JP3899304B2 - Chelating agent-degrading bacteria and treating agent for chelating agent contamination using the same - Google Patents

Chelating agent-degrading bacteria and treating agent for chelating agent contamination using the same Download PDF

Info

Publication number
JP3899304B2
JP3899304B2 JP2002278411A JP2002278411A JP3899304B2 JP 3899304 B2 JP3899304 B2 JP 3899304B2 JP 2002278411 A JP2002278411 A JP 2002278411A JP 2002278411 A JP2002278411 A JP 2002278411A JP 3899304 B2 JP3899304 B2 JP 3899304B2
Authority
JP
Japan
Prior art keywords
aminocarboxylic acid
metal complex
heavy metal
belonging
atlantica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002278411A
Other languages
Japanese (ja)
Other versions
JP2004113047A (en
Inventor
悦生 渡邉
千秋 今田
武志 小林
美代子 櫻井
奈保子 濱田
ひろみ 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002278411A priority Critical patent/JP3899304B2/en
Publication of JP2004113047A publication Critical patent/JP2004113047A/en
Application granted granted Critical
Publication of JP3899304B2 publication Critical patent/JP3899304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Pseudoalteromonas属のatlantica種に属する受託番号FERM P−19029として受託された菌株、および前記菌株を含む有機アミノカルボン酸・重金属錯体を含む被処理物、特にEDTA・金属錯体を含む被処理物の前記錯体分解処理剤、および前記処理剤による有機アミノカルボン酸・重金属錯体の生物分解処理方法などに関する。
【0002】
【従来技術】
重金属類含有廃水を物理化学的に廃水処理するのに適した方法として、例えば,廃水を活性炭やイオン交換樹脂などの吸着材に吸着させて重金属を捕集する方法がある。中でも前記イオン交換樹脂においてEDTA等のキレート化剤の残基を官能基として有するキレート樹脂は、重金属類を効果的に捕集できることはよく知られている。重金属類を含んだ産業廃水などの場合に、活性汚泥法などの生物的処理法を適用する試みは、重金属類を含んでいるために廃水からの重金属の除去効率が良くなかった。この様な中で、生物的処理を実現するために、有機アミノカルボン酸類が金属と結合した金属錯体に対しても生分解性を維持する生分解性細菌を見出すべき努力が払われ、有機アミノカルボン酸・重金属錯体にアミノカルボン酸分解性の細菌をその生育pH条件の下で処理すると、錯体のアミノカルボン酸部分が生物的に分解されて重金属類あるいは有価金属類は、水酸化物や酸化物などの形で濃縮分離された状態になり、廃水は無害化されることが見出されている。そして、そこで使用可能な有機アミノカルボン酸類を分解する能力を有する細菌とし、バチルス属に分類される菌株として、バチルス エディタビダス(Bacillus editabidus) 、バチルス サブチリス(Bacillus subtilis) 、バチルス メガテリウム(Bacillus megaterium) 、バチルス スファエリカス(Bacillus sphaericus)、Bacillus nattoなどを挙げ、これらは、例えば、Bacillus editabidus-1(微工研菌寄 第13449号)、Bacillus subtilis NRIC 0068 、B. megaterium NRIC 1009 、B. sphaericus NRIC 1013 などとして容易に入手可能であることなどに言及している(特許文献1)。しかしながら、シュードアルテロモナス属に分類される菌株、例えばシュードアルテロモナス・アトランティカ(Pseudoalteromonas atlantica:IAM 12927)については、有機アミノカルボン酸・重金属錯体の生分解に有効であることについて言及する文献は見当たらない。
【0003】
【特許文献1】
特開2002−192186(2002年7月10日公開。)(例えば、〔0021〕、〔0022〕)
【0004】
前記生物処理は、より環境負荷が少なく低コストな方法を実現できる可能性が大きいので、EDTAに代表される難生分解性成分についても生物による分解を実現するものとして有効となるものと考えられるが、現在までに報告されているEDTAに代表される難生分解性のキレート剤の分解微生物は陸上微生物であった。
一方、廃液など被処理物の塩分濃度はかなり高いので、高塩濃度において、EDTA・重金属錯体に代表される難生分解性成分に対して生分解活性を示す分解性菌株が望まれている。
【0005】
【発明が解決しようとする課題】
本発明の課題は、基本的には、高塩濃度において、EDTA・重金属錯体に代表される難生分解性成分に対して活性を示す分解性菌を提供することであり、更に、EDTA・重金属錯体に代表される難生分解性成分に対して活性を示す生分解処理剤、ならびに、生分解処理方法を提供することである。
そこで、高塩濃度において生分解活性を示す菌株は海中から見出されるのではないかと、多くの海域における海水、海水中浮遊物、海中沈殿物などを採取、培養し、前記課題を解決可能な菌株を選別すべく、目的の分解菌の簡便かつ迅速に評価する方法を開発努力と、それを利用した多くの試行錯誤の実験を繰り返し伊豆諸島近海の海中堆積物中からEDTA・金属錯体に対して生分解活性を示す菌株を分離することに成功し、前記課題を解決できた。そして、前記菌株がシュードアルテロモナス・アトランティカ(Pseudoalteromonas atlantica)に分類されEDTA・金属錯体を生物分解する新規特性に特徴付けられるものであることを同定し、H6−2−4と命名し、特許生物寄託センターに受託番号FERM P−19029として寄託した(平成14年9月19日受託)。
【0006】
【課題を解決するための手段】
本発明の第1は、特許生物寄託センターに受託番号FERM P−19029として受託されたPseudoalteromonas属のatlantica種に属する菌株である。また、本発明の第2及び第3は、前記特許生物寄託センターに受託番号FERM P−19029として受託されたPseudoalteromonas属のatlantica種に属する菌株を含む有機アミノカルボン酸・重金属錯体を分解する生分解剤、または特許生物寄託センターに受託番号FERM P−19029として受託されたPseudoalteromonas属の種atlanticaに属する細菌を有機アミノカルボン酸・重金属錯体を含む被処理物に加え、pHを6〜8に維持して前記有機アミノカルボン酸・重金属錯体を分解処理する方法に用いる前記細菌を含む有機アミノカルボン酸・重金属錯体生分解処理剤である。好ましくは、有機アミノカルボン酸がエチレンジアミン四酢酸(EDTA)であることを特徴とする前記第2または3の有機アミノカルボン酸・重金属錯体分解処理剤である。
【0007】
【本発明の実施の態様】
本発明をより詳細に説明する。
本発明のPseudoalteromonas属atlantica種に分類されるH6−2−4株の特徴;
H6−2−4株の種の同定
a,生理・生化学的性状試験は、“Manual of Methods for General Bacteriology(Smebert,1981)”に準ずる。
菌H6−2−4の特性を表1にまとめた。
【0008】
【表1】

Figure 0003899304
Figure 0003899304
【0009】
菌H6−2−4の生育及びFe−EDTA分解に対するpHの効果を表2に示す。
【0010】
【表2】
Figure 0003899304
【0011】
登録された既知の菌種のDNAの塩基配列との対比;
菌H6−2−4の16SrDNAの塩基配列と登録された細菌の塩基配列の相同性を比較したところ、表3に記載の6種の細菌の塩基配列と相同性は99.0%以上であった。この表から16SrDNAの塩基配列のみでは種の判別は困難であった。標準菌株は東京大学分子細胞研究所(LAM Culture Collection)から入手した。
PCR条件;
プライマー;細菌universal primer;
27F
1492R
反応液 Takara Ex Taq(イタリック)バッファー
プログラム(94℃60秒→58℃2分30秒→72℃2分30秒)×25サイクル
【0012】
【表3】
Figure 0003899304
【0013】
登録された既知の菌種のgyrB遺伝子の塩基配列との対比;
菌H6−2−4のgyrB遺伝子の塩基配列と登録された菌のgyrB遺伝子の塩基配列と対比したところ、Pseudoalteromonas atlantica と98.30%、また、P.haloplanktis subsp. tetraodononis と97.54%の相同性が認められた。P.espejiana との相同性は91.87%であった。
標準菌株をEzaki et al.(1990;Eur. J. Microbiol. Infec. Dis., 9: 213-217)に従って、ゲノムDNAを抽出した後、このDNAからYamamoto et al.(1995;Appl. Environ. Microbiol., 61: 1104-1109)の方法に準じ、gyrB遺伝子断片をPCRで増幅した。
PCR条件;
プライマー;細菌universal primer;
US−1S
US−2Sr
反応液 Takara Ex Taq(イタリック)バッファー
プログラム(94℃60秒→60℃60秒→72℃2分)×30サイクル
増幅したPCR産物を同様に精製し、ABI PRISM310 GeneticAnalyzerで塩基配列を決定し、データベース中の登録配列との相同性を比較した。相同性試験の結果を表4に示す。
【0014】
【表4】
Figure 0003899304
【0015】
菌H6−2−4のDNAのG+C(Gはグアニン、Cはシトシンを意味する)
含量の測定;
菌体DNAのG+C含量はTamaoka and Komagata(1984;FEMS Microbiol. Letters 25: 125-128)の方法に従って解析した。すなわち、NucleaseP1(GC含量測定キット:ヤマサ醤油)を用いて精製したゲノムDNAをヌクレオチドに分解し、高速液体クロマトグラフィー(HPLC)で分析した。HPLCの測定条件を以下に示す。また、標準混合物として、Escherichia coli strain B DNA(Sigma)(G+C含量 50mol%)を同様に加水分解させたものを用いた。この標準混合物と試料の結果から試料中のG+C含量を測定した。
高速液体クロマトグラフィー(HPLC)条件;
カラム:Docosil C22(4.6φ×250mm)
移動相:0.1M KHPO(pH未調整)
流速:1mL/分
検出波長:265nm
【0016】
菌H6−2−4のDNAのG+C含量は43.8mol%であり、Pseudoalteromonas属のDNAのG+C含量が39〜45mol%の範囲にあることと(Gauthier et al.,1995, Int. J. Syst. Bacteriol. 45: 755-761)対比すると、菌H6−2−4はPseudoalteromonas属の細菌と確認できた。
【0017】
菌H6−2−4と近縁の3種(P.atlantica、P.espejiana、P.haloplanktis subsp. tetraodononis )とのDNA−DNAハイブリダイゼーション試験;菌H6−2−4と近縁の前記3種について、DNA−DNAハイブリダイゼーションを行った。結果は、表5(G+C含量と共に示すと)おりであり、菌H6−2−4と交雑度が最も高いのはP.atlanticaで、89.7%あった。同一種と認める、Jonhnsonの提案が70%以上であるから、菌H6−2−4はP.atlantica と考えられた。
【0018】
【表5】
Figure 0003899304
【0019】
菌H6−2−4、P.atlanticaおよびP.haloplanktis subsp. tetraodononisの糖質および有機酸の資化能の結果を表6および表7に示す。菌H6−2−4の糖質および有機酸資化能は、D−リボースと酪酸除き、全てP.atlanticaと同一の結果であった。
以上のことを総合して、H6−2−4菌はPseudoalteromonas atlanticaと判明した。
【0020】
【表6】
Figure 0003899304
【0021】
【表7】
Figure 0003899304
【0022】
II.菌株選別試料の採取;
採取場所;伊豆諸島近海;
北緯34度45分84(Lat. 3445'84 N)
東経139度19分83(Long. 13919'83 E)
水深337m
III.生育条件;
EDTA−Z寒天培地の組成
ポリペプトン(Polypepton)(日本製薬) 5.0g
バクト−イースト抽出物(Bacto-yeast extract)(Difco) 1.0g
Fe(III)−EDTA(Doujin) 1.0g
バクト−寒天(Difco) 15.0g
人工海水 1000mL
pH 7.0
【0023】
IV.本発明の菌株を利用した処理方法は、公知の菌株を利用した生分解処理で用いられている技術を採用することができる。例えば、菌株を含む処理剤を、前記菌株が生育できる、pH、塩濃度、温度などの条件で被処理物と接触させる方法が採用できる。
細菌を固定化して処理する方法としては、担体として、例えば多孔性セラミクス、活性炭、スポンジ、キトサン(粒状)、ひも状担体、プラスチック、ハニカム状担体、波状担体、網状担体、アンスラサイト、砂利、砂、軽石等の1種または2種以上を用い、これに細菌を固定することにより用いることができる。
V.処理対象としては、EDTA−金属錯体、例えばCu、Fe(III)などの重金属との錯体を含む工業、食品などの廃水だけではなく、廃土や沈積土にも適用できる
【0024】
【実施例】
ここでの説明は、本発明をより理解し易くするだけの目的であり、本発明を限定的に解釈するためのものではない。
実施例1
菌株の分離と培養
1,分離
前記伊豆諸島近海で採取した海底堆積物1gを、滅菌天然海水に加え、10−1〜10−4に適宜希釈し、前記Fe(III)−EDTA寒天培地に塗抹し、27℃において1ヶ月静置培養した。培養後生じたコロニーを無作為的に選び、Fe(III)−EDTA液体培地中で培養を2日間行い、Fe(III)−EDTAが30%分解されていることを確認した。Fe(III)−EDTAが分解されイミノ二酢酸とグリシンの生成されていることを確認して、分離菌株がFe(III)−EDTAの分解に活性を持つことを確認した。
また、Fe(III)−EDTA含有液に前記分離菌体を添加した場合にも、前記錯体を分解できることを確認した。
【0025】
種々の金属(Me)・EDTA錯体のH6−2−4の生分解活性を測定した。結果を表8に示す。Cu(II)・EDTA錯体の分解にも有効であることが確認できた。
【0026】
【表8】
Figure 0003899304
【0027】
【発明の効果】
以上のように、本発明で提供する菌株H6−2−4は、活性汚泥の構成菌として有用であることが理解でき、廃水処理、汚染土壌などのバイオレメデーション用の菌株として有用であり、環境浄化が大きな社会問題となっていることから、これらの問題解決するための産業上の利用に貢献できることは明らかである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a strain deposited under the accession number FERM P-19029 belonging to the Atlantica species belonging to the genus Pseudoalteromonas, and a treatment containing an organic aminocarboxylic acid / heavy metal complex containing the strain, particularly a treatment containing an EDTA / metal complex. The present invention relates to a complex decomposition treatment agent for a product, a biodegradation treatment method of an organic aminocarboxylic acid / heavy metal complex using the treatment agent, and the like.
[0002]
[Prior art]
As a method suitable for physicochemically treating wastewater containing heavy metals, for example, there is a method of collecting heavy metals by adsorbing the wastewater on an adsorbent such as activated carbon or ion exchange resin. Among them, it is well known that a chelate resin having as a functional group a residue of a chelating agent such as EDTA in the ion exchange resin can effectively collect heavy metals. In the case of industrial wastewater containing heavy metals, attempts to apply biological treatment methods such as the activated sludge method have not been effective in removing heavy metals from wastewater because they contain heavy metals. Under these circumstances, in order to realize biological treatment, efforts have been made to find biodegradable bacteria that maintain biodegradability even for metal complexes in which organic aminocarboxylic acids are bonded to metals. When a carboxylic acid-heavy metal complex is treated with an aminocarboxylic acid-degradable bacterium under the growth pH conditions, the aminocarboxylic acid portion of the complex is biologically degraded, and heavy metals or valuable metals are converted to hydroxides or oxidized. It has been found that wastewater is rendered harmless by being concentrated and separated in the form of a product. Then, bacteria having the ability to decompose organic aminocarboxylic acids usable therein, and strains classified into the genus Bacillus include Bacillus editabidus, Bacillus subtilis, Bacillus megaterium, Bacillus megaterium, and Bacillus megaterium. Sphaericus (Bacillus sphaericus), Bacillus natto, etc. are mentioned, for example, as Bacillus editabidus-1 (Maiken Kenkyu No. 13449), Bacillus subtilis NRIC 0068, B. megaterium NRIC 1009, B. sphaericus NRIC 1013, etc. It is mentioned that it is easily available (Patent Document 1). However, for a strain classified into the genus Pseudoalteromonas, such as Pseudoalteromonas atlantica (IAM 12927), a document mentioning that it is effective for biodegradation of organic aminocarboxylic acid / heavy metal complexes Is not found.
[0003]
[Patent Document 1]
JP 2002-192186 (published July 10, 2002) (for example, [0021], [0022])
[0004]
Since the biological treatment has a high possibility of realizing a low-cost method with less environmental load, it is considered that the biodegradable component represented by EDTA is also effective as a means for realizing biological decomposition. However, the microorganisms of the biodegradable chelating agents represented by EDTA reported to date have been terrestrial microorganisms.
On the other hand, since the salinity of the object to be treated such as waste liquid is considerably high, a degradable strain that exhibits biodegradation activity against a hardly biodegradable component represented by EDTA / heavy metal complex at a high salt concentration is desired.
[0005]
[Problems to be solved by the invention]
An object of the present invention is basically to provide a degradable bacterium exhibiting activity against a hardly biodegradable component typified by EDTA / heavy metal complex at a high salt concentration. It is to provide a biodegradation treatment agent exhibiting activity for a hardly biodegradable component typified by a complex, and a biodegradation treatment method.
Therefore, if a strain showing biodegradation activity at a high salt concentration may be found in the sea, it is possible to collect and cultivate seawater, seawater suspensions, sea sediments, etc. In order to sort out EDTA / metal complexes from the sea sediments near the Izu Islands, repeated development efforts and many trial-and-error experiments using this method The present inventors have succeeded in isolating a strain exhibiting biodegradation activity, and have solved the above problems. The strain is classified as Pseudoalteromonas atlantica and is identified as having a novel property of biodegrading EDTA / metal complex, and named H6-2-4. Deposited with the Patent Biological Deposit Center under the deposit number FERM P-19029 (deposited on September 19, 2002).
[0006]
[Means for Solving the Problems]
The first of the present invention is a strain belonging to the species of Atlantica of the genus Pseudoalteromonas, deposited under the deposit number FERM P-19029 at the Patent Organism Depositary. The second and third aspects of the present invention include biodegradation for decomposing an organic aminocarboxylic acid / heavy metal complex containing a strain belonging to the species of Atlantica belonging to the genus Pseudoalteromonas deposited under the deposit number FERM P-19029 at the Patent Biodeposition Center. The agent or the bacteria belonging to the species Atlantica belonging to the genus Pseudoalteromonas entrusted to the Patent Biological Deposit Center under the accession number FERM P-19029 is added to the treatment object containing the organic aminocarboxylic acid / heavy metal complex, and the pH is maintained at 6-8. The organic aminocarboxylic acid / heavy metal complex biodegradation treatment agent containing the bacterium used in the method for decomposing the organic aminocarboxylic acid / heavy metal complex. Preferably, in the second or third organic aminocarboxylic acid / heavy metal complex decomposition treatment agent, the organic aminocarboxylic acid is ethylenediaminetetraacetic acid (EDTA).
[0007]
[Embodiments of the present invention]
The present invention will be described in more detail.
Characteristics of H6-2-4 strain classified as Pseudoalteromonas atlantica species of the present invention;
Identification of H6-2-4 strain species a. Physiological and biochemical property tests conform to “Manual of Methods for General Bacteriology (Smebert, 1981)”.
The characteristics of the fungus H6-2-4 are summarized in Table 1.
[0008]
[Table 1]
Figure 0003899304
Figure 0003899304
[0009]
The effect of pH on fungal H6-2-4 growth and Fe-EDTA degradation is shown in Table 2.
[0010]
[Table 2]
Figure 0003899304
[0011]
Comparison with registered DNA sequences of known bacterial species;
When the homology of the 16S rDNA base sequence of fungus H6-2-4 and the registered bacterial base sequence was compared, the homology with the base sequences of the six types of bacteria listed in Table 3 was 99.0% or more. It was. From this table, it was difficult to discriminate species by using only the base sequence of 16S rDNA. Standard strains were obtained from the University of Tokyo Molecular Cell Laboratory (LAM Culture Collection).
PCR conditions;
Primer; bacterial universal primer;
27F
1492R
Reaction solution Takara Ex Taq (Italic) buffer program (94 ° C. 60 seconds → 58 ° C. 2 minutes 30 seconds → 72 ° C. 2 minutes 30 seconds) × 25 cycles
[Table 3]
Figure 0003899304
[0013]
Comparison with the nucleotide sequence of the registered gyrB gene of known bacterial species;
When the base sequence of gyrB gene of fungus H6-2-4 was compared with the base sequence of gyrB gene of the registered fungus, it was found that Pseudoalteromonas atlantica and 98.30%, and P. haloplanktis subsp. Tetraodononis and 97.54% Homology was observed. The homology with P. espejiana was 91.87%.
Genomic DNA was extracted from a standard strain according to Ezaki et al. (1990; Eur. J. Microbiol. Infec. Dis., 9: 213-217), and then Yamamoto et al. (1995; Appl. Environ. Microbiol., 61: 1104-1109), the gyrB gene fragment was amplified by PCR.
PCR conditions;
Primer; bacterial universal primer;
US-1S
US-2Sr
Reaction solution Takara Ex Taq (Italic) buffer program (94 ° C. 60 seconds → 60 ° C. 60 seconds → 72 ° C. 2 minutes) × 30 cycles amplified PCR product was purified in the same manner, and the base sequence was determined with ABI PRISM310 Genetic Analyzer. The homology with the registered sequence in was compared. The results of the homology test are shown in Table 4.
[0014]
[Table 4]
Figure 0003899304
[0015]
G + C of DNA of fungus H6-2-4 (G means guanine, C means cytosine)
Content determination;
The G + C content of the bacterial cell DNA was analyzed according to the method of Tamaoka and Komagata (1984; FEMS Microbiol. Letters 25: 125-128). That is, genomic DNA purified using Nuclease P1 (GC content measurement kit: Yamasa Soy Sauce) was decomposed into nucleotides and analyzed by high performance liquid chromatography (HPLC). The measurement conditions for HPLC are shown below. In addition, Escherichia coli strain B DNA (Sigma) (G + C content 50 mol%) was similarly hydrolyzed as a standard mixture. The G + C content in the sample was measured from the results of this standard mixture and the sample.
High performance liquid chromatography (HPLC) conditions;
Column: Docosil C 22 (4.6φ × 250 mm)
Mobile phase: 0.1M KH 2 PO 4 (pH unadjusted)
Flow rate: 1 mL / min Detection wavelength: 265 nm
[0016]
The G + C content of the DNA of the fungus H6-2-4 is 43.8 mol%, and the G + C content of the DNA of the genus Pseudoalteromonas is in the range of 39 to 45 mol% (Gauthier et al., 1995, Int. J. Syst Bacteriol. 45: 755-761) In comparison, the fungus H6-2-4 was confirmed to be a bacterium belonging to the genus Pseudoalteromonas.
[0017]
DNA-DNA hybridization test with fungus H6-2-4 and three closely related species (P. atlantica, P. espejiana, P. haloplanktis subsp. Tetraodononis); Was subjected to DNA-DNA hybridization. The results are as shown in Table 5 (shown together with the G + C content), and P. atlantica had the highest degree of hybridization with fungus H6-2-4, which was 89.7%. Jonhnson's proposal, which is recognized as the same species, is 70% or more, so thought to be atlantica.
[0018]
[Table 5]
Figure 0003899304
[0019]
Fungus H6-2-4, P.I. Tables 6 and 7 show the results of the assimilation ability of carbohydrates and organic acids of atlantica and P. haloplanktis subsp. tetraodononis. The saccharide and organic acid assimilation ability of fungus H6-2-4, except for D-ribose and butyric acid, are all P. cerevisiae. The result was the same as that of atlantica.
In summary, the H6-2-4 bacteria were found to be Pseudoalteromonas atlantica.
[0020]
[Table 6]
Figure 0003899304
[0021]
[Table 7]
Figure 0003899304
[0022]
II. Collection of strain selection samples;
Sampling location; Izu Islands waters;
North latitude 34 degrees 45 minutes 84 (Lat. 34. 45'84 N )
East longitude 139 degrees 19 minutes 83 (Long. 139. 19'83 E )
Water depth 337m
III. Growth conditions;
Composition of EDTA-Z agar medium Polypepton (Nippon Pharmaceutical) 5.0 g
1.0g Bacto-yeast extract (Difco)
Fe (III) -EDTA (Doujin) 1.0g
Bact-Agar (Difco) 15.0g
Artificial sea water 1000mL
pH 7.0
[0023]
IV. The processing method using the strain of the present invention can employ a technique used in biodegradation processing using a known strain. For example, a method in which a treatment agent containing a strain is brought into contact with an object to be treated under conditions such as pH, salt concentration, and temperature at which the strain can grow can be employed.
As a method for fixing and treating bacteria, for example, porous ceramics, activated carbon, sponge, chitosan (granular), string carrier, plastic, honeycomb carrier, corrugated carrier, mesh carrier, anthracite, gravel, sand One or two or more types such as pumice can be used, and bacteria can be fixed thereto.
V. As an object to be treated, it can be applied not only to wastewater such as industrial and food containing EDTA-metal complexes, for example, complexes with heavy metals such as Cu and Fe (III), but also to waste and sedimentary soils.
【Example】
The description here is only for the purpose of making the present invention easier to understand, and is not intended to limit the present invention.
Example 1
Separation and culture of strain 1, isolation 1 g of seabed sediment collected in the sea near the Izu Islands is added to sterilized natural seawater and diluted appropriately to 10 -1 to 10 -4 and smeared on the Fe (III) -EDTA agar medium Then, static culture was performed at 27 ° C. for 1 month. Colonies generated after the culture were randomly selected and cultured in a Fe (III) -EDTA liquid medium for 2 days, and it was confirmed that Fe (III) -EDTA was decomposed by 30%. It was confirmed that Fe (III) -EDTA was decomposed and iminodiacetic acid and glycine were produced, and it was confirmed that the isolate was active in the degradation of Fe (III) -EDTA.
It was also confirmed that the complex could be decomposed when the isolated cells were added to the Fe (III) -EDTA-containing solution.
[0025]
The biodegradation activity of H6-2-4 of various metal (Me) · EDTA complexes was measured. The results are shown in Table 8. It was confirmed that it was also effective for the decomposition of the Cu (II) · EDTA complex.
[0026]
[Table 8]
Figure 0003899304
[0027]
【The invention's effect】
As described above, the strain H6-2-4 provided in the present invention can be understood to be useful as a constituent fungus of activated sludge, and is useful as a strain for bioremediation of wastewater treatment, contaminated soil, Since environmental purification has become a major social problem, it is clear that it can contribute to industrial use to solve these problems.

Claims (4)

特許生物寄託センターに受託番号FERM P−19029として受託されたPseudoalteromonas属のatlantica種に属する菌株。A strain belonging to the Atlantica species belonging to the genus Pseudoalteromonas, deposited under the deposit number FERM P-19029 at the Patent Organism Depositary. 特許生物寄託センターに受託番号FERM P−19029として受託されたPseudoalteromonas属のatlantica種に属する菌株を含む有機アミノカルボン酸・重金属錯体を分解する生分解剤。A biodegradation agent for decomposing an organic aminocarboxylic acid / heavy metal complex containing a strain belonging to the Atlantica species belonging to the genus Pseudoalteromonas, deposited under the accession number FERM P-19029 at the Patent Biodeposition Center. 特許生物寄託センターに受託番号FERM P−19029として受託されたPseudoalteromonas属の種atlanticaに属する細菌を有機アミノカルボン酸・重金属錯体を含む被処理物に加え、pHを6〜8に維持して前記有機アミノカルボン酸・重金属錯体を分解処理する方法に用いる前記細菌を含む有機アミノカルボン酸・重金属錯体生分解処理剤。Bacteria belonging to the species Atlantica belonging to the genus Pseudoalteromonas, deposited under the accession number FERM P-19029 at the Patent Organism Depositary, are added to the object to be treated containing the organic aminocarboxylic acid / heavy metal complex and the pH is maintained at 6-8. An organic aminocarboxylic acid / heavy metal complex biodegradation treatment agent containing the bacterium used in the method for decomposing aminocarboxylic acid / heavy metal complex. 有機アミノカルボン酸がエチレンジアミン四酢酸(EDTA)であることを特徴とする請求項2または3に記載の有機アミノカルボン酸・重金属錯体分解処理剤。The organic aminocarboxylic acid / heavy metal complex decomposition treatment agent according to claim 2 or 3, wherein the organic aminocarboxylic acid is ethylenediaminetetraacetic acid (EDTA).
JP2002278411A 2002-09-25 2002-09-25 Chelating agent-degrading bacteria and treating agent for chelating agent contamination using the same Expired - Fee Related JP3899304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278411A JP3899304B2 (en) 2002-09-25 2002-09-25 Chelating agent-degrading bacteria and treating agent for chelating agent contamination using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278411A JP3899304B2 (en) 2002-09-25 2002-09-25 Chelating agent-degrading bacteria and treating agent for chelating agent contamination using the same

Publications (2)

Publication Number Publication Date
JP2004113047A JP2004113047A (en) 2004-04-15
JP3899304B2 true JP3899304B2 (en) 2007-03-28

Family

ID=32273688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278411A Expired - Fee Related JP3899304B2 (en) 2002-09-25 2002-09-25 Chelating agent-degrading bacteria and treating agent for chelating agent contamination using the same

Country Status (1)

Country Link
JP (1) JP3899304B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531974A (en) * 2009-03-21 2009-09-16 国家海洋局第一海洋研究所 Arctic bacteria strain for highly efficiently degrading crude oil and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105753178B (en) * 2016-04-28 2019-04-23 上海市环境工程设计科学研究院有限公司 A kind of method of enhancement microbiological in-situ immobilization chlorohydrocarbon polluted underground water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531974A (en) * 2009-03-21 2009-09-16 国家海洋局第一海洋研究所 Arctic bacteria strain for highly efficiently degrading crude oil and application thereof

Also Published As

Publication number Publication date
JP2004113047A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
Lodewyckx et al. Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria
Lu et al. Characterization of the antimonite-and arsenite-oxidizing bacterium Bosea sp. AS-1 and its potential application in arsenic removal
Focardi et al. Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA-04
Rathnayake et al. Tolerance of heavy metals by gram positive soil bacteria
De et al. Characterization of marine bacteria highly resistant to mercury exhibiting multiple resistances to toxic chemicals
Jebelli et al. Isolation and identification of indigenous prokaryotic bacteria from arsenic-contaminated water resources and their impact on arsenic transformation
Karamba et al. Isolation, screening and characterisation of cyanide-degrading Serratia marcescens strain aq07
Saranya et al. Biosorption of mercury by Bacillus thuringiensis (CASKS3) isolated from mangrove sediments of southeast coast India
Irawati et al. Copper removal by Enterobacter cloacae strain IrSuk1, Enterobacter cloacae strain IrSuk4a, and Serratia nematodiphila strain IrSuk13 isolated from Sukolilo River-Indonesia
CN112522158B (en) Marine bacterium and application thereof
KR20190069292A (en) Arsenic contamination Microorganisms for water purification
JP3899304B2 (en) Chelating agent-degrading bacteria and treating agent for chelating agent contamination using the same
Rehman et al. Arsenic and chromium reduction in co-cultures of bacteria isolated from industrial sites in Pakistan
JP4088690B2 (en) New microorganisms and methods for removing arsenic by microorganisms
JP2019054735A (en) Selection method of microbe having cyanide decomposition ability, microbe having cyanide decomposition ability, and application thereof
KR20140096470A (en) A novel microorganism Rhodococcus pyridinovorans EDB2 degrading aromatic compounds
KR100693865B1 (en) 0210-09 [-11368] Development of the isolate Pseudomonas fluorescens HYK0210-SK09 against the harmful diatom in fresh water growth control method and bio-agent using the isolate
JP2000270849A (en) New microorganism
Karn et al. Simultaneous application arsenic oxidising bacteria and biochar for the reclamation of arsenic contaminated soil
CHAERUN et al. Mercury (Hg)-resistant bacteria in Hg-polluted gold mine sites of Bandung, west java province, Indonesia
Ryeom et al. Degradation of phenanthrene by Sphingomonas sp. 1-21 isolated from oil-contaminated soil
Medvedeva et al. Mycrocystin-LR degradation by indigenous bacterial community of Rybinsk Reservoir
JP2000270848A (en) New microorganism
Pegu et al. Isolation and characterization of arsenic resistant Bacteria from groundwater from lakhimpur district
Lee Artificial induction and isolation of cadmium-tolerant soil bacteria

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees