store hot water When the exhaust heat heating means is operated to obtain the amount of hot water, it is judged whether it is useful in terms of energy saving and economy, and when it is judged useful, an operation permission signal for the exhaust heat heating means is output. The exhaust heat can be used for heating in a state where the operation of the exhaust heat heating means is allowed and the utility in terms of energy saving and economy is ensured.
[0014]
In addition, according to the configuration of the cogeneration system of the invention according to claim 2, the learning function or the reservation function, etc., specify that hot water for bathing or washing or drying of tableware is necessary. When the required hot water storage amount in the hot water storage tank at the time is specified in advance, it is known from the point of time that the required hot water storage amount is obtained within the preemptive time when heat dissipation does not become a problem based on the heating / heating request signal The required heating time for obtaining the necessary hot water storage amount with the exhaust heat heating means was obtained, and the exhaust heat heating time necessary for obtaining the required hot water amount with the exhaust heat heating means was added to the required heating time, and obtained. Compare the allowable heating time with the exhaust heat continuous operation time sufficient to make use of the characteristics of the combined heat and power system, and determine whether it is useful from the aspect of energy saving and economy when operating the exhaust heat heating means. When it is determined that the exhaust heat heating means is operating, the exhaust heat heating means is allowed to operate and the exhaust heat heating means is allowed to operate, and the exhaust heat is heated in a state of securing the usefulness in terms of energy saving and economy. Can be used.
[0015]
Further, according to the configuration of the cogeneration system of the invention according to claim 3, when the reheating signal is output, the boiling time required for obtaining the reheating amount required at that time by the exhaust heat heating means is increased. The exhaust heat heating time required to obtain the amount of hot water that can be stored with the exhaust heat heating means is added to the boiling time, and the exhaust heat that is sufficient to make use of the obtained reheating and hot water storage time and the characteristics of the combined heat and power unit Compared with the continuous operation time, when operating the exhaust heat heating means, it is judged whether it is useful from the aspect of energy saving and economy, and if it is judged useful, the operation permission signal of the exhaust heat heating means is It is possible to output and allow the operation of the exhaust heat heating means, and the exhaust heat can be used for tracking in a state in which usefulness in terms of energy saving and economy is secured.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an embodiment of a cogeneration system according to the present invention, in which a combined heat and power supply device 1 and a hot water storage hot water supply device 2 configured to drive a generator by a gas engine include jacket cooling water. It connects via the circulation piping 3 and the 1st heat exchanger 4, and is comprised so that the waste heat from the cogeneration apparatus 1 can be utilized for hot water storage, hot water supply, and heating. The jacket cooling water circulation pipe 3 and the first heat exchanger 4 are configured to utilize the exhaust heat from the combined heat and power supply apparatus 1 and are referred to as exhaust heat heating means (described later with reference to FIGS. 2, 3 and 4). In each case, the exhaust heat heating means is shown as the figure number of the exhaust heat heating means for the sake of convenience).
[0017]
The hot water storage water heater 2 includes a hot water storage tank 5, an auxiliary heat source unit 6, and a makeup water tank 7.
A circulation pipe 9 including a circulation pump 8 is provided from the lower part to the upper part of the hot water storage tank 5, and the first heat exchanger 4 and the auxiliary heat source unit 6 are provided in series in the circulation pipe 9.
[0018]
With the above configuration, water is taken out from the lower part of the hot water storage tank 5 and heated by exhaust heat from the combined heat and power supply device 1, and hot water after the heating is supplied from the upper part of the hot water storage tank 5 to form a temperature stratification. Is supposed to do.
[0019]
The circulation pipe 9 is provided with a flow sensor 10 and a flow control valve 11.
The auxiliary heat source unit 6 is configured to burn and heat with city gas as a dedicated heat source having a high heating capacity, and when the heating by the exhaust heat from the combined heat and power supply apparatus 1 is not performed or in combination, the auxiliary heat source unit 6 It is configured to perform heating and obtain hot water for hot water storage, hot water supply and heating. The exhaust heat heating means and the auxiliary heat source unit 6 constitute a heating means for heating the water taken out from the hot water storage tank 5.
[0020]
An output circulation pipe 13 is connected to the circulation pipe 9 in parallel with the first heat exchanger 4 and the auxiliary heat source unit 6, and a heating heat exchanger 14 and a reheating heat exchanger are connected to the output circulation pipe 13. 15 is provided.
[0021]
The heating heat exchanger 14 is connected to a first pump-equipped pipe 16 in a state of being connected to the makeup water tank 7, and the first pump-equipped pipe 16 is illustrated via a take-out header 17 and a return header 18. Heating devices such as floor heaters and indoor heaters, and bathroom dryers are not connected.
[0022]
The reheating heat exchanger 15 is connected to a bathtub 20 via a second pipe 19 with a pump, and is configured to reheat.
The second pump-equipped pipe 19 includes a pressure sensor 21a as a hot water amount sensor for measuring the actual amount of hot water stored in the bathtub 20 and a bathtub temperature sensor 21b for measuring the temperature of hot water in the bathtub 20. Is provided.
[0023]
In parallel with the circulation pipe 9 and the output circulation pipe 13, a hot water supply pipe 22 is connected to the hot water storage tank 5, and a distribution valve 22a, a flow rate control valve 22b, a flow rate sensor 22c, and an on-off valve 22d are provided in the hot water supply pipe 22. A hot water supply pipe 22 is connected to the second pumped pipe 19. Thereby, it is comprised so that hot water of desired temperature can be supplied in the bathtub 20 via the hot water supply pipe 22 and the 2nd piping 19 with a pump from the hot water storage tank 5, ie, hot water filling can be performed.
[0024]
A shower pipe 22 e connected to the shower is connected to a midpoint of the hot water supply pipe 22. A water supply pipe 23 is connected to the distribution valve 22a, and the hot water temperature at the time of filling can be adjusted by adjusting the distribution ratio between the amount of hot water and the amount of water supply.
[0025]
Five temperature sensors 24a, 24b, 24c, 24d, and 24e are provided in the hot water storage tank 5 at intervals in the vertical direction. For example, depending on the position of the temperature sensor that senses a set temperature such as 80 ° C., Hot water storage amount detection means 25 (see FIG. 2) for detecting the hot water storage amount is configured.
[0026]
A touch panel attached to a side wall of a bathroom (not shown) is provided with a boiling temperature setting means 26 (see FIG. 4) for setting a boiling temperature when reheating. Further, the touch panel is provided with a tracking switch section, and a tracking signal is output by an operation on the tracking switch section.
[0027]
As shown in the block diagram of the first embodiment of FIG. 2, the hot water storage amount detection means 25 is connected to a microcomputer 27, and the microcomputer 27 is connected to the cogeneration apparatus 1 as exhaust heat heating means.
[0028]
The microcomputer 27 is provided with hot water storage capacity calculation means 28, exhaust heat heating time calculation means 29, comparison means 30, and heating control means 31.
[0029]
The above-described heating device is provided with an indoor thermostat for measuring the room temperature, and is turned on / off by comparison with the set temperature, and outputs a heating / heating request signal when the temperature becomes lower than the set temperature.
[0030]
The hot water storage capacity calculation means 28 subtracts the hot water storage amount calculated by the hot water storage detection means 25 from the total capacity of the hot water storage tank 5 in response to the heating / heating request signal to calculate the hot water storage capacity to the hot water storage tank 5. It is supposed to be.
[0031]
The exhaust heat heating time calculation means 29 calculates an exhaust heat heating time sufficient to obtain the heating amount equivalent to the hot water storage hot water amount calculated by the hot water storage hot water amount calculation means 28 by the combined heat and power supply device 1 as the exhaust heat heating means. It has become.
[0032]
The comparison means 30 compares the exhaust heat heating time calculated by the exhaust heat heating time calculation means 29 with the exhaust heat continuous operation time sufficient to make use of the characteristics of the combined heat and power supply device 1, and the exhaust heat heating time is continuously exhausted. When the operation time is longer, the exhaust heat heating signal is output.
[0033]
The exhaust heat continuous operation time is set so as to take advantage of the characteristics of the combined heat and power supply device 1 according to the combined heat and power supply device 1 used.
That is, the exhaust heat recovery efficiency and the power generation efficiency are obtained from the rising state of the exhaust heat temperature from the start of operation according to the volume of the casing constituting the combined heat and power supply apparatus 1 and the continuous operation time after the start, The overall continuous operation time that is useful in terms of energy saving and economy is set as the exhaust heat continuous operation time.
[0034]
The heating control means 31 outputs an operation permission signal of the cogeneration apparatus 1 as the exhaust heat heating means in response to the exhaust heat heating signal from the comparison means 30, and even if the heating heating request signal stops, the amount of hot water that can be stored is stored. The operation permission signal is stopped after heating is performed.
[0035]
Thereby, when the exhaust heat continuous operation time sufficient to make use of the characteristics of the combined heat and power supply device 1 can be secured, the exhaust heat from the combined heat and power supply device 1 can be used for heating, and thermal energy and economy can be improved.
[0036]
In addition, either of the following 2 forms is employ | adopted as a driving | running operation | movement in response to the driving | operation permission signal mentioned above. This also applies to the following embodiments.
(1) The cogeneration apparatus 1 and the circulation pump 8 are operated in response to the operation permission signal.
(2) In response to the operation permission signal, it is determined whether the power load is larger than a predetermined set value. If the power load is larger than the set value, the cogeneration apparatus 1 and the circulation pump 8 are operated, If the electric power load is smaller than the set value, the electric power generated by the combined heat and power supply device 1 is discarded without being consumed, and is wasted. Therefore, even if the operation permission signal is received, the combined heat and power supply device 1 and the circulation pump The economy is improved by not driving the 8.
[0037]
FIG. 3 is a block diagram showing the second embodiment.
For example, the learning function allows you to enter the hot water storage tank at a specific time specified by the fluctuation pattern of the required hot water volume on the same day the previous day or the week before, or the fluctuation pattern of the required hot water volume set by the schedule timer such as the reservation function. The required amount of stored hot water is stored in the memory 32. The memory 32 and the clock 33 are connected to the microcomputer 27, and the microcomputer 27 is connected to the combined heat and power supply device 1 as exhaust heat heating means. Yes.
[0038]
The microcomputer 27 includes an exhaust heat heating time calculating means 29, a time difference calculating means 34, a prefetching means 35, a required heating time calculating means 36, an allowable heating time calculating means 37, a second comparing means 38, and a second heating control means. 39 is provided.
[0039]
The waste heat heating time calculation means 29 is the same as that of the first embodiment, and the exhaust sufficient to obtain the heating amount equivalent to the hot water storage hot water amount calculated by the hot water storage hot water amount calculation means 28 by the combined heat and power supply device 1 as the exhaust heat heating means. The heating time is calculated.
[0040]
In response to the heating / heating request signal, the time difference calculating means 34 specifies in advance the time when it is input from the clock 33 and the necessary amount of hot water stored in the hot water storage tank 5 thereafter input from the memory 32. The time difference from the most recent specific time is calculated.
[0041]
The prefetch means 35 compares the time difference calculated by the time difference calculation means 34 with the prefetch time set in consideration of the influence of heat radiation, and outputs a prefetch signal when the time difference is smaller than the prefetch time. It has become.
[0042]
The pre-emption time set in consideration of the effect of heat dissipation is the time from when the hot water in the hot water storage tank 5 is scheduled to be used until the time when the hot water is stored in the hot water storage tank 5 to the heat dissipation. A time (for example, 10 minutes) until the time when the loss due to is not a problem is set.
[0043]
The required heating time calculation means 36 is configured to calculate a required heating time sufficient to obtain the required hot water storage amount at the most recent specific time in the combined heat and power supply device 1 as the exhaust heat heating means in response to the prefetch signal. .
[0044]
The allowable heating time calculation unit 37 calculates the allowable heating time by adding the required heating time calculated by the required heating time calculation unit 36 to the exhaust heat heating time calculated by the exhaust heat heating time calculation unit 29. ing.
[0045]
The second comparison means 38 compares the allowable heating time calculated by the allowable heating time calculation means 37 with the exhaust heat continuous operation time, and when the allowable heating time is longer than the exhaust heat continuous operation time, the exhaust heat heating signal. Is output.
[0046]
The second heating control means 39 outputs an operation permission signal of the cogeneration apparatus 1 as the exhaust heat heating means in response to the exhaust heat heating signal from the second comparison means 38, and the heating heating request signal stops. However, the operation permission signal is stopped after heating the required amount of hot water to the amount of hot water that can be stored.
[0047]
According to the second embodiment, it is understood that hot water in the hot water storage tank 5 is used immediately after the exhaust heat continuous operation time cannot be secured at the time when the heating / heating request signal is output. In such a case, the exhaust heat continuous operation time can be ensured by considering that amount, the exhaust heat from the combined heat and power supply device 1 can be used for heating, and the thermal energy and economy can be improved.
[0048]
FIG. 4 is a block diagram showing a third embodiment.
The hot water sensor (pressure sensor) 21a, the bathtub temperature sensor 21b, and the boiling temperature setting means 25 are connected to a microcomputer 27, and the microcomputer 27 is connected to the combined heat and power supply device 1 as exhaust heat heating means.
[0049]
The microcomputer 27 includes exhaust heat heating time calculation means 29, boiling-up time calculation means 40, reheating hot water storage / heating time calculation means 41, third comparison means 42, and third heating control means 43. .
[0050]
The waste heat heating time calculation means 29 is the same as that of the first embodiment, and the exhaust sufficient to obtain the heating amount equivalent to the hot water storage hot water amount calculated by the hot water storage hot water amount calculation means 28 by the combined heat and power supply device 1 as the exhaust heat heating means. The heating time is calculated.
[0051]
The boiling time calculating means 40 responds to the chasing signal, the temperature of the hot water in the bathtub 20 measured by the bathtub temperature sensor 21b, the boiling temperature set by the boiling temperature setting means 26, and a hot water amount sensor. (Pressure sensor) The boiling time for obtaining the amount of reheating required to reach the boiling temperature when heated by the combined heat and power supply device 1 as the exhaust heat heating means based on the amount of hot water in the bathtub 20 measured by the pressure sensor 21a. Is calculated.
[0052]
The reheating / hot water heating time calculating means 41 adds the boiling time calculated by the boiling time calculating means 40 to the exhaust heat heating time calculated by the exhaust heat heating time calculating means 29 to add the boiling / hot water heating time. Is calculated.
[0053]
The third comparison means 42 compares the reheating / hot water heating time calculated by the reheating / hot water heating time calculation means 41 with the exhaust heat continuous operation time to compare the reheating / hot water heating time with the exhaust heat continuous operation time. When it is longer than that, the exhaust heat heating signal is output.
[0054]
The third heating control means 43 outputs an operation permission signal of the cogeneration apparatus 1 as the exhaust heat heating means in response to the exhaust heat heating signal from the third comparison means 42, and the heating heating request signal stops. However, the operation permission signal is stopped after heating for the amount of reheating added to the amount of hot water that can be stored.
[0055]
According to the third embodiment, when the exhaust heat continuous operation time sufficient to take advantage of the characteristics of the combined heat and power supply device 1 can be secured, the exhaust heat from the combined heat and power supply device 1 can be used for tracking, Economic efficiency can be improved.
[0056]
As the present invention, the cogeneration system may be configured by including all of the first embodiment, the second embodiment, and the third embodiment.
[0057]
【The invention's effect】
As is clear from the above description, according to the cogeneration system of the invention according to claim 1, when there is a heating request, the indoor thermostat is turned off when the exhaust heat heating means is operated only by that. The operation of the exhaust heat heating means is stopped in a short time, and continuous exhaust heat operation time sufficient to take advantage of the characteristics of the combined heat and power supply device cannot be secured, but at that time, heating time longer than the exhaust heat continuous operation time is required When the amount of hot water that can be stored is only in the hot water storage tank, the operation of the exhaust heat heating means is allowed and heating can be performed using the exhaust heat, so that energy saving and economic efficiency can be improved.
[0058]
In addition, according to the cogeneration system of the invention according to claim 2, at a specific time, for example, hot water for a bathtub or washing or drying of dishes is required by a learning function or a reservation function. When the required amount of hot water storage in the hot water storage tank is specified in advance, the specified time is the latest and the problem of heat dissipation loss does not occur, and the heating time required to obtain the required hot water storage amount with the exhaust heat heating means When the allowable heating time, which is the sum of the exhaust heat heating time required to obtain the amount of hot water that can be stored by the exhaust heat heating means, is longer than the exhaust heat continuous operation time, the operation of the exhaust heat heating means is permitted and the exhaust heat is used Therefore, even if the amount of hot water that can be stored in the hot water storage tank cannot be used to secure the heating time longer than the continuous exhaust heat operation time, the exhaust heat can be used for heating, further improving energy saving and economic efficiency. so That [0059]
Further, according to the cogeneration system of the invention according to claim 3, when a reheating signal is output and a request for reheating the bath is made, a reheating amount required at that time is obtained by the exhaust heat heating means. Reheating and hot water storage time, which is the sum of the boiling time and the waste heat heating time required to obtain the amount of hot water that can be stored with the waste heat heating means, is utilized in the boiling time. When the exhaust heat continuous operation time is sufficient, the operation of the exhaust heat heating means is allowed and additional cooking can be performed using the exhaust heat. Even when the heating time longer than the operation time cannot be secured, the exhaust heat can be used for tracking and energy saving and economic efficiency can be further improved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a cogeneration system according to the present invention.
FIG. 2 is a block diagram showing a first embodiment.
FIG. 3 is a block diagram showing a second embodiment.
FIG. 4 is a block diagram showing a second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Cogeneration apparatus 4 ... 1st heat exchanger 5 ... Hot water storage tank 8 ... Circulation pump 9 ... Circulation piping 20 ... Bath 21 ... Pressure sensor 25 as hot water amount sensor ... Hot water storage amount detection means 26 ... Boiling temperature setting means 28 ... Hot water storage capacity calculation means 29 ... Waste heat heating time calculation means 30 ... Comparison means 31 ... Heating control means 34 ... Time difference calculation means 35 ... Preemption means 36 ... Required heating time calculation means 37 ... Allowable heating time calculation means 38 ... Second Comparison means 39 ... second heating control means 40 ... boiling-up time calculation means 41 ... reheating hot water storage / heating time calculation means 42 ... third comparison means 43 ... third heating control means

Claims (3)

下部から取り出して上部から供給する循環配管を付設して温度成層を形成する状態で貯湯を行う貯湯タンクと、
前記循環配管に設けられて前記貯湯タンクから取り出した水を加熱する加熱手段と、
前記循環配管に設けられて前記貯湯タンクから水を取り出すとともに加熱後の湯を前記貯湯タンクに供給する循環ポンプと、
前記貯湯タンクと並列に前記循環配管に接続されて前記加熱手段を経た湯を取り出す循環用分岐配管と、
前記循環用分岐配管に設けられて暖房加熱要求信号に応答して暖房装置に供給される湯を前記加熱手段で加熱された湯によって加熱する暖房用熱交換器とを備えたコージェネレーションシステムにおいて、
前記加熱手段が、少なくとも熱電併給装置の排熱を熱源とする排熱加熱手段を含み、
前記貯湯タンクに設けられて前記貯湯タンク内の湯の貯湯量を検出する貯湯量検出手段と、
前記暖房加熱要求信号に応答して前記貯湯タンクの全容量から前記貯湯量検出手段で算出された湯の貯湯量を減算して前記貯湯タンクへの貯湯可能湯量を算出する貯湯可能湯量算出手段と、
前記貯湯可能湯量算出手段で算出された貯湯可能湯量分の加熱量を前記排熱加熱手段で得るに足る排熱加熱時間を算出する排熱加熱時間算出手段と、
前記排熱加熱時間算出手段で算出された排熱加熱時間と、前記熱電併給装置の特性を生かすに足る排熱連続運転時間とを比較して排熱加熱時間が排熱連続運転時間よりも長いときに排熱加熱信号を出力する比較手段と、
前記比較手段からの排熱加熱信号に応答して前記排熱加熱手段の運転許可信号を出力し、前記暖房加熱要求信号が停止しても貯湯可能湯量分の加熱を行った後に運転許可信号を停止する加熱制御手段とを備えたことを特徴とするコージェネレーションシステム。
A hot water storage tank that stores hot water in a state where a temperature stratification is formed by attaching a circulation pipe that is taken out from the lower part and supplied from the upper part,
Heating means provided in the circulation pipe for heating water taken out from the hot water storage tank;
A circulation pump which is provided in the circulation pipe and takes out water from the hot water storage tank and supplies hot water after heating to the hot water storage tank;
A branch pipe for circulation that is connected to the circulation pipe in parallel with the hot water storage tank and takes out the hot water that has passed through the heating means;
In the cogeneration system provided with the heat exchanger for heating, which is provided in the branch piping for circulation and is heated by the hot water heated by the heating means in response to the heating heating request signal, and supplied to the heating device,
The heating means includes at least exhaust heat heating means using the exhaust heat of the combined heat and power supply device as a heat source,
A hot water storage amount detecting means provided in the hot water storage tank for detecting the hot water storage amount of the hot water in the hot water storage tank;
Hot water storage capacity calculation means for subtracting the hot water storage amount calculated by the hot water storage amount detection means from the total capacity of the hot water storage tank in response to the heating / heating request signal to calculate the hot water storage capacity of the hot water storage tank; ,
Exhaust heat heating time calculating means for calculating an exhaust heat heating time sufficient to obtain a heating amount for the hot water storage possible hot water amount calculated by the hot water storage hot water amount calculating means by the exhaust heat heating means,
The waste heat heating time is longer than the waste heat continuous operation time by comparing the waste heat heating time calculated by the waste heat heating time calculation means with the waste heat continuous operation time sufficient to make use of the characteristics of the combined heat and power supply device. Comparison means that sometimes outputs a waste heat heating signal;
In response to the exhaust heat heating signal from the comparison means, the operation permission signal of the exhaust heat heating means is output, and after the heating heating request signal is stopped, the operation permission signal is output after heating for the amount of hot water that can be stored. A cogeneration system comprising heating control means for stopping.
下部から取り出して上部から供給する循環配管を付設して温度成層を形成する状態で貯湯を行う貯湯タンクと、
前記循環配管に設けられて前記貯湯タンクから取り出した水を加熱する加熱手段と、
前記循環配管に設けられて前記貯湯タンクから水を取り出すとともに加熱後の湯を前記貯湯タンクに供給する循環ポンプと、
前記貯湯タンクと並列に前記循環配管に接続されて前記加熱手段を経た湯を取り出す循環用分岐配管と、
前記循環用分岐配管に設けられて暖房加熱要求信号に応答して暖房装置に供給される湯を前記加熱手段で加熱された湯によって加熱する暖房用熱交換器とを備えたコージェネレーションシステムにおいて、
前記加熱手段が、少なくとも熱電併給装置の排熱を熱源とする排熱加熱手段を含み、
特定時刻における前記貯湯タンク内への必要貯湯量が予め特定されているものであり、
前記貯湯タンクに設けられて前記貯湯タンク内の湯の貯湯量を検出する貯湯量検出手段と、
前記暖房加熱要求信号に応答して前記貯湯タンクの全容量から前記貯湯量検出手段で算出された湯の貯湯量を減算して前記貯湯タンクへの貯湯可能湯量を算出する貯湯可能湯量算出手段と、
前記貯湯可能湯量算出手段で算出された貯湯可能湯量分の加熱量を前記排熱加熱手段で得るに足る排熱加熱時間を算出する排熱加熱時間算出手段と、
暖房加熱要求信号に応答して、その時刻とそれ以降の直近の前記特定時刻との時間差を算出する時間差算出手段と、
前記時間差算出手段で算出された時間差と、放熱の影響を考慮して設定された先取り時間とを比較して、時間差が先取り時間よりも小さいときに先取り信号を出力する先取り手段と、
前記先取り信号に応答して、直近の特定時刻における必要貯湯量を前記排熱加熱手段で得るに足る必要加熱時間を算出する必要加熱時間算出手段と、
前記必要加熱時間算出手段で算出された必要加熱時間を前記排熱加熱時間算出手段で算出された排熱加熱時間に加算して許容加熱時間を算出する許容加熱時間算出手段と、
前記許容加熱時間算出手段で算出された許容加熱時間と排熱連続運転時間とを比較して許容加熱時間が排熱連続運転時間よりも長いときに排熱加熱信号を出力する第2の比較手段と、
前記第2の比較手段からの排熱加熱信号に応答して前記排熱加熱手段の運転許可信号を出力し、前記暖房加熱要求信号が停止しても貯湯可能湯量に必要貯湯量を加えた分の加熱を行った後に運転許可信号を停止する第2の加熱制御手段とを備えたことを特徴とするコージェネレーションシステム。
A hot water storage tank that stores hot water in a state where a temperature stratification is formed by attaching a circulation pipe that is taken out from the lower part and supplied from the upper part,
Heating means provided in the circulation pipe for heating water taken out from the hot water storage tank;
A circulation pump which is provided in the circulation pipe and takes out water from the hot water storage tank and supplies hot water after heating to the hot water storage tank;
A branch pipe for circulation that is connected to the circulation pipe in parallel with the hot water storage tank and takes out the hot water that has passed through the heating means;
In the cogeneration system provided with the heat exchanger for heating, which is provided in the branch piping for circulation and is heated by the hot water heated by the heating means in response to the heating heating request signal, and supplied to the heating device,
The heating means includes at least exhaust heat heating means using the exhaust heat of the combined heat and power supply device as a heat source,
The required hot water storage amount in the hot water storage tank at a specific time is specified in advance,
A hot water storage amount detecting means provided in the hot water storage tank for detecting the hot water storage amount of the hot water in the hot water storage tank;
Hot water storage capacity calculation means for subtracting the hot water storage amount calculated by the hot water storage amount detection means from the total capacity of the hot water storage tank in response to the heating / heating request signal to calculate the hot water storage capacity of the hot water storage tank; ,
Exhaust heat heating time calculating means for calculating an exhaust heat heating time sufficient to obtain a heating amount for the hot water storage possible hot water amount calculated by the hot water storage hot water amount calculating means by the exhaust heat heating means,
In response to the heating / heating request signal, a time difference calculating means for calculating a time difference between that time and the most recent specific time thereafter;
A time difference calculated by the time difference calculation means and a preemption time set in consideration of the influence of heat radiation, and a preemption means for outputting a prefetch signal when the time difference is smaller than the preemption time;
In response to the prefetch signal, required heating time calculation means for calculating a necessary heating time sufficient to obtain the required hot water storage amount at the most specific time by the exhaust heat heating means,
An allowable heating time calculating means for calculating an allowable heating time by adding the required heating time calculated by the required heating time calculating means to the exhaust heat heating time calculated by the exhaust heat heating time calculating means;
Second comparing means for comparing the allowable heating time calculated by the allowable heating time calculating means with the exhaust heat continuous operation time and outputting an exhaust heat heating signal when the allowable heating time is longer than the exhaust heat continuous operation time. When,
In response to the exhaust heat heating signal from the second comparison means, an operation permission signal for the exhaust heat heating means is output, and the required hot water storage amount is added to the hot water storage capacity even when the heating heating request signal is stopped. And a second heating control means for stopping the operation permission signal after the heating of the cogeneration system.
下部から取り出して上部から供給する循環配管を付設して温度成層を形成する状態で貯湯を行う貯湯タンクと、
前記循環配管に設けられて前記貯湯タンクから取り出した水を加熱する加熱手段と、
前記循環配管に設けられて前記貯湯タンクから水を取り出すとともに加熱後の湯を前記貯湯タンクに供給する循環ポンプと、
前記貯湯タンクと並列に前記循環配管に接続されて前記加熱手段を経た湯を取り出す循環用分岐配管と、
前記循環用分岐配管に設けられて暖房加熱要求信号に応答して暖房装置に供給される湯を前記加熱手段で加熱された湯によって加熱する暖房用熱交換器とを備えたコージェネレーションシステムにおいて、
前記加熱手段が、少なくとも熱電併給装置の排熱を熱源とする排熱加熱手段を含み、
前記貯湯タンクに設けられて前記貯湯タンク内の湯の貯湯量を検出する貯湯量検出手段と、
前記暖房加熱要求信号に応答して前記貯湯タンクの全容量から前記貯湯量検出手段で算出された湯の貯湯量を減算して前記貯湯タンクへの貯湯可能湯量を算出する貯湯可能湯量算出手段と、
前記貯湯可能湯量算出手段で算出された貯湯可能湯量分の加熱量を前記排熱加熱手段で得るに足る排熱加熱時間を算出する排熱加熱時間算出手段と、
前記循環用分岐配管に設けられて追焚き信号に応答して浴槽内の湯を循環させて加熱する追焚き用熱交換器と、
前記浴槽内の湯の温度を測定する浴槽温度センサと、
前記浴槽内の湯の量を測定する湯量センサと、
前記浴槽内の湯の沸かし上げ温度を設定する沸かし上げ温度設定手段と、
前記追焚き信号に応答して、前記浴槽温度センサで測定される前記浴槽内の湯の温度と、前記沸かし上げ温度設定手段で設定された沸かし上げ温度と、前記湯量センサで測定される前記浴槽内の湯量とに基づいて前記排熱加熱手段で加熱した場合に沸かし上げ温度に達するのに必要な追い焚き量を得る沸かし上げ時間を算出する沸かし上げ時間算出手段と、
前記沸かし上げ時間算出手段で算出された沸かし上げ時間を前記排熱加熱時間算出手段で算出された排熱加熱時間に加算して追焚き・貯湯加熱時間を算出する追焚き・貯湯加熱時間算出手段と、
前記追焚き・貯湯加熱時間算出手段で算出された追焚き・貯湯加熱時間と排熱連続運転時間とを比較して追焚き・貯湯加熱時間が排熱連続運転時間よりも長いときに排熱加熱信号を出力する第3の比較手段と、
前記第3の比較手段からの排熱加熱信号に応答して前記排熱加熱手段の運転許可信号を出力し、前記暖房加熱要求信号が停止しても貯湯可能湯量に追い焚き量を加えた分の加熱を行った後に運転許可信号を停止する第3の加熱制御手段とを備えたことを特徴とするコージェネレーションシステム。
A hot water storage tank that stores hot water in a state where a temperature stratification is formed by attaching a circulation pipe that is taken out from the lower part and supplied from the upper part,
Heating means provided in the circulation pipe for heating water taken out from the hot water storage tank;
A circulation pump which is provided in the circulation pipe and takes out water from the hot water storage tank and supplies hot water after heating to the hot water storage tank;
A branch pipe for circulation that is connected to the circulation pipe in parallel with the hot water storage tank and takes out the hot water that has passed through the heating means;
In the cogeneration system provided with the heat exchanger for heating, which is provided in the branch piping for circulation and is heated by the hot water heated by the heating means in response to the heating heating request signal, and supplied to the heating device,
The heating means includes at least exhaust heat heating means using the exhaust heat of the combined heat and power supply device as a heat source,
A hot water storage amount detecting means provided in the hot water storage tank for detecting the hot water storage amount of the hot water in the hot water storage tank;
Hot water storage capacity calculation means for subtracting the hot water storage amount calculated by the hot water storage amount detection means from the total capacity of the hot water storage tank in response to the heating / heating request signal to calculate the hot water storage capacity of the hot water storage tank; ,
Exhaust heat heating time calculating means for calculating an exhaust heat heating time sufficient to obtain a heating amount for the hot water storage possible hot water amount calculated by the hot water storage hot water amount calculating means by the exhaust heat heating means,
A heat exchanger for reheating that is provided in the branch piping for circulation and circulates and heats hot water in the bathtub in response to a reheating signal;
A bathtub temperature sensor for measuring the temperature of hot water in the bathtub;
A hot water sensor for measuring the amount of hot water in the bathtub;
Boiling temperature setting means for setting the boiling temperature of hot water in the bathtub;
In response to the chasing signal, the temperature of the hot water in the bathtub measured by the bathtub temperature sensor, the boiling temperature set by the boiling temperature setting means, and the bathtub measured by the hot water amount sensor Boil-up time calculating means for calculating a boil-up time to obtain a reheating amount required to reach a boil-up temperature when heated by the exhaust heat heating means based on the amount of hot water in the inside,
The reheating / hot water heating time calculating means for calculating the reheating / hot water heating time by adding the boiling time calculated by the boiling time calculating means to the exhaust heat heating time calculated by the exhaust heat heating time calculating means. When,
Comparing the reheating / hot water heating time calculated by the reheating / hot water heating time calculation means with the exhaust heat continuous operation time, and exhaust heat heating when the reheating / hot water heating time is longer than the exhaust heat continuous operation time. Third comparison means for outputting a signal;
In response to the exhaust heat heating signal from the third comparison means, an operation permission signal for the exhaust heat heating means is output, and even if the heating heating request signal is stopped, the amount of reheating is added to the amount of hot water that can be stored. And a third heating control means for stopping the operation permission signal after the heating of the cogeneration system.
JP2000063751A 2000-03-08 2000-03-08 Cogeneration system Expired - Lifetime JP3977980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000063751A JP3977980B2 (en) 2000-03-08 2000-03-08 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000063751A JP3977980B2 (en) 2000-03-08 2000-03-08 Cogeneration system

Publications (2)

Publication Number Publication Date
JP2001248909A JP2001248909A (en) 2001-09-14
JP3977980B2 true JP3977980B2 (en) 2007-09-19

Family

ID=18583569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000063751A Expired - Lifetime JP3977980B2 (en) 2000-03-08 2000-03-08 Cogeneration system

Country Status (1)

Country Link
JP (1) JP3977980B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3877752B2 (en) * 2004-07-09 2007-02-07 丸紅株式会社 High-efficiency fuel cell system, fuel cell system control method and building for reducing fluctuations in power consumption
JP3918010B2 (en) * 2004-07-09 2007-05-23 アイシン精機株式会社 High-efficiency fuel cell system, fuel cell system control method and building for reducing fluctuations in power consumption
JP4681303B2 (en) * 2005-01-12 2011-05-11 東芝燃料電池システム株式会社 Fuel cell power generator

Also Published As

Publication number Publication date
JP2001248909A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
JP3620701B2 (en) Cogeneration equipment
JP7116907B2 (en) hot water storage system
JP3977980B2 (en) Cogeneration system
JP2004053120A (en) Cogeneration system
JP3904402B2 (en) Home fuel cell system
JP2000297963A (en) Co-generation device
JP3977981B2 (en) Cogeneration system
JP3990526B2 (en) Cogeneration system
JP4363612B2 (en) Path temperature measuring method and exhaust heat recovery device
JP3841693B2 (en) Cogeneration system
CN202853103U (en) Device with heating water heater multimachine parallel system
JP3990527B2 (en) Cogeneration system
KR100254485B1 (en) Apparatus for controlling a solar energy heating system
JP3979770B2 (en) Hot water storage hot water supply system
JP2004257276A (en) Cogeneration system
JP2003050051A (en) Heat pump type hot-water supplier
JP5106567B2 (en) Hot water storage hot water supply system
JP2004150650A (en) Heat pump type hot water supply device
JP2002022280A (en) Hot water storing type hot water feeding system
JP2003166751A (en) Hot water feeding device
JP5606141B2 (en) Heat source device and hot water supply device
JP2009133554A (en) Exhaust heat utilization system, method and computer program
JP2001343132A (en) Hot water storage type heating system
JPS5835938Y2 (en) solar heat utilization equipment
JP2001343159A (en) Hot water storage type hot water supply system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3977980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term