JP3900770B2 - Control device for fuel reformer - Google Patents

Control device for fuel reformer Download PDF

Info

Publication number
JP3900770B2
JP3900770B2 JP2000017348A JP2000017348A JP3900770B2 JP 3900770 B2 JP3900770 B2 JP 3900770B2 JP 2000017348 A JP2000017348 A JP 2000017348A JP 2000017348 A JP2000017348 A JP 2000017348A JP 3900770 B2 JP3900770 B2 JP 3900770B2
Authority
JP
Japan
Prior art keywords
raw material
evaporator
amount
heat
material input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000017348A
Other languages
Japanese (ja)
Other versions
JP2001207922A (en
Inventor
勝 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000017348A priority Critical patent/JP3900770B2/en
Publication of JP2001207922A publication Critical patent/JP2001207922A/en
Application granted granted Critical
Publication of JP3900770B2 publication Critical patent/JP3900770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料改質器の制御装置に関する。
【0002】
【従来の技術】
燃料電池発電装置は、メタノールなどの原料を改質して水素リッチな燃料ガスを生成する燃料改質器と、この燃料改質器で生成した水素リッチな燃料ガスと、別途空気供給装置から供給される酸素を含む酸化ガスとを反応させて発電する燃料電池とを主な要素として構成されている。そして燃料改質器には、メタノールなどの原料を加熱して蒸気にする蒸発器、この蒸発器に熱を供給する燃焼器、蒸気にされた原料を改質触媒で水素リッチな燃料ガスに改質する改質部が含まれる。
【0003】
この燃料改質器では、蒸発器に原料を能力以上に大量に投入すると蒸発器温度が下がり、原料を蒸発させられなくなる。そのため、蒸発器で原料を蒸気にするためには、蒸発器の温度を目標管理温度に制御する必要がある。
【0004】
従来、このような蒸発器の温度を制御する方法として、例えば、特開平8−273686号公報に記載されたものが知られている。この従来例の方法では、投入する原料投入量に応じて蒸発器目標温度を算出して、蒸発器温度が目標温度となるようにこの蒸発器に熱を供給する燃焼器の空気、燃料流量を調節するようにしている。また蒸発器の温度を制御すると共に、燃焼器自体の温度を目標管理温度に制御するように燃焼器の空気、燃料流量を調節するようにしている。
【0005】
【発明が解決しようとする課題】
ところが、このような従来の燃料電池改質器の制御装置では、蒸発器には、燃料電池に要求される負荷指令から算出された原料投入量をそのまま投入するので、たとえ蒸発器の温度が目標管理値を現時点で満たしていたとしても、蒸発器に急激に多量の原料を投入することによって蒸発器温度が下がりすぎ、蒸発器に原料を投入できなくなってしまう場合が起こる。これは、蒸発器の熱量収支を考慮しないで原料投入を行うために起こる問題である。
【0006】
本発明はこのような従来の問題点に鑑みてなされたもので、蒸発器自体の熱量収支を考慮して原料投入量を制御することにより、蒸発器温度を目標管理温度に維持しながら、可能な限り燃料電池で要求する出力要求値に応じた量の原料を蒸発器に投入することができる燃料改質器の制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1の発明は、蒸気化された原料を改質して水素リッチな燃料ガスを生成する改質触媒と、原料を蒸発させて前記改質触媒に供給する蒸発器と、前記蒸発器に前記原料を加熱するための熱を供給する燃焼器とから成る燃料改質器に対して原料投入量を制御する燃料改質器の制御装置であって、燃料電池で要求する出力要求値に応じて前記蒸発器に投入する原料投入量目標値を算出する原料投入量目標値算出手段と、前記蒸発器における熱量の収支を推定する熱量収支推定手段と、前記熱量収支推定手段の推定した前記蒸発器における熱量の収支に基づいて前記蒸発器に投入可能な原料投入量を算出する原料投入可能量算出手段と、前記原料投入可能量算出手段の検出した前記蒸発器に投入可能な原料投入量に応じて、前記原料投入量目標値算出手段の算出した前記原料投入量目標値を制限する原料投入量制限手段とを備えたものである。
【0008】
請求項1の発明の燃料改質器の制御装置では、原料投入量目標値算出手段が燃料電池で要求する出力要求値に応じて蒸発器に投入する原料投入量目標値を算出し、熱量収支推定手段が蒸発器における熱量の収支を推定する。そして原料投入可能量算出手段が、熱量収支推定手段の推定した蒸発器の熱量収支に基づいて蒸発器に投入可能な原料投入量を算出し、原料投入量制限手段がこの蒸発器に対する投入可能な原料投入量に応じて、原料投入量目標値算出手段の算出した原料投入量目標値を制限し、制限された原料投入量だけ蒸発器に原料を投入するように制御する。
【0009】
これにより、燃料電池で要求する出力要求値に応じた多量の原料を蒸発器に急激に投入して蒸発器出口の蒸気温度を下げてしまうのを防止することができる。
【0010】
請求項2の発明は、請求項1の燃料改質器の制御装置において、前記原料投入量制限手段が、前記蒸発器出口の蒸気温度の下限を判定する蒸気温度下限判定手段を有し、前記原料投入量制限手段が、前記熱量収支推定手段の推定した前記蒸発器の熱量の収支が負である場合又は前記蒸気温度下限判定手段が前記蒸発器出口の蒸気温度が前記下限よりも低いと判定した場合に、前記原料投入量目標値を制限するものである。
【0011】
請求項2の発明の燃料改質器の制御装置では、熱量収支推定手段の推定した蒸発器の熱量収支が負である場合又は蒸気温度下限判定手段が蒸発器出口の蒸気温度が下限よりも低いと判定した場合に、原料投入量制限手段が原料投入量目標値を制限し、制限された原料投入量だけ蒸発器に原料を投入するように制御する。
【0012】
これにより、燃料電池で要求する出力要求値に応じた多量の原料を蒸発器に急激に投入して蒸発器出口の蒸気温度を下げてしまうのを防止することができる。
【0013】
【発明の効果】
請求項1の発明によれば、燃料電池で要求する出力要求値に応じた多量の原料を蒸発器に急激に投入して蒸発器出口の蒸気温度を下げてしまうのを防止することができる。
【0014】
請求項2の発明によれば、蒸発器の熱量収支が負である場合又は蒸発器出口の蒸気温度が下限よりも低いと判定した場合に、原料投入量目標値を制限し、制限された原料投入量だけ蒸発器に原料を投入するように制御することにより、燃料電池で要求する出力要求値に応じた多量の原料を蒸発器に急激に投入して蒸発器出口の蒸気温度を下げてしまうのを防止することができ、かつ出力要求値に可能な限り答え得る原料を蒸発器に投入することができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて詳説する。図1は本発明の第1の実施の形態の燃料改質器の制御装置を含む燃料電池発電システムの構成を示している。この燃料電池発電システムの機械系は、燃焼器C1、蒸発器C2、改質触媒室C3、燃料電池C4、燃焼器C1に対する空気供給装置C5及び燃料供給装置C6、原料1タンクC7及び原料2タンクC8、これらの原料1タンクC7の原料1、原料2タンクC8の原料2を蒸発器C2に供給する原料1供給装置C9、原料2供給装置C10、そして負荷C11から構成されている。
【0016】
本実施の形態では、原料1タンクC7には原料1としてメタノールが収められている。原料2タンクC8には原料2として水が収められている。
【0017】
燃料電池発電システムの制御系は、負荷要求値演算装置A1、出力要求値演算装置A2、蒸発器原料投入量演算装置A3、パラメータ設定装置A4、制御装置A5、原料1タンクC7内の原料1に対する温度計測装置A6、原料2タンクC8内の原料2に対する温度計測装置A7、燃焼器C1の出口ガス温度を計測する燃焼器出口ガス温度計測装置A8、蒸発器C2に熱を伝える伝熱部の温度を計測する伝熱部温度計測装置A9、そして蒸発器出口の蒸気温度を計測する蒸発器出口蒸気温度計測装置A10から構成されている。
【0018】
負荷要求値演算装置A1は、負荷C11に要求する負荷要求値演算する。この負荷要求値は、当該システムが燃料電池自動車である場合、ドライバのアクセル操作から算出する。出力要求値演算装置A2は、負荷要求値演算装置A1が算出した負荷要求値に基づき、燃料電池C4で必要とする出力要求値を演算する。蒸発器原料投入量演算装置A3は、出力要求値演算装置A2が算出した出力要求値に基づき、蒸発器原料投入量を算出する。この蒸発器原料投入量が、燃料電池出力要求値に応じた蒸発器原料投入量目標値である。パラメータ設定装置A4は、制御装置A5が演算制御に必要とする諸々のパラメータを保持している。
【0019】
制御装置A5には蒸発器原料投入量演算装置A3から原料投入量目標値が入力され、原料1温度計測装置A6から原料1の温度、原料2温度計測装置A7から原料2の温度、燃焼器出口ガス温度計測装置A8から燃焼器出口のガス温度、伝熱部温度計測装置A9から蒸発器内に燃焼器C1から熱を伝熱する伝熱部の温度、蒸発器出口蒸気温度計測装置A10から蒸発器出口の蒸気温度がそれぞれ入力される。そして制御装置A5はこれらの計測値とパラメータ設定装置A4からのパラメータとを用いて、後述する制御演算処理によって蒸発器C2に対する原料1供給量、原料2供給量を求め、これに基づいて原料1供給装置C9、原料2供給装置C10を制御して蒸発器C2に供給する原料1、原料2の供給量を調整する。
【0020】
制御装置A5は図2に示す構成であり、蒸発器C2の熱量収支を推定する蒸発器熱量収支推定部A51、この蒸発器熱量の収支推定結果に基づき蒸発器C2に投入可能な原料投入量を演算する蒸発器原料投入可能量演算部A52、そして蒸発器C2に対する原料1供給装置C9、原料2供給装置C10に対して原料供給量を制限する原料投入量制限部A53を備えている。
【0021】
次に、上記の構成の燃料電池発電システムにおける燃料改質器の制御装置の動作を、図3のフローチャートを用いて説明する。
【0022】
負荷要求値演算装置A1は、負荷C11に要求する負荷要求値を演算する。出力要求値演算装置A2は、負荷要求値演算装置A1が算出した負荷要求値に基づき、燃料電池C4で必要とする出力要求値を演算する。蒸発器原料投入量演算装置A3は、出力要求値演算装置A2が算出した出力要求値に基づき、蒸発器原料投入量を算出し、燃料電池出力要求値に応じた蒸発器原料投入量目標値として制御装置A5の蒸発器熱量収支推定部A51に与える(ステップS05)。
【0023】
制御装置A5の蒸発器熱量収支推定部A51は、蒸発器原料投入量演算装置A3から原料投入量目標値を、原料1温度計測装置A6から原料1の温度を、原料2温度計測装置A7から原料2の温度を、燃焼器出口ガス温度計測装置A8から燃焼器出口のガス温度を、伝熱部温度計測装置A9から伝熱部温度を、蒸発器出口蒸気温度計測装置A10から蒸発器出口の蒸気温度をそれぞれ入力し、またパラメータ設定装置A4から諸々のパラメータを入力する。蒸発器熱量収支推定部A51はこれらの入力を用いて、後述する方法で蒸発器C2の熱量収支を推定演算し、蒸発器原料投入可能量演算部A52に渡す(ステップS10)。
【0024】
蒸発器原料投入可能量演算部A52では、この蒸発器熱量の収支推定結果に基づき蒸発器C2に投入可能な原料投入量を算出して原料投入量制限部A53に渡す(ステップS15)。
【0025】
そして原料投入量制限部A53では、原料投入量目標値にこの原料投入可能量によって制限をかけ、蒸発器C2に対する原料1供給装置C9、原料2供給装置C10に原料供給量を指示する(ステップS30)。
【0026】
原料1供給装置C9、原料2供給装置C10それぞれは、制御装置A5の原料投入量制限部A53から受け取った信号に相当する原料1、原料2を原料1タンクC7、原料2タンクC8それぞれから蒸発器C2に投入する。
【0027】
蒸発器C2では、投入される原料1、原料2に対して、燃焼器C1からの熱を伝えて蒸発させ、気化された原料1、原料2を改質触媒室C3に導く。改質触媒室C3では、気化した原料1、原料2を改質触媒に接触させて改質反応を起こさせ、水素リッチな燃料ガスにして燃料電池C4に送込む。
【0028】
燃料電池C4では、改質触媒室C3からの水素リッチな燃料ガスと、空気供給装置C5から供給される空気の酸素とを反応させて発電する。この燃料電池C4から排出される排ガスは燃焼器C1に戻して燃焼させ、蒸発器C2に対する熱源とする。一方、燃料電池C4で発生した電力は負荷C11に供給する。
【0029】
燃料電池自動車の場合には、負荷C11はバッテリあるいはモータであり、燃料電池C4で発電した電気を取り出し、これを電圧昇圧器で昇圧してから利用する。
【0030】
次に、制御装置A5が採用している上述した蒸発器の熱量収支の推定、原料供給量の制限に用いる演算原理について説明する。
【0031】
蒸発器C2における熱量の収支は、次の数1式によって表すことができる。ここで原料は2種類、メタノール(原料1)と水(原料2)である。
【0032】
【数1】

Figure 0003900770
ただし、
ρ1:原料1の密度[kg/m3
ρ2:原料2の密度[kg/m3
ρ: 蒸発器内の混合物の平均密度[kg/m3
1:原料1の体積流量[m3/s]
2:原料2の体積流量[m3/s]
F: 蒸発器流出混合物の体積流量[m3/s]
H: 蒸発熱量[J/s]
K: 蒸発器への伝熱部の熱伝達率[J/(s・K・m2)]
A: 蒸発器への伝熱部の伝熱面積[m2
n: 蒸発器熱容量[J/K]
p1:原料1の熱容量[J/K]
p2:原料2の熱容量[J/K]
p: 原料混合物の熱容量[J/K]
n: 蒸発器出口の蒸気温度[K]
j: 蒸発器内の伝熱部の温度[K]
1: 蒸発器への原料1の流入温度[K]
2: 蒸発器への原料2の流入温度[K]
上の数1式の左辺は、熱量の時間変動を表し、数1式の右辺第1項は蒸発器C2に対して原料1が持ち込む熱量、第2項は原料2が持ち込む熱量を表している。また右辺第3項は蒸発器C2から混合物蒸気が持ち去る熱量、第4項は蒸発器C2において原料混合物が蒸発するときの蒸発熱量、第5項は蒸発器C2へ燃焼器C1の熱を伝える伝熱部からの熱量の収支、そして第6項のΔは蒸発器C2での熱量の損失分を表している。
【0033】
この数1式は、蒸発器C2の周辺の熱量の収支すべてを表しているので、原料1、原料2の流入温度、流量、燃焼器C1からの熱を伝達する伝熱部の温度が変化した場合の蒸発器C2の周辺の熱量の収支のバランスを推定することができる。
【0034】
この熱量の収支バランスが負になった場合、蒸発器C2の出口温度が低下することを意味する。反対にそれが正になった場合には、蒸発器C2の出口温度が上昇することを意味する。そしてそれがゼロの場合には定常状態で、蒸発器C2の出口温度が現状のまま維持されることを意味する。つまり、熱量の収支バランスが正、負、ゼロによって熱量の過不足を判別することができるのである。
【0035】
そして蒸発器C2の出口蒸気ガス温度が目標管理温度の下限値よりも低い場合には、温度をそれ以上低下させないように熱量の収支バランスが正かゼロとなるように蒸発器C2に投入する原料投入可能量を算出し、蒸発器出口の蒸気ガス温度が目標管理温度の所定の範囲内にあれば、温度を現状維持させるように熱量の収支バランスがゼロとなるように蒸発器C2に投入する原料投入可能量を算出する。
【0036】
このようにして算出した原料投入可能量と、燃料電池C4で要求する出力要求値に応じた原料投入量目標値とを比較し、原料投入可能量の方が小さい場合には、原料投入量目標値を制限することにより、蒸発器出口の蒸気ガス温度を維持することができるのである。
【0037】
これにより、第1の実施の形態では、蒸発器C2に対して負荷が要求する出力に見合った原料投入量を急激に供給するのに制限を設け、蒸発器C2の熱量収支のバランスがくずれない範囲で原料投入量を制御するので、蒸発器C2からの蒸気ガス温度を下げてしまうのを防止することができる。
【0038】
次に本発明の第2の実施の形態の燃料改質器の制御装置について説明する。第2の実施の形態の構成は図1〜図3に示した第1の実施の形態と同様であるが、制御装置A5における演算処理を図4のフローチャートに示すものにしたことを特徴とする。したがって、以下では、第1の実施の形態と共通する要素については、同一の符号を用いて説明する。
【0039】
図4のフローチャートに示すように、制御装置A5の蒸発器熱量収支推定部A51は、蒸発器原料投入量演算装置A3から原料投入量目標値を、原料1温度計測装置A6から原料1の温度を、原料2温度計測装置A7から原料2の温度を、燃焼器出口ガス温度計測装置A8から燃焼器出口のガス温度を、伝熱部温度計測装置A9から伝熱部温度を、蒸発器出口蒸気温度計測装置A10から蒸発器出口の蒸気温度をそれぞれ入力し、またパラメータ設定装置A4から諸々のパラメータを入力する。蒸発器熱量収支推定部A51はこれらの入力を用いて蒸発器C2の熱量収支を推定演算し、蒸発器原料投入可能量演算部A52に渡す(ステップS10)。
【0040】
蒸発器原料投入可能量演算部A52では、この蒸発器熱量の収支推定結果に基づき蒸発器C2に投入可能な原料投入量を算出して原料投入量制限部A53に渡す(ステップS15)。
【0041】
そして原料投入量制限部A53では、蒸発器C2の周辺の熱量の過不足を判定し(ステップS20)、また蒸発器出口の蒸気温度の下限を判定し(ステップS25)、これらの判定結果に基づき、原料投入量目標値に制限をかけ、蒸発器C2に対する原料1供給装置C9、原料2供給装置C10に原料供給量を指示する(ステップS30)。
【0042】
原料1供給装置C9、原料2供給装置C10それぞれは、制御装置A5の原料投入量制限部A53から受け取った信号に相当する原料1、原料2を原料1タンクC7、原料2タンクC8それぞれから蒸発器C2に投入する。
【0043】
以上の制御をさらに詳しく説明する。第1の実施の形態で用いた数1式は、定常状態では左辺がゼロとなるので、次の数2式となる。
【0044】
【数2】
Figure 0003900770
ただし、ここでは説明のために、損失はなく、Δ=0と仮定している。
【0045】
数2式をF1について解いて、F1をF1-tで置き換えると数4式のようになる。ただし、以下の数3式に示す関係があるとする。
【0046】
【数3】
Figure 0003900770
【数4】
Figure 0003900770
この数4式から、現状の蒸発器C2の出口の蒸気ガス温度Tnと蒸発器C2に熱を供給する燃焼器C1からの伝熱部の温度Tにおいて、投入可能な原料流量F1-tを算出することができる。数3式の関係から、原料2の流量F2は原料1の流量F1に依存するので、蒸発器C2に投入可能な原料流量F2も算出することができる。
【0047】
蒸発器C2の周辺の熱量収支に変化がない場合には、原料1の投入量F1- はゼロとなる。これは現状を維持するためには原料を変更できないことを意味する。
【0048】
蒸発器C2に熱を供給する伝熱部の温度Tj、蒸発器出口の蒸気温度Tn、原料温度T1,T2が変化した場合には、投入可能な原料流量は変化する。また、蒸発器出口の蒸気ガス温度を定常目標値に維持するように蒸発器C2への原料投入可能量の変化分を算出することができる。
【0049】
仮に、数2式で表わされる状態を目標とする定常制御ポイントとする。いま、原料1の投入量Fの定常値からの変化分をβ、蒸発器出口の蒸気温度の定常値からの変化分をα、蒸発器C2へ熱を伝達する伝熱部の温度の定常値からの変化分をzで表すとする。すると、数2式から外れた新しい定常状態では、蒸発器C2の周辺の熱量収支は、次の数5式のようになる。
【0050】
【数5】
Figure 0003900770
これを数2式の関係を使ってβについて解くと、次の数6式となる。
【0051】
【数6】
Figure 0003900770
また、蒸発器出口の蒸気ガス温度を変化させないように制御するものとして、蒸発器出口の蒸気ガス温度の定常値からの変化分αをゼロとすると、数6式は次の数7式のようになる。
【0052】
【数7】
Figure 0003900770
この数6式、数7式は蒸発器出口の蒸気ガス温度、伝熱部の温度が定常目標値から変化した変化分に合わせて蒸発器投入可能量の変化分を算出するため、実際の蒸発器原料投入量を原料投入可能量の変化分で制限しながら投入すれば、蒸発器出口の蒸気ガス温度は定常制御ポイントを維持するようにできる。
【0053】
蒸発器出口の蒸気ガス温度が上限値よりも高い場合と、蒸発器C2における熱量の収支バランスの判定で熱量が過剰と判定された場合には、蒸発器出口の蒸気ガス温度が下限値を下回らないように投入可能量を算出して原料を投入するようにすれば、蒸発器出口の蒸気ガス温度が定常制御ポイントを維持するようにできる。
【0054】
蒸発器C2の熱量の収支バランスの過不足の判定で熱量が不足すると判定された場合には、算出した原料投入可能量の変化分と前回の原料投入量とを足した値を限度として原料を投入するようにすれば、原料を減少させることができる。また異常時や出力低下要求時を除いて、原料を減少させるように操作することで燃料電池C4の出力をダウンさせることが不都合な場合には、それ以上に蒸発器C2の温度が下がらないように、投入する原料の増加分のみをカットして、それ以上原料を増加させないようにしてもよい。
【0055】
これにより、第2の実施の形態によれば、蒸発器C2の熱量収支の判断で熱量が不足すると判断した場合には、算出した原料投入可能量の変化分と前回の原料投入量とを足した値を限度として原料を投入するようにしたことにより、原料を減少させることができる。
【0056】
また、異常時や出力低下要求時を除いて原料を減少させることは燃料電池C4の出力をダウンさせることになるので、これを許容できない場合には、それ以上蒸発器C2の出口温度が下がらないように、投入する原料の増加分をカットしてそれ以上原料を増加させないようにすることができる。
【0057】
さらに、蒸発器C2の熱量収支の判断で熱量が過剰になると判断した場合、又は蒸発器出口の蒸気ガス温度が目標管理温度よりも高い場合には、蒸発器C2の出口蒸気温度が下限値を下回らないような投入可能量を算出してこれを最大値とし、燃料電池C4で要求する出力要求値に応じて算出する蒸発器C2に対する原料投入量目標値をこの最大値以下に制限しながら蒸発器C1に投入することにより、蒸発器出口蒸気温度が定常制御ポイントを維持することができる。
【0058】
図5及び図6は本実施の形態による燃料改質器の制御装置と従来の制御装置とのコンピュータシミュレーション結果を示している。図5は本実施の形態による制御を実施した場合、図6はそれを実施しなかった場合のシミュレーション結果である。両図において、(a),(b),(c),(d),(e)はそれぞれ、
(a)蒸発器C2の出口蒸気温度[K]
(b)燃焼器出口ガス温度[K]
(c)本実施の形態で制限した蒸発器C2への投入原料[m3/s]
(d)蒸発器C2への投入原料の目標値[m3/s]
である。
【0060】
図5に示した本実施の形態の制御によれば、同図(c)に示す制限した投入原料は、同図(d)に示す投入原料目標値に対して制限を加えているので、目標値通りに急激には変化しない。このため、蒸発器C2の出口蒸気温度の低下が抑制されている(図5(a))。
【0061】
これに対して、図6に従来の制御の場合、同図(c)に示す蒸発器原料投入量は、同図(d)に示す原料投入量目標値と同じように急激に変化していて、これにより蒸発器C2の出口蒸気温度が原料投入と共に低下していることが分かる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の燃料改質器の制御装置を含む燃料電池発電システムのブロック図。
【図2】上記の実施の形態における制御装置の内部構成を示すブロック図。
【図3】上記の実施の形態における蒸発器に対する原料供給制御のフローチャート。
【図4】本発明の第2の実施の形態における蒸発器に対する原料供給制御のフローチャート。
【図5】上記の実施の形態による制御特性を示すグラフ。
【図6】従来例の制御特性を示すグラフ。
【符号の説明】
C1 燃焼器
C2 蒸発器
C3 改質触媒室
C4 燃料電池
C9 原料1供給装置
C10 原料2供給装置
C11 負荷
A1 負荷要求値演算装置
A2 出力要求値演算装置
A3 蒸発器原料投入量演算装置
A4 パラメータ設定装置
A5 制御装置
A51 蒸発器熱量収支推定部
A52 蒸発器原料投入可能量演算部
A53 原料投入量制限部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a fuel reformer.
[0002]
[Prior art]
A fuel cell power generation device reforms a raw material such as methanol to produce a hydrogen-rich fuel gas, a hydrogen-rich fuel gas produced by the fuel reformer, and a separate air supply device The main element is a fuel cell that generates electric power by reacting with an oxidizing gas containing oxygen. In the fuel reformer, an evaporator that heats a raw material such as methanol to steam, a combustor that supplies heat to the evaporator, and the steamed raw material is converted into a hydrogen-rich fuel gas by a reforming catalyst. A reforming section is included.
[0003]
In this fuel reformer, if a large amount of raw material is added to the evaporator beyond its capacity, the evaporator temperature decreases and the raw material cannot be evaporated. Therefore, in order to make the raw material into steam with the evaporator, it is necessary to control the temperature of the evaporator to the target management temperature.
[0004]
Conventionally, as a method for controlling the temperature of such an evaporator, for example, a method described in JP-A-8-273686 is known. In this conventional method, the target temperature of the evaporator is calculated according to the amount of raw material input, and the air and fuel flow rates of the combustor that supplies heat to the evaporator are set so that the evaporator temperature becomes the target temperature. I try to adjust it. In addition to controlling the temperature of the evaporator, the air and fuel flow rates of the combustor are adjusted so that the temperature of the combustor itself is controlled to the target management temperature.
[0005]
[Problems to be solved by the invention]
However, in such a conventional control device for a fuel cell reformer, the raw material input amount calculated from the load command required for the fuel cell is input to the evaporator as it is, so that the temperature of the evaporator is the target. Even if the control value is satisfied at the present time, when a large amount of raw material is suddenly charged into the evaporator, the evaporator temperature is too low, and the raw material cannot be charged into the evaporator. This is a problem that occurs because the raw material is charged without considering the heat balance of the evaporator.
[0006]
The present invention has been made in view of such conventional problems, and is possible while maintaining the evaporator temperature at the target management temperature by controlling the raw material input amount in consideration of the heat balance of the evaporator itself. An object of the present invention is to provide a control device for a fuel reformer capable of charging an evaporator with an amount of raw material corresponding to the required output value required by the fuel cell.
[0007]
[Means for Solving the Problems]
The invention of claim 1 includes a reforming catalyst that reforms a vaporized raw material to generate a hydrogen-rich fuel gas, an evaporator that evaporates the raw material and supplies the raw material to the reforming catalyst, and the evaporator A control device for a fuel reformer that controls the amount of raw material input to a fuel reformer comprising a combustor that supplies heat for heating the raw material, and according to an output request value required by the fuel cell The raw material input amount target value calculating means for calculating the raw material input amount target value to be input to the evaporator, the heat amount balance estimating means for estimating the heat amount balance in the evaporator, and the evaporation estimated by the heat amount balance estimating means A raw material input amount calculating means for calculating a raw material input amount that can be input to the evaporator based on a heat balance of the evaporator, and a raw material input amount that can be input to the evaporator detected by the raw material input amount calculation means According to the above, the raw material input target Calculating the calculating means the is obtained a raw material input limiting means for limiting the raw material input target value.
[0008]
In the control device for the fuel reformer according to the first aspect of the invention, the raw material input target value calculation means calculates the raw material input target value to be input to the evaporator according to the required output value required by the fuel cell, and the heat balance. The estimation means estimates the heat balance of the evaporator. The raw material chargeable amount calculating means calculates the raw material charge amount that can be charged into the evaporator based on the heat balance of the evaporator estimated by the calorie balance estimating means, and the raw material charge amount limiting means can be charged to this evaporator. In accordance with the raw material input amount, the raw material input target value calculated by the raw material input amount target value calculating means is limited, and control is performed so that the raw material is input into the evaporator by the limited raw material input amount.
[0009]
As a result, it is possible to prevent a large amount of raw material corresponding to the required output value required by the fuel cell from being suddenly charged into the evaporator and lowering the vapor temperature at the evaporator outlet.
[0010]
According to a second aspect of the present invention, in the fuel reformer control device of the first aspect, the raw material input amount limiting means includes a steam temperature lower limit determining means for determining a lower limit of the steam temperature at the evaporator outlet, The raw material input amount limiting means determines that the heat balance of the evaporator estimated by the heat quantity balance estimating means is negative or the steam temperature lower limit determining means determines that the vapor temperature at the evaporator outlet is lower than the lower limit. In this case, the raw material input amount target value is limited.
[0011]
In the fuel reformer control device of the invention of claim 2, when the heat balance of the evaporator estimated by the heat balance estimation means is negative or when the steam temperature lower limit determination means has a lower vapor temperature at the evaporator outlet than the lower limit When it is determined, the raw material input amount limiting means limits the raw material input amount target value, and controls to input the raw material to the evaporator by the limited raw material input amount.
[0012]
As a result, it is possible to prevent a large amount of raw material corresponding to the required output value required by the fuel cell from being suddenly charged into the evaporator and lowering the vapor temperature at the evaporator outlet.
[0013]
【The invention's effect】
According to the first aspect of the present invention, it is possible to prevent a large amount of raw material corresponding to the required output value required by the fuel cell from being suddenly introduced into the evaporator to lower the vapor temperature at the evaporator outlet.
[0014]
According to the invention of claim 2, when the heat balance of the evaporator is negative or when it is determined that the vapor temperature at the outlet of the evaporator is lower than the lower limit, the raw material input amount target value is restricted, and the restricted raw material By controlling the raw material to be charged into the evaporator by the input amount, a large amount of raw material corresponding to the required output value required by the fuel cell is suddenly charged into the evaporator and the vapor temperature at the outlet of the evaporator is lowered. Thus, a raw material that can respond to the required output value as much as possible can be charged into the evaporator.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows the configuration of a fuel cell power generation system including a control device for a fuel reformer according to a first embodiment of the present invention. The mechanical system of this fuel cell power generation system includes a combustor C1, an evaporator C2, a reforming catalyst chamber C3, a fuel cell C4, an air supply device C5 and a fuel supply device C6 for the combustor C1, a raw material 1 tank C7 and a raw material 2 tank. C8, the raw material 1 of the raw material 1 tank C7, the raw material 2 of the raw material 2 tank C8, the raw material 1 supply device C9 for supplying the raw material 2 to the evaporator C2, a raw material 2 supply device C10, and a load C11.
[0016]
In the present embodiment, methanol is stored as the raw material 1 in the raw material 1 tank C7. Water is stored as the raw material 2 in the raw material 2 tank C8.
[0017]
The control system of the fuel cell power generation system controls the load requirement value calculation device A1, the output requirement value calculation device A2, the evaporator raw material input amount calculation device A3, the parameter setting device A4, the control device A5, and the raw material 1 in the raw material 1 tank C7. Temperature measuring device A6, temperature measuring device A7 for the raw material 2 in the raw material 2 tank C8, combustor outlet gas temperature measuring device A8 for measuring the outlet gas temperature of the combustor C1, and the temperature of the heat transfer section for transferring heat to the evaporator C2. It is comprised from the heat-transfer part temperature measurement apparatus A9 which measures this, and the evaporator exit vapor | steam temperature measurement apparatus A10 which measures the vapor | steam temperature of an evaporator exit.
[0018]
The required load value calculation device A1 calculates the required load value required for the load C11. This required load value is calculated from the driver's accelerator operation when the system is a fuel cell vehicle. The required output value calculation device A2 calculates the required output value required by the fuel cell C4 based on the required load value calculated by the required load value calculation device A1. The evaporator raw material input amount calculation device A3 calculates the evaporator raw material input amount based on the output request value calculated by the output request value calculation device A2. This evaporator raw material input amount is the evaporator raw material input amount target value according to the fuel cell output request value. The parameter setting device A4 holds various parameters necessary for the control control by the control device A5.
[0019]
The raw material input amount target value is input from the evaporator raw material input amount calculation device A3 to the control device A5, the raw material 1 temperature from the raw material 1 temperature measuring device A6, the raw material 2 temperature from the raw material 2 temperature measuring device A7, and the combustor outlet. The gas temperature at the combustor outlet from the gas temperature measuring device A8, the temperature at the heat transfer portion that transfers heat from the combustor C1 into the evaporator from the heat transfer portion temperature measuring device A9, and the vapor from the evaporator outlet vapor temperature measuring device A10 The steam temperature at the outlet of the vessel is input. Then, the control device A5 uses these measured values and the parameters from the parameter setting device A4 to obtain the raw material 1 supply amount and the raw material 2 supply amount to the evaporator C2 by a control calculation process described later, and based on this, the raw material 1 The supply amount of the raw material 1 and the raw material 2 supplied to the evaporator C2 is controlled by controlling the supply device C9 and the raw material 2 supply device C10.
[0020]
The control device A5 has the configuration shown in FIG. 2, and an evaporator heat amount balance estimation unit A51 that estimates the heat amount balance of the evaporator C2, and the raw material input amount that can be input to the evaporator C2 based on this evaporator heat amount balance estimation result. An evaporator raw material chargeable amount calculation unit A52 to be calculated, a raw material 1 supply device C9 for the evaporator C2, and a raw material input amount restriction unit A53 for limiting the raw material supply amount for the raw material 2 supply device C10 are provided.
[0021]
Next, the operation of the control device for the fuel reformer in the fuel cell power generation system configured as described above will be described with reference to the flowchart of FIG.
[0022]
The load request value calculation device A1 calculates a load request value required for the load C11. The required output value calculation device A2 calculates the required output value required by the fuel cell C4 based on the required load value calculated by the required load value calculation device A1. The evaporator raw material input amount calculation device A3 calculates the evaporator raw material input amount based on the output request value calculated by the output required value calculation device A2, and uses it as the evaporator raw material input amount target value according to the fuel cell output request value. It gives to the evaporator calorie | heat amount balance estimation part A51 of control apparatus A5 (step S05).
[0023]
The evaporator calorific value balance estimation unit A51 of the control device A5 receives the raw material input amount target value from the evaporator raw material input amount calculating device A3, the raw material 1 temperature from the raw material 1 temperature measuring device A6, and the raw material 2 temperature measuring device A7. 2, the gas temperature at the combustor outlet from the combustor outlet gas temperature measurement device A8, the heat transfer portion temperature from the heat transfer portion temperature measurement device A9, and the vapor at the evaporator outlet from the evaporator outlet vapor temperature measurement device A10. Each temperature is input, and various parameters are input from the parameter setting device A4. The evaporator heat amount balance estimation unit A51 uses these inputs to estimate and calculate the heat amount balance of the evaporator C2 by a method described later, and passes it to the evaporator raw material chargeable amount calculation unit A52 (step S10).
[0024]
In the evaporator raw material chargeable amount calculating unit A52, the raw material chargeable amount that can be charged into the evaporator C2 is calculated based on the estimation result of the evaporator heat amount, and is passed to the raw material charge limiter A53 (step S15).
[0025]
Then, the raw material input amount limiting unit A53 limits the raw material input amount target value by the raw material input possible amount, and instructs the raw material 1 supply device C9 and the raw material 2 supply device C10 for the evaporator C2 with the raw material supply amount (step S30). ).
[0026]
The raw material 1 supply device C9 and the raw material 2 supply device C10 are respectively vaporized from the raw material 1 tank C7 and the raw material 2 tank C8 to the raw material 1 and the raw material 2 corresponding to the signal received from the raw material input amount limiting unit A53 of the control device A5. Input to C2.
[0027]
In the evaporator C2, the heat from the combustor C1 is transmitted to the raw material 1 and raw material 2 to be introduced and evaporated, and the vaporized raw material 1 and raw material 2 are guided to the reforming catalyst chamber C3. In the reforming catalyst chamber C3, the vaporized raw material 1 and raw material 2 are brought into contact with the reforming catalyst to cause a reforming reaction, and are sent to the fuel cell C4 as hydrogen-rich fuel gas.
[0028]
In the fuel cell C4, the hydrogen-rich fuel gas from the reforming catalyst chamber C3 reacts with oxygen in the air supplied from the air supply device C5 to generate power. The exhaust gas discharged from the fuel cell C4 is returned to the combustor C1 to be combusted and used as a heat source for the evaporator C2. On the other hand, the electric power generated in the fuel cell C4 is supplied to the load C11.
[0029]
In the case of a fuel cell vehicle, the load C11 is a battery or a motor, and the electricity generated by the fuel cell C4 is taken out and used after being boosted by a voltage booster.
[0030]
Next, the calculation principle used for estimation of the heat balance of the evaporator and the limitation of the raw material supply amount adopted by the control device A5 will be described.
[0031]
The heat balance in the evaporator C2 can be expressed by the following equation (1). Here, two types of raw materials are methanol (raw material 1) and water (raw material 2).
[0032]
[Expression 1]
Figure 0003900770
However,
ρ 1 : density of raw material 1 [kg / m 3 ]
ρ 2 : density of raw material 2 [kg / m 3 ]
ρ: average density of the mixture in the evaporator [kg / m 3 ]
F 1 : Volume flow rate of raw material 1 [m 3 / s]
F 2 : Volume flow rate of raw material 2 [m 3 / s]
F: Volumetric flow rate of the evaporator effluent mixture [m 3 / s]
H: Heat of evaporation [J / s]
K: Heat transfer coefficient of the heat transfer section to the evaporator [J / (s · K · m 2 )]
A: Heat transfer area [m 2 ] of the heat transfer section to the evaporator
C n : Evaporator heat capacity [J / K]
C p1 : Heat capacity of raw material 1 [J / K]
C p2 : Heat capacity of raw material 2 [J / K]
C p : heat capacity of raw material mixture [J / K]
T n : Steam temperature at the outlet of the evaporator [K]
T j : temperature of the heat transfer section in the evaporator [K]
T 1 : Inflow temperature of raw material 1 to the evaporator [K]
T 2 : Inflow temperature of raw material 2 to the evaporator [K]
The left side of Equation 1 above represents the time variation of the amount of heat, the first term on the right side of Equation 1 represents the amount of heat that the raw material 1 brings into the evaporator C2, and the second term represents the amount of heat that the raw material 2 brings in. . The third term on the right side is the amount of heat that the mixture vapor takes away from the evaporator C2, the fourth term is the amount of heat that evaporates when the raw material mixture evaporates in the evaporator C2, and the fifth term is the transfer of heat from the combustor C1 to the evaporator C2. The balance of the amount of heat from the hot part, and Δ in the sixth term represent the amount of heat loss in the evaporator C2.
[0033]
This equation (1) represents all the heat balance in the vicinity of the evaporator C2, so that the inflow temperature of the raw material 1, the raw material 2, the flow rate, and the temperature of the heat transfer section that transfers heat from the combustor C1 have changed. In this case, it is possible to estimate the balance of the heat balance around the evaporator C2.
[0034]
When the balance of heat quantity becomes negative, it means that the outlet temperature of the evaporator C2 is lowered. On the contrary, when it becomes positive, it means that the outlet temperature of the evaporator C2 rises. And when it is zero, it means that the outlet temperature of the evaporator C2 is maintained as it is in a steady state. That is, it is possible to determine whether the amount of heat is excessive or insufficient based on whether the balance of heat balance is positive, negative, or zero.
[0035]
Then, when the outlet steam gas temperature of the evaporator C2 is lower than the lower limit value of the target management temperature, the raw material charged into the evaporator C2 so that the heat balance is positive or zero so as not to further decrease the temperature. The amount that can be charged is calculated, and if the vapor gas temperature at the outlet of the evaporator is within a predetermined range of the target management temperature, it is charged into the evaporator C2 so that the balance of heat amount becomes zero so that the temperature is maintained as it is. Calculate the amount of material that can be charged.
[0036]
The raw material input amount calculated in this way is compared with the raw material input amount target value corresponding to the output request value required by the fuel cell C4. If the raw material input amount is smaller, the raw material input target By limiting the value, the vapor gas temperature at the evaporator outlet can be maintained.
[0037]
As a result, in the first embodiment, there is a limitation on abruptly supplying the raw material input amount corresponding to the output required by the load to the evaporator C2, and the balance of the heat balance of the evaporator C2 is not lost. Since the raw material input amount is controlled within the range, it is possible to prevent the vapor gas temperature from the evaporator C2 from being lowered.
[0038]
Next, a control device for a fuel reformer according to a second embodiment of the present invention will be described. The configuration of the second embodiment is the same as that of the first embodiment shown in FIGS. 1 to 3, except that the arithmetic processing in the control device A5 is shown in the flowchart of FIG. . Therefore, in the following, elements common to the first embodiment will be described using the same reference numerals.
[0039]
As shown in the flowchart of FIG. 4, the evaporator heat amount balance estimation unit A51 of the control device A5 receives the raw material input amount target value from the evaporator raw material input amount calculation device A3 and the raw material 1 temperature measurement device A6 from the raw material 1 temperature. The temperature of the raw material 2 from the raw material 2 temperature measuring device A7, the gas temperature at the combustor outlet from the combustor outlet gas temperature measuring device A8, the heat transfer portion temperature from the heat transfer portion temperature measuring device A9, and the evaporator outlet steam temperature The vapor temperature at the outlet of the evaporator is input from the measuring device A10, and various parameters are input from the parameter setting device A4. The evaporator heat amount balance estimation unit A51 uses these inputs to estimate and calculate the heat amount balance of the evaporator C2, and passes it to the evaporator raw material chargeable amount calculation unit A52 (step S10).
[0040]
In the evaporator raw material chargeable amount calculating unit A52, the raw material chargeable amount that can be charged into the evaporator C2 is calculated based on the estimation result of the evaporator heat amount, and is passed to the raw material charge limiter A53 (step S15).
[0041]
Then, the raw material input amount limiting unit A53 determines whether the amount of heat around the evaporator C2 is excessive or insufficient (step S20), determines the lower limit of the vapor temperature at the evaporator outlet (step S25), and based on these determination results. The raw material input amount target value is limited, and the raw material supply amount is instructed to the raw material 1 supply device C9 and the raw material 2 supply device C10 for the evaporator C2 (step S30).
[0042]
The raw material 1 supply device C9 and the raw material 2 supply device C10 are respectively vaporized from the raw material 1 tank C7 and the raw material 2 tank C8 to the raw material 1 and the raw material 2 corresponding to the signal received from the raw material input amount limiting unit A53 of the control device A5. Input to C2.
[0043]
The above control will be described in more detail. Equation 1 used in the first embodiment is the following Equation 2 because the left side is zero in a steady state.
[0044]
[Expression 2]
Figure 0003900770
However, here, for the sake of explanation, it is assumed that there is no loss and Δ = 0.
[0045]
The equation 2 and solving for F 1, comprising the F 1 as equation (4) is replaced by F 1-t. However, it is assumed that there is a relationship shown in the following equation (3).
[0046]
[Equation 3]
Figure 0003900770
[Expression 4]
Figure 0003900770
From this equation (4), at the current vapor gas temperature T n at the outlet of the evaporator C2 and the temperature T j of the heat transfer section from the combustor C1 supplying heat to the evaporator C2, the raw material flow rate F 1− t can be calculated. From the relationship of Equation 3, since the flow rate F 2 of the raw material 2 depends on the flow rate F 1 of the raw material 1, the raw material flow rate F 2 that can be charged into the evaporator C2 can also be calculated.
[0047]
When there is no change in the heat balance around the evaporator C2, the input amount F1 - t of the raw material 1 becomes zero. This means that the raw material cannot be changed in order to maintain the current situation.
[0048]
When the temperature T j of the heat transfer section that supplies heat to the evaporator C2, the vapor temperature T n at the outlet of the evaporator, and the raw material temperatures T 1 and T 2 change, the raw material flow rate that can be charged changes. Further, it is possible to calculate the amount of change in the amount of raw material that can be charged into the evaporator C2 so that the vapor gas temperature at the outlet of the evaporator is maintained at the steady target value.
[0049]
Temporarily, let the state represented by Formula 2 be a steady control point. Now, a change from the steady-state value of the input amount F 1 material 1 beta, a change from the steady-state value of the steam temperature of the evaporator outlet alpha, the temperature of the heat transfer unit for transferring heat to the evaporator C2 constant Let the change from the value be represented by z. Then, in a new steady state deviating from Equation 2, the heat balance around the evaporator C2 is as shown in Equation 5 below.
[0050]
[Equation 5]
Figure 0003900770
When this is solved for β using the relationship of Equation 2, the following Equation 6 is obtained.
[0051]
[Formula 6]
Figure 0003900770
Further, assuming that the change α from the steady value of the vapor gas temperature at the evaporator outlet is zero as the control to prevent the vapor gas temperature at the evaporator outlet from being changed, the equation 6 is expressed as the following equation 7. become.
[0052]
[Expression 7]
Figure 0003900770
Equations (6) and (7) calculate the amount of change in the amount of the evaporator that can be charged in accordance with the change in the vapor gas temperature at the outlet of the evaporator and the temperature of the heat transfer unit from the steady target value. If the raw material input amount is input while being limited by the change of the raw material input amount, the vapor gas temperature at the outlet of the evaporator can be maintained at a steady control point.
[0053]
When the vapor gas temperature at the outlet of the evaporator is higher than the upper limit value and when it is determined that the amount of heat is excessive in the determination of the balance of heat amount in the evaporator C2, the vapor gas temperature at the outlet of the evaporator falls below the lower limit value. If the feedable amount is calculated so that the raw material is charged, the vapor gas temperature at the evaporator outlet can be maintained at the steady control point.
[0054]
If it is determined that the amount of heat is insufficient by determining whether the balance of heat balance of the evaporator C2 is excessive or insufficient, the raw material is limited to the value obtained by adding the calculated amount of change in the raw material input amount and the previous raw material input amount. If it is made to input, raw materials can be reduced. In addition, when it is inconvenient to reduce the output of the fuel cell C4 by operating to reduce the raw material except when there is an abnormality or when the output reduction is requested, the temperature of the evaporator C2 does not further decrease. In addition, it is possible to cut only the increased amount of the raw material to be added so that the raw material is not further increased.
[0055]
As a result, according to the second embodiment, when it is determined that the amount of heat is insufficient in the determination of the heat balance of the evaporator C2, the calculated change amount of the raw material input amount is added to the previous raw material input amount. The raw materials can be reduced by introducing the raw materials within the limit.
[0056]
In addition, reducing the raw material except when there is an abnormality or when a request to reduce output results in a decrease in the output of the fuel cell C4. If this cannot be allowed, the outlet temperature of the evaporator C2 will not drop further. In this way, an increase in the amount of raw material to be added can be cut so as not to increase the raw material any further.
[0057]
Furthermore, when it is determined that the amount of heat is excessive in the determination of the heat balance of the evaporator C2, or when the vapor gas temperature at the evaporator outlet is higher than the target management temperature, the outlet vapor temperature of the evaporator C2 has a lower limit value. Evaporate while calculating a possible input amount that does not fall below the maximum value, and limiting the raw material input amount target value for the evaporator C2 calculated according to the required output value required by the fuel cell C4 to below this maximum value. By charging the evaporator C1, the evaporator outlet steam temperature can maintain a steady control point.
[0058]
5 and 6 show computer simulation results of the control device for the fuel reformer according to the present embodiment and the conventional control device. FIG. 5 shows a simulation result when the control according to the present embodiment is performed, and FIG. 6 shows a simulation result when the control is not performed. In both figures, (a), (b), (c), (d), (e) are respectively
(A) Evaporator C2 outlet steam temperature [K]
(B) Combustor outlet gas temperature [K]
(C) Raw material [m 3 / s] charged to the evaporator C2 restricted in the present embodiment
(D) Target value of raw material charged to evaporator C2 [m 3 / s]
It is.
[0060]
According to the control of the present embodiment shown in FIG. 5, the limited input raw material shown in FIG. 5 (c) places a restriction on the input raw material target value shown in FIG. It does not change abruptly according to the value. For this reason, the fall of the exit vapor | steam temperature of the evaporator C2 is suppressed (FIG. 5 (a)).
[0061]
On the other hand, in the case of the conventional control shown in FIG. 6, the evaporator raw material input amount shown in FIG. 6 (c) changes abruptly in the same manner as the raw material input amount target value shown in FIG. 6 (d). As a result, it can be seen that the outlet steam temperature of the evaporator C2 decreases as the raw material is charged.
[Brief description of the drawings]
FIG. 1 is a block diagram of a fuel cell power generation system including a control device for a fuel reformer according to a first embodiment of the present invention.
FIG. 2 is a block diagram showing an internal configuration of a control device in the above embodiment.
FIG. 3 is a flowchart of raw material supply control for the evaporator in the embodiment.
FIG. 4 is a flowchart of raw material supply control for an evaporator according to a second embodiment of the present invention.
FIG. 5 is a graph showing control characteristics according to the embodiment.
FIG. 6 is a graph showing control characteristics of a conventional example.
[Explanation of symbols]
C1 Combustor C2 Evaporator C3 Reforming catalyst chamber C4 Fuel cell C9 Raw material 1 supply device C10 Raw material 2 supply device C11 Load A1 Load requirement value calculation device A2 Output requirement value calculation device A3 Evaporator material input amount calculation device A4 Parameter setting device A5 Control device A51 Evaporator heat balance estimation unit A52 Evaporator raw material input possible amount calculation unit A53 Raw material input amount restriction unit

Claims (2)

蒸気化された原料を改質して水素リッチな燃料ガスを生成する改質触媒と、原料を蒸発させて前記改質触媒に供給する蒸発器と、前記蒸発器に前記原料を加熱するための熱を供給する燃焼器とから成る燃料改質器に対して原料投入量を制御する燃料改質器の制御装置であって、
燃料電池で要求する出力要求値に応じて前記蒸発器に投入する原料投入量目標値を算出する原料投入量目標値算出手段と、
燃料電池の負荷に応じて変化する前記燃焼器から前記蒸発器への供給熱量を考慮して蒸発器における熱量の収支を推定する熱量収支推定手段と、
前記熱量収支推定手段の推定した前記蒸発器における熱量の収支に基づいて前記蒸発器に投入可能な原料投入量を算出する原料投入可能量算出手段と、
前記原料投入可能量算出手段の算出した前記蒸発器に投入可能な原料投入量に応じて、前記原料投入量目標値算出手段の算出した前記原料投入量目標値を制限する原料投入量制限手段とを備えて成る燃料改質器の制御装置。
A reforming catalyst for reforming the vaporized raw material to generate a hydrogen-rich fuel gas; an evaporator for evaporating the raw material to supply the reforming catalyst; and for heating the raw material to the evaporator A fuel reformer control device for controlling the amount of raw material input to a fuel reformer comprising a combustor for supplying heat,
A raw material input amount target value calculating means for calculating a raw material input amount target value to be input to the evaporator according to an output request value required by the fuel cell;
A heat balance estimation means for estimating a heat balance in the evaporator in consideration of the amount of heat supplied from the combustor to the evaporator, which varies depending on the load of the fuel cell ;
Raw material chargeable amount calculation means for calculating a raw material charge amount that can be charged into the evaporator based on a heat balance in the evaporator estimated by the heat balance calculation means;
Raw material input amount limiting means for limiting the raw material input amount target value calculated by the raw material input amount target value calculation means according to the raw material input amount that can be input to the evaporator calculated by the raw material input amount calculation means. A control device for a fuel reformer.
前記原料投入量制限手段は、前記蒸発器出口の蒸気温度の下限を判定する蒸気温度下限判定手段を有し、前記原料投入量制限手段は、前記熱量収支推定手段の推定した前記蒸発器の熱量の収支が負である場合又は前記蒸気温度下限判定手段が前記蒸発器出口の蒸気温度が前記下限よりも低いと判定した場合に、前記原料投入量目標値を制限することを特徴とする請求項1に記載の燃料改質器の制御装置。  The raw material input amount limiting means has a steam temperature lower limit determining means for determining a lower limit of the vapor temperature at the evaporator outlet, and the raw material input amount limiting means is an amount of heat of the evaporator estimated by the heat amount balance estimating means. The raw material input amount target value is limited when the balance of the flow rate is negative or when the steam temperature lower limit determining means determines that the steam temperature at the evaporator outlet is lower than the lower limit. The fuel reformer control device according to claim 1.
JP2000017348A 2000-01-26 2000-01-26 Control device for fuel reformer Expired - Fee Related JP3900770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000017348A JP3900770B2 (en) 2000-01-26 2000-01-26 Control device for fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000017348A JP3900770B2 (en) 2000-01-26 2000-01-26 Control device for fuel reformer

Publications (2)

Publication Number Publication Date
JP2001207922A JP2001207922A (en) 2001-08-03
JP3900770B2 true JP3900770B2 (en) 2007-04-04

Family

ID=18544354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000017348A Expired - Fee Related JP3900770B2 (en) 2000-01-26 2000-01-26 Control device for fuel reformer

Country Status (1)

Country Link
JP (1) JP3900770B2 (en)

Also Published As

Publication number Publication date
JP2001207922A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
JP3721947B2 (en) Control device for fuel cell system
JP5910127B2 (en) Fuel cell system
JP2002352823A (en) Fuel cell system and energy supply system
EP2454779B1 (en) Integrated fuel processor and fuel cell system control method
JP2001023678A (en) Fuel cell system
US6777122B2 (en) Vaporizer temperature control in fuel cell power plant
US6630109B2 (en) Control apparatus for reformer and method of controlling reformer using control apparatus
JP2004288516A (en) Cooling control device of fuel cell system
JP2002198073A (en) Control method of heat treatment system
JP3452051B2 (en) Fuel cell system
JP3849480B2 (en) Control device for fuel reformer
JP3651927B2 (en) Load control device for fuel cell power generator
JP3900770B2 (en) Control device for fuel reformer
US6607855B2 (en) Control system for fuel cell
JP2004087425A (en) Power supply device and operation method of power supply device
JP3864658B2 (en) Control device for fuel reformer
JP2006216255A (en) Fuel cell system and method of controlling the same
JP3284820B2 (en) Temperature control device for fuel reformer
WO2020194019A1 (en) Fuel cell system and method for controlling fuel cell system
JP2022077863A (en) Fuel cell power generation system
JP3709778B2 (en) Fuel reformer
JP2005063743A (en) Control device of fuel cell system
JP3744341B2 (en) Control device for reforming reactor
JPH05335029A (en) Fuel cell power-generating system
JP3733850B2 (en) Fuel reformer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees