JP3903425B2 - Variable speed pumped storage power generation device and method for stopping variable speed pumped storage power generation device - Google Patents

Variable speed pumped storage power generation device and method for stopping variable speed pumped storage power generation device Download PDF

Info

Publication number
JP3903425B2
JP3903425B2 JP2002132394A JP2002132394A JP3903425B2 JP 3903425 B2 JP3903425 B2 JP 3903425B2 JP 2002132394 A JP2002132394 A JP 2002132394A JP 2002132394 A JP2002132394 A JP 2002132394A JP 3903425 B2 JP3903425 B2 JP 3903425B2
Authority
JP
Japan
Prior art keywords
power
command
excitation
synchronous machine
type synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002132394A
Other languages
Japanese (ja)
Other versions
JP2003324992A (en
Inventor
章 監崎
勝 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002132394A priority Critical patent/JP3903425B2/en
Publication of JP2003324992A publication Critical patent/JP2003324992A/en
Application granted granted Critical
Publication of JP3903425B2 publication Critical patent/JP3903425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Control Of Water Turbines (AREA)
  • Stopping Of Electric Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、可変速揚水発電装置及び可変速揚水発電装置の停止方法の改良に関する。
【0002】
【従来の技術】
可変速揚水発電装置は周知の通り、同期発電装置でありながら回転数を可変速幅、通常は定格回転数のプラスマイナス数パーセント程度の範囲内で自由に変更できる、電気出力と回転数とを独立して制御可能である等、いろいろな特徴を持っている。このような特徴があるために、発電システムを停止する場合には特別な配慮が必要である。
【0003】
ところで、定速度の発電電動機(同期機)を使った揚水発電装置(以下、定速機装置と呼ぶ)における装置の停止方法には、一般的に非常停止、急停止、普通停止という3つの停止方法が採用されていることは、公知である。
発電電動機の内部や主回路に、例えば3相短絡のような重大事故が発生した場合には、事故の拡大を防止するために、事故電流を瞬時に遮断し、回転数も最速で下げ、速やかに停止する必要がある。非常停止方法は、このように発電電動機の内部や主回路に重大事故が発生した場合等に適用される。
【0004】
このような非常停止の場合は、発電電動機の主回路に設けられた並列用遮断器を瞬時にトリップし、並列されている電力系統から発電電動機を切り離すとともにポンプ水車のガイドベーンを急閉鎖し、流入水量を絞り速度を下げる。また、並列用遮断器の開放を確認したら、直ちに界磁遮断器を開放し、励磁用電力変換器からの励磁エネルギーを遮断するとともに、界磁コイルを短絡し界磁に蓄えられた電磁エネルギーを消滅させる。
【0005】
このようにする理由は、発電電動機内部や端子での短絡事故の場合には、並列用遮断器を瞬時にトリップしても事故電流は無くならず、界磁エネルギーを早期に消滅させる以外に事故電流を消滅させることができないためである。
【0006】
ポンプ水車・発電電動機の機械系に、例えば軸受メタル焼損のような、重大事故が発生した場合には、事故の拡大を防ぐためにできるだけ早く回転数を下げる必要がある。急停止方法はこのような機械系に重大事故が発生ときに採用される。急停止の場合にはポンプ水車のガイドベーンを急閉鎖し流入量を絞り速度を下げる。一方、電気系には異常が無いので、直ちに並列用遮断器をトリップする必要はない。
【0007】
この場合、並列用遮断器の寿命を延ばすためには不必要な電流遮断を避ける必要があり、ガイドベーンの急閉鎖にともなう発電電動機の出力及び電流の減少過程で電流がほぼ零のタイミングで並列用遮断器をトリップし、その後で界磁遮断器を開放する。
【0008】
発電運転を運転員の意志で停止する場合には、普通停止方法が採用される。普通停止は事故ではないので、特別に急速に停止する必要はない。従って、停止操作に当たり、先ず発電電動機への出力指令値を零に漸減する。これにともない、ガバナーの機能により自動的にガイドベーンが閉じ、発電電動機の出力及び電流は漸減する。発電電動機の出力電流がほぼ零のタイミングで並列用遮断器をトリップする。並列用遮断器の開放を確認後、界磁遮断器を開放するとともにガイドベーンを閉鎖する。
【0009】
以上のような同期機形の発電電動機を用いる定速機装置においては、ガイドベーンを急速に閉鎖してポンプ水車の出力を急減させても、同期発電機として運転されている発電電動機の同期化作用によって回転速度は電力系統の周波数に保たれたまま発電電動機の出力が自動的にポンプ水車の入力まで絞り込まれる。このため、発電電動機の出力を特別に制御する必要はないし、ポンプ水車への流入水量と発電電動機の出力との間の設定のずれや時間遅れの問題もない。
【0010】
ところが、上記のような定速機装置に対し、広い範囲に亘って回転数を変更することが可能な可変速揚水発電装置においては、交流励磁形の発電電動機の入出力と、ポンプ水車への流入水量は独立して制御できるようになっている。
【0011】
従って、例えば発電運転中に重大な機械事故が発生した場合に、定速機装置と同じ停止方法をとると、ガイドベーンを閉じて水のエネルギーを減少させても、発電電動機の出力指令値を下げない限り、発電電動機は初期の出力を維持しようとする。よって、発電電動機は回転エネルギーを放出して回転数を低下させるが、発電電動機の出力及び電流は低下しない。このために、特別な停止方法を採用しなければならない。
【0012】
ところで、例えば特開平1−244169号公報は、上記のような可変速揚水発電装置において急停止時に発生する問題点を解決する方法を提案している。この方法は、急停止指令が与えられたときに、ガイドベーンを急閉鎖してポンプ水車への流入水量を絞るとともに、発電電動機の出力を調整する励磁用電力変換器への発電出力指令を補正して、上記ガイドベーンの急閉鎖に見合って電動発電機の発電出力を絞るようにしたものである。
【0013】
【発明が解決しようとする課題】
ところが、上記のような従来の可変速揚水装置の急停止方法においては、以下に述べるような問題点がある。
1.周知の通り可変速揚水発電装置はポンプ水車への流入水量と発電電動機の発電出力とを独立して制御できる特徴を持っており、系統に並列中でも回転数を可変速幅の範囲内で制御可能である。上記従来の可変速揚水発電装置の急停止方法は、急停止指令が出たら、直ちにポンプ水車への流入水量と発電電動機の出力を絞る。しかし、流入水量は水圧鉄管の水圧上昇が所定値を越えないようするために、一定の速さ以上では絞ることはできない。
【0014】
一方、発電電動機の出力は励磁用電力変換器を制御し瞬時に絞ることができる。もし、ある量の流入水量があるときに、発電電動機の出力を瞬時に絞るとエネルギーは回転子に注入され回転速度が上昇し可変速幅を逸脱する可能性がある。従って、急停止するときは流入水量の絞り具合に見合った的確な出力の絞り方をする必要がある。しかし、上記従来のもののように励磁用電力変換器への発電出力指令を補正したとしても、誤差や制御系の遅れなどにより可変速幅を逸脱するおそれがある。
【0015】
2.このような急停止方法では、停止制御中に発電電動機本体や発電電動機の主回路で3相短絡などの重大電気事故が発生すると、保護リレーによりそのときの発電電動機の出力に拘わらず、直ちに並列用遮断器が開放される。この場合には、電力指令値はまだ零に到達していないのに実電力が零になり、発電電動機の制御系は電力増指令を出し続けることになる。励磁用電力変換器は電力増のために大きな励磁電流を流し続け、解列して回転中の発電電動機に異常電圧上昇を引き起こす危険性がある。
【0016】
3.このような急停止方法では、ガイドベーンが所定値まで閉め込まれたとき並列用遮断器を開放する方法を採用しているが、ガイドベーンが所定値まで閉め込まれたときに流入水量がほぼ無負荷相当の流量になっていなければならない。大容量の揚水プラントでは流入量の計測は実施していないので、ポンプ水車特性、回転数、出力、落差の計測値から演算をして流入水量を推定する必要があるが、このような演算によらず、簡易に求める方法が望まれる。
【0017】
4.ガイドベーンが所定値まで閉め込まれたとき並列用遮断器を開放する方法を採用しているが、有効電力が零であっても無効電力が零でない場合は、並列用遮断器は何らかの電流を遮断するので、並列用遮断器の接点の消耗を避けられない。
【0018】
この発明は、上記のような問題点を解決して、次のような可変速揚水発電装置を得ること及び可変速揚水発電装置の停止方法を提供することを目的とする。
ア.非常停止、急停止、普通停止のいずれの停止についても、可変速幅を逸脱するおそれがなく、安定して停止できる。
【0019】
イ.急停止のときに、ポンプ水車への流入水量を簡易な方法で求めて所定値以下になったら並列用遮断器を開放できる。
ウ.並列用遮断器の接点の消耗を軽減できる。
エ.非常停止のときに、系統から解列して回転中の発電電動機に過励磁による異常電圧上昇を引き起こすおそれがない。
【0020】
【課題を解決するための手段】
上記目的を達成するために、本発明の可変速揚水発電装置は、ガイドベーンを有するポンプ水車への流入水量を調整する流量調整装置と、二次巻線が巻回された回転子がポンプ水車に結合された交流励磁形同期機と、この交流励磁形同期機を電力系統に接続する並列用遮断装置と、交流励磁形同期機が発電運転中に停止指令が発せられたときの交流励磁形同期機の回転数を停止指令時回転数として記憶する回転数記憶手段を有し交流励磁形同期機が発電運転中に停止指令が発せられたときに交流励磁形同期機の回転数を停止指令時回転数に維持するように二次巻線の励磁電流を制御する励磁装置を備えたものである。
発電運転中に停止指令が発せられたとき交流励磁形同期機が停止指令時回転数を維持するように制御されるので、ポンプ水車への流入水量が絞られればその出力も減少するので、出力減少過程における回転変動が抑えられる。
【0021】
そして、ガイドベーンの開度が所定値以下になり、かつ交流励磁形同期機の無効電力が規定値以下になったときに並列用遮断装置を開路動作させるガイドベーン開度動作開放指令手段を設けたものであることを特徴とする。
ガイドベーンの開度が所定値以下になれば交流励磁形同期機の出力すなわち有効電力が所定の値以下になり、かつ無効電力が規定値以下になれば、交流励磁形同期機の出力電流が予め定められた値以下になり、この状態で並列用遮断装置を開路することになり、その接点の損耗を防止できる。
【0022】
さらに、ガイドベーンの開度をポンプ水車に流入する流入水の落差で補正する落差補正手段を設けたものであることを特徴とする。
ガイドベーンの開度をポンプ水車に流入する流入水の落差で補正すれば、交流励磁形同期機の出力すなわち有効電力が所定の値以下になるガイドベーンのより正確な開度が得られるので、並列用遮断装置を開路する時点の精度を向上させることができる。
【0023】
また、交流励磁形同期機の有効電力が所定値以下になるとともに無効電力が規定値以下になったときに並列用遮断装置を開路動作させる皮相電力動作開放指令手段を設けたものであることを特徴とする。
交流励磁形同期機の有効電力が所定の値以下になり、かつ無効電力が規定値以下になれば、交流励磁形同期機の出力電流が予め定められた値以下になり、この状態で並列用遮断装置を開路することになり、その接点の損耗を防止できる。
【0024】
そして、交流励磁形同期機の出力電流が所定値以下になったときに並列用遮断装置を開路動作させる出力電流動作開放指令手段を設けたものであることを特徴とする。
交流励磁形同期機の出力電流が所定値以下になってから並列用遮断装置を開路することになり、その接点の損耗を防止できる。
【0025】
さらに、励磁装置は、停止指令が発せられたときに交流励磁形同期機の無効電力が零になるように指令する零無効電力指令手段を設けたものであることを特徴とする。
流入水量が絞られると有効電力が減少し、かつ零無効電力指令手段により無効電力が零になるように指令されて無効電力も減少するので、交流励磁形同期機の出力電流が減少し、この状態で並列用遮断装置を開路することになり、その接点の損耗を防止できる。
【0026】
また、励磁装置は、停止指令が発せられたときに交流励磁形同期機の力率が1になるように指令する力率指令手段を設けたものであることを特徴とする。
流入水量が絞られると有効電力が減少し、かつ力率指令手段により力率が1になるようにすなわち無効電力が零になるように指令されて無効電力も減少するので、交流励磁形同期機の出力電流が減少し、この状態で並列用遮断装置を開路することになり、その接点の損耗を防止できる。
【0027】
そして、並列用遮断装置に開放指令を発する開放指令手段と並列用遮断装置の開放を条件に出力電力を零にする指令を発する零電力指令手段とを有する非常停止装置を設けたものであることを特徴とする。
並列用遮断装置を開放し出力電力を零にする指令を発すれば、交流励磁形同期機の主回路に例えば三相短絡などの重大事故が発生して、交流励磁形同期機を電力系統から直ちに切り離さなければならないような非常停止の場合に、励磁装置による無用な制御を防止でき、過大な励磁による異常電圧上昇を引き起こすおそれをなくすことができる。
【0028】
さらに、並列用遮断装置に開放指令を発する開放指令手段と並列用遮断装置の開放を条件に励磁装置の出力を停止する励磁出力停止手段と交流励磁形同期機の二次巻線を短絡する二次巻線短絡手段とを有する非常停止装置を設けたものであることを特徴とする。
並列用遮断装置を開放し励磁装置の出力を停止すれば、交流励磁形同期機の主回路に例えば三相短絡などの重大事故が発生して、交流励磁形同期機を電力系統から直ちに切り離さなければならないような非常停止の場合に、励磁装置による無用な制御を防止でき、過大な励磁による異常電圧上昇を引き起こすおそれをなくすことができる。
【0029】
また、この発明に係る可変速揚水発電装置の停止方法は、ガイドベーンを有するポンプ水車への流入水量を調整する流量調整装置と、二次巻線が巻回された回転子がポンプ水車に結合された交流励磁形同期機と、この交流励磁形同期機を電力系統に接続する並列用遮断装置と、交流励磁形同期機の二次巻線を励磁する励磁装置とを備えた可変速揚水発電装置の停止方法であって、交流励磁形同期機が発電運転中に停止指令が発せられたとき交流励磁形同期機の回転数を当該停止命令が発せられたときの交流励磁形同期機の回転数に維持するように交流励磁形同期機の二次巻線を励磁する
ものである。
発電運転中に停止指令が発せられたとき交流励磁形同期機が停止指令時回転数を維持するように制御されるので、ポンプ水車への流入水量が絞られればその出力も減少するので、出力減少過程における回転変動が抑えられる。
【0030】
【発明の実施の形態】
従来の可変速揚水装置の急停止方法においては、励磁用電力変換器は電力指令値による電力制御を実施しているために、上記のような問題点が発生する。停止したときに、可変速揚水発電装置をほぼ定速機装置と同じ状態になるように励磁用電力変換器を制御すれば可変速幅逸脱対策が可能であり、この発明においては具体的には次のような可変速揚水発電装置ないしその停止方法を提供する。
【0031】
1.上記急停止のときにおける第一及び第二の課題の解決策の一つ目であるが、急停止又は普通停止指令が与えられたときに、励磁用電力変換器の出力周波数を急停止指令が出たときの周波数に固定し、流量調整手段により流入水量を絞ることにより発電電動機の出力を絞る。このように停止操作すれば発電電動機の励磁周波数が固定されているため、同期発電機として動作するので流入水量を絞れば自動的に発電電動機の出力も下がり可変速幅を逸脱するおそれもなく、安定に停止できる。
【0032】
なお、発電電動機の内部や主回路に例えば3相短絡のような重大事故が発生した場合には、並列用遮断器を直ちに開放する。並列用遮断器が開放されたらすぐに励磁用電力変換器への出力指令を零にするか、又は励磁用電力変換器を停止し発電電動機の2次巻線を短絡して励磁系の無用な制御を防止する。これにより、発電電動機の内部や主回路に事故が発生して非常停止を要する場合に過大な励磁により発生する問題も解決できる。
【0033】
2.急停止のときにおける第一及び第二の課題の解決策の二つ目であるが、急停止又は普通停止指令が与えられたときに、励磁用電力変換器の制御を、そのときの回転数を指令値とする速度制御に切替えて速度が一定になるように制御しながら、流量調整手段により流入水量を絞る。励磁用電力変換器は回転数一定制御をしているので、発電電動機は同期発電機として動作し、流入水量を絞ることにより発電電動機の出力が絞られ、回転数は維持される形で、流入量の低下にともない出力が下がるが、可変速幅を逸脱するおそれはなく、安定に停止できる。
【0034】
3.急停止のときにおける第一及び第二の課題の解決策の三つ目であるが、急停止又は普通停止指令が与えられたときに、励磁用電力変換器を、そのときの滑り周波数(系統周波数と発電電動機の回転数との差)を指令値とする滑り周波数制御に切替え、流量調整手段により流入水量を絞ることより発電電動機の出力を絞る。
【0035】
このように停止操作すれば、ある出力のもとにそのときの流入水量を低下させれば回転数が低下し系統周波数はほぼ一定であるので滑りが増加するが、励磁用電力変換器は滑り周波数一定制御をしているので発電電動機の出力が絞られ、滑りが維持される形で、流入水量の低下にともない出力が下がり、可変速幅を逸脱するおそれがなく、安定に停止できる。
【0036】
4.急停止のときにおける第三の課題の解決策であるが、並列用遮断器を流量調整手段のうちガイドベーンが規定開度以下、すなわち電動発電機の出力がほぼ零になる開度以下になったら開放する方式とする。ダム水位によって発電電動機の出力がほぼ零になるガイドベーンの規定開度の値が変化するが、揚水発電所ではダム水位変動は少ないので実用上支障ない。また、ダム水位の変動が大きい場合には、上記ガイドベーンの規定開度をダム水位で補正する。
【0037】
5.急停止のときにおける第四の課題の解決策であるが、流入水量を絞り発電電動機の出力を零にするとともに発電電動機の無効電力を零にする。あるいは、力率を1にする制御を並行して実施し、出力が零又はガイドベーンが規定開度以下になった条件と、無効電力が零になった条件とが成立したら並列用遮断器を開放する方式である。あるいは、単に発電電動機の出力電流が零になったときに並列用遮断器を開放する。
以下、さらに具体的に各実施の形態について説明する。
【0038】
実施の形態1.
図1〜図4は、この発明の実施の一形態を示すものであり、図1は可変速揚水発電装置の構成を示す構成図、図2は励磁制御装置の構成及び遮断器開放指令手段を示す図である。図3は流量制御装置の詳細構成を示す構成図、図4は流量調整手段の詳細構成を示す構成図である。図1において、ポンプ水車1に発電電動機2が機械的に連結されている。
【0039】
発電電動機2は、交流励磁同期機であり、固定子巻線2a及び回転子2bに巻回された二次巻線2cを有し、回転子2bがポンプ水車1に機械的に連結されている。発電電動機2の固定子巻線2aは、並列用遮断器4、母線5、昇圧変圧器6を経て電力系統7に接続されている。発電電動機2の二次巻線2cに、励磁用電力変換器3から発電電動機2の回転速度に応じた所定の位相及び周波数の励磁用電流が供給され、発電電動機2の固定子巻線2aから、電力系統7と同じ周波数の交流電力が出力される。
【0040】
また、発電電動機2の二次巻線2cは、二次側短絡スイッチ8により短絡しうるようにされている。計器用変圧器11は、母線5に接続され、母線5の電圧を検出する。計器用変流器12は母線5に流れ電力系統等7と発電電動機2との間を出入りする電流を検出する。回転数検出器16は、発電電動機2の回転速度を検出し回転速度に応じた回転速度信号を発する。
【0041】
また、励磁用電力変換器3を制御する励磁制御装置20、ポンプ水車1に流入する流入水量を制御する流量制御装置80及び流量調整手段90が設けられている。励磁制御装置20は、その詳細構成を図2に示すが、電力指令値設定手段31、零電力指令値設定手段32、無効電力指令値設定手段33、零無効電力指令値設定手段34、二次励磁周波数及び位相記憶指令手段35、周波数設定手段36、落差補正手段43、ガイドベーン動作開放指令手段としての遮断器開放指令手段45、励磁制御手段50にて構成されている。
【0042】
励磁制御手段50は、入力を切り替えるスイッチ51,52,53、有効電力算出手段61、無効電力算出手段62、q軸成分制御手段64、d軸成分制御手段65、可変速幅逸脱防止手段67、変換器制御手段68、減算器71,72,73、非常開放指令手段79を備えている。減算器71は、スイッチ51が電力指令値設定手段31側にあるとき、有効電力算出手段61の出力信号と電力指令値設定手段31の設定値との差をq軸成分制御手段64に出力する。q軸成分制御手段64は、減算器71の出力に応じて励磁電流のq軸成分を決定する。
【0043】
減算器72は、スイッチ52が無効電力指令値設定手段33側にあるとき、無効電力算出手段62の出力信号と無効電力指令値設定手段33の設定値との差をd軸成分制御手段65に出力する。d軸成分制御手段65は、減算器72の出力に応じて励磁電流のd軸成分を決定する。減算器73は、回転数検出器16の出力信号と周波数設定手段36の設定値との差を可変速幅逸脱防止手段67に出力する。
【0044】
可変速幅逸脱防止手段67は、減算器73の出力、つまり周波数設定手段36の設定値と回転数検出器16にて検出された回転数との差が所定値以上になると動作し、q軸成分制御手段64の出力を制限する。q軸成分制御手段64の出力及びd軸成分制御手段65の出力は、変換器制御手段68に与えられ、励磁用電力変換器3を介して発電電動機2の二次巻線2cを励磁する周波数及び位相を制御する。
【0045】
なお、励磁用電力変換器3及び励磁制御装置20がこの発明における励磁装置である。非常開放指令手段79がこの発明における開放指示手段であり、この非常開放指令手段79と零電力指令値設定手段32とスイッチ51とによりこの発明における非常停止装置を構成している。また、二次励磁周波数及び位相記憶指令手段35及びスイッチ53が、周波数固定手段として動作し、発電電動機2が発電機として運転中に停止指令が出されたとき、発電電動機2を励磁する励磁電流の周波数を、停止指令が出されたときの発電電動機2の周波数に固定するように動作する。
【0046】
また、ポンプ水車1への流入水量を制御する流量制御装置80は、図3に詳細構成を示すように、揚水発電のダムの落差を算出するダム水位算出手段81、最適ガイドベーン開度指令手段82、最適回転速度指令手段83、ガバナ制御回路84、減算器86、及び加算器87を有する。最適ガイドベーン開度指令手段82は電力指令値設定手段31にて設定された電力指令値と、励磁制御装置20のダム水位算出手段81にて算出されたダム水位とに基づき、ガイドベーンの最適開度を求め加算器87に出力する。
【0047】
最適回転速度指令手段83は、電力指令値設定手段31にて設定された電力指令値と、ダム水位算出手段81にて算出されたダム水位とに基づき、ポンプ水車1の最適回転数を求める。減算器86は、最適回転速度指令手段83から指令されたポンプ水車1(発電電動機2)の最適回転数と回転数検出器16から得られた発電電動機2の回転数との差を求めて、ガバナ制御回路84に出力する。
【0048】
ガバナ制御回路84は、減算器86の出力が最小になるようにガバナを制御する信号を出力し、加算器87にて最適ガイドベーン開度指令手段82の出力と加算され、流量調整手段90へ出力される。流量調整手段90は、図4に示すように、フィードバック制御するための減算器91、減算器91からの信号を増幅する増幅器92、ガイドベーンを全閉する指令を発する全閉指令手段93、信号を切り替えるためのスイッチ95、配圧弁制御手段96、主サーボ制御手段98を有する。
【0049】
次に動作について説明する。計器用変圧器11から系統7の電圧に応じた電圧信号と、計器用変流器12から電流信号とが供給され、有効電力算出手段61及び無効電力算出手段62により発電電動機2の有効電力、すなわち出力及び無効電力が算出される。励磁制御装置20(図2)において、通常は、スイッチ51は電力指令値設定手段31側に切り替えられており、有効電力算出手段61と電力指令値設定手段31に設定された電力指令値が減算器71にて減算され、その差がq軸成分制御手段64に出力される。
【0050】
スイッチ52は、通常は、無効電力指令値設定手段33側に切り替えられており、無効電力算出手段62と無効電力指令値設定手段33に設定された無効電力設定値との減算結果が減算器72からd軸成分制御手段65へ出力される。d軸成分制御手段65は、入力された減算器72の信号に基づき発電電動機2の二次巻線を励磁する励磁電流のd軸成分を求め、可変速幅逸脱防止手段67を介して変換器制御手段68へ出力する。
【0051】
変換器制御手段68は、q軸成分制御手段64及び可変速幅逸脱防止手段67の出力に基づき、有効電力算出手段61、無効電力算出手段62にて算出された有効及び無効電力が電力指令値設定手段31及び無効電力指令値設定手段33にて設定された指令値になるように励磁用電力変換器3を介して発電電動機2の二次巻線2cを励磁する。なお、スイッチ53は通常は開路されている。
【0052】
なお、回転数検出器16にて検出された発電電動機2の回転数、つまり周波数が周波数設定手段36にて設定された周波数を基準にして所定範囲から外れようとすると、可変速幅逸脱防止手段67が動作してq軸成分制御手段64から出力されたq軸成分出力を制限して、発電電動機2が可変速幅を逸脱しないようにする。
【0053】
通常、以上のようにして、変換器制御手段68により励磁用電力変換器3を介して発電電動機2の二次巻線2cの励磁電流を制御することにより、発電電動機2の発電機運転を行う。
【0054】
そして、発電運転中に機械系の事故等により急停止指令が発信されたり、運転員により停止指令が発信された場合、二次励磁周波数及び位相記憶指令手段35によりそのときの励磁用電力変換器3の出力周波数と位相を記憶する。そして、スイッチ53を閉じて、励磁用電力変換器3の出力周波数と位相とを、すなわち発電電動機2の二次巻線の励磁電流の周波数と位相とを、二次励磁周波数及び位相記憶指令手段35に記憶された周波数と位相に固定する指令を変換器制御手段68に与える。
【0055】
変換器制御手段68により、発電電動機2を励磁する周波数と位相が固定されると、発電電動動機2の回転子上の磁束の回転速度と位相が固定されるので、発電電動機2はそのときの回転数を維持しながら回転する通常の同期発電電動機に変身する。
【0056】
上記急停止指令は、同時に流量調整手段90にも与えられ、スイッチ95が動作して増幅器92からの出力を全閉指令手段93からのガイドベーン全閉指令信号に切り替えて配圧弁制御手段96に与える。配圧弁制御手段96は、主サーボ制御手段98を介して流入水量が零になるように最速にて、すなわち安全上許容される最大速度にて、ガイドベーンを閉鎖する。
【0057】
ガイドベーンが閉じて行けば、ポンプ水車1への流入水量が減少し、ポンプ水車1の入力、すなわち、発電電動機2への軸出力が減少する。発電電動機2は、既に同期発電機として運転されているので、電力指令値設定手段31による電力指令値は変更しなくても、ポンプ水車1への流入水量が絞られると、回転数が変動することなくその出力を減少させる。
【0058】
一方、発電電動機2は電力系統7の要求に基づく無効電力を送っているので、電力出力零の状態でも発電電動機2の電流は零にはならない。発電電動機2の電流がほぼ零の状態で並列用遮断器4を開放した方が好ましいので、停止指令が発信されたら直ちに変換器制御装置50のスイッチ52を零無効電力指令値設定手段34側に切り替えて、発電電動機2の無効電力の出力を零になるように制御する。
【0059】
なお、ダムの水位変動が少ない発電所では、ポンプ水車1のガイドべーンの開度と発電電動機2の出力とは、ほぼ1対1に対応する。ダムの水位変動の多い場合には、流量調整手段80のダム水位算出手段81から得られるダム水位に基づいて落差補正手段43によりガイドベーンの開度信号をダム水位の信号で補正すれば、容易に無負荷相当の開度を検出できる。
【0060】
上記制御でガイドベーンが閉じて行き発電電動機2の出力がほぼ零すなわち、ガイドベーンが無負荷相当の開度になったという条件と、上記制御により無効電力が所定値以下になった(ほぼ零)という条件の両条件が成立したら、遮断器開放指令手段45から指令を発し、並列用遮断器4を開放する。このようにして発電電動機2の出力電流がほぼ零の状態で並列用遮断器4を開放するので、その接点の消耗を軽減できる。
【0061】
また、通常の運転中や急停止開始後に、発電電動機2本体や発電電動機2の主回路に例えば3相短絡のような重大電気事故が発生した場合は、非常停止を行わなければならない。非常停止においては、非常開放指令手段79から開放指令が出され、直ちに並列用遮断器4が開放され、電動発電機2の電気出力を系統に放出できなくなるので、電力指令値を零にする必要がある。もし零にしなければ電力指令を出力する指令が出され続けるので、励磁制御装置50は、励磁用電力変換器3を介して発電電動機2に過大な励磁電流を流し続ける。
【0062】
このため、過励磁を引き起こし、放置すれば発電電動機2を損傷してしまう。従って、並列用遮断器4の開放と同時に、その開放されたという信号を使って励磁制御装置50のスイッチ51を零電力指令値設定手段32側に切り替えるか、励磁用電力変換器3を停止するとともに2次側短絡スイッチ8を閉じて発電電動機2の二次巻線2cを短絡し、励磁系の無用な制御を防止する。
【0063】
実施の形態2.
図5は、この発明の他の実施の形態である励磁制御装置の構成及び遮断器開放指令手段を示す図である。図において、励磁制御装置120は、回転数記憶指令手段37と皮相電力動作開放指令手段としての遮断器開放指令手段46と励磁制御手段150とを有する。回転数記憶指令手段37は、可変速揚水発電装置に停止指令が出されたときの発電電動機2の回転数を記憶し指令を発するものである。
【0064】
励磁制御手段150は、スイッチ54と減算器75と非常開放指令手段79とを有する。減算器75は、回転数検出器16の回転数信号と回転数記憶指令手段37に記憶された指令値との差を、スイッチ54へ出力する。スイッチ54は、減算器71の出力と、減算器75の出力とを切り替えて、q軸成分制御手段64に入力する。
【0065】
なお、励磁用電力変換器3及び励磁制御装置120がこの発明における励磁装置である。非常開放指令手段79がこの発明における開放指示手段であり、この非常開放指令手段79と零電力指令値設定手段32とによりこの発明における非常停止装置を構成している。また、回転数記憶指令手段37、減算器75、及びスイッチ54が、回転数固定手段として動作し、発電電動機2が発電機として運転中に停止指令が出されたとき、発電電動機2の回転数を、停止指令が出されたときの発電電動機2の回転数に固定するように動作する。
その他の構成については、図1に示した実施の形態1と同様のものであるので、相当するものに同じ符号を付して説明を省略する。
【0066】
この実施の形態においては、可変速揚水発電装置が発電運転中に機械系の事故等により急停止指令が発信されたり、運転員により停止指令が発信された場合は、急停止指令や停止指令が発信されたときの発電電動機2の回転数を回転数記憶指令手段37が記憶し、指令値として発信する。そして、この回転数の指令値は、減算器75に入力され、回転数検出器16にて検出された発電電動機2の回転数との差が出力される。
【0067】
急停止指令が発信されたり、運転員により停止指令が発信された場合は、同時に励磁制御装置50のスイッチ54を切り替えて、減算器75の出力をq軸成分制御手段64に出力する。q軸成分制御手段64は減算器75からの出力信号に基づき励磁電流のq軸成分を求め、変換器制御手段68を介して励磁用電力変換器3を制御する。いわゆる励磁系による電力制御から回転数制御に切り替える。
【0068】
一方、上記急停止指令は、流量調整手段90(図4)にも与えられ、流量調整手段90はスイッチ93により、増幅器92の信号から全閉指令手段93からのガイドベーン全閉指令信号に切り替え、電圧弁制御手段96、主サーボ制御手段98を介してポンプ水車1への流入水量が零になるように最速でポンプ水車1の流量調整用のガイドベーンを閉鎖する。そして、ポンプ水車1の流入水量が減ると、発電電動機2の回転数が下がろうとする。
【0069】
しかし、変換器制御手段68及び励磁用電力変換器3は発電電動機2の出力を下げて、発電電動機2の回転数を停止指令が出たときの回転数に維持するように制御する。従って、ポンプ水車1への流入水量の減少にともなって、発電電動機2の出力も減少する。このように回転数は停止指令が出たときの回転数に維持されるので、可変速幅を逸脱するおそれはない。
【0070】
一方、発電電動機2は電力系統7の要求に基づく無効電力を送っているので、有効電力の出力が零の状態でも発電電動機の電流は零にはならない。発電電動機の電流が零の状態で並列用遮断器4を開放した方が好ましいので、停止指令が発信されたら直ちに励磁制御装置150のスイッチ52を零無効電力指令値設定手段34側に切り替えて、発電電動機2の無効電力出力を零になるように制御する。
【0071】
上記制御でガイドベーンが閉じて行き発電電動機2の出力がほぼ零になったという条件と、無効電力が規定値以下になった(ほぼ零)という条件の両条件が成立すると遮断器開放指令手段46が開放指令を発し、並列用遮断器4を開放する。このようにして電流がほぼ零の状態で並列用遮断器4を開放するので、その接点の消耗を軽減できる。
【0072】
また、運転中や停止制御開始後に、発電電動機2本体や発電電動機2の主回路に例えば3相短絡のような重大電気事故が発生した場合は、非常停止を行わなければならない。非常停止においては、直ちに非常開放指令手段79からの指令により並列用遮断器4が開放され、電気出力を系統に放出できなくなるので、電力指令値を零にする必要がある。その理由は実施の形態1で述べたのと同様である。
【0073】
このため、並列用遮断器4の開放と同時に、その開放されたという信号を使って励磁制御装置150のスイッチ51を零電力指令値設定手段32側に切り替えるか、励磁用電力変換器3を停止するとともに2次側短絡スイッチ8を閉じて発電電動機の2の二次巻線2cを短絡し、励磁系の無用な制御を防止する。
【0074】
実施の形態3.
図6は、さらにこの発明の他の実施の形態である励磁制御装置の構成及び遮断器開放指令手段を示す図である。図において、励磁制御装置220は、滑り周波数記憶指令手段38、力率指令値設定手段39、力率1指令値設定手段40、出力電流動作開放手段としての遮断器開放指令手段47、励磁制御手段250を有する。滑り周波数記憶指令手段38は、可変速揚水発電装置に急停止指令あるいは停止指令が出されたときの発電電動機2の滑り周波数を記憶し、この滑り周波数の指令を発するものである。
【0075】
励磁制御手段250は、スイッチ55,56、力率算出手段69、停止手段70、減算器76,77、非常開放指令手段79を有する。スイッチ55は、減算器71の出力と減算器76の出力を切り替えて、q軸成分制御手段64へ入力する。スイッチ56は、力率指令値設定手段39の出力と力率1指令値設定手段40の出力とを切り替えて、減算器77に入力する。力率算出手段69は、計器用変圧器11及び計器用変流器12からの母線5の電圧及び電流から、発電電動機2の力率を算出する。
【0076】
なお、励磁用電力変換器3及び励磁制御装置220がこの発明における励磁装置である。非常開放指令手段79がこの発明における開放指示手段であり、この非常開放指令手段79と停止手段70と2次側短絡スイッチ8とによりこの発明における非常停止装置を構成している。また、滑り周波数記憶指令手段38、減算器76、及びスイッチ55が、滑り周波数固定手段として動作し、発電電動機2が発電機として運転中に停止指令が出されたとき、発電電動機2の滑り周波数を、停止指令が出されたときの発電電動機2の滑り周波数に固定するように動作する。
その他の構成については、図1に示した実施の形態1と同様のものであるので、相当するものに同じ符号を付して説明を省略する。
【0077】
可変速揚水発電装置が発電運転中に機械系の事故等により急停止指令が発信されたり、運転員により停止指令が発信された場合、滑り周波数記憶指令手段38は当該指令が出されたときの滑り周波数を記憶するとともに減算器76へ指令値として出力する。減算器76は、減算器73から出力される発電電動機2の回転数と系統周波数の差から求まる発電電動機2の滑り周波数と、滑り周波数記憶指令手段38からの滑り周波数の指令値との差を求めてスイッチ55へ出力する。
【0078】
そして、励磁制御装置250のスイッチ55を、減算器76からの出力がq軸制御手段64に入力されるように切り替えて、発電電動機2の滑り周波数を滑り周波数記憶指令手段38に記憶された滑り周波数になるように励磁用電力変換器3を制御する。いわゆる励磁系による電力制御から滑り周波数制御に切り替える。系統周波数は変動が少ないのでほぼ一定回転数制御と同様な動作になる。
【0079】
一方、上記急停止指令は、流量調整手段90(図4)にも与えられ、流量調整手段90はスイッチ93により、増幅器92の信号から全閉指令手段93からのガイドベーン全閉指令信号に切り替え、電圧弁制御手段96、主サーボ制御手段98を介してポンプ水車1への流入水量が零になるように最速でポンプ水車1の流量調整用のガイドベーンを閉鎖する。そして、ポンプ水車1の流入水量が減ると、発電電動機2の回転数が下がろうとする。
【0080】
しかし、変換器制御手段68及び励磁用電力変換器3は発電電動機2の出力を下げて、発電電動機2の滑り周波数を停止指令が出たときの滑り周波数に維持するように制御する。従って、ポンプ水車1への流入水量の減少にともなって、発電電動機2の出力も減少する。このようにして、回転数は停止指令が出たときの滑り周波数に維持されるので、可変速幅を逸脱する恐れはない。
【0081】
一方、発電電動機2は電力系統7の要求に基づく無効電力を送っているので、電力出力零の状態でも発電電動機の電流は零にはならない。発電電動機の電流が零の状態で並列用遮断器4を開放した方が好ましいので、停止指令が発信されたら直ちに励磁制御装置250のスイッチ56を、力率指令値設定手段39側から力率1指令値設定手段40側に切り替えて、発電電動機2の力率を1になるように制御する。
【0082】
上記制御でガイドベーンが閉じて行き発電電動機2の出力がほぼ零になったという第1の条件と、力率が規定値以上になった(ほぼ1)という第2の条件、すなわち無効電力がほぼ零になったという第2の条件の両条件が成立すると遮断器開放指令手段47が動作して、並列用遮断器4を開放する。このようにして電流がほぼ零の状態で並列用遮断器4を開放するので、その接点の消耗を軽減できる。
【0083】
また、運転中や停止制御開始後に、発電電動機2本体や発電電動機2の主回路に例えば3相短絡のような重大電気事故が発生した場合は、非常停止を行わなければならない。非常停止においては、直ちに非常開放指令手段79により並列用遮断器4が開放され、電気出力を系統に放出できなくなるので、電力指令値を零にしておく必要がある。その理由は実施の形態1で述べたのと同様である。
【0084】
このため、並列用遮断器4の開放と同時に、その開放されたという信号を使って励磁制御装置50の停止手段70により励磁用電力変換器3を停止するとともに2次側短絡スイッチ8を閉じて発電電動機2の二次巻線2cを短絡し、励磁系の無用な制御を防止する。
【0085】
なお、上記各実施の形態における並列用遮断器4の開放に際して、ガイドベーンの開度、有効電力、無効電力等の組み合わせで、発電電動機2の出力電流がほぼ零になったことを判定して開放するものを示したが、発電電動機2の出力電流を測定して出力電流がほぼ零になったら並列用遮断器を開放するようにしてもよい。
【0086】
【発明の効果】
本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。
【0087】
この発明に係る可変速揚水発電装置は、ガイドベーンを有するポンプ水車への流入水量を調整する流量調整装置と、二次巻線が巻回された回転子がポンプ水車に結合された交流励磁形同期機と、この交流励磁形同期機を電力系統に接続する並列用遮断装置と、交流励磁形同期機が発電運転中に停止指令が発せられたときの交流励磁形同期機の回転数を停止指令時回転数として記憶する回転数記憶手段を有し交流励磁形同期機が発電運転中に停止指令が発せられたときに交流励磁形同期機の回転数を停止指令時回転数に維持するように二次巻線の励磁電流を制御する励磁装置を備えたので、
発電運転中に停止指令が発せられたとき交流励磁形同期機が停止指令時回転数を維持するように制御されるので、ポンプ水車への流入水量が絞られればその出力も減少するので、出力減少過程における回転変動が抑えられ、安定して停止できる。
【0088】
そして、ガイドベーンの開度が所定値以下になり、かつ交流励磁形同期機の無効電力が規定値以下になったときに並列用遮断装置を開路動作させるガイドベーン開度動作開放指令手段を設けたものであることを特徴とするので、
ガイドベーンの開度が所定値以下になれば交流励磁形同期機の出力すなわち有効電力が所定の値以下になり、かつ無効電力が規定値以下になれば、交流励磁形同期機の出力電流が予め定められた値以下になり、この状態で並列用遮断装置を開路することになり、その接点の損耗を防止できる。
【0089】
さらに、ガイドベーンの開度をポンプ水車に流入する流入水の落差で補正する落差補正手段を設けたものであることを特徴とするので、
ガイドベーンの開度をポンプ水車に流入する流入水の落差で補正すれば、交流励磁形同期機の出力すなわち有効電力が所定の値以下になるガイドベーンのより正確な開度が得られるので、並列用遮断装置を開路する時点の精度を向上させることができる。
【0090】
また、交流励磁形同期機の有効電力が所定値以下になるとともに無効電力が規定値以下になったときに並列用遮断装置を開路動作させる皮相電力動作開放指令手段を設けたものであることを特徴とするので、
交流励磁形同期機の有効電力が所定の値以下になり、かつ無効電力が規定値以下になれば、交流励磁形同期機の出力電流が予め定められた値以下になり、この状態で並列用遮断装置を開路することになり、その接点の損耗を防止できる。
【0091】
そして、交流励磁形同期機の出力電流が所定値以下になったときに並列用遮断装置を開路動作させる出力電流動作開放指令手段を設けたものであることを特徴とするので、
交流励磁形同期機の出力電流が所定値以下になってから並列用遮断装置を開路することになり、その接点の損耗を防止できる。
【0092】
さらに、励磁装置は、停止指令が発せられたときに交流励磁形同期機の無効電力が零になるように指令する零無効電力指令手段を設けたものであることを特徴とするので、
流入水量が絞られると有効電力が減少し、かつ零無効電力指令手段により無効電力が零になるように指令されて無効電力も減少するので、交流励磁形同期機の出力電流が減少し、この状態で並列用遮断装置を開路することになり、その接点の損耗を防止できる。
【0093】
また、励磁装置は、停止指令が発せられたときに交流励磁形同期機の力率が1になるように指令する力率指令手段を設けたものであることを特徴とするので、
流入水量が絞られると有効電力が減少し、かつ力率指令手段により力率が1になるようにすなわち無効電力が零になるように指令されて無効電力も減少するので、交流励磁形同期機の出力電流が減少し、この状態で並列用遮断装置を開路することになり、その接点の損耗を防止できる。
【0094】
そして、並列用遮断装置に開放指令を発する開放指令手段と並列用遮断装置の開放を条件に出力電力を零にする指令を発する零電力指令手段とを有する非常停止装置を設けたものであることを特徴とするので、
並列用遮断装置を開放し出力電力を零にする指令を発すれば、交流励磁形同期機の主回路に例えば三相短絡などの重大事故が発生して、交流励磁形同期機を電力系統から直ちに切り離さなければならないような非常停止の場合に、励磁装置による無用な制御を防止でき、過大な励磁による異常電圧上昇を引き起こすおそれをなくすことができる。
【0095】
さらに、並列用遮断装置に開放指令を発する開放指令手段と並列用遮断装置の開放を条件に励磁装置の出力を停止する励磁出力停止手段と交流励磁形同期機の二次巻線を短絡する二次巻線短絡手段とを有する非常停止装置を設けたものであることを特徴とするので、
並列用遮断装置を開放し励磁装置の出力を停止すれば、交流励磁形同期機の主回路に例えば三相短絡などの重大事故が発生して、交流励磁形同期機を電力系統から直ちに切り離さなければならないような非常停止の場合に、励磁装置による無用な制御を防止でき、過大な励磁による異常電圧上昇を引き起こすおそれをなくすことができる。
【0096】
また、この発明に係る可変速揚水発電装置の停止方法は、ガイドベーンを有するポンプ水車への流入水量を調整する流量調整装置と、二次巻線が巻回された回転子がポンプ水車に結合された交流励磁形同期機と、この交流励磁形同期機を電力系統に接続する並列用遮断装置と、交流励磁形同期機の二次巻線を励磁する励磁装置とを備えた可変速揚水発電装置の停止方法であって、交流励磁形同期機が発電運転中に停止指令が発せられたとき交流励磁形同期機の回転数を当該停止命令が発せられたときの交流励磁形同期機の回転数に維持するように交流励磁形同期機の二次巻線を励磁するので、
発電運転中に停止指令が発せられたとき交流励磁形同期機が停止指令時回転数を維持するように制御されるので、ポンプ水車への流入水量が絞られればその出力も減少するので、出力減少過程における回転変動が抑えられ、安定して停止できる。
【図面の簡単な説明】
【図1】 この発明の実施の一形態を示す可変速揚水発電装置の構成を示す構成図である。
【図2】 図1の励磁制御装置の構成及び遮断器開放指令手段を示す図である。
【図3】 図1の流量制御装置の詳細構成を示す構成図である。
【図4】 図1の流量調整手段の詳細構成を示す構成図である。
【図5】 この発明の他の実施の形態を示す励磁制御装置の構成及び遮断器開放指令手段を示す図である。
【図6】 さらに、この発明の他の実施の形態を示す励磁制御装置の構成及び遮断器開放指令手段を示す図である。
【符号の説明】
1 ポンプ水車、2 発電電動機、3 励磁用電力変換器、4 並列用遮断器、
7 電力系統、8 2次側短絡スイッチ、20,120,220 励磁制御手段、
50,150,250 励磁制御装置、31 電力指令値設定手段、
32 零電力指令値設定手段、33 無効電力指令値設定手段、
34 零無効電力指令値設定手段、35 二次励磁周波数及び位相記憶指令手段、
36 周波数設定手段、37 回転数記憶指令手段、38 滑り周波数記憶指令手段、
39 力率指令値設定手段、40 力率1指令値設定手段、43 落差補正手段、
45,46,47 遮断器開放指令手段、61 電力算出手段、
62 無効電力算出手段、69 力率算出手段、70 停止手段、
79 非常開放指令手段、80 流量制御装置、81 ダム水位算出手段、
90 流量調整手段、93 全閉指令手段。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a variable speed pumped storage power generation apparatus and a method for stopping the variable speed pumped storage power generation apparatus.
[0002]
[Prior art]
As is well known, the variable speed pumped-storage power generator is a synchronous power generator, but the rotational speed can be freely changed within a variable speed range, usually within the range of plus or minus several percent of the rated rotational speed. It has various features such as being independently controllable. Because of these characteristics, special consideration is required when shutting down the power generation system.
[0003]
By the way, there are generally three stop methods, emergency stop, sudden stop, and normal stop, in the pumped-storage power generation device (hereinafter referred to as a constant speed device) using a constant speed generator motor (synchronous machine). It is known that the method is adopted.
If a serious accident such as a three-phase short circuit occurs in the generator motor or in the main circuit, the accident current is interrupted instantaneously and the rotational speed is reduced at the fastest speed to prevent the accident from spreading. Need to stop. The emergency stop method is applied when a serious accident occurs in the generator motor or in the main circuit as described above.
[0004]
In the case of such an emergency stop, the parallel circuit breaker provided in the main circuit of the generator motor is tripped instantaneously, the generator motor is disconnected from the parallel power system, and the guide vane of the pump turbine is suddenly closed, Reduce the inflow water amount and reduce the speed. In addition, when it is confirmed that the parallel circuit breaker has been opened, the field breaker is immediately opened to cut off the excitation energy from the excitation power converter, and the field coil is short-circuited to reduce the electromagnetic energy stored in the field. Extinguish.
[0005]
The reason for this is that in the case of a short circuit accident in the generator motor or at the terminal, the accident current will not disappear even if the parallel circuit breaker is tripped instantaneously. This is because it cannot be eliminated.
[0006]
When a serious accident such as bearing metal burnout occurs in the mechanical system of the pump turbine / generator motor, it is necessary to reduce the rotational speed as soon as possible to prevent the accident from spreading. The sudden stop method is adopted when a serious accident occurs in such a mechanical system. In the case of a sudden stop, the guide vane of the pump turbine is closed suddenly to reduce the inflow and reduce the speed. On the other hand, since there is no abnormality in the electric system, it is not necessary to trip the parallel breaker immediately.
[0007]
In this case, it is necessary to avoid unnecessary current interruption in order to extend the life of the parallel breaker, and in parallel with the timing when the output of the generator motor and the current decrease due to the sudden closing of the guide vane, the current is almost zero. Trip the circuit breaker and then open the field breaker.
[0008]
When stopping the power generation operation at the operator's will, the normal stop method is adopted. Since a normal stop is not an accident, there is no need to stop it particularly quickly. Therefore, in the stop operation, first, the output command value to the generator motor is gradually reduced to zero. Along with this, the guide vanes are automatically closed by the function of the governor, and the output and current of the generator motor gradually decrease. Trip the breaker for parallel when the generator motor output current is almost zero. After confirming the opening of the parallel breaker, the field breaker is opened and the guide vanes are closed.
[0009]
In the constant-speed machine using the synchronous motor type generator motor as described above, the generator motor operated as a synchronous generator is synchronized even if the guide vanes are closed rapidly to reduce the output of the pump turbine. As a result, the output of the generator motor is automatically narrowed down to the input of the pump turbine while the rotational speed is maintained at the frequency of the power system. For this reason, it is not necessary to specifically control the output of the generator motor, and there is no problem of setting deviation or time delay between the amount of water flowing into the pump turbine and the output of the generator motor.
[0010]
However, in the variable speed pumped storage power generator capable of changing the rotation speed over a wide range as compared with the above constant speed machine, the input / output of the AC excitation type generator motor and the pump turbine are connected. The amount of inflow water can be controlled independently.
[0011]
Therefore, for example, when a serious mechanical accident occurs during power generation operation, if the same stopping method as that of the constant speed machine device is taken, the output command value of the generator motor is set even if the guide vane is closed and the water energy is reduced. Unless it is lowered, the generator motor tries to maintain the initial output. Therefore, the generator motor releases rotational energy and decreases the rotational speed, but the output and current of the generator motor do not decrease. For this purpose, a special stopping method must be employed.
[0012]
By the way, Japanese Patent Laid-Open No. 1-244169, for example, proposes a method for solving the problems that occur at the time of a sudden stop in the variable speed pumped storage power generator as described above. In this method, when a sudden stop command is given, the guide vane is closed suddenly to reduce the amount of water flowing into the pump turbine, and the power generation output command to the excitation power converter that adjusts the output of the generator motor is corrected. Thus, the power generation output of the motor generator is reduced in accordance with the sudden closing of the guide vanes.
[0013]
[Problems to be solved by the invention]
However, the conventional method for suddenly stopping a variable speed pumping device as described above has the following problems.
1. As is well known, the variable speed pumped-storage generator has the feature that the amount of water flowing into the pump turbine and the power generation output of the generator motor can be controlled independently, and the rotational speed can be controlled within the range of the variable speed even in parallel with the system. It is. In the conventional method for suddenly stopping a variable speed pumped-storage power generator, when an emergency stop command is issued, the amount of water flowing into the pump turbine and the output of the generator motor are immediately reduced. However, the amount of inflow water cannot be reduced beyond a certain speed in order to prevent the water pressure rise of the hydraulic iron pipe from exceeding a predetermined value.
[0014]
On the other hand, the output of the generator motor can be reduced instantaneously by controlling the excitation power converter. If there is a certain amount of inflowing water, if the output of the generator motor is reduced instantaneously, energy is injected into the rotor, and the rotational speed increases, which may deviate from the variable speed range. Therefore, when stopping suddenly, it is necessary to perform an accurate output method that matches the amount of inflow water. However, even if the power generation output command to the power converter for excitation is corrected as in the above-described conventional one, there is a risk of deviating from the variable speed range due to an error, a delay in the control system, or the like.
[0015]
2. In such a sudden stop method, if a serious electrical accident such as a three-phase short circuit occurs in the generator motor main body or the main circuit of the generator motor during stop control, the protection relay immediately parallels the output regardless of the output of the generator motor at that time. Circuit breaker is opened. In this case, although the power command value has not yet reached zero, the actual power becomes zero, and the control system of the generator motor continues to issue a power increase command. The excitation power converter continues to flow a large excitation current to increase the power, and there is a risk of causing an abnormal voltage increase in the rotating generator motor by being disconnected.
[0016]
3. In such a sudden stop method, a method is used in which the parallel breaker is opened when the guide vane is closed to a predetermined value. However, when the guide vane is closed to the predetermined value, the amount of inflow water is almost equal. The flow must be equivalent to no load. Since large-scale pumping plants do not measure the inflow, it is necessary to estimate the inflow by calculating from the measured values of pump turbine characteristics, rotation speed, output, and head. Regardless, a simple method is desired.
[0017]
4). When the guide vane is closed to a predetermined value, the parallel circuit breaker is opened. However, if the reactive power is not zero even if the active power is zero, the parallel circuit breaker will have some current. Since it cuts off, it is inevitable that the contacts of the parallel breaker will wear out.
[0018]
An object of the present invention is to solve the above-described problems, to obtain the following variable speed pumped storage power generation apparatus and to provide a method for stopping the variable speed pumped storage power generation apparatus.
A. For any stop of emergency stop, sudden stop, and normal stop, there is no risk of deviating from the variable speed range, and the stop can be stably performed.
[0019]
I. In the case of a sudden stop, the parallel circuit breaker can be opened when the amount of water flowing into the pump turbine is determined by a simple method and falls below a predetermined value.
C. It is possible to reduce the consumption of contacts of the parallel breaker.
D. During an emergency stop, there is no possibility of causing an abnormal voltage increase due to overexcitation in the rotating generator motor that is disconnected from the system.
[0020]
[Means for Solving the Problems]
In order to achieve the above object, a variable speed pumped storage power generator of the present invention includes a flow rate adjusting device for adjusting the amount of water flowing into a pump turbine having a guide vane, and a rotor around which a secondary winding is wound. An AC excitation type synchronous machine coupled to the AC excitation type, a parallel shut-off device that connects the AC excitation type synchronous machine to the power system, and when a stop command is issued while the AC excitation type synchronous machine is operating. Rotation of the AC excitation type synchronous machine when a stop command is issued while the AC excitation type synchronous machine is generating operation. To keep the number at the rotation speed at stop command An excitation device for controlling the excitation current of the secondary winding is provided.
When a stop command is issued during power generation operation, the AC excitation type synchronous machine Since it is controlled to maintain the rotation speed at the time of stop command, if the amount of water flowing into the pump turbine is reduced, its output will also decrease. Rotational fluctuations in the output reduction process can be suppressed.
[0021]
A guide vane opening operation opening command means is provided for opening the parallel cutoff device when the guide vane opening is below a predetermined value and the reactive power of the AC excitation type synchronous machine is below a specified value. It is characterized by that.
If the guide vane opening is less than the predetermined value, the output of the AC excitation type synchronous machine, that is, the active power is less than the predetermined value, and if the reactive power is less than the specified value, the output current of the AC excitation type synchronous machine is In this state, the parallel breaker is opened, and wear of the contact can be prevented.
[0022]
Further, the present invention is characterized in that a head correction means for correcting the opening of the guide vane with the head of the inflow water flowing into the pump turbine is provided.
If you correct the opening of the guide vane with the drop of the inflowing water flowing into the pump turbine, the output of the AC excitation type synchronous machine, that is, the more accurate opening of the guide vane where the active power is less than the predetermined value can be obtained, The accuracy at the time of opening the parallel blocking device can be improved.
[0023]
Also, it is provided with an apparent power operation opening command means for opening the parallel cutoff device when the active power of the AC excitation type synchronous machine becomes a predetermined value or less and the reactive power becomes a specified value or less. Features.
If the active power of the AC excitation type synchronous machine falls below the specified value and the reactive power falls below the specified value, the output current of the AC excitation type synchronous machine will fall below the predetermined value. The circuit breaker is opened and wear of the contact can be prevented.
[0024]
Further, the present invention is characterized in that output current operation opening command means for opening the parallel cutoff device when the output current of the AC excitation type synchronous machine becomes a predetermined value or less is provided.
Since the parallel interrupting device is opened after the output current of the AC excitation type synchronous machine becomes a predetermined value or less, it is possible to prevent the contact from being worn.
[0025]
Further, the exciter is provided with zero reactive power command means for commanding the reactive power of the AC excitation type synchronous machine to be zero when a stop command is issued.
When the amount of inflow water is reduced, the active power is reduced, and the reactive power is also reduced by the zero reactive power command means so that the reactive power is reduced to zero. In this state, the parallel breaker is opened, and wear of the contacts can be prevented.
[0026]
Further, the excitation device is provided with power factor command means for commanding the AC excitation type synchronous machine to have a power factor of 1 when a stop command is issued.
When the amount of inflow water is reduced, the active power decreases, and the power factor command means instructs the power factor to be 1, that is, the reactive power is reduced to zero, so that the reactive power also decreases. In this state, the parallel breaker is opened, and wear of the contacts can be prevented.
[0027]
And there is provided an emergency stop device having an opening command means for issuing an opening command to the parallel shut-off device and a zero power command means for issuing a command to make the output power zero on condition that the parallel shut-off device is opened. It is characterized by.
If a command to open the parallel shut-off device and make the output power zero is issued, a major accident such as a three-phase short circuit will occur in the main circuit of the AC excitation type synchronous machine, and the AC excitation type synchronous machine will be removed from the power system. In the case of an emergency stop that must be immediately disconnected, unnecessary control by the excitation device can be prevented, and the possibility of causing an abnormal voltage increase due to excessive excitation can be eliminated.
[0028]
Further, an opening command means for issuing an opening command to the parallel shut-off device, an excitation output stop means for stopping the output of the exciter on the condition that the parallel shut-off device is opened, and a secondary winding for short-circuiting the secondary winding of the AC excitation type synchronous machine. An emergency stop device having a secondary winding short-circuit means is provided.
If the parallel shut-off device is opened and the output of the exciter is stopped, a serious accident such as a three-phase short circuit will occur in the main circuit of the AC exciter and the AC exciter must be immediately disconnected from the power system. In the case of an emergency stop that must be performed, unnecessary control by the excitation device can be prevented, and the possibility of causing an abnormal voltage increase due to excessive excitation can be eliminated.
[0029]
In addition, the variable speed pumped storage power generator stopping method according to the present invention includes a flow rate adjusting device for adjusting the amount of water flowing into a pump turbine having a guide vane, and a rotor wound with a secondary winding coupled to the pump turbine. Variable speed pumped storage power generation comprising: an AC excitation type synchronous machine, a parallel cutoff device that connects the AC excitation type synchronous machine to a power system, and an excitation device that excites a secondary winding of the AC excitation type synchronous machine When a stop command is issued while the AC excitation type synchronous machine is generating power Maintain the rotational speed of the AC excitation type synchronous machine at the rotational speed of the AC excitation type synchronous machine when the stop command is issued. Excitation of secondary winding of AC excitation type synchronous machine
Is.
When a stop command is issued during power generation operation, the AC excitation type synchronous machine Since it is controlled to maintain the rotation speed at the time of stop command, if the amount of water flowing into the pump turbine is reduced, its output will also decrease. Rotational fluctuations in the output reduction process can be suppressed.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
In the conventional method of suddenly stopping the variable speed pumping device, the excitation power converter performs power control based on the power command value, and thus the above-described problems occur. If the excitation power converter is controlled so that the variable-speed pumped-storage power generator is almost in the same state as the constant-speed machine device when stopped, it is possible to take measures for deviation from the variable speed range. The following variable-speed pumped-storage power generator or a method for stopping the same is provided.
[0031]
1. This is one of the solutions to the first and second problems at the time of the sudden stop. When a sudden stop or normal stop command is given, the sudden stop command determines the output frequency of the excitation power converter. The output frequency of the generator motor is reduced by fixing the frequency at the time of exit and reducing the amount of inflow water by the flow rate adjusting means. Since the excitation frequency of the generator motor is fixed if the stop operation is performed in this way, it operates as a synchronous generator, so if the amount of inflow water is reduced, the output of the generator motor is automatically lowered and there is no risk of deviating from the variable speed range. Can stop stably.
[0032]
When a serious accident such as a three-phase short circuit occurs in the generator motor or in the main circuit, the parallel breaker is immediately opened. Immediately after the parallel circuit breaker is opened, the output command to the excitation power converter is made zero, or the excitation power converter is stopped and the secondary winding of the generator motor is short-circuited so that the excitation system is useless. Prevent control. As a result, the problem caused by excessive excitation can be solved when an accident occurs in the generator motor or in the main circuit and an emergency stop is required.
[0033]
2. This is the second solution to the first and second problems at the time of a sudden stop. When a sudden stop or normal stop command is given, the excitation power converter is controlled at the rotation speed at that time. The amount of inflow water is reduced by the flow rate adjusting means while switching to speed control using the command value to control the speed to be constant. Since the excitation power converter performs constant rotation speed control, the generator motor operates as a synchronous generator, the output of the generator motor is reduced by reducing the amount of inflow water, and the rotation speed is maintained. Although the output decreases as the inflow rate decreases, there is no risk of deviating from the variable speed range, and the operation can be stopped stably.
[0034]
3. The third solution to the first and second problems at the time of sudden stop is that when a sudden stop or normal stop command is given, the excitation power converter is connected to the slip frequency (system The control is switched to slip frequency control using a difference between the frequency and the rotation speed of the generator motor as a command value, and the output of the generator motor is reduced by reducing the amount of inflow water by the flow rate adjusting means.
[0035]
If the stop operation is performed in this manner, if the amount of inflow water at that time is reduced under a certain output, the rotation speed is reduced and the system frequency is almost constant, so that the slip increases. Since constant frequency control is performed, the output of the generator motor is reduced and the slip is maintained, so that the output decreases as the amount of inflow water decreases, and there is no risk of deviating from the variable speed range, so that the generator can be stopped stably.
[0036]
4). This is a solution to the third problem at the time of sudden stop, but the guide vane of the parallel circuit breaker is less than the specified opening, that is, the opening where the output of the motor generator is almost zero. Then open the system. The value of the specified opening of the guide vane where the output of the generator motor becomes almost zero changes according to the dam water level, but there is little dam water level fluctuation at the pumped storage power plant, so there is no practical problem. When the fluctuation of the dam water level is large, the specified opening degree of the guide vane is corrected by the dam water level.
[0037]
5). This is a solution to the fourth problem at the time of sudden stop, but the amount of inflow water is reduced so that the output of the generator motor is zero and the reactive power of the generator motor is zero. Alternatively, when the control for setting the power factor to 1 is performed in parallel and the condition that the output is zero or the guide vane is equal to or less than the specified opening degree and the condition that the reactive power is zero is established, the parallel breaker is set. It is a method to open. Alternatively, the parallel breaker is simply opened when the output current of the generator motor becomes zero.
Hereinafter, each embodiment will be described more specifically.
[0038]
Embodiment 1 FIG.
1 to 4 show an embodiment of the present invention. FIG. 1 is a block diagram showing a configuration of a variable speed pumped storage power generation device. FIG. 2 shows a configuration of an excitation control device and a circuit breaker opening command means. FIG. FIG. 3 is a block diagram showing the detailed configuration of the flow rate control device, and FIG. 4 is a block diagram showing the detailed configuration of the flow rate adjusting means. In FIG. 1, a generator motor 2 is mechanically connected to a pump turbine 1.
[0039]
The generator motor 2 is an AC excitation synchronous machine, has a secondary winding 2c wound around a stator winding 2a and a rotor 2b, and the rotor 2b is mechanically connected to the pump turbine 1. . The stator winding 2 a of the generator motor 2 is connected to the power system 7 via the parallel circuit breaker 4, the bus 5, and the step-up transformer 6. An excitation current having a predetermined phase and frequency corresponding to the rotational speed of the generator motor 2 is supplied from the excitation power converter 3 to the secondary winding 2c of the generator motor 2 from the stator winding 2a of the generator motor 2. , AC power having the same frequency as that of the power system 7 is output.
[0040]
Further, the secondary winding 2 c of the generator motor 2 can be short-circuited by the secondary-side short-circuit switch 8. The instrument transformer 11 is connected to the bus 5 and detects the voltage of the bus 5. The instrument current transformer 12 detects a current flowing in and out of the bus 5 between the power system 7 and the generator motor 2. The rotation speed detector 16 detects the rotation speed of the generator motor 2 and generates a rotation speed signal corresponding to the rotation speed.
[0041]
Further, an excitation control device 20 that controls the excitation power converter 3, a flow rate control device 80 that controls the amount of inflow water flowing into the pump turbine 1, and a flow rate adjusting means 90 are provided. The detailed configuration of the excitation control device 20 is shown in FIG. 2, but the power command value setting means 31, the zero power command value setting means 32, the reactive power command value setting means 33, the zero reactive power command value setting means 34, the secondary An excitation frequency and phase storage command means 35, a frequency setting means 36, a head correction means 43, a circuit breaker opening command means 45 as a guide vane operation opening command means, and an excitation control means 50 are configured.
[0042]
The excitation control means 50 includes switches 51, 52, 53 for switching inputs, active power calculation means 61, reactive power calculation means 62, q-axis component control means 64, d-axis component control means 65, variable speed width deviation prevention means 67, Converter control means 68, subtracters 71, 72, 73 and emergency open command means 79 are provided. When the switch 51 is on the power command value setting unit 31 side, the subtractor 71 outputs the difference between the output signal of the active power calculation unit 61 and the set value of the power command value setting unit 31 to the q-axis component control unit 64. . The q-axis component control means 64 determines the q-axis component of the excitation current according to the output of the subtracter 71.
[0043]
When the switch 52 is on the reactive power command value setting means 33 side, the subtracter 72 sends the difference between the output signal of the reactive power calculation means 62 and the set value of the reactive power command value setting means 33 to the d-axis component control means 65. Output. The d-axis component control means 65 determines the d-axis component of the excitation current according to the output of the subtracter 72. The subtractor 73 outputs the difference between the output signal of the rotation speed detector 16 and the set value of the frequency setting means 36 to the variable speed deviation deviation prevention means 67.
[0044]
The variable speed deviation deviation prevention means 67 operates when the difference between the output of the subtractor 73, that is, the set value of the frequency setting means 36, and the rotational speed detected by the rotational speed detector 16 exceeds a predetermined value. The output of the component control means 64 is limited. The output of the q-axis component control means 64 and the output of the d-axis component control means 65 are given to the converter control means 68, and the frequency at which the secondary winding 2c of the generator motor 2 is excited via the excitation power converter 3. And control the phase.
[0045]
The excitation power converter 3 and the excitation control device 20 are the excitation devices in the present invention. The emergency opening command means 79 is the opening instruction means in the present invention, and the emergency opening command means 79, the zero power command value setting means 32, and the switch 51 constitute an emergency stop device in the present invention. Further, when the secondary excitation frequency and phase storage command means 35 and the switch 53 operate as frequency fixing means and a stop command is issued while the generator motor 2 is operating as a generator, an excitation current that excites the generator motor 2. Is fixed to the frequency of the generator motor 2 when the stop command is issued.
[0046]
Further, the flow rate control device 80 for controlling the amount of water flowing into the pump turbine 1 includes a dam water level calculation means 81 for calculating the head of a pumped-storage power generation dam, an optimum guide vane opening command means, as shown in FIG. 82, an optimum rotation speed command means 83, a governor control circuit 84, a subtractor 86, and an adder 87. The optimum guide vane opening degree command means 82 is based on the power command value set by the power command value setting means 31 and the dam water level calculated by the dam water level calculation means 81 of the excitation control device 20. The opening is obtained and output to the adder 87.
[0047]
The optimum rotation speed command means 83 obtains the optimum rotation speed of the pump turbine 1 based on the power command value set by the power command value setting means 31 and the dam water level calculated by the dam water level calculation means 81. The subtractor 86 obtains the difference between the optimum rotational speed of the pump turbine 1 (generator motor 2) commanded from the optimum rotational speed command means 83 and the rotational speed of the generator motor 2 obtained from the rotational speed detector 16. Output to the governor control circuit 84.
[0048]
The governor control circuit 84 outputs a signal for controlling the governor so that the output of the subtractor 86 is minimized, and is added to the output of the optimum guide vane opening degree command means 82 by the adder 87, and is sent to the flow rate adjustment means 90. Is output. As shown in FIG. 4, the flow rate adjusting means 90 includes a subtractor 91 for feedback control, an amplifier 92 for amplifying the signal from the subtractor 91, a fully-close command means 93 for issuing a command to fully close the guide vane, Switch 95, pressure distribution valve control means 96, and main servo control means 98.
[0049]
Next, the operation will be described. A voltage signal corresponding to the voltage of the system 7 from the instrument transformer 11 and a current signal from the instrument current transformer 12 are supplied, and the active power of the generator motor 2 is obtained by the active power calculation means 61 and the reactive power calculation means 62, That is, the output and reactive power are calculated. In the excitation control apparatus 20 (FIG. 2), the switch 51 is normally switched to the power command value setting means 31 side, and the power command values set in the active power calculation means 61 and the power command value setting means 31 are subtracted. Subtracter 71 subtracts the difference and outputs the difference to q-axis component control means 64.
[0050]
The switch 52 is normally switched to the reactive power command value setting means 33 side, and the subtraction result is obtained by subtracting the subtraction result between the reactive power calculation means 62 and the reactive power setting value set in the reactive power command value setting means 33. To the d-axis component control means 65. The d-axis component control means 65 obtains the d-axis component of the excitation current that excites the secondary winding of the generator motor 2 based on the input signal from the subtractor 72, and converts the converter through the variable speed deviation prevention means 67. It outputs to the control means 68.
[0051]
Based on the outputs of the q-axis component control means 64 and the variable speed deviation prevention means 67, the converter control means 68 uses the active power and reactive power calculated by the active power calculation means 61 and the reactive power calculation means 62 as power command values. The secondary winding 2c of the generator motor 2 is excited via the excitation power converter 3 so that the command value set by the setting means 31 and the reactive power command value setting means 33 is obtained. Note that the switch 53 is normally open.
[0052]
When the rotational speed of the generator motor 2 detected by the rotational speed detector 16, that is, when the frequency is out of the predetermined range with reference to the frequency set by the frequency setting means 36, the variable speed width deviation prevention means 67 operates to limit the q-axis component output output from the q-axis component control means 64 so that the generator motor 2 does not deviate from the variable speed range.
[0053]
Normally, the generator operation of the generator motor 2 is performed by controlling the excitation current of the secondary winding 2c of the generator motor 2 via the excitation power converter 3 by the converter control means 68 as described above. .
[0054]
When a sudden stop command is transmitted due to a mechanical accident or the like during a power generation operation, or when a stop command is transmitted by an operator, the secondary excitation frequency and phase storage command means 35 uses the excitation power converter at that time. 3 output frequency and phase are stored. Then, the switch 53 is closed, and the output frequency and phase of the excitation power converter 3, that is, the frequency and phase of the excitation current of the secondary winding of the generator motor 2, the secondary excitation frequency and phase storage command means. A command to fix the frequency and phase stored in 35 is given to the converter control means 68.
[0055]
When the frequency and phase for exciting the generator motor 2 are fixed by the converter control means 68, the rotational speed and phase of the magnetic flux on the rotor of the generator motor 2 are fixed. It transforms into a normal synchronous generator motor that rotates while maintaining the rotation speed.
[0056]
The sudden stop command is also given to the flow rate adjusting means 90 at the same time, and the switch 95 operates to switch the output from the amplifier 92 to the guide vane full close command signal from the full close command means 93 to the pressure distribution valve control means 96. give. The pressure distribution valve control means 96 closes the guide vanes at the maximum speed, that is, the maximum speed allowed for safety, so that the inflow water amount becomes zero via the main servo control means 98.
[0057]
When the guide vanes are closed, the amount of water flowing into the pump turbine 1 is reduced, and the input of the pump turbine 1, that is, the shaft output to the generator motor 2 is reduced. Since the generator motor 2 has already been operated as a synchronous generator, even if the power command value by the power command value setting means 31 is not changed, the rotation speed varies when the amount of water flowing into the pump turbine 1 is reduced. Without reducing its output.
[0058]
On the other hand, since the generator motor 2 sends reactive power based on the request of the power system 7, the current of the generator motor 2 does not become zero even when the power output is zero. Since it is preferable to open the parallel circuit breaker 4 when the current of the generator motor 2 is substantially zero, the switch 52 of the converter control device 50 is immediately set to the zero reactive power command value setting means 34 side when the stop command is transmitted. By switching, the output of the reactive power of the generator motor 2 is controlled to be zero.
[0059]
Note that, in a power plant where the water level fluctuation of the dam is small, the opening degree of the guide vane of the pump turbine 1 and the output of the generator motor 2 substantially correspond to each other. If there is a lot of dam water level fluctuation, it is easy to correct the guide vane opening signal with the dam water level signal by the head correcting means 43 based on the dam water level obtained from the dam water level calculating means 81 of the flow rate adjusting means 80. It is possible to detect an opening corresponding to no load.
[0060]
With the above control, the guide vane is closed and the output of the generator motor 2 is almost zero, that is, the guide vane has an opening corresponding to no load, and the reactive power has become below a predetermined value by the above control (almost zero). When both conditions are established, a command is issued from the circuit breaker opening command means 45, and the parallel circuit breaker 4 is opened. Thus, since the parallel circuit breaker 4 is opened in a state where the output current of the generator motor 2 is substantially zero, it is possible to reduce the consumption of the contacts.
[0061]
Further, when a serious electric accident such as a three-phase short circuit occurs in the generator motor 2 main body or the main circuit of the generator motor 2 during normal operation or after the start of a sudden stop, an emergency stop must be performed. In an emergency stop, an opening command is issued from the emergency opening command means 79, the parallel circuit breaker 4 is immediately opened, and the electric output of the motor generator 2 cannot be released to the system, so the power command value must be zero. There is. If it is not zero, a command to output a power command is continuously issued, so that the excitation control device 50 continues to flow an excessive excitation current to the generator motor 2 via the excitation power converter 3.
[0062]
For this reason, over-excitation is caused and the generator motor 2 is damaged if left untreated. Therefore, simultaneously with the opening of the parallel circuit breaker 4, the switch 51 of the excitation control device 50 is switched to the zero power command value setting means 32 side using the signal that the circuit breaker 4 has been opened, or the excitation power converter 3 is stopped. At the same time, the secondary-side short-circuit switch 8 is closed to short-circuit the secondary winding 2c of the generator motor 2, thereby preventing unnecessary control of the excitation system.
[0063]
Embodiment 2. FIG.
FIG. 5 is a diagram showing a configuration of an excitation control device and a circuit breaker opening command means according to another embodiment of the present invention. In the figure, the excitation control device 120 includes a rotation speed storage command means 37, a breaker open command means 46 as an apparent power operation release command means, and an excitation control means 150. The rotation speed storage command means 37 stores the rotation speed of the generator motor 2 when a stop command is issued to the variable speed pumped storage power generation device and issues a command.
[0064]
The excitation control means 150 includes a switch 54, a subtractor 75, and an emergency open command means 79. The subtractor 75 outputs the difference between the rotational speed signal of the rotational speed detector 16 and the command value stored in the rotational speed storage command means 37 to the switch 54. The switch 54 switches between the output of the subtracter 71 and the output of the subtractor 75 and inputs it to the q-axis component control means 64.
[0065]
The excitation power converter 3 and the excitation control device 120 are the excitation devices in the present invention. The emergency opening command means 79 is the opening instruction means in the present invention, and the emergency opening command means 79 and the zero power command value setting means 32 constitute an emergency stop device in the present invention. Further, when the rotation speed storage command means 37, the subtractor 75, and the switch 54 operate as rotation speed fixing means and a stop command is issued while the generator motor 2 is operating as a generator, the rotation speed of the generator motor 2 is increased. Is fixed to the rotational speed of the generator motor 2 when the stop command is issued.
Since other configurations are the same as those of the first embodiment shown in FIG. 1, the corresponding components are denoted by the same reference numerals and description thereof is omitted.
[0066]
In this embodiment, when the variable speed pumped storage power generation device is in a power generation operation, if a sudden stop command is transmitted due to a mechanical accident or the stop command is transmitted by an operator, a sudden stop command or stop command is issued. The rotation speed storage command means 37 stores the rotation speed of the generator motor 2 at the time of transmission and transmits it as a command value. The rotational speed command value is input to the subtractor 75, and the difference from the rotational speed of the generator motor 2 detected by the rotational speed detector 16 is output.
[0067]
When a sudden stop command is transmitted or a stop command is transmitted by the operator, the switch 54 of the excitation control device 50 is simultaneously switched to output the output of the subtractor 75 to the q-axis component control means 64. The q-axis component control means 64 obtains the q-axis component of the excitation current based on the output signal from the subtractor 75 and controls the excitation power converter 3 via the converter control means 68. Switch from so-called excitation system power control to rotational speed control.
[0068]
On the other hand, the sudden stop command is also given to the flow rate adjusting means 90 (FIG. 4), and the flow rate adjusting means 90 switches from the signal of the amplifier 92 to the guide vane fully closed command signal from the fully closed command means 93 by the switch 93. The guide vanes for adjusting the flow rate of the pump turbine 1 are closed at the fastest speed so that the amount of water flowing into the pump turbine 1 becomes zero via the voltage valve control means 96 and the main servo control means 98. And if the amount of inflow water of the pump turbine 1 decreases, the rotation speed of the generator motor 2 will fall.
[0069]
However, the converter control means 68 and the excitation power converter 3 are controlled so as to reduce the output of the generator motor 2 and maintain the rotation speed of the generator motor 2 at the rotation speed when the stop command is issued. Therefore, as the amount of water flowing into the pump turbine 1 decreases, the output of the generator motor 2 also decreases. As described above, since the rotation speed is maintained at the rotation speed when the stop command is issued, there is no possibility of deviating from the variable speed range.
[0070]
On the other hand, since the generator motor 2 sends reactive power based on the request of the power system 7, the current of the generator motor does not become zero even when the output of the active power is zero. Since it is preferable to open the parallel circuit breaker 4 when the current of the generator motor is zero, immediately after the stop command is transmitted, the switch 52 of the excitation control device 150 is switched to the zero reactive power command value setting means 34 side, The reactive power output of the generator motor 2 is controlled to be zero.
[0071]
When both the conditions that the guide vane is closed by the above control and the output of the generator motor 2 becomes almost zero and the condition that the reactive power becomes less than the specified value (substantially zero) are satisfied, the circuit breaker opening command means 46 issues an opening command to open the parallel breaker 4. In this way, since the parallel circuit breaker 4 is opened in a state where the current is substantially zero, the consumption of the contact can be reduced.
[0072]
Moreover, when a serious electric accident such as a three-phase short circuit occurs in the generator motor 2 main body or the main circuit of the generator motor 2 during operation or after the start of stop control, an emergency stop must be performed. In an emergency stop, the parallel circuit breaker 4 is immediately opened by a command from the emergency opening command means 79, and the electric output cannot be discharged to the system. Therefore, it is necessary to set the power command value to zero. The reason is the same as described in the first embodiment.
[0073]
For this reason, simultaneously with the opening of the parallel circuit breaker 4, the switch 51 of the excitation control device 150 is switched to the zero power command value setting means 32 side using the signal that it has been opened, or the excitation power converter 3 is stopped. At the same time, the secondary short-circuit switch 8 is closed to short-circuit the secondary winding 2c of the generator motor 2 to prevent unnecessary control of the excitation system.
[0074]
Embodiment 3 FIG.
FIG. 6 is a diagram showing a configuration of an excitation control apparatus and a circuit breaker opening command means according to another embodiment of the present invention. In the figure, an excitation control device 220 includes a slip frequency storage command means 38, a power factor command value setting means 39, a power factor 1 command value setting means 40, a circuit breaker opening command means 47 as an output current operation opening means, and an excitation control means. 250. The slip frequency storage command means 38 stores the slip frequency of the generator motor 2 when a sudden stop command or a stop command is issued to the variable speed pumped storage power generation device, and issues the slip frequency command.
[0075]
The excitation control unit 250 includes switches 55 and 56, a power factor calculation unit 69, a stop unit 70, subtracters 76 and 77, and an emergency opening command unit 79. The switch 55 switches between the output of the subtractor 71 and the output of the subtractor 76 and inputs it to the q-axis component control means 64. The switch 56 switches between the output of the power factor command value setting means 39 and the output of the power factor 1 command value setting means 40 and inputs it to the subtractor 77. The power factor calculation means 69 calculates the power factor of the generator motor 2 from the voltage and current of the bus 5 from the instrument transformer 11 and the instrument current transformer 12.
[0076]
The excitation power converter 3 and the excitation control device 220 are the excitation devices in the present invention. The emergency opening command means 79 is the opening instruction means in the present invention, and the emergency opening command means 79, the stop means 70, and the secondary side short-circuit switch 8 constitute an emergency stop device in the present invention. Further, when the slip frequency storage command means 38, the subtractor 76, and the switch 55 operate as a slip frequency fixing means and a stop command is issued while the generator motor 2 is operating as a generator, the slip frequency of the generator motor 2 is reached. Is fixed to the slip frequency of the generator motor 2 when the stop command is issued.
Since other configurations are the same as those of the first embodiment shown in FIG. 1, the corresponding components are denoted by the same reference numerals and description thereof is omitted.
[0077]
When the variable speed pumped-storage power generator is in a power generation operation, if a sudden stop command is transmitted due to a mechanical system accident or the stop command is transmitted by an operator, the slip frequency storage command means 38 indicates when the command is issued. The slip frequency is stored and output to the subtractor 76 as a command value. The subtractor 76 calculates the difference between the slip frequency of the generator motor 2 obtained from the difference between the rotation speed of the generator motor 2 output from the subtractor 73 and the system frequency and the command value of the slip frequency from the slip frequency storage command means 38. Obtained and output to the switch 55.
[0078]
Then, the switch 55 of the excitation controller 250 is switched so that the output from the subtractor 76 is input to the q-axis control means 64, and the slip frequency of the generator motor 2 is stored in the slip frequency storage command means 38. The excitation power converter 3 is controlled to have a frequency. Switching from so-called excitation system power control to slip frequency control. Since the system frequency does not fluctuate little, the operation is almost the same as the constant rotational speed control.
[0079]
On the other hand, the sudden stop command is also given to the flow rate adjusting means 90 (FIG. 4), and the flow rate adjusting means 90 switches from the signal of the amplifier 92 to the guide vane fully closed command signal from the fully closed command means 93 by the switch 93. The guide vanes for adjusting the flow rate of the pump turbine 1 are closed at the fastest speed so that the amount of water flowing into the pump turbine 1 becomes zero via the voltage valve control means 96 and the main servo control means 98. And if the amount of inflow water of the pump turbine 1 decreases, the rotation speed of the generator motor 2 will fall.
[0080]
However, the converter control means 68 and the excitation power converter 3 control so as to reduce the output of the generator motor 2 and maintain the slip frequency of the generator motor 2 at the slip frequency when the stop command is issued. Therefore, as the amount of water flowing into the pump turbine 1 decreases, the output of the generator motor 2 also decreases. In this way, the rotational speed is maintained at the slip frequency when the stop command is issued, so there is no risk of deviating from the variable speed range.
[0081]
On the other hand, since the generator motor 2 sends reactive power based on the request of the power system 7, the current of the generator motor does not become zero even when the power output is zero. Since it is preferable to open the parallel circuit breaker 4 when the current of the generator motor is zero, immediately after the stop command is transmitted, the switch 56 of the excitation control device 250 is switched from the power factor command value setting means 39 side to the power factor 1 By switching to the command value setting means 40 side, the power factor of the generator motor 2 is controlled to be 1.
[0082]
With the above control, the guide vane is closed and the first condition that the output of the generator motor 2 becomes almost zero, and the second condition that the power factor becomes equal to or higher than the specified value (almost 1), that is, the reactive power is When both conditions of the second condition of becoming almost zero are satisfied, the circuit breaker opening command means 47 operates to open the parallel circuit breaker 4. In this way, since the parallel circuit breaker 4 is opened in a state where the current is substantially zero, the consumption of the contact can be reduced.
[0083]
Moreover, when a serious electric accident such as a three-phase short circuit occurs in the generator motor 2 main body or the main circuit of the generator motor 2 during operation or after the start of stop control, an emergency stop must be performed. In an emergency stop, the parallel circuit breaker 4 is immediately opened by the emergency opening command means 79, and the electric output cannot be discharged to the system. Therefore, it is necessary to set the power command value to zero. The reason is the same as described in the first embodiment.
[0084]
For this reason, simultaneously with the opening of the parallel circuit breaker 4, the excitation power converter 3 is stopped by the stop means 70 of the excitation control device 50 and the secondary short-circuit switch 8 is closed using the signal that the circuit breaker 4 has been opened. The secondary winding 2c of the generator motor 2 is short-circuited to prevent unnecessary control of the excitation system.
[0085]
When the parallel circuit breaker 4 in each of the above embodiments is opened, it is determined that the output current of the generator motor 2 has become substantially zero by a combination of the guide vane opening, active power, reactive power, and the like. Although what is opened is shown, the parallel breaker may be opened when the output current of the generator motor 2 is measured and the output current becomes substantially zero.
[0086]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0087]
A variable speed pumped storage power generator according to the present invention includes a flow rate adjusting device that adjusts the amount of water flowing into a pump turbine having a guide vane, and an AC excitation type in which a rotor around which a secondary winding is wound is coupled to the pump turbine. When a stop command is issued during the power generation operation of the synchronous machine, the parallel interrupting device that connects this AC excited synchronous machine to the power system, and the AC excited synchronous machine Rotation of the AC excitation type synchronous machine when a stop command is issued while the AC excitation type synchronous machine is generating operation. To keep the number at the rotation speed at stop command Since it has an excitation device that controls the excitation current of the secondary winding,
When a stop command is issued during power generation operation, the AC excitation type synchronous machine Since it is controlled to maintain the rotation speed at the time of stop command, if the amount of water flowing into the pump turbine is reduced, its output will also decrease. The rotation fluctuation in the process of decreasing the output is suppressed, and it can be stopped stably.
[0088]
A guide vane opening operation opening command means is provided for opening the parallel cutoff device when the guide vane opening is below a predetermined value and the reactive power of the AC excitation type synchronous machine is below a specified value. Because it is characterized by
If the guide vane opening is less than the predetermined value, the output of the AC excitation type synchronous machine, that is, the active power is less than the predetermined value, and if the reactive power is less than the specified value, the output current of the AC excitation type synchronous machine is In this state, the parallel breaker is opened, and wear of the contact can be prevented.
[0089]
Furthermore, since the head vane is provided with a head correction means for correcting the opening of the guide vane with the head of the inflow water flowing into the pump turbine,
If you correct the opening of the guide vane with the drop of the inflowing water flowing into the pump turbine, the output of the AC excitation type synchronous machine, that is, the more accurate opening of the guide vane where the active power is less than the predetermined value can be obtained, The accuracy at the time of opening the parallel blocking device can be improved.
[0090]
Also, it is provided with an apparent power operation opening command means for opening the parallel cutoff device when the active power of the AC excitation type synchronous machine becomes a predetermined value or less and the reactive power becomes a specified value or less. Because it features
If the active power of the AC excitation type synchronous machine falls below the specified value and the reactive power falls below the specified value, the output current of the AC excitation type synchronous machine will fall below the predetermined value. The circuit breaker is opened and wear of the contact can be prevented.
[0091]
And, since the output current operation opening command means for opening the parallel cutoff device when the output current of the AC excitation type synchronous machine becomes a predetermined value or less is provided,
Since the parallel interrupting device is opened after the output current of the AC excitation type synchronous machine becomes a predetermined value or less, it is possible to prevent the contact from being worn.
[0092]
Further, the excitation device is characterized by comprising zero reactive power command means for commanding the reactive power of the AC excitation type synchronous machine to be zero when a stop command is issued.
When the amount of inflow water is reduced, the active power is reduced, and the reactive power is also reduced by the zero reactive power command means so that the reactive power is reduced to zero. In this state, the parallel breaker is opened, and wear of the contacts can be prevented.
[0093]
In addition, since the excitation device is provided with power factor command means for instructing the power factor of the AC excitation type synchronous machine to be 1 when a stop command is issued,
When the amount of inflow water is reduced, the active power decreases, and the power factor command means instructs the power factor to be 1, that is, the reactive power is reduced to zero, so that the reactive power also decreases. In this state, the parallel breaker is opened, and wear of the contacts can be prevented.
[0094]
And there is provided an emergency stop device having an opening command means for issuing an opening command to the parallel shut-off device and a zero power command means for issuing a command to make the output power zero on condition that the parallel shut-off device is opened. Because it features
If a command to open the parallel shut-off device and make the output power zero is issued, a major accident such as a three-phase short circuit will occur in the main circuit of the AC excitation type synchronous machine, and the AC excitation type synchronous machine will be removed from the power system. In the case of an emergency stop that must be immediately disconnected, unnecessary control by the excitation device can be prevented, and the possibility of causing an abnormal voltage increase due to excessive excitation can be eliminated.
[0095]
Further, an opening command means for issuing an opening command to the parallel shut-off device, an excitation output stop means for stopping the output of the exciter on the condition that the parallel shut-off device is opened, and a secondary winding for short-circuiting the secondary winding of the AC excitation type synchronous machine. Since it is provided with an emergency stop device having a secondary winding short-circuit means,
If the parallel shut-off device is opened and the output of the exciter is stopped, a serious accident such as a three-phase short circuit will occur in the main circuit of the AC exciter and the AC exciter must be immediately disconnected from the power system. In the case of an emergency stop that must be performed, unnecessary control by the excitation device can be prevented, and the possibility of causing an abnormal voltage increase due to excessive excitation can be eliminated.
[0096]
In addition, the variable speed pumped storage power generator stopping method according to the present invention includes a flow rate adjusting device for adjusting the amount of water flowing into a pump turbine having a guide vane, and a rotor wound with a secondary winding coupled to the pump turbine. Variable speed pumped storage power generation comprising: an AC excitation type synchronous machine, a parallel cutoff device that connects the AC excitation type synchronous machine to a power system, and an excitation device that excites a secondary winding of the AC excitation type synchronous machine When a stop command is issued while the AC excitation type synchronous machine is generating power Maintain the rotational speed of the AC excitation type synchronous machine at the rotational speed of the AC excitation type synchronous machine when the stop command is issued. Since the secondary winding of the AC excitation type synchronous machine is excited,
When a stop command is issued during power generation operation, the AC excitation type synchronous machine Since it is controlled to maintain the rotation speed at the time of stop command, if the amount of water flowing into the pump turbine is reduced, its output will also decrease. The rotation fluctuation in the process of decreasing the output is suppressed, and it can be stopped stably.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a configuration of a variable speed pumped storage power generation device according to an embodiment of the present invention.
2 is a diagram showing the configuration of the excitation control device of FIG. 1 and the circuit breaker opening command means. FIG.
FIG. 3 is a configuration diagram showing a detailed configuration of the flow rate control device of FIG. 1;
4 is a configuration diagram showing a detailed configuration of the flow rate adjusting means of FIG. 1; FIG.
FIG. 5 is a diagram showing a configuration of an excitation control device and a circuit breaker opening command means showing another embodiment of the present invention.
FIG. 6 is a diagram showing a configuration of an excitation control device and a circuit breaker opening command means according to another embodiment of the present invention.
[Explanation of symbols]
1 pump turbine, 2 generator motor, 3 excitation power converter, 4 parallel breaker,
7 power system, 8 secondary side short-circuit switch, 20, 120, 220 excitation control means,
50, 150, 250 Excitation control device, 31 Power command value setting means,
32 zero power command value setting means, 33 reactive power command value setting means,
34 zero reactive power command value setting means, 35 secondary excitation frequency and phase storage command means,
36 frequency setting means, 37 rotation speed storage command means, 38 slip frequency storage command means,
39 power factor command value setting means, 40 power factor 1 command value setting means, 43 head correction means,
45, 46, 47 Circuit breaker opening command means, 61 Electric power calculation means,
62 reactive power calculation means, 69 power factor calculation means, 70 stop means,
79 emergency opening command means, 80 flow rate control device, 81 dam water level calculation means,
90 Flow rate adjusting means, 93 Fully closed command means.

Claims (10)

ガイドベーンを有するポンプ水車への流入水量を調整する流量調整装置と、二次巻線が巻回された回転子が上記ポンプ水車に結合された交流励磁形同期機と、この交流励磁形同期機を電力系統に接続する並列用遮断装置と、上記交流励磁形同期機が発電運転中に停止指令が発せられたときの上記交流励磁形同期機の回転数を停止指令時回転数として記憶する回転数記憶手段を有し上記交流励磁形同期機が発電運転中に停止指令が発せられたときに上記交流励磁形同期機の回転数を上記停止指令時回転数に維持するように上記二次巻線の励磁電流を制御する励磁装置を備えた可変速揚水発電装置。A flow rate adjusting device for adjusting the amount of water flowing into a pump turbine having a guide vane, an AC excitation type synchronous machine in which a rotor around which a secondary winding is wound is coupled to the pump turbine, and this AC excitation type synchronous machine And a parallel shut-off device that connects the AC excitation type synchronous machine to the power system and a rotation that stores the rotation speed of the AC excitation type synchronous machine when a stop command is issued during the power generation operation as a rotation speed at the time of the stop command. The secondary winding so as to maintain the rotation speed of the AC excitation type synchronous machine at the rotation speed at the time of the stop command when a stop command is issued during the power generation operation of the AC excitation type synchronous machine . A variable-speed pumped-storage generator equipped with an exciting device that controls the exciting current of the wire. ガイドベーンの開度が所定値以下になり、かつ交流励磁形同期機の無効電力が規定値以下になったときに並列用遮断装置を開路動作させるガイドベーン開度動作開放指令手段を設けたものであることを特徴とする請求項1に記載の可変速揚水発電装置。 Provided with a guide vane opening operation opening command means for opening the parallel cutoff device when the guide vane opening is below a predetermined value and the reactive power of the AC excitation type synchronous machine is below a specified value. The variable speed pumped storage power generator according to claim 1 , wherein ガイドベーンの開度をポンプ水車に流入する流入水の落差で補正する落差補正手段を設けたものであることを特徴とする請求項2に記載の可変速揚水発電装置。 3. The variable speed pumped storage power generator according to claim 2 , further comprising a head correction means for correcting the opening of the guide vane with a head of inflow water flowing into the pump turbine . 交流励磁形同期機の有効電力が所定値以下になるとともに無効電力が規定値以下になったときに並列用遮断装置を開路動作させる皮相電力動作開放指令手段を設けたものであることを特徴とする請求項1に記載の可変速揚水発電装置。 It is characterized by providing an apparent power operation opening command means for opening the parallel circuit breaker when the active power of the AC excitation type synchronous machine falls below a predetermined value and the reactive power falls below a specified value. The variable speed pumped storage power generator according to claim 1 . 交流励磁形同期機の出力電流が所定値以下になったときに並列用遮断装置を開路動作させる出力電流動作開放指令手段を設けたものであることを特徴とする請求項1に記載の可変速揚水発電装置。 2. The variable speed according to claim 1 , further comprising output current operation opening command means for opening the parallel cutoff device when the output current of the AC excitation type synchronous machine becomes a predetermined value or less. Pumped-storage power generator. 励磁装置は、停止指令が発せられたときに交流励磁形同期機の無効電力が零になるように指令する零無効電力指令手段を設けたものであることを特徴とする請求項1に記載の可変速揚水発電装置。 The excitation device is provided with zero reactive power command means for commanding the reactive power of the AC excitation type synchronous machine to be zero when a stop command is issued . Variable speed pumped storage power generator. 励磁装置は、停止指令が発せられたときに交流励磁形同期機の力率が1になるように指令する力率指令手段を設けたものであることを特徴とする請求項1に記載の可変速揚水発電装置。 2. The exciter according to claim 1 , wherein the exciter is provided with power factor command means for commanding the AC excitation type synchronous machine to have a power factor of 1 when a stop command is issued. Variable speed pumped-storage generator. 並列用遮断装置に開放指令を発する開放指令手段と上記並列用遮断装置の開放を条件に出力電力を零にする指令を発する零電力指令手段とを有する非常停止装置を設けたものであることを特徴とする請求項1に記載の可変速揚水発電装置。 An emergency stop device having an opening command means for issuing an opening command to the parallel shut-off device and a zero power command means for issuing a command to zero output power on condition that the parallel shut-off device is opened is provided. The variable speed pumped-storage power generator according to claim 1 characterized by things. 並列用遮断装置に開放指令を発する開放指令手段と上記並列用遮断装置の開放を条件に励磁装置の出力を停止する励磁出力停止手段と交流励磁形同期機の二次巻線を短絡する二次巻線短絡手段とを有する非常停止装置を設けたものであることを特徴とする請求項1に記載の可変速揚水発電装置。 Open command means for issuing an open command to the parallel shut-off device, excitation output stop means for stopping the output of the exciter on condition that the parallel shut-off device is opened, and a secondary for short-circuiting the secondary winding of the AC excitation type synchronous machine The variable speed pumped storage power generator according to claim 1 , wherein an emergency stop device having a winding short-circuit means is provided . ガイドベーンを有するポンプ水車への流入水量を調整する流量調整装置と、二次巻線が巻回された回転子が上記ポンプ水車に結合された交流励磁形同期機と、この交流励磁形同期機を電力系統に接続する並列用遮断装置と、上記交流励磁形同期機の上記二次巻線を励磁する励磁装置とを備えた可変速揚水発電装置の停止方法であって、上記交流励磁形同期機が発電運転中に停止指令が発せられたとき上記交流励磁形同期機の回転数を当該停止命令が発せられたときの上記交流励磁形同期機の回転数に維持するように上記交流励磁形同期機の上記二次巻線を励磁する可変速揚水発電装置の停止方法。A flow rate adjusting device that adjusts the amount of water flowing into a pump turbine having a guide vane, an AC excitation type synchronous machine in which a rotor wound with a secondary winding is coupled to the pump turbine, and this AC excitation type synchronous machine A variable speed pumped storage power generator stopping method comprising: a parallel interrupting device for connecting a power source to a power system; and an excitation device for exciting the secondary winding of the AC excitation type synchronous machine, the AC excitation type synchronization When the stop command is issued during the generator operation, the AC excitation type synchronous machine is maintained at the rotational speed of the AC excitation type synchronous machine when the stop command is issued. A method for stopping a variable speed pumped storage power generator that excites the secondary winding of the synchronous machine.
JP2002132394A 2002-05-08 2002-05-08 Variable speed pumped storage power generation device and method for stopping variable speed pumped storage power generation device Expired - Fee Related JP3903425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002132394A JP3903425B2 (en) 2002-05-08 2002-05-08 Variable speed pumped storage power generation device and method for stopping variable speed pumped storage power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002132394A JP3903425B2 (en) 2002-05-08 2002-05-08 Variable speed pumped storage power generation device and method for stopping variable speed pumped storage power generation device

Publications (2)

Publication Number Publication Date
JP2003324992A JP2003324992A (en) 2003-11-14
JP3903425B2 true JP3903425B2 (en) 2007-04-11

Family

ID=29544487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002132394A Expired - Fee Related JP3903425B2 (en) 2002-05-08 2002-05-08 Variable speed pumped storage power generation device and method for stopping variable speed pumped storage power generation device

Country Status (1)

Country Link
JP (1) JP3903425B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202286A (en) * 2006-01-26 2007-08-09 Toshiba Corp Excitation device of synchronous machine
JP6398273B2 (en) * 2014-04-10 2018-10-03 株式会社明電舎 Generator shutdown method and generator system
CN107493039B (en) * 2017-09-04 2023-09-12 国家电网公司 Mechanical braking control device, method and system of pumping and accumulating unit
JP7259731B2 (en) * 2019-12-23 2023-04-18 株式会社明電舎 Operation support method for hydraulic power generator, Operation support system for hydraulic power generator, Operation support method for hydraulic power generator

Also Published As

Publication number Publication date
JP2003324992A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
EP3371882B1 (en) Balancing reactive current between a dfig stator and a grid-side inverter
US9270120B2 (en) Methods, systems, and computer readable media for adaptive out of step protection for power generators with load resynchronization capability
CA2853359A1 (en) A low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid
CA2895270A1 (en) Control method and control system for parallel operation between different types of power generator
WO2013005503A1 (en) Operation control apparatus and operation control method for variable speed motor generator
JP3903425B2 (en) Variable speed pumped storage power generation device and method for stopping variable speed pumped storage power generation device
US20100207589A1 (en) Double-fed asynchronous generator and method for its operation
JP5677020B2 (en) Power plant and operation method thereof
JP6029993B2 (en) Static frequency conversion power supply
JP3915085B2 (en) Variable speed pumped storage power generation controller
JP4870539B2 (en) Control system for double-fed synchronous machine
JP2003083226A (en) Speed adjustment control method for hydraulic power generation plant and speed adjuster
JP3967483B2 (en) System interconnection protection device for power generation facilities
JPH10215521A (en) System interconnection protector for power generation facility
JP2003339196A (en) Excitation controller of variable speed pumped storage power generation motor
JP7365272B2 (en) Synchronous machine device, variable speed pumped storage power generation device, and operating method
JP3743950B2 (en) Control device for power converter
JP4607492B2 (en) Control method and control device for turbine runner vane
JPS6359798A (en) Water-wheel generator
JP3130192B2 (en) Secondary excitation control method for AC excitation synchronous machine
JPH11343812A (en) Turbine control device
JP3140512B2 (en) Variable speed generator motor system and method for detecting load shedding of variable speed generator motor
JPS588680B2 (en) Denriyokudo Yokusei Yokuseigiyosouchi
CN115842494A (en) Pre-installed phase modulator excitation control system and control method
JPH0880094A (en) Method and device for controlling variable speed generator motor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061227

R150 Certificate of patent or registration of utility model

Ref document number: 3903425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees