JP3903065B1 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP3903065B1
JP3903065B1 JP2006096807A JP2006096807A JP3903065B1 JP 3903065 B1 JP3903065 B1 JP 3903065B1 JP 2006096807 A JP2006096807 A JP 2006096807A JP 2006096807 A JP2006096807 A JP 2006096807A JP 3903065 B1 JP3903065 B1 JP 3903065B1
Authority
JP
Japan
Prior art keywords
space
cold air
temperature
drinking water
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006096807A
Other languages
Japanese (ja)
Other versions
JP2007271150A (en
Inventor
昭義 大平
良二 河井
三紀夫 山田
あゆみ 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2006096807A priority Critical patent/JP3903065B1/en
Priority to CNB200710091598XA priority patent/CN100572995C/en
Priority to KR1020070030747A priority patent/KR100850062B1/en
Application granted granted Critical
Publication of JP3903065B1 publication Critical patent/JP3903065B1/en
Publication of JP2007271150A publication Critical patent/JP2007271150A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/006Other cooling or freezing apparatus specially adapted for cooling receptacles, e.g. tanks
    • F25D31/007Bottles or cans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0026Details for cooling refrigerating machinery characterised by the incoming air flow
    • F25D2323/00265Details for cooling refrigerating machinery characterised by the incoming air flow through the front top part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0027Details for cooling refrigerating machinery characterised by the out-flowing air
    • F25D2323/00276Details for cooling refrigerating machinery characterised by the out-flowing air from the bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/803Bottles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/805Cans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/121Sensors measuring the inside temperature of particular compartments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

【課題】家庭用の冷蔵庫を使って飲料水を過冷却させる場合、庫内の冷気雰囲気を均一にするだけでは十分でなく、飲料水内部の温度分布が過冷却解除に起因していることがあり、過冷却が解除し易くなることがある。
【解決手段】空間65内に収納される食品を冷却する貯蔵室10を有する冷蔵庫であって、空間65の周囲に設けられる冷気流通空間66と、空間65と冷気流通空間66との間に設けられる断熱層70と、空間65内を0℃より低い冷凍温度帯に冷却するように、冷気流通空間66に冷凍温度の冷気を吐出する冷気吐出口57と、冷気吐出口57から吐出される冷気を生成する冷却器4とを備え、空間65内を0℃よりも低い温度として食品の間接冷却を行う。この冷却方式により、飲料水内部の温度分布の発生を抑えることができ、過冷却状態になった飲料水が、不意に過冷却解除しないようにした冷蔵庫を提供することが可能となる。
【選択図】図3
[PROBLEMS] When using a refrigerator at home to supercool drinking water, it is not sufficient to make the cool air atmosphere in the cabinet uniform, and the temperature distribution inside the drinking water is caused by the release of supercooling. In some cases, overcooling can be easily released.
A refrigerator having a storage chamber (10) for cooling food stored in a space (65), a cold air circulation space (66) provided around the space (65), and a space (65) provided between the space (65) and the cold air circulation space (66). Cold air discharged from the cool air discharge port 57, a cool air discharge port 57 that discharges cool air having a freezing temperature to the cool air circulation space 66 so as to cool the inside of the space 65 to a freezing temperature zone lower than 0 ° C. The indirect cooling of the food is performed with the temperature in the space 65 being lower than 0 ° C. By this cooling method, it is possible to suppress the occurrence of temperature distribution inside the drinking water, and to provide a refrigerator that prevents the drinking water that has become supercooled from being suddenly released from overcooling.
[Selection] Figure 3

Description

本発明は冷蔵庫に関する。   The present invention relates to a refrigerator.

水が凍結温度以下になっても液体のままで存在する状態、すなわち過冷却現象は古くから知られている。例えば、過冷却状態となった容器内の飲料水をグラスに注ぐと、その際に生じる衝撃により過冷却は一気に解除され、シャーベット状の氷がグラス上に生成される。シャーベット状の氷と凍結に至らなかった飲料水とをミックスさせたものは、見て楽しいだけではなく、新食感飲料水としても注目されており、フィットネスクラブ、居酒屋、ショットバー等で実際にお客に提供されてきている。しかしながら、飲料水の過冷却状態は物理的に非常に不安定な状態であるため、維持させることは容易ではない。例えば、飲料水に伝達する振動,冷却速度,冷蔵庫内の温度分布、また飲料水内の温度分布等が液体の過冷却を解除させる要因と考えられるが、学術的にもまだ明らかになっていないことが多い。   A state where water remains in a liquid state even when the temperature falls below the freezing temperature, that is, the supercooling phenomenon has been known for a long time. For example, when drinking water in a supercooled container is poured into a glass, the supercooling is released at once due to an impact generated at that time, and sherbet-like ice is generated on the glass. What mixed sherbet-like ice and drinking water that did not freeze is not only fun to watch, but also attracted attention as a fresh texture drinking water, actually in fitness clubs, taverns, shot bars etc. It has been provided to customers. However, since the supercooled state of drinking water is a physically very unstable state, it is not easy to maintain it. For example, vibrations transmitted to drinking water, cooling rate, temperature distribution in refrigerator, temperature distribution in drinking water, etc. are thought to be factors that cancel the supercooling of liquid, but have not yet been clarified academically. There are many cases.

家庭用冷蔵庫で飲料水を過冷却させる場合、ドア開閉時の振動による過冷却解除防止対策も重要であるが、それと同時に飲料水の冷却の仕方が大きな課題となる。また、飲料水を庫内で冷却して所定の凍結温度以下にする場合、飲料水の容器に冷気が直接当たる場所から凍る場合がある。従って、飲料水を所定の過冷却温度域まで到達させてその温度を維持させるためには、庫内を均温化させると共に、飲料水内部に温度分布を持たせない冷却方法が必要となる。   When supercooling drinking water in a household refrigerator, it is important to prevent overcooling by vibration when opening and closing the door, but at the same time, how to cool drinking water becomes a major issue. Moreover, when drinking water is cooled in a store | warehouse | chamber and it makes below a predetermined freezing temperature, it may freeze from the place where cold air | gas directly hits the container of drinking water. Therefore, in order to bring the drinking water to a predetermined supercooling temperature range and maintain the temperature, a cooling method is required that equalizes the inside of the refrigerator and does not have a temperature distribution inside the drinking water.

このような課題を解決するために、特許文献1が挙げられる。特許文献1には、庫内の冷気雰囲気を均一な温度分布状態にするために冷気供給ダクトと冷気吸引ダクトを備え、飲料水を過冷却状態に冷却する場合の収納室内を、均一な温度分布状態にしており、所定の温度(凍結温度以下)に到達する前に過冷却が解除するのを防止している。また、特許文献2では過冷却運転を行う際における冷気循環量を制御し、庫内の温度変動を小さくしている。   In order to solve such a problem, Patent Document 1 is cited. In Patent Document 1, a cold air supply duct and a cold air suction duct are provided in order to make the cold air atmosphere in the cabinet into a uniform temperature distribution state, and the storage room in the case of cooling drinking water to a supercooled state has a uniform temperature distribution. In this state, the supercooling is prevented from being released before reaching a predetermined temperature (below the freezing temperature). Moreover, in patent document 2, the amount of cold air circulation at the time of performing supercooling operation is controlled, and the temperature fluctuation in a warehouse is made small.

特開2003−214753号公報JP 2003-214753 A 特開2001−4260号公報JP 2001-4260 A

特許文献1は、過冷却飲料水を製造する過冷却用冷却装置に関するものであるが、庫内に設置された冷気供給ダクトと吸引ダクトを対向するように設置し、飲料水を収納する場所の冷気雰囲気を均一な温度分布状態にしている。また、特許文献2においても冷気循環量を制御することで温度変動の抑制を試みている。   Patent document 1 relates to a cooling device for supercooling that produces supercooled drinking water. However, a cold air supply duct and a suction duct that are installed in a warehouse are arranged so as to face each other, and a place for storing drinking water is disclosed. The cold air atmosphere has a uniform temperature distribution. Also in Patent Document 2, attempts are made to suppress temperature fluctuations by controlling the amount of cool air circulation.

しかしながら、家庭用の冷蔵庫を使って飲料水を過冷却させる場合、庫内の冷気雰囲気を均一にするだけでは十分でなく、飲料水内部の温度分布が過冷却解除に起因していることがあり、過冷却が解除し易くなることがある。   However, when drinking water is supercooled using a refrigerator for home use, it is not sufficient to make the cool air atmosphere in the refrigerator uniform, and the temperature distribution inside the drinking water may be due to overcooling cancellation. In some cases, overcooling can be easily released.

本発明は上記課題に鑑みてなされたもので、過冷却状態の維持向上を図った冷蔵庫を提供することを目的としている。   This invention is made | formed in view of the said subject, and it aims at providing the refrigerator which aimed at the maintenance improvement of a supercooled state.

空間内に収納される食品を冷却する貯蔵室を有する冷蔵庫において、上記目的を達成するための、本発明の態様は、前記空間の周囲に設けられる冷気流通空間と、
前記空間内に収納される食品を間接冷却するために、前記空間と前記冷気流通空間との間を区画する区画壁と、
前記空間と前記冷気流通空間との間に設けられる断熱層と、
前記空間内を0℃より低い冷凍温度帯に冷却するように、前記空間の上方を覆う区画壁よりも上側の前記冷気流通空間に冷凍温度の冷気を吐出する冷気吐出口と、
前記冷気吐出口から吐出される冷気を生成する冷却器と
前記冷気吐出口より下方に位置し、前記冷気吐出口から吐出されて前記冷気流通空間を流れた冷気を前記冷却器へと戻すための冷気戻り口とを備え、
前記空間内に収納される食品を過冷却状態で保存可能としたものである。
In a refrigerator having a storage room for cooling food stored in the space, an aspect of the present invention for achieving the above object is a cold air circulation space provided around the space;
In order to indirectly cool the food stored in the space, a partition wall that partitions the space and the cold air circulation space;
A heat insulating layer provided between the space and the cold air circulation space;
A cold air discharge port for discharging cold air at a freezing temperature into the cold air circulation space above the partition wall covering the upper part of the space so as to cool the inside of the space to a freezing temperature zone lower than 0 ° C .;
A cooler for generating cold air discharged from the cold air outlet ;
A cold air return port for returning the cool air discharged from the cold air discharge port and flowing through the cold air circulation space to the cooler, located below the cold air discharge port ;
The food stored in the space can be stored in a supercooled state .

上記の本発明における好ましい具体的構成は、前記区画壁は、上方に開口部を有するとともに側面及び底面には孔がない容器部材と前記開口部を覆うフタ部材とからなるものとしたことである。 A preferable specific configuration in the present invention described above is that the partition wall is composed of a container member having an opening on the upper side and having no holes on the side surface and the bottom surface and a lid member covering the opening. .

さらに、上記のいずれかの構成を有するものにおいて、より好ましい具体的な態様は、次の通りである。すなわち、前記空間内の空気の温度は、前記空間の上側では下側より高く、かつ、前記冷気流通空間を流れる冷気の温度は、前記空間よりも上側では下側よりも低くし、前記空間に5℃以上の食品が収納されると、前記食品が4℃〜0℃の温度を経て、さらに0℃よりも低い温度まで冷却されることであるFurthermore, the more preferable specific aspect in what has said structure is as follows. That is, the temperature of the air in the space is higher than the lower side above the space, and the temperature of the cold air flowing through the cold air circulation space is lower than the lower side above the space. 5 When ° C. or more food is accommodated, the food through the temperature of 4 ° C. ~0 ° C., is to be cooled to a temperature lower than the further 0 ° C..

本発明によれば、過冷却状態の維持向上を図った冷蔵庫を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the refrigerator which aimed at the maintenance improvement of the supercooled state can be provided.

本欄において説明するように、家庭用の冷蔵庫で過冷却飲料水を作るには、飲料水を間接的に冷却し、飲料水内部に発生する上下方向の温度分布を抑えることが重要であるということがわかった。従って、過冷却容器には直接冷気が流入しない間接冷却方式を採用し、飲料水内鉛直方向に発生する温度分布を小さくして過冷却状態を維持する。   As explained in this section, in order to make supercooled drinking water in a refrigerator for home use, it is important to indirectly cool the drinking water and suppress the vertical temperature distribution generated inside the drinking water. I understood it. Therefore, an indirect cooling method in which cold air does not directly flow into the supercooling container is adopted, and the temperature distribution generated in the vertical direction in the drinking water is reduced to maintain the supercooled state.

本実施例では、家庭用冷蔵庫の貯蔵室内に設置する容器、すなわち貯蔵容器の外周部に断熱層を有し、貯蔵容器内部に設置した飲料水や生鮮食料品が、貯蔵容器周囲を流れる冷気により間接的に冷却される方式を採用している。貯蔵容器内部の温度は、温度センサーにより検知され、貯蔵容器を設置している貯蔵室の冷気入口部に設けたダンパーにより制御される。   In this embodiment, the container installed in the storage room of the household refrigerator, that is, the outer periphery of the storage container has a heat insulating layer, and the drinking water and fresh food installed inside the storage container are cooled by the cold air flowing around the storage container. Indirect cooling method is adopted. The temperature inside the storage container is detected by a temperature sensor and controlled by a damper provided at the cold air inlet of the storage chamber in which the storage container is installed.

また、貯蔵容器の壁面にペットボトルや瓶,缶などの飲料水容器が直接接触し、その部分から過冷却が解除して凍結が進行しないように、容器にはリブ状の凸部を設けた別体の内側容器を設けてあり、飲料水容器が容器内壁と直接接触する部分を少なくしている。更に、飲料水容器が移動しないように、凸部と飲料水容器が接触する部分には、滑り止め
(例えば、ゴム)が設けてあり、ドア開閉時においても飲料水容器が貯蔵容器内で移動し難くしている。これらの構成を備えた冷蔵庫の実施の形態を図面を用いて説明する。
In addition, the container is provided with rib-shaped projections so that drinking water containers such as PET bottles, bottles and cans come into direct contact with the wall surface of the storage container, and overcooling is released from that part and freezing does not proceed. A separate inner container is provided to reduce the portion where the drinking water container directly contacts the inner wall of the container. Further, a slip stopper (for example, rubber) is provided at the portion where the convex portion and the drinking water container contact so that the drinking water container does not move, and the drinking water container moves within the storage container even when the door is opened and closed. It is hard to do. An embodiment of a refrigerator having these configurations will be described with reference to the drawings.

図1は本発明の実施の形態による冷蔵庫の正面外観図である。図1に示した冷蔵庫は、上から冷蔵室9,冷凍室10,11、及び野菜室12を備えた断熱箱体からなっており
(図2参照)、それぞれの貯蔵室の開口部を冷蔵室ドア15,製氷室ドア43,冷凍室ドア16,17,野菜室ドア18で覆っている。なお、配置に関しては必ずしもこの図の場合と一致しなくても良い。
FIG. 1 is a front external view of a refrigerator according to an embodiment of the present invention. The refrigerator shown in FIG. 1 is composed of a heat-insulating box having a refrigerator compartment 9, freezer compartments 10, 11 and a vegetable compartment 12 from above (see FIG. 2), and the opening of each storage compartment is provided in the refrigerator compartment. The door 15, the ice making room door 43, the freezing room doors 16 and 17, and the vegetable room door 18 are covered. Note that the arrangement is not necessarily the same as in the case of this figure.

また、製氷室ドア43,冷凍室ドア16,17及び野菜室ドア18は引き出し式の扉であり、各貯蔵室内のケースとともに引き出される構造としている。   Further, the ice making room door 43, the freezing room doors 16, 17 and the vegetable room door 18 are drawer type doors, and are structured to be pulled out together with the case in each storage room.

図2は本発明の実施の形態による冷蔵庫の断面図である。冷蔵庫8は、上から冷蔵室9,冷凍室10,11,野菜室12の順番で配置されている。冷凍室,野菜室の内部には、食品収納用のケース40,41,42がそれぞれ冷凍室ドア16,17及び野菜室ドア
18の開閉と連動して備わっている。庫内を冷却するために、冷蔵庫8に冷凍サイクルが組み込まれており、圧縮機1,凝縮器2,絞り3,冷却器4によって構成され、それらは冷凍配管によって順次接続されている。冷却器4は冷凍室10,11の背部に位置する冷却器室内に配設され、冷却器室は冷凍室との間を仕切壁によって仕切られている。冷却器4の下流側に設置した庫内冷却ファン5により冷気を循環して庫内を冷却し、庫内冷却ファン5の下流側に設けたダンパー6の開閉によって、冷蔵室風路7あるいは冷凍室風路
13に冷気が導かれて冷蔵室9あるいは冷凍室10,11に冷気が供給されるようになっている(野菜室12は、冷蔵室9に供給される冷気の一部を導入することにより冷却される構造になっている(図示なし)。
FIG. 2 is a sectional view of the refrigerator according to the embodiment of the present invention. The refrigerator 8 is arrange | positioned in the order of the refrigerator compartment 9, the freezer compartments 10 and 11, and the vegetable compartment 12 from the top. Inside the freezer compartment and the vegetable compartment, food storage cases 40, 41, and 42 are provided in conjunction with the opening and closing of the freezer compartment doors 16, 17 and the vegetable compartment door 18, respectively. In order to cool the inside of the refrigerator, a refrigeration cycle is incorporated in the refrigerator 8, and is constituted by a compressor 1, a condenser 2, a throttle 3, and a cooler 4, which are sequentially connected by a refrigeration pipe. The cooler 4 is disposed in a cooler chamber located behind the freezer compartments 10 and 11, and the cooler chamber is partitioned from the freezer compartment by a partition wall. Cooling air is circulated by an internal cooling fan 5 installed on the downstream side of the cooler 4 to cool the interior, and the damper 6 provided on the downstream side of the internal cooling fan 5 opens and closes the refrigerator compartment air passage 7 or the freezing. Cold air is guided to the room air passage 13 so that the cold air is supplied to the refrigerator compartment 9 or the freezer compartments 10 and 11 (the vegetable compartment 12 introduces a part of the cold air supplied to the refrigerator compartment 9). The structure is cooled by this (not shown).

ダンパー6が開の場合、冷蔵室風路7,冷凍室風路13を通過して複数設けられた冷蔵室吐出口、あるいは冷凍室吐出口から冷気が供給され、冷蔵室9,野菜室12、そして冷凍室10,11が同時に冷却される。冷蔵室9を冷却した冷気は、冷蔵室戻りダクトを経由して冷却器4に戻され、また冷凍室10,11を冷却した空気は、冷凍室戻り口(冷凍室戻り空気流入部)14を経由して冷却器4に戻される。また、冷凍室10,11を単独で冷却する場合は、ダンパー6を閉にして冷気を冷凍室風路13に導いて冷却することができる。この場合、冷却器4に戻ってくる冷気は冷凍室戻り口14からのみとなる。   When the damper 6 is open, cold air is supplied from a plurality of refrigerating room outlets or freezer outlets passing through the refrigerating room air passage 7 and the freezer compartment air passage 13, and the refrigerating room 9, vegetable room 12, And the freezer compartments 10 and 11 are cooled simultaneously. The cold air that has cooled the refrigerator compartment 9 is returned to the cooler 4 through the refrigerator compartment return duct, and the air that has cooled the freezer compartments 10 and 11 passes through the freezer compartment return port (freezer compartment return air inlet) 14. And then returned to the cooler 4. Moreover, when cooling the freezer compartments 10 and 11 independently, the damper 6 can be closed and cold air can be guide | induced to the freezer compartment air path 13, and can be cooled. In this case, the cool air returning to the cooler 4 comes only from the freezer return port 14.

すなわち、本実施例の冷蔵庫は、室内を冷凍温度帯に保持される冷凍室10,11と、この冷凍室10,11の背部に配置され庫内循環空気を冷却する冷却器4と、この冷却器4が設けられ冷凍室10,11との間を仕切る仕切り壁より背部に設けられる冷却器室と、冷却器4によって生成される冷気を循環させる庫内冷却ファン5を備えている。また、冷却器室と冷凍室10,11との間を仕切る仕切り壁には、冷却器室と冷凍室10,11との間を連通する冷気戻り口14が設けられている。   That is, the refrigerator according to the present embodiment includes a freezer compartment 10 and 11 in which the room is maintained in a freezing temperature zone, a cooler 4 that is disposed on the back of the freezer compartment 10 and 11 and cools the circulating air inside the refrigerator, and this cooling. The cooler chamber is provided behind the partition wall that is provided with the cooler 4 and partitions the freezer compartments 10 and 11, and the internal cooling fan 5 that circulates the cool air generated by the cooler 4 is provided. In addition, a cool air return port 14 that communicates between the cooler chamber and the freezer compartments 10 and 11 is provided on a partition wall that partitions the cooler chamber and the freezer compartments 10 and 11.

図3は過冷却を行う貯蔵室の構造を示す図である。以下では、過冷却を行うための貯蔵容器を過冷却容器と称して説明する。この例では、過冷却容器62を冷凍室10に設置している。したがって、以下の説明では、過冷却を行う貯蔵室を、冷凍室10に代表させて記載する。冷凍室10は他の貯蔵室からの熱侵入を避けるために、断熱壁50,55によって冷蔵室9、下段の冷凍室11との間が仕切られている。また、図には示していないが、横に隣接する製氷室との間も断熱壁によって仕切られている。   FIG. 3 is a diagram showing the structure of a storage chamber that performs supercooling. Below, the storage container for performing supercooling is called and called a supercooling container. In this example, the supercooling container 62 is installed in the freezer compartment 10. Therefore, in the following description, the storage room that performs supercooling is described as being representative of the freezer room 10. The freezer compartment 10 is partitioned between the refrigerator compartment 9 and the lower freezer compartment 11 by heat insulating walls 50 and 55 in order to avoid heat intrusion from other storage compartments. Although not shown in the figure, the ice making chambers adjacent to each other are also partitioned by a heat insulating wall.

冷凍室10へ流入する冷気は、冷凍室10の後壁となるファンガード60に設けた吐出口57から冷凍室に流入し、吐出口57より下方に位置する吸込口61を経て冷凍室10外へと導かれる。吐出口57よりも上流側にはダンパーが設けられ(図示なし)、過冷却容器62内の温度が制御できるようになっている。また、必要に応じて温度制御をする電気ヒーターを備えても良い。   The cold air flowing into the freezer compartment 10 flows into the freezer compartment from the discharge port 57 provided in the fan guard 60 that is the rear wall of the freezer compartment 10, and passes through the suction port 61 located below the discharge port 57 and outside the freezer compartment 10. Led to. A damper (not shown) is provided upstream from the discharge port 57 so that the temperature in the supercooling vessel 62 can be controlled. Moreover, you may provide the electric heater which controls temperature as needed.

さらに、過冷却容器62には温度センサーが取り付けられており(図示なし)、この温度センサーの出力に基づいてダンパーの開閉が制御される。このように、吐出口57から冷凍室10内に流入する冷気を制御することで、過冷却容器62内部の温度を制御することができる。   Further, a temperature sensor is attached to the supercooling vessel 62 (not shown), and the opening / closing of the damper is controlled based on the output of the temperature sensor. In this way, the temperature inside the supercooling container 62 can be controlled by controlling the cool air flowing into the freezer compartment 10 from the discharge port 57.

断熱層70を有する容器部材56の上面開口はフタ部材58によって覆われ、過冷却容器62内部には貯蔵空間65が形成される。フタ部材58も断熱層を有しているため、貯蔵空間65は過冷却容器62の外部と断熱される。この断熱層は、発泡ウレタン,発泡スチロール、あるいは真空断熱材などの断熱材を配設して形成してもよいが、後述するように、過冷却容器62の外側の低温を利用して貯蔵空間65内を冷却するものであるため、空気断熱層によって形成してもよい。   The upper surface opening of the container member 56 having the heat insulating layer 70 is covered with a lid member 58, and a storage space 65 is formed inside the supercooling container 62. Since the lid member 58 also has a heat insulating layer, the storage space 65 is insulated from the outside of the supercooling vessel 62. The heat insulating layer may be formed by disposing a heat insulating material such as foamed urethane, foamed polystyrene, or a vacuum heat insulating material. However, as will be described later, the storage space 65 is utilized by utilizing the low temperature outside the supercooling vessel 62. Since it cools the inside, you may form by an air heat insulation layer.

特に、過冷却容器62の特質上、結露の発生や取り外して洗う場合などに水分が付着することが考えられるため、空気断熱が簡便でよい。空気断熱による断熱層を形成する構造については後述する。   In particular, due to the nature of the supercooling vessel 62, it is conceivable that moisture adheres when the condensation is generated or removed and washed. A structure for forming a heat insulation layer by air insulation will be described later.

過冷却容器62は、冷凍室ドア16と連動するように外枠54と連結しており、冷凍室ドア16と冷凍室10の開口周縁部との間にはパッキン59を備え、冷蔵庫8の外部への冷気の漏洩を抑えている。また、フタ部材58は冷凍室ドア16と連動して引き出される必要はなく、冷凍室10内に固定されたものでも差し支えない。フタ部材58を冷凍室ドア16と連動して引き出される構成とした場合には、フタ部材58に取っ手53を設けるとよい。   The supercooling container 62 is connected to the outer frame 54 so as to interlock with the freezer compartment door 16, and includes a packing 59 between the freezer compartment door 16 and the opening peripheral edge of the freezer compartment 10. The leakage of cold air to the The lid member 58 does not need to be pulled out in conjunction with the freezer compartment door 16 and may be fixed in the freezer compartment 10. When the lid member 58 is pulled out in conjunction with the freezer compartment door 16, a handle 53 may be provided on the lid member 58.

次に貯蔵空間65内に収納される食品(飲料水を含む)を冷却する方法について簡単に説明する。吐出口57から冷凍室10へ吐出された冷気は、過冷却容器62の周囲の冷気流通空間66を流れ、吐出口57より下方に位置する吸込口61から冷凍室10の外へと導かれる。貯蔵空間65と冷気流通空間66との間は過冷却容器62の容器壁あるいはフタ部材58によって区画される。そして、この容器壁あるいはフタ部材58が区画壁となって、冷気流通空間66を流れる冷気を貯蔵空間65の内部に直接流れ込ませず、間接冷却を可能にしている。   Next, a method for cooling food (including drinking water) stored in the storage space 65 will be briefly described. The cool air discharged from the discharge port 57 to the freezer compartment 10 flows through the cool air circulation space 66 around the supercooling container 62, and is led out of the freezer chamber 10 from the suction port 61 positioned below the discharge port 57. The storage space 65 and the cold air circulation space 66 are partitioned by the container wall of the supercooling container 62 or the lid member 58. The container wall or the lid member 58 serves as a partition wall, so that the cold air flowing through the cold air circulation space 66 does not flow directly into the storage space 65 but enables indirect cooling.

また、冷気流通空間66におけるフタ部材58の上側に吐出冷気を流すために、吐出口57はフタ部材58よりも上方に配置している。したがって、吐出口57から流入した冷気(矢印で図示:符号51)の多くはフタ部材58の上部を通過し、その後過冷却容器
62の外周部に沿って流れ、吸込口61から冷凍室10外へと至る(矢印で図示:符号
52)。なお、冷凍室10内を冷却して吸込口61から冷凍室10外へと導かれた冷気は、その後、下段側の冷凍室11を冷却した後に冷却器室へと戻され、冷却器4によって再び冷却される。
Further, the discharge port 57 is disposed above the lid member 58 in order to allow the discharged cold air to flow above the lid member 58 in the cold air circulation space 66. Therefore, most of the cold air flowing in from the discharge port 57 (illustrated by an arrow: reference numeral 51) passes through the upper portion of the lid member 58 and then flows along the outer peripheral portion of the supercooling container 62, and from the suction port 61 to outside the freezer compartment (Illustrated by an arrow: reference numeral 52). The cold air that has cooled the inside of the freezer compartment 10 and has been led out of the freezer compartment 10 from the suction port 61 is then returned to the cooler compartment after cooling the freezer compartment 11 on the lower stage side. It is cooled again.

また、冷凍室10は、過冷却状態を生成する温度(後述)と通常の冷凍温度(−18℃以下)に切り替えられるようになっている。すなわち、切り替えを行うスイッチ(図示なし)のオンオフによって、通常の冷凍保存が可能であるが、以下の説明では、通常の冷凍保存に関しては説明を省略し、食品を過冷却状態で保存する温度について説明する。   Moreover, the freezer compartment 10 is switched to the temperature (after-mentioned) which produces | generates a supercooled state, and normal freezing temperature (-18 degrees C or less). In other words, normal frozen storage is possible by turning on / off a switch (not shown) for switching, but in the following description, the description for normal frozen storage is omitted and the temperature at which food is stored in a supercooled state is omitted. explain.

食品を過冷却状態で保存するに適した温度は、実験の結果から、例えば、ペットボトルに入った飲料水は約−5℃、マグロなどの魚では約−3〜−4℃であることがわかった。このように、過冷却容器62に入れる対象物によって最適な温度が異なるため、図示しない入力手段によって温度設定ができるようになっている。具体的には、過冷却容器62に設置された温度センサーによって検出された温度と、入力手段によって設定された温度とを比較し、吐出口57からの冷気の吐出を制御するダンパーの開閉を制御する。   The temperature suitable for storing the food in a supercooled state is, for example, about −5 ° C. for drinking water in a PET bottle and about −3 to −4 ° C. for fish such as tuna. all right. As described above, since the optimum temperature differs depending on the object to be put in the supercooling vessel 62, the temperature can be set by an input means (not shown). Specifically, the temperature detected by the temperature sensor installed in the supercooling container 62 is compared with the temperature set by the input means, and the opening and closing of the damper that controls the discharge of the cold air from the discharge port 57 is controlled. To do.

さて、過冷却状態となった飲料水に衝撃を与えると、飲料水容器内の気液界面から一瞬のうちに過冷却状態が解除されてシャーベット状の氷が生成される。また、マグロなどの魚を過冷却状態で保存すると鮮度保持期間が長くなる、とされており、食品全般の保存に関して利点が得られる。   Now, when an impact is given to the supercooled drinking water, the supercooling state is released instantaneously from the gas-liquid interface in the drinking water container, and sherbet-like ice is generated. In addition, when fish such as tuna are stored in a supercooled state, the freshness retention period is said to be long, and an advantage is obtained with respect to the preservation of food in general.

過冷却容器62のより詳細な構成について説明する。本実施例の過冷却容器62は、外殻を形成する外側容器の内部に、取り外し可能な内側容器29を備えている。したがって、内外の容器の間に隙間を設けることによって、空気断熱による断熱層を設けることができる。   A more detailed configuration of the supercooling vessel 62 will be described. The supercooling container 62 of this embodiment includes a removable inner container 29 inside an outer container that forms an outer shell. Therefore, the heat insulation layer by air insulation can be provided by providing a clearance between the inner and outer containers.

図4は内側容器29の斜視図である。内側容器29の内壁側には、リブ26を複数箇所設けてあり、容器29の内側に収納する飲料水容器、例えばペットボトルをリブ26で支える構造になっている。更にリブ26と飲料水容器と接する部分には、図5に示すように滑り止め30(例えば、ゴム)を設けている。   FIG. 4 is a perspective view of the inner container 29. A plurality of ribs 26 are provided on the inner wall side of the inner container 29, and a drinking water container stored inside the container 29, for example, a plastic bottle is supported by the ribs 26. Further, a non-slip 30 (for example, rubber) is provided at a portion in contact with the rib 26 and the drinking water container as shown in FIG.

これらの内側容器29の構成による作用効果は次の通りである。過冷却容器62の内壁面にペットボトルや瓶,缶などの飲料水容器あるいは食品が直接接触すると、その部分が局所的に冷却されやすくなってしまう。本実施例では、過冷却容器62の内壁面にリブ
26のような凸部を設けることで、飲料水容器と過冷却容器62の内壁面とが直接接触する部分を少なくしている。したがって、過冷却状態を維持しやすくすることができる。
The operational effects of the configuration of these inner containers 29 are as follows. When a drinking water container such as a PET bottle, a bottle, or a can or a food directly comes into contact with the inner wall surface of the supercooling container 62, the portion is likely to be locally cooled. In the present embodiment, by providing convex portions such as ribs 26 on the inner wall surface of the supercooling container 62, the portion where the drinking water container and the inner wall surface of the supercooling container 62 are in direct contact is reduced. Therefore, the supercooled state can be easily maintained.

また、飲料水容器あるいは食品と凸部とが接触する部分、すなわち凸部の頂部に、ゴムなどの滑り止め30を設けることによって、ドア開閉時に食品等が過冷却容器62内で移動し難くなる。したがって、冷蔵庫使用者の意に反して過冷却状態が解除する確率を低減することができる。   Further, by providing a non-slip 30 such as rubber on the drinking water container or the portion where the food and the convex portion contact, that is, the top of the convex portion, the food or the like is difficult to move in the supercooling container 62 when the door is opened and closed. . Accordingly, it is possible to reduce the probability that the supercooled state is canceled against the intention of the refrigerator user.

図6は過冷却容器62と容器29を組み合わせた状態を示した図である。飲料水容器
27と過冷却容器62の壁面とが直接接触する部分を少なくして、局所的な凍結が起こらないようにし、また過冷却容器62をスライドさせた場合でも滑り止め30の作用により、飲料水は移動し難くなるため過冷却が解除する確率が減少する。
FIG. 6 is a view showing a state in which the supercooling vessel 62 and the vessel 29 are combined. The portion where the drinking water container 27 and the wall surface of the supercooling container 62 are in direct contact is reduced so that local freezing does not occur, and even when the supercooling container 62 is slid, the non-slip 30 acts. Since the drinking water becomes difficult to move, the probability that the supercooling is released is reduced.

図7は、過冷却状態で保存するための貯蔵空間65を形成するにあたり、図3〜図6の例とは異なる構成とした場合の図である。断熱層を備えたフタ部材の他の構成として、ガイドレール49に沿ってフタ46をスライドさせる例を示している。この場合、スライド機能を具備したフタ46は、その巻取り機構47を備えているので、フタ46を過冷却容器62から分離することなく飲料水等の食品を出し入れすることができる。これにより、過冷却状態となった飲料水を外部に取り出し、別の飲料水を再び入れる場合であっても、フタがスライド式であるため、貯蔵空間65内の冷気が全て入れ替わることは少なく、冷却時間の短縮にもつながる。   FIG. 7 is a diagram in the case where the storage space 65 for storing in the supercooled state is formed in a configuration different from the examples of FIGS. 3 to 6. As another configuration of the lid member having the heat insulating layer, an example in which the lid 46 is slid along the guide rail 49 is shown. In this case, since the lid 46 having the slide function includes the winding mechanism 47, food such as drinking water can be taken in and out without separating the lid 46 from the supercooling container 62. Thereby, even if it is a case where it takes out drinking water which became a supercooled state outside, and puts in another drinking water again, since a lid is a slide type, it is unlikely that all the cold air in storage space 65 is replaced, This also shortens the cooling time.

次に、上記の具体的構造の利点を考察するため、飲料水の温度変化を測定した結果について説明する。   Next, in order to consider the advantages of the above specific structure, the results of measuring the temperature change of the drinking water will be described.

図8は過冷却容器内の貯蔵空間に冷気を直接送り込んだ場合、すなわち直接冷却方式における飲料水(以後、図8〜図11の説明においては「液体」と称する。)の温度経時変化を示す図である。冷却空気温度を一定とした空間にテーブルを置き、容器に入った飲料水を冷却した場合の飲料水の上部と下部の温度経時変化である。容器を置いたテーブルからの熱伝導により、容器内下部の液体の冷却速度が速くなるため、上下方向に温度分布が生じ、冷却初期段階では下部の方が上部よりも温度が低くなる。   FIG. 8 shows a change with time of temperature of drinking water (hereinafter referred to as “liquid” in the description of FIGS. 8 to 11) in the case where the cold air is directly fed into the storage space in the supercooled container, that is, in the direct cooling method. FIG. This is a change with time in temperature of the upper and lower portions of the drinking water when the table is placed in a space where the cooling air temperature is constant and the drinking water contained in the container is cooled. Due to the heat conduction from the table on which the container is placed, the cooling rate of the liquid in the lower part of the container increases, so that a temperature distribution is generated in the vertical direction, and the temperature in the lower part is lower than that in the upper part in the initial stage of cooling.

しかしながら、水は最大密度が約4℃であるため、上部温度が4℃に到達すると上部にある液体は下部へと移動する。これにより下部で冷やされた液体は、上部へ移動するため、上部側の温度が最も低くなる温度分布を形成する。   However, since water has a maximum density of about 4 ° C., when the upper temperature reaches 4 ° C., the liquid in the upper part moves to the lower part. As a result, the liquid cooled in the lower part moves to the upper part, and thus forms a temperature distribution in which the temperature on the upper side becomes the lowest.

図9は過冷却容器内の貯蔵空間に冷気を直接送り込まない場合、すなわち間接冷却方式における液体の温度経時変化を示す図である。直接冷却方式(図8)と異なり、冷却速度が遅く、容器内の液体は準定常状態となる。したがって、密度反転が起こっても容器内上下方向の温度分布が生じ難くなるため、溶液内に発生する対流も弱いものとなる。   FIG. 9 is a diagram showing a change with time in the temperature of the liquid in the case where the cool air is not directly fed into the storage space in the supercooled container, that is, in the indirect cooling method. Unlike the direct cooling method (FIG. 8), the cooling rate is slow, and the liquid in the container is in a quasi-steady state. Therefore, even if density reversal occurs, the temperature distribution in the vertical direction in the container is difficult to occur, so the convection generated in the solution is weak.

これらの結果を考察すると、間接冷却方式は、直接冷却方式と比較して、液体の温度のバラツキが小さくすることができる、といえる。   Considering these results, it can be said that the indirect cooling method can reduce the temperature variation of the liquid compared to the direct cooling method.

図10は均質核生成理論に基づく氷核生成のためのエネルギー変化を示す図である。液体が凍結温度以下になっても凍結が開始しないのは、氷核生成の過程を経た後に初めて凍結が進行するためで、氷核生成に関しては均質核生成理論により体系付けられている。過冷却状態である液体は物理的に不安定な状態であるが、表面張力に基づく界面自由エネルギー(正の自由エネルギー)が氷に相転移した時の自由エネルギー(負の自由エネルギー)よりも上回る場合、過冷却が維持される。   FIG. 10 is a diagram showing energy changes for ice nucleation based on homogeneous nucleation theory. The reason why freezing does not start even when the temperature of the liquid becomes below the freezing temperature is that the freezing proceeds only after the ice nucleation process, and the ice nucleation is organized by the homogeneous nucleation theory. The supercooled liquid is physically unstable, but the interfacial free energy based on surface tension (positive free energy) exceeds the free energy (negative free energy) at the time of phase transition to ice. If so, supercooling is maintained.

過冷却状態にある液体の自由エネルギーは、これらを足し合わせた値となるため、水のクラスター半径が臨界値を越えると、それが氷核となって過冷却が解除する。また、過冷却状態の液体温度が低いほど、氷に相転移した時の自由エネルギーが大きいので、臨界半径における自由エネルギーは小さくなる。すなわち温度が低いほど過冷却状態が解除し易い。しかしながら、実際の過冷却水、特に飲料水のような混合物の場合には、氷核となる不純物が多数含まれており、均質核生成で氷核が発生する確率よりも高くなるため、過冷却状態は解除され易い(不均質核生成)。   The free energy of the liquid in the supercooled state is the sum of these, so if the water cluster radius exceeds the critical value, it becomes an ice nucleus and the supercooling is released. Further, the lower the temperature of the supercooled liquid, the smaller the free energy at the phase transition to ice, so the free energy at the critical radius becomes smaller. That is, the lower the temperature, the easier the supercooled state is released. However, in the case of actual supercooled water, especially a mixture such as drinking water, it contains a large number of impurities that become ice nuclei, which is higher than the probability that ice nuclei are generated by homogeneous nucleation. The state is easily released (heterogeneous nucleation).

過冷却状態が解除される要因としては、氷の結晶構造に似た不純物の他に、衝撃力,気液界面と壁面との相互作用(液面の変形),キャビテーション,液体が接触する固体壁面の性状,電場による作用等が過冷却を解除する要因となることが研究成果として発表されており、図10に示すクラスター臨界半径における自由エネルギーの大きさを小さくする効果により、過冷却が解除され易くなる。   Factors that can cancel the supercooled state include impurities similar to ice crystal structure, impact force, interaction between gas-liquid interface and wall surface (deformation of liquid surface), cavitation, solid wall surface where liquid contacts As a result of research, it has been announced that the effect of the electric field, the action by the electric field, etc. will cancel the supercooling, and the effect of reducing the free energy at the cluster critical radius shown in FIG. It becomes easy.

また、図8,図9で説明したように、実際に飲料水容器(例えば、ペットボトル)に入れた液体を冷却する場合、直接冷却の場合では液体上部の方が相対的に低温となり、液体上部における固液界面における相互作用による過冷却が解除し易くなるか、あるいは、液体内の対流の影響により過冷却が解除し易くなると推測されるため、実際に冷蔵庫で過冷却水を作る場合は、間接冷却の方が適している。   In addition, as described with reference to FIGS. 8 and 9, when the liquid actually put in the drinking water container (for example, a plastic bottle) is cooled, in the case of direct cooling, the upper part of the liquid becomes relatively low temperature, and the liquid When supercooling water is actually created in the refrigerator, it is assumed that supercooling due to interaction at the solid-liquid interface at the top is easy to cancel, or supercooling is easily canceled due to the influence of convection in the liquid. Indirect cooling is more suitable.

なお、本明細書において、間接冷却とは、冷却対象物に対して冷気を直接的に吹き付けて冷却を促す方式ではなく、冷却対象物が載置される場所の周囲における低温の雰囲気によって冷却される方式を示している。したがって、冷却空間と冷気流通空間とが、多少連通していても、冷気が直接吹き付けられるものでなければ間接冷却と称する。   Note that in this specification, indirect cooling is not a method in which cooling air is directly blown against an object to be cooled to promote cooling, but is cooled by a low-temperature atmosphere around the place where the object is placed. Shows the method. Therefore, even if the cooling space and the cold air circulation space are in some communication, they are referred to as indirect cooling unless the cold air is directly blown.

図11は、過冷却が維持できた回数と解除された回数をカウントして確率を液体の温度を変えて調べた結果から、液体水温に対する過冷却維持確率の傾向を模式的に示したものである。過冷却維持確率とは、所定の温度で液体を冷却した場合、液体がその温度に到達し、過冷却が維持できる確率で、確率が1の場合は全ての場合過冷却が維持できることを意味する。この結果から、液体温度が低くなれば過冷却が解除し易くなり、逆に液体温度が高ければ過冷却が維持され易くなることがわかる。   FIG. 11 schematically shows the tendency of the supercooling maintenance probability with respect to the liquid water temperature based on the results of examining the probability of changing the temperature of the liquid by counting the number of times the supercooling could be maintained and the number of times of canceling. is there. The supercooling maintenance probability is a probability that when the liquid is cooled at a predetermined temperature, the liquid reaches that temperature and can maintain the supercooling. When the probability is 1, it means that the supercooling can be maintained in all cases. . From this result, it is understood that if the liquid temperature is low, the supercooling is easily released, and conversely if the liquid temperature is high, the supercooling is easily maintained.

また、直接冷却と間接冷却の過冷却維持確率を比較すると、間接冷却にした方が過冷却維持確率が高くなる傾向が得られている。実験によると、過冷却の維持温度は、実際には−5℃程度が適しており、それよりも温度が高くなると過冷却維持確率は高まるが、解除した時のシャーベット氷の生成量は過冷却温度に比例するので、過冷却維持温度が高まるとシャーベット状の氷が少なくなり、見た目の楽しさが減り、飲んだ時の新食感が味わえなくなる。   Moreover, when the supercooling maintenance probability of direct cooling and indirect cooling is compared, there is a tendency that the supercooling maintenance probability becomes higher when indirect cooling is performed. According to the experiment, the subcooling maintenance temperature is actually about -5 ° C, and if the temperature is higher than that, the supercooling maintenance probability increases. Since it is proportional to the temperature, if the supercooling maintenance temperature increases, the sherbet-like ice will decrease, the appearance will be less fun, and the new texture will not be enjoyed when drinking.

この−5℃近辺における過冷却維持確率は、間接冷却の方が極めて高いことが判明したため、本実施例では過冷却を実現するために、0℃より低い温度帯(冷凍温度帯)の貯蔵室であるにも関わらず、間接冷却方式を採用した。   Since it has been found that the indirect cooling has a higher probability of maintaining the subcooling in the vicinity of −5 ° C., in this embodiment, in order to realize the subcooling, the storage chamber in the temperature zone lower than 0 ° C. (the freezing temperature zone). Nevertheless, an indirect cooling method was adopted.

図8〜図11から判明した知見に基づき、過冷却容器の内部の温度分布と飲料水の冷却との関係をより詳細に調べるため、さらに実験を行った。図12に示すように、水が入れられた飲料水容器において、上段・中段・下段にそれぞれ温度センサーを取り付け、内部の温度分布を計測した。温度センサーには熱電対を用いた。また、飲料水容器27の上面がフタによって閉塞された状態で計測を行った。そして、飲料水容器27の上段側を断熱材で覆った場合、下段側を断熱材で覆った場合についてそれぞれ計測し、断熱材のない場合と比較検討を行った。   Based on the findings found from FIGS. 8 to 11, further experiments were conducted to investigate in more detail the relationship between the temperature distribution inside the supercooling container and the cooling of drinking water. As shown in FIG. 12, in the drinking water container in which water was put, the temperature sensor was attached to each of the upper stage, the middle stage, and the lower stage, and the internal temperature distribution was measured. A thermocouple was used as the temperature sensor. Moreover, the measurement was performed in a state where the upper surface of the drinking water container 27 was closed by the lid. And when the upper stage side of the drinking water container 27 was covered with a heat insulating material, the case where the lower stage side was covered with a heat insulating material was measured, respectively, and compared with the case where there was no heat insulating material.

図12(a)は断熱材で覆わずに冷却した例を示し、図12(b)は上段側を断熱材で覆った例を示し、図12(c)は下段側を断熱材で覆った例を示している。そして、これらの飲料水容器27を−4.8℃の雰囲気内に設置して冷却した。   FIG. 12A shows an example of cooling without covering with a heat insulating material, FIG. 12B shows an example of covering the upper side with a heat insulating material, and FIG. 12C shows the lower side with a heat insulating material. An example is shown. And these drinking water containers 27 were installed in the atmosphere of -4.8 degreeC, and were cooled.

図13は、図12(a)〜図12(c)に示した各例における温度の推移を示した図である。これらの図から、水温が約4℃を通過するときに傾向が大きく変化していることがわかった。この現象は、上述したように、約4℃を境にして水の密度が反転するからである。   FIG. 13 is a diagram showing a change in temperature in each example shown in FIGS. 12 (a) to 12 (c). From these figures, it was found that the tendency changed greatly when the water temperature passed about 4 ° C. This phenomenon is because the density of water is reversed at about 4 ° C. as described above.

図13(a)は、飲料水容器を断熱材で覆わずに冷却した場合の上段・中段・下段の温度の推移を示している。この例では、飲料水容器が断熱されていないため、冷却速度が最も早い。しかしながら、水温が約4℃以下となる領域では、上段側と下段側の温度差が大きくなる傾向がある。図13(b)は、飲料水容器の上段側を断熱材で覆った例であり、水温が約4℃以上の領域では、上段側と下段側の温度差が大きいが、約4℃以下の領域では温度差が小さく抑えられた。図13(c)は、飲料水容器の下段側を断熱材で覆った例である。この例では、水温が約4℃以上の領域では上段側と下段側の温度差が小さく抑えられているが、水温が約4℃以下の領域では温度差が大きくなる傾向が認められた。   FIG. 13 (a) shows the transition of the upper, middle and lower temperatures when the drinking water container is cooled without being covered with a heat insulating material. In this example, since the drinking water container is not insulated, the cooling rate is the fastest. However, in the region where the water temperature is about 4 ° C. or less, the temperature difference between the upper side and the lower side tends to increase. FIG.13 (b) is an example which covered the upper stage side of the drinking water container with the heat insulating material, and in the area | region whose water temperature is about 4 degreeC or more, although the temperature difference of an upper stage side and a lower stage side is large, about 4 degreeC or less In the region, the temperature difference was kept small. FIG.13 (c) is the example which covered the lower stage side of the drinking water container with the heat insulating material. In this example, the temperature difference between the upper side and the lower side is suppressed small in the region where the water temperature is about 4 ° C. or higher, but the temperature difference tends to increase in the region where the water temperature is about 4 ° C. or lower.

また、図12(a)〜図12(c)の各例において、それぞれ48回の実験を行ったところ、過冷却状態を維持できた確率は、それぞれ28.6%,66.7%,45.8% であった。   Further, in each example of FIGS. 12A to 12C, when 48 experiments were performed, the probabilities of maintaining the supercooled state were 28.6%, 66.7%, and 45, respectively. It was .8%.

これらの結果を考察し、次の知見を得た。
(1)0℃より低い、いわゆる冷凍温度帯の雰囲気下において5℃以上の飲料水を冷却する場合、飲料水の温度が低下して4℃を通過するときに、温度分布が上下反転する。
(2)凝固点以下のいわゆる過冷却領域においては、飲料水容器内の温度分布が大きいと過冷却状態を維持できる確率が低下する。
(3)飲料水容器の上段側を断熱することによって、4℃以下の領域(0℃以下の過冷却領域も含む。)における容器内の温度のバラツキを小さく抑えることができる。
Considering these results, the following knowledge was obtained.
(1) When cooling drinking water of 5 ° C. or higher in an atmosphere of a so-called freezing temperature range lower than 0 ° C., the temperature distribution is inverted upside down when the temperature of the drinking water decreases and passes 4 ° C.
(2) In the so-called supercooling region below the freezing point, the probability that the supercooled state can be maintained decreases if the temperature distribution in the drinking water container is large.
(3) By insulating the upper side of the drinking water container, the temperature variation in the container in a region of 4 ° C. or lower (including a supercooled region of 0 ° C. or lower) can be suppressed.

これらの知見に基づいた検討から、家庭用冷蔵庫において過冷却状態を実現するには、4℃以下において飲料水容器内の温度のバラツキを小さく抑えることが必要であり、その手法として、上段側から冷却を行うよりも、下段側から冷却を行うことが有効であることが判明した。   From the study based on these findings, in order to realize a supercooled state in a home refrigerator, it is necessary to keep the temperature variation in the drinking water container small at 4 ° C. or less. It has been found that it is more effective to cool from the lower side than to cool.

しかし、飲料水容器(ペットボトル,瓶,缶など)の上段側を断熱材で覆うことを強いると、家庭用冷蔵庫の使用者に煩雑感を与えると考えられるため、次の検討を行った。   However, it was considered that if it was forced to cover the upper side of drinking water containers (such as plastic bottles, bottles, cans, etc.) with a heat insulating material, it would be troublesome for users of household refrigerators.

図14は、過冷却状態を実現するための貯蔵室(冷凍室10)内の概略図であり、過冷却容器62内に載置された飲料水容器27内の飲料の温度と、過冷却容器62内の温度との関係をも併せて示している。飲料水の温度が4℃よりも低い状態まで冷却された場合には、液面に近い側の上側温度(t3 )が低く、飲料水容器27の底面側(下側)の下側温度(t4 )が高い状態となるように分布しやすい。一方、過冷却容器62内の空気の温度は、上層側の温度(T1)が高く、下層側の温度(T2)が低くなるように分布しやすい。 FIG. 14 is a schematic view of a storage room (freezer room 10) for realizing a supercooled state, the temperature of the beverage in the drinking water container 27 placed in the supercooled container 62, and the supercooled container. The relationship with the temperature in 62 is also shown. When the temperature of the drinking water is cooled to a state lower than 4 ° C., the upper temperature (t 3 ) near the liquid surface is low, and the lower temperature (bottom side) of the drinking water container 27 is lower ( It is easy to distribute so that t 4 ) is high. On the other hand, the temperature of the air in the supercooling vessel 62 tends to be distributed such that the upper layer side temperature (T 1 ) is high and the lower layer side temperature (T 2 ) is low.

本実施例に記載の冷蔵庫では、過冷却容器62内の空間の低温によって飲料水を冷却することを目的としている。すなわち、過冷却容器62内の貯蔵空間65の温度が、飲料水の温度よりも低いことが前提となっている。したがって、T1やT2は、t3やt4よりも低い温度であり、飲料水容器27の上側の温度(t3 )と過冷却容器62内の貯蔵空間65の上層側温度(T1)との温度差ΔT13を、飲料水容器27の下側の温度(t4)と過冷却容器62内の貯蔵空間65の下層側温度(T2)との温度差ΔT24 よりも、小さくすることができる(ΔT13<ΔT24)。 The refrigerator described in the present embodiment aims to cool drinking water by the low temperature of the space in the supercooling container 62. That is, it is assumed that the temperature of the storage space 65 in the supercooling container 62 is lower than the temperature of the drinking water. Therefore, T 1 and T 2 are a lower temperature than t 3 and t 4, the upper side temperature of the storage space 65 of the supercooling chamber 62 above the temperature of the drinking water container 27 (t 3) (T 1 the temperature difference [Delta] T 13 with), than the temperature difference [Delta] T 24 between the lower side temperature of the storage space 65 of the lower temperature (t 4) and the supercooling chamber 62 of the drinking water container 27 (T 2), small (ΔT 13 <ΔT 24 ).

該構成によれば、飲料水容器27の上側における容器内外の温度差を小さくすることができるため、上側を下側よりも「断熱」することが可能となる。   According to this configuration, since the temperature difference between the inside and outside of the container on the upper side of the drinking water container 27 can be reduced, the upper side can be “insulated” more than the lower side.

これらの構成を実現するためには、貯蔵空間65の上面側の冷気流通空間66を冷気
51が流れるような構造とすることが有効である。また、過冷却容器62内に冷気が直接流れ込まないように上方をフタ部材で覆う。このとき、貯蔵空間65と冷気流通空間66との間は、フタ部材を含む過冷却容器62の容器壁が区画壁となって、間接冷却が可能となる。
In order to realize these configurations, it is effective to have a structure in which the cool air 51 flows in the cool air circulation space 66 on the upper surface side of the storage space 65. Further, the upper part is covered with a lid member so that the cool air does not flow directly into the supercooling vessel 62. At this time, between the storage space 65 and the cold air circulation space 66, the container wall of the supercooling container 62 including the lid member becomes a partition wall, so that indirect cooling is possible.

その際、冷気流通空間66を流れる冷気の温度は、過冷却容器62の上面側を流れる冷気温度Taが下面側を流れる冷気温度Tbよりも低くなるようにし、過冷却容器62には断熱層70を設けておく。このように、過冷却容器62の上側を流れる冷気の温度Taが下側を流れる冷気温度Tbよりも低くなるようにするためには、例えば、冷気流通空間
66に冷気を吐出する冷気吐出口57を、冷気吸込口及びフタ部材よりも上側に配置すればよい。
At that time, the temperature of the cold air flowing through the cold air circulation space 66 is set so that the cold air temperature Ta flowing on the upper surface side of the supercooling vessel 62 is lower than the cold air temperature Tb flowing on the lower surface side. Is provided. Thus, in order to make the temperature Ta of the cold air flowing on the upper side of the supercooling vessel 62 lower than the cold air temperature Tb flowing on the lower side, for example, the cold air discharge port 57 that discharges the cold air to the cold air circulation space 66. May be disposed above the cold air inlet and the lid member.

これらの構成を備えたことによる作用効果は次の通りである。過冷却容器62の上面側を流れる冷気(例えば、−18℃以下の冷気)は、過冷却容器62の上面側を通りながら、一部が側方から落下し、他の一部が手前側まで至った後に落下する(図14の矢印参照。)。なお、図14において、過冷却容器62の側方を落下する冷気の流れは点線矢印で示している。これらの冷気は、過冷却容器62を冷却しながら流れるため、徐々に温度は上昇していく。したがって、過冷却容器62の下面側へと至った冷気の温度Tb(例えば、−15℃)は、過冷却容器62の上側を流れる冷気の温度Taよりも高くなる(Ta<Tb)。   The operational effects of having these configurations are as follows. The cold air flowing on the upper surface side of the supercooling vessel 62 (for example, cold air of −18 ° C. or lower) passes through the upper surface side of the supercooling vessel 62 and partly falls from the side, and the other part reaches the near side. It falls after reaching (see arrow in FIG. 14). In FIG. 14, the flow of cold air that falls on the side of the supercooling vessel 62 is indicated by a dotted arrow. Since these cold air flows while cooling the supercooling vessel 62, the temperature gradually rises. Therefore, the temperature Tb (for example, −15 ° C.) of the cold air reaching the lower surface side of the supercooling vessel 62 is higher than the temperature Ta of the cold air flowing above the supercooling vessel 62 (Ta <Tb).

冷気流通空間66を流れる冷気によって外表面が冷却された過冷却容器62は、内側まで低温が伝達されるが、過冷却容器62は断熱層70を備えているため、貯蔵空間65は徐々に冷却される。したがって、貯蔵空間65の内部では、低温となった空気が下層側へと移動し、上層側の温度T1(例えば、−4℃)が下層側の温度T2(例えば、−6℃)よりも高くなるような温度分布が形成される。 The supercooling vessel 62 whose outer surface is cooled by the cold air flowing through the cold air circulation space 66 is transmitted to the inside at a low temperature. However, since the supercooling vessel 62 includes the heat insulating layer 70, the storage space 65 is gradually cooled. Is done. Accordingly, in the storage space 65, the low-temperature air moves to the lower layer side, and the upper layer side temperature T 1 (for example, −4 ° C.) is lower than the lower layer side temperature T 2 (for example, −6 ° C.). A temperature distribution is formed so as to be higher.

このような温度分布となっている貯蔵空間65内に載置された飲料水は、徐々に温度が低下していくが、4℃よりも低い温度となったときには、液面側の上側温度t3(例えば、1℃)が底面側の下側温度t4(例えば、3℃)よりも低くなる。このとき、飲料水容器27の上側の飲料水と貯蔵空間65内の上層側の雰囲気との温度差よりも、下側における温度差の方が大きくなる。したがって、飲料水容器27内においては、飲料水の温度のバラツキが低減され、過冷却実現の確率を向上することができる。 The drinking water placed in the storage space 65 having such a temperature distribution gradually decreases in temperature, but when the temperature becomes lower than 4 ° C., the upper temperature t on the liquid surface side. 3 (for example, 1 ° C.) becomes lower than the lower temperature t 4 (for example, 3 ° C.) on the bottom surface side. At this time, the temperature difference on the lower side becomes larger than the temperature difference between the drinking water on the upper side of the drinking water container 27 and the atmosphere on the upper layer side in the storage space 65. Therefore, in the drinking water container 27, the variation in the temperature of drinking water is reduced, and the probability of realizing supercooling can be improved.

なお、過冷却容器62の内部の貯蔵空間65を密閉して、冷気流通空間66との間を完全に閉塞させる必要はなく、冷気が貯蔵空間65内に直接的に吹き付けられない構造であれば差し支えない。したがって、過冷却容器62のフタ部材との間に多少の隙間があっても特段の問題は無い。ただし、過冷却容器62の底面に孔などの開口部があると、貯蔵空間65の下側の低温の冷気が冷気流通空間66へと流れてしまうため、過冷却容器62の底面や側面には開口部を設けない方が良い。   It is not necessary to seal the storage space 65 inside the supercooling container 62 and completely close the space between the cool air circulation space 66 and the structure is such that the cool air cannot be directly blown into the storage space 65. There is no problem. Therefore, there is no particular problem even if there is a slight gap between the lid member of the supercooling container 62. However, if there is an opening such as a hole on the bottom surface of the supercooling vessel 62, low-temperature cold air below the storage space 65 flows into the cold air circulation space 66. It is better not to provide an opening.

本実施形態は、図14を用いて説明した諸条件を満たす構成であれば、図3〜図7に示したより具体的な構造に拘泥されるものではなく、同旨の思想の下で様々な具体的構造を採用することが可能である。   The present embodiment is not limited to the more specific structure shown in FIGS. 3 to 7 as long as the various conditions described with reference to FIG. 14 are satisfied. It is possible to adopt a static structure.

本発明の実施の形態による冷蔵庫の正面外観図である。It is a front external view of the refrigerator by embodiment of this invention. 本発明の実施例の形態による冷蔵庫の断面図である。It is sectional drawing of the refrigerator by the form of the Example of this invention. 過冷却を行う貯蔵室の構造を示す図である。It is a figure which shows the structure of the storage chamber which performs supercooling. 過冷却容器の内部に設けた内側容器の斜視図である。It is a perspective view of the inner side container provided in the inside of a supercooling container. リブに設けた滑り止めを示す図である。It is a figure which shows the slip prevention provided in the rib. 過冷却容器と内側容器を組み合わせた状態を示した図であるIt is the figure which showed the state which combined the supercooled container and the inner container. 図3〜図6の例とは異なる過冷却容器構造とした場合の図である。It is a figure at the time of setting it as the supercooling container structure different from the example of FIGS. 直接冷却方式における液体の温度経時変化を示す図である。It is a figure which shows the temperature aging change of the liquid in a direct cooling system. 間接冷却方式における液体の温度経時変化を示す図である。It is a figure which shows the temperature aging change of the liquid in an indirect cooling system. 均質核生成理論に基づく氷核生成のためのエネルギー変化を示す図である。It is a figure which shows the energy change for the ice nucleation based on a homogeneous nucleation theory. 液体水温に対する過冷却維持確率の傾向を模式的に示した図である。It is the figure which showed typically the tendency of the supercooling maintenance probability with respect to liquid water temperature. 実験装置の概略図である。It is the schematic of an experimental apparatus. 図12に示した各例における温度の推移を示した図である。It is the figure which showed transition of the temperature in each example shown in FIG. 貯蔵室内の概略図である。It is the schematic in a storage chamber.

符号の説明Explanation of symbols

1…圧縮機、2…凝縮器、3…絞り、4…冷却器、5…庫内冷却ファン、6…ダンパー、7…冷蔵室冷気風路、8…冷蔵庫、9…冷蔵室、10,11…冷凍室、12…野菜室、13…冷凍室風路、14…冷凍室戻り口、15…冷蔵室ドア、16,17…冷凍室ドア、18…野菜室ドア、26…リブ、27…飲料水容器、29…内側容器、30…滑り止め、40,41…冷凍室容器、42…野菜室容器、43…製氷室ドア、45,53…取っ手、46…スライド式フタ、47…スライド式フタ巻取り部、49…ガイドレール、50,
55…断熱壁、51,52…冷気の流れ、54…外枠、56…容器部材、57…吐出口、58…フタ部材、59…パッキン、60…ファンガード、61…吸込口、62…過冷却容器、65…貯蔵空間、66…冷気流通空間、70…断熱層。



DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Condenser, 3 ... Restriction, 4 ... Cooler, 5 ... Cooling fan in a warehouse, 6 ... Damper, 7 ... Cold room cold air path, 8 ... Refrigerator, 9 ... Cold room, 10, 11 ... Freezer room, 12 ... Vegetable room, 13 ... Freezer room air passage, 14 ... Freezer room return port, 15 ... Refrigerator room door, 16, 17 ... Freezer room door, 18 ... Vegetable room door, 26 ... Rib, 27 ... Beverage Water container, 29 ... inner container, 30 ... anti-slip, 40, 41 ... freezer compartment container, 42 ... vegetable compartment container, 43 ... ice making room door, 45, 53 ... handle, 46 ... sliding lid, 47 ... sliding lid Winding part, 49 ... guide rail, 50,
55 ... Insulating wall, 51, 52 ... Flow of cold air, 54 ... Outer frame, 56 ... Container member, 57 ... Discharge port, 58 ... Lid member, 59 ... Packing, 60 ... Fan guard, 61 ... Suction port, 62 ... Excess Cooling container, 65 ... storage space, 66 ... cold air circulation space, 70 ... heat insulation layer.



Claims (3)

空間内に収納される食品を冷却する貯蔵室を有する冷蔵庫であって、
前記空間の周囲に設けられる冷気流通空間と、
前記空間内に収納される食品を間接冷却するために、前記空間と前記冷気流通空間との間を区画する区画壁と、
前記空間と前記冷気流通空間との間に設けられる断熱層と、
前記空間内を0℃より低い冷凍温度帯に冷却するように、前記空間の上方を覆う区画壁よりも上側の前記冷気流通空間に冷凍温度の冷気を吐出する冷気吐出口と、
前記冷気吐出口から吐出される冷気を生成する冷却器と
前記冷気吐出口より下方に位置し、前記冷気吐出口から吐出されて前記冷気流通空間を流れた冷気を前記冷却器へと戻すための冷気戻り口とを備え
前記空間内に収納される食品を過冷却状態で保存可能とした冷蔵庫。
A refrigerator having a storage room for cooling food stored in the space,
A cold air circulation space provided around the space;
In order to indirectly cool the food stored in the space, a partition wall that partitions the space and the cold air circulation space;
A heat insulating layer provided between the space and the cold air circulation space;
A cold air discharge port for discharging cold air at a freezing temperature into the cold air circulation space above the partition wall covering the upper part of the space so as to cool the inside of the space to a freezing temperature zone lower than 0 ° C .;
A cooler for generating cold air discharged from the cold air outlet ;
A cold air return port for returning the cool air discharged from the cold air discharge port and flowing through the cold air circulation space to the cooler, located below the cold air discharge port ;
A refrigerator that can store food stored in the space in a supercooled state .
前記区画壁は、上方に開口部を有するとともに側面及び底面には孔がない容器部材と前記開口部を覆うフタ部材とからなることを特徴とする請求項に記載の冷蔵庫。 2. The refrigerator according to claim 1 , wherein the partition wall includes a container member having an opening on the upper side and having no holes on a side surface and a bottom surface, and a lid member covering the opening. 前記空間内の空気の温度は、前記空間の上側では下側より高く、かつ、前記冷気流通空間を流れる冷気の温度は、前記空間よりも上側では下側よりも低くし、
前記空間に5℃以上の食品が収納されると、前記食品が4℃〜0℃の温度を経て、さらに0℃よりも低い温度まで冷却されることを特徴とする請求項1又は2に記載の冷蔵庫。
The temperature of the air in the space is higher on the upper side of the space than the lower side, and the temperature of the cold air flowing through the cold air circulation space is lower on the upper side of the space than on the lower side,
When 5 ° C. or more food into the space is accommodated, the food through the temperature of 4 ° C. ~0 ° C., further claim 1 or 2, characterized in that it is cooled to a temperature lower than 0 ℃ Refrigerator.
JP2006096807A 2006-03-31 2006-03-31 refrigerator Expired - Fee Related JP3903065B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006096807A JP3903065B1 (en) 2006-03-31 2006-03-31 refrigerator
CNB200710091598XA CN100572995C (en) 2006-03-31 2007-03-29 Refrigerator
KR1020070030747A KR100850062B1 (en) 2006-03-31 2007-03-29 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096807A JP3903065B1 (en) 2006-03-31 2006-03-31 refrigerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006096808A Division JP2007271151A (en) 2006-03-31 2006-03-31 Refrigerator

Publications (2)

Publication Number Publication Date
JP3903065B1 true JP3903065B1 (en) 2007-04-11
JP2007271150A JP2007271150A (en) 2007-10-18

Family

ID=37982403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096807A Expired - Fee Related JP3903065B1 (en) 2006-03-31 2006-03-31 refrigerator

Country Status (3)

Country Link
JP (1) JP3903065B1 (en)
KR (1) KR100850062B1 (en)
CN (1) CN100572995C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267646A (en) * 2007-04-17 2008-11-06 Mitsubishi Electric Corp Refrigerator
JP2009024951A (en) * 2007-07-20 2009-02-05 Mitsubishi Electric Corp Refrigerator and refrigeration preservative method
JP2009030934A (en) * 2007-07-30 2009-02-12 Mitsubishi Electric Corp Refrigerator
WO2009038428A2 (en) * 2007-09-21 2009-03-26 Lg Electronics, Inc. Supercooling apparatus
WO2009038425A2 (en) * 2007-09-21 2009-03-26 Lg Electronics, Inc. Apparatus for supercooling
WO2009038424A2 (en) * 2007-09-21 2009-03-26 Lg Electronics, Inc. Supercooling apparatus
JP2017009284A (en) * 2016-10-20 2017-01-12 三菱電機株式会社 refrigerator

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100892453B1 (en) * 2007-09-21 2009-04-10 엘지전자 주식회사 Apparatus for supercooling
KR101176284B1 (en) 2008-12-16 2012-08-22 엘지전자 주식회사 Refrigerator
KR101115239B1 (en) * 2009-01-08 2012-02-15 엘지전자 주식회사 A refrigerating apparatus
JP2011017472A (en) * 2009-07-08 2011-01-27 Hitachi Appliances Inc Refrigerator
CN102937355B (en) * 2011-08-15 2015-08-19 苏州三星电子有限公司 A kind of refrigerator fruits and vegetables room
CN102519197B (en) * 2011-12-08 2014-02-19 南通大学 Refrigerator for manufacturing overcooled liquid
JP6035115B2 (en) * 2012-11-07 2016-11-30 株式会社ヤクルト本社 Cooling container lid
JP7017384B2 (en) * 2017-12-05 2022-02-08 東芝ライフスタイル株式会社 refrigerator
CN110686461A (en) * 2019-10-11 2020-01-14 合肥晶弘电器有限公司 Refrigerator food preservation control method and device and refrigerator
CN110906673A (en) * 2019-10-30 2020-03-24 合肥晶弘电器有限公司 Control method for instant freezing storage of refrigerator and refrigerator
CN111141086A (en) * 2019-10-30 2020-05-12 合肥晶弘电器有限公司 Instant freezing chamber control method and refrigerator
CN111189295B (en) * 2019-10-30 2023-06-13 合肥晶弘电器有限公司 Instantaneous freezing storage method, refrigerator control method, control system and refrigerator
JP7364459B2 (en) * 2019-12-24 2023-10-18 日立グローバルライフソリューションズ株式会社 refrigerator
CN112460897A (en) * 2020-12-04 2021-03-09 珠海格力电器股份有限公司 Refrigerator and control method of instant freezing chamber thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04365468A (en) * 1991-06-10 1992-12-17 Dainippon Printing Co Ltd Supercooled liquid drink and its preparation
JP4647047B2 (en) 1999-06-25 2011-03-09 パナソニック株式会社 Supercooling control refrigerator
JP2003214753A (en) 2002-01-21 2003-07-30 Hoshizaki Electric Co Ltd Cooling device for supercooling drinking water
KR101176455B1 (en) * 2006-01-14 2012-08-30 삼성전자주식회사 An apparatus for super-cooling and a refrigerator and it's control method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267646A (en) * 2007-04-17 2008-11-06 Mitsubishi Electric Corp Refrigerator
JP2009024951A (en) * 2007-07-20 2009-02-05 Mitsubishi Electric Corp Refrigerator and refrigeration preservative method
JP4595972B2 (en) * 2007-07-30 2010-12-08 三菱電機株式会社 refrigerator
JP2009030934A (en) * 2007-07-30 2009-02-12 Mitsubishi Electric Corp Refrigerator
WO2009038428A2 (en) * 2007-09-21 2009-03-26 Lg Electronics, Inc. Supercooling apparatus
WO2009038424A2 (en) * 2007-09-21 2009-03-26 Lg Electronics, Inc. Supercooling apparatus
WO2009038425A3 (en) * 2007-09-21 2010-03-11 Lg Electronics, Inc. Apparatus for supercooling
WO2009038424A3 (en) * 2007-09-21 2010-04-01 Lg Electronics, Inc. Supercooling apparatus
WO2009038428A3 (en) * 2007-09-21 2010-04-01 Lg Electronics, Inc. Supercooling apparatus
WO2009038425A2 (en) * 2007-09-21 2009-03-26 Lg Electronics, Inc. Apparatus for supercooling
US8572990B2 (en) 2007-09-21 2013-11-05 Lg Electronics Inc. Supercooling apparatus
US8776540B2 (en) 2007-09-21 2014-07-15 Lg Electronics Inc. Supercooling apparatus
JP2017009284A (en) * 2016-10-20 2017-01-12 三菱電機株式会社 refrigerator

Also Published As

Publication number Publication date
KR100850062B1 (en) 2008-08-04
CN101046345A (en) 2007-10-03
KR20070098641A (en) 2007-10-05
JP2007271150A (en) 2007-10-18
CN100572995C (en) 2009-12-23

Similar Documents

Publication Publication Date Title
JP3903065B1 (en) refrigerator
US7036334B2 (en) Refrigerator having temperature controlled chamber
JP5401889B2 (en) refrigerator
JP6138708B2 (en) refrigerator
US7059142B2 (en) Refrigerator having temperature controlled chamber
CN107763932B (en) Refrigerator with a door
JP2008106993A (en) Refrigerator
JP2013242084A (en) Refrigerator
JP4712056B2 (en) refrigerator
JP4879209B2 (en) refrigerator
JP2007271151A (en) Refrigerator
JP2013190126A (en) Refrigerator
JP2007187362A (en) Refrigerator
JP2021042907A (en) refrigerator
JP2016038100A (en) refrigerator
JP2014202394A (en) Refrigerator
JP2011257082A (en) Refrigerator
JP2006010163A (en) Refrigerator
KR100547325B1 (en) Path structure for cold air of refrigerater
JP2005344963A (en) Refrigerator
JP2005344964A (en) Refrigerator
JP2002107033A (en) Refrigerator
JP4250664B2 (en) refrigerator
JP2013190125A (en) Refrigerator
JP2001280790A (en) Refrigerator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees