JP3898940B2 - The measuring method of the Ca component amount in ash in a pressurized fluidized bed combustion apparatus, and the control method of a pressurized fluidized bed combustion apparatus. - Google Patents

The measuring method of the Ca component amount in ash in a pressurized fluidized bed combustion apparatus, and the control method of a pressurized fluidized bed combustion apparatus. Download PDF

Info

Publication number
JP3898940B2
JP3898940B2 JP2001360031A JP2001360031A JP3898940B2 JP 3898940 B2 JP3898940 B2 JP 3898940B2 JP 2001360031 A JP2001360031 A JP 2001360031A JP 2001360031 A JP2001360031 A JP 2001360031A JP 3898940 B2 JP3898940 B2 JP 3898940B2
Authority
JP
Japan
Prior art keywords
ash
fluidized bed
pressurized fluidized
component
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001360031A
Other languages
Japanese (ja)
Other versions
JP2003161728A (en
Inventor
英作 中島
福夫 染矢
洋一 高橋
士章 平山
達朗 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2001360031A priority Critical patent/JP3898940B2/en
Publication of JP2003161728A publication Critical patent/JP2003161728A/en
Application granted granted Critical
Publication of JP3898940B2 publication Critical patent/JP3898940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Chimneys And Flues (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は加圧流動床燃焼装置(PFBC)における灰中Ca成分量の測定方法及びこれを用いた加圧流動床燃焼装置の制御方法に関する。
【0002】
【従来の技術】
炉内脱硫方式を採用した加圧流動床燃焼装置では、燃料となる石炭と脱硫剤となる石灰石とを混合して、これを流動床に供給して燃焼を行っている。
このとき発生する燃焼灰中には石炭灰に由来する成分(SiO2、Al23など)と石灰石に由来する成分(CaCO3など)とが混在しているので、Ca成分を迅速に分析取得して加圧流動床燃焼装置を的確に制御するのを困難にしている。
また、加圧流動床燃焼装置の排ガスが導入されるサイクロンで回収される灰中のCa成分量が高まると、灰移送配管を閉塞させるなどの弊害が生じるという問題がある。
従って、加圧流動床燃焼装置を安定運転させるために、適時灰をサンプリングして分析を迅速に行ってCa成分量の変化を監視する必要がある。
従来、燃焼炉などから排出される灰中のCa成分は以下のようにして測定されていた。即ち、まず、測定しようとする試料に炭酸ナトリウムを混合し、この混合物を白金るつぼ中で融解する。その融成物を塩酸に溶解し、過塩素酸処理をして得られるろ液及びその洗液を集める。次に、ろ液及び洗液の混合液にアンモニア水を加えて液中の鉄、アルミニウム、マグネシウムなどを水酸化物として沈殿させてろ別する。これらの金属が除去された溶液をシアン化カリウムにより妨害成分をマスクしてNN指示薬を用いてEDTA標準溶液で滴定し、灰中のCa成分量が測定されていた。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の技術では以下の課題を有していた。
(1)炭酸ナトリウムを用いて採取された試料を完全に白金るつぼ中で融解させる必要があるため、この加熱、冷却に多大の時間を要し、加圧流動床燃焼装置の稼動状況の変化に対応して灰中のCa成分量を的確、迅速に取得するのが困難であるという課題があった。
(2)Ca成分の分析には、試料の加熱による融解工程が含まれるので、工程を自動化したり、高速化したりするのに適さず、加圧流動床燃焼装置の制御システムを構築する場合に支障を生じるという課題があった。
【0004】
本発明は上記従来の課題を解決するもので、加熱、冷却に時間を要さず迅速に灰中のCa成分量を取得することができ、加圧流動床燃焼装置の稼動状況の変化に対応できる加圧流動床燃焼装置における灰中Ca成分量の測定方法を提供すると共に、Ca成分量測定の自動化、高速化が容易であり加圧流動床燃焼装置の稼動状況を迅速に把握してその制御を適正に行うことのできる加圧流動床燃焼装置の制御方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために本発明は以下の構成を有している。
請求項1に記載の加圧流動床燃焼装置における灰中Ca成分量の測定方法は、石炭及び石灰石を含む燃料スラリーを流動床中で燃焼させる加圧流動床燃焼装置から前記燃料スラリーの灰を採取する灰採取工程と、前記灰を塩酸と次亜塩素酸の混合溶液で酸処理してCa成分を溶解させる溶解工程と、前記溶解工程で溶解して得られたろ液中のCa成分を定量する定量工程とを有して構成されている。
この構成によって以下の作用が得られる。
(a)加圧流動床燃焼装置から灰を所定期間毎に採取する灰採取工程を有するので、時々刻々変化する炉内状況を把握するのに必要なCa成分量のデータを取得し、このデータに基づいて加圧流動床燃焼装置の運転を適正に制御できる。
(b)加熱、冷却に時間を要しないので、灰中のCa成分量を迅速に取得することができ、加圧流動床燃焼装置の稼動状況の変化に対応できる。
(c)Ca成分量測定の自動化を容易にして、異常燃焼や灰輸送管などの閉塞を防止して、加圧流動床燃焼装置を適正に制御することができる。
(d)灰中のCa成分のみを測定対象にしているので、加圧流動床燃焼装置を運転するの必要なデータを迅速かつ効率的に取得して、Ca成分の測定によるタイムラグを少なくできる。
【0006】
ここで、加圧流動床燃焼装置は、石灰石と石炭とを含むスラリーや乾燥粒子を燃料として、流動床中で空気を用いて燃焼させる炉内脱硫方式の燃焼装置であり、加圧型の他に非加圧型のものが含まれる。
燃料スラリーは、石炭及び石灰石を所定比率で粉砕したものに所定量の水を加えて混合したスラリーである。
灰採取工程は、加圧流動床燃焼装置の排ガスが導入されるサイクロンや、電気集塵機(EP)などの灰貯留部や、灰が輸送される灰移送管から灰を抜き出す工程であって、この灰貯留部や灰移送管に挿入されたサンプリング管や吸引器などを介して、自動的に測定用の試料を所定量づつ採取できる。
溶解工程は、塩酸などの所定濃度の酸液中に試料灰を入れ、処理液を所定温度で撹拌しながら試料灰中のカルシウム分をろ液中に溶解させる工程である。
定量工程は、EDTAを用いた滴定法や、誘導結合高周波プラズマ分光分析(ICP)法、原子吸光分析法などを適用してろ液中のカルシウム分を定量する工程が含まれる。
【0007】
請求項2に記載の加圧流動床燃焼装置における灰中Ca成分量の測定方法は、請求項1に記載の発明において、前記灰採取工程で採取される灰が、前記流動床から発生する排ガスが導入されるサイクロンで捕捉されるサイクロン灰又は電気集塵機で集塵されるEP灰であるように構成されている。
この構成によって、請求項1の作用の他、以下の作用が得られる。
(a)灰採取工程で採取される灰がサイクロン灰又はEP灰であるので、流動床の下部から排出される灰に比べて粒度や密度が小さく、炉内状況の変動に対して鋭敏に成分が変化する。従ってこれを分析することにより、炉内状況を的確に反映したデータが取得され、加圧流動床燃焼装置の制御に資することができる。
【0008】
請求項3に記載の加圧流動床燃焼装置における灰中Ca成分量の測定方法は、請求項1又は2に記載の発明において、前記定量工程が、NN指示薬及びトリエタノールアミンを前記ろ液に添加し、EDTAを用いて前記ろ液中のCaイオンの滴定を行う滴定工程であるように構成されている。
この構成によって、請求項1又は2の作用の他、以下の作用が得られる。
(a)NN指示薬及びトリエタノールアミンを用いてろ液中のCaイオンの滴定を行うので、滴定操作を標準化された手順で行うことができ、信頼性と精度に優れ、測定作業を効率的に行うことができる。
ここでNN試薬は、1−(2−ヒドロキシ−4−スルホ−1−ナフチルアゾ)−2−ヒドロキシ−3−ナフトエ酸の1質量部に対して100質量部の硝酸カリウムを混合して均一になるまですり混ぜ、褐色瓶などに保有したものである。
EDTAは、エチレンジアミン四酢酸ニナトリウムの標準溶液(M/100)である。
【0009】
請求項4に記載の加圧流動床燃焼装置の制御方法は、請求項1乃至3の内いずれか1項に記載の加圧流動床燃焼装置の灰中Ca成分量の測定方法で測定されたCa成分量と、前記加圧流動床燃焼装置のCa成分量履歴データとを比較して、前記加圧流動床燃焼装置に供給する前記石炭及び前記石灰石、前記流動床を形成させる高圧空気のそれぞれの供給量を調整するように構成されている。
この構成によって、以下の作用が得られる。
(a)加圧流動床燃焼装置から採取された灰のCa成分量を測定して、その履歴データに基づいて、石炭及び石灰石、高圧空気のそれぞれの供給量を調整するので、Ca成分の変動による流動状態や燃焼性の変化によって生じる異常燃焼や、灰移送管の閉塞などを防止して、加圧流動床燃焼装置の稼動状態を常時適正に維持させることができる。
(b)燃料スラリーの成分などが変動しても加圧流動床燃焼装置の燃焼状態が安定に制御されるので、エネルギーコストなどを最適化して操業を行うことができ、経済性に優れている。
(c)加圧流動床燃焼装置の操業において蓄積されたCa成分量の履歴データを有効に反映させることができるので、種々の変動を抑制して操業をより容易に行うことができる。
【0010】
【発明の実施の形態】
以下、本発明の一実施の形態に係る加圧流動床燃焼装置における灰中Ca成分量の測定方法及び加圧流動床燃焼装置の制御方法について説明する。
図1は本発明の一実施の形態の加圧流動床燃焼装置における灰中Ca成分量の測定方法を適用する加圧流動床燃焼装置の構成図である。
図1において、10は加圧流動床燃焼装置、11は圧力容器、12は圧力容器11内に収容され燃料スラリーを流動化状態で保持して燃焼させる燃焼室、13は燃焼室12の上部から排出される燃焼ガスが導入される多段構成のサイクロン、14は燃焼室12の下部に石炭、石灰石、水のそれぞれの所定量を混合して燃焼室12内の下部に供給する燃料スラリーポンプ、15はサイクロン13下部から取り出される燃焼ガス中の灰を貯留するための灰貯留タンク、15aは灰貯留タンク15の灰(好ましくは最新の灰)を採取する採取装置、16は燃焼室12内の燃料スラリーを流動化させて流動床を形成させるための高圧空気を供給するコンプレッサ、17はサイクロン13の上部から供給される燃焼ガスで駆動されるガスタービン、18はガスタービン17で回転される発電機、19は燃焼室12内の熱交換用配管を介して加熱された蒸気により駆動される蒸気タービン、20は蒸気タービン19で回転される発電機、21は蒸気タービン19から供給される蒸気を凝縮させる復水器、22は燃焼室12と蒸気タービン19との間に給水を循環供給させるための給水ポンプ、23はガスタービン17から排出されるガスの脱硝を行うための排煙脱硝装置、24は排煙脱硝装置23から供給されるガスの熱で燃焼室12に給水ポンプ22を介して送られる給水を予熱するための排熱給水加熱器、25は排熱給水加熱器24の排ガスに含まれる微細固形分を除去するための電気集塵機、25aは電機集塵機25で捕捉された灰のサンプリング装置、26は排ガスを大気中に逃がすための煙突、27は灰貯留タンク15及び電気集塵機25から採取装置15a及びサンプリング装置25aを介してそれぞれ採取されたサイクロン灰、EP灰の分析データが入力され燃料スラリーポンプ14やコンプレッサ16、給水ポンプ22を制御する制御装置である。
【0011】
制御装置27は必要に応じて設けられ、加圧流動床燃焼装置10の全体を制御する制御システムの一部を構成している。この制御装置27によって、予めメモリに記憶されたプログラムに従って、測定された灰中Ca成分量と、加圧流動床燃焼装置10のCa成分量履歴データとを比較して、加圧流動床燃焼装置10の燃焼室12に供給する石炭及び石灰石、コンプレッサ16によって燃焼室12の下部に供給される高圧空気のそれぞれの供給量を調整することができる。
採取装置15a及びサンプリング装置25aは灰貯留タンク15及び電気集塵機25に挿入されたサンプリング管やその底部に開口して設けられた排出管、吸引器などからなり、2段に構成された開閉弁などを備えて加圧流動床燃焼装置10が稼動中でも所定量の灰を採取できるようになっている。
【0012】
以上のように構成された加圧流動床燃焼装置における灰中Ca成分量の測定方法について説明する。
灰採取工程では、灰貯留タンク15及び電気集塵機25から採取装置15a、サンプリング装置25aなどを介してそれぞれ所定量のサイクロン灰、EP灰を所定間隔毎、例えば12時間毎に採取する。
溶解工程では、図2に示す溶解工程フロー図のように20%HCl(ml)と100%HClO(5ml)を前記採取されたサイクロン灰、EP灰の試料(2.0g)に加えて温度90℃〜110℃、時間約30分の加熱条件で酸処理を行って、ろ液を得る。
【0013】
定量工程では、溶解工程で溶解して得られるろ液を回収し、JISR9101に準ずる以下に示す手順に従って溶液中のCaイオン濃度を測定し、最終的にCaOとして換算されたCa成分量を得る。
即ち、この定量工程では試料となるろ液を500mlのメスフラスコに移し、水で標線まで薄めたものを試料溶液として酸化カルシウムの定量に用いた。
まず、試料溶液から25mlを正確に分取して、ビーカー(300ml)に入れ、水を加えて約100mlとする。これに、トリエタノールアミン(1+1)2mlを加え、適量の水酸化カリウム溶液(200g/l)を加えてよくかき混ぜ、pHを12.7〜13.2に調節し、2〜3分間静置する。この溶液に.NN指示薬約0.1gを加え、0.01mol/lEDTA標準溶液で滴定し、溶液の色が赤紫から赤みが全く消えて鮮明な青色となった点を終点とした滴定工程を実施した。
なお、本実施例においては、この滴定工程をイオン滴定は自動滴定装置(APB−410,KYOTOBLECTRONIC)を用いて行った。
試料中の酸化カルシウムの含有率は例えば次式によって算出される。
CaO=(v×f×0.0005608/S)×(500/25)×100
ここでCaOは酸化カルシウムの含有率(モル%)、vは0.01mol/lEDTA標準溶液の使用量(ml)、fは0.01mol/lEDTA標準溶液ファクター、Sははかり取った試料の質量(g)である。
【0014】
表1に加圧流動床燃焼装置10における100%負荷運転時の灰中T−CaOの測定結果を、試料を予め融解処理するJISに準拠した従来のCa分析方法による結果と比較して示している。サイクロン灰、EP灰では従来の分析データに比べてそれぞれ0.6%、3.5%の差があることがわかる。
EP灰の場合の差はサイクロン灰の場合の差よりやや大きいが、燃焼室12により近い側で採取されるサイクロン灰のデータの方が加圧流動床燃焼装置10の運転状態をより的確に反映したものとなるので、サイクロン灰のデータを用いれば実運用面では問題ないと考えられる。
この結果より加圧流動床燃焼装置10における灰中Ca成分量の測定方法の信頼性が確認された。
【0015】
【表1】

Figure 0003898940
【0016】
(実施例)
溶解工程における酸処理前後の構成物質変化を調べるためにX線回折(理学電機株式会社製X線回折装置SAD−RB、Rigakuを使用)を行った。
図3(a)は75%負荷運転時において得られたサイクロン灰の酸処理前における粉末X線回折パターンを示すチャート図であり、図3(b)はその酸処理後におけるチャート図である。
加圧流動床燃焼装置10の75%負荷運転時に得られたサイクロン灰を用いて酸処理前後の変化を測定した。
図3から分かるように75%負荷運転時のサイクロン灰は酸処理によりCaCO3の回折ピーク(○)が完全に消失し、石炭灰に起因すると思われる回折ピーク(△)は保持されていた。また、酸処理により新たな水酸化物と思われる回折ピークが観測された。
図4(a)は加圧流動床燃焼装置10とは別の燃焼試験機のセラミックチューブフィルタ灰(CTF灰)を用いた場合における酸処理前の粉末X線回折パターンを示し、図4(b)はその酸処理後のパターンを示している。
図4においては、CaOの回折ピーク(◎)は酸処理により完全に消失し、CaSO4の回折ピーク(×)は酸処理後にも若干観測された。石炭灰に起因すると思われる回折ピーク(△)は保持されて、加圧流動床燃焼装置10で採取された灰に見られた酸処理により発現する水酸化物と思われる回折ピークは観測されないことが分かった。
【0017】
表2にサイクロン灰、EP灰の加圧流動床燃焼装置10の100%負荷運転時及び75%負荷運転時におけるCa成分量の割合を示す。T−CaOで比較するとサイクロン灰の方が多い。また、Ca化合物形態で比較するとEP灰はCaSO4(石膏)の比率が高く、CaO、CaCO3の比率が低い。前述のXRD測定で分かるように酸処理前後の酸処理によりCaO、CaCO3の回折ピークが完全に消失するのに比して、CaSO4の回折ピークは若干残留していた。
以上から、加圧流動床燃焼装置における灰中Ca成分量の測定方法において、EP灰に比べてサイクロン灰の方が高い精度が得られる原因と考えられた。
【0018】
【表2】
Figure 0003898940
【0019】
加圧流動床燃焼装置の制御方法においては、前記灰中Ca成分量の測定方法で取得されるデータに基づいて、加圧流動床燃焼装置10に供給される石炭、石灰石、水を含む燃料スラリーの構成及び供給量、燃焼室12内に固体粒子の流動床を形成させるのに必要な高圧空気の供給量などを調整する。このような制御は、加圧流動床燃焼装置10のシステムを管理する制御システムや制御装置27により行うことができ、これによってCa成分の変動による異常燃焼や、灰移送管の閉塞などを防止して、加圧流動床燃焼装置の稼動状態を常時適正に維持させることができる。また、加圧流動床燃焼装置の操業において蓄積されたCa成分量の履歴データを有効に反映させることが可能になる。
【0020】
本発明の一実施の形態に係る加圧流動床燃焼装置における灰中Ca成分量の測定方法は以上のように構成されているので以下の作用を有する。
(a)加圧流動床燃焼装置10から灰を所定期間毎に採取する灰採取工程を有するので、燃焼室12内の状況を把握するのに必要なCa成分量のデータを効率的かつ迅速に取得でき、これを用いて加圧流動床燃焼装置10を適正に制御することができる。
(b)従来例のように試料を白金るつぼに入れて融解して冷却するような手順を省略できるので、灰中のCa成分量を迅速に取得することができ、加圧流動床燃焼装置10の稼動状況の変化に対応できる。
(c)採取した試料の融解工程がないので、Ca成分量測定の自動化を容易にして、異常燃焼や灰輸送管などの閉塞を防止して、加圧流動床燃焼装置10を適正に制御することができ。
(d)灰採取工程で採取される灰がサイクロン灰又はEP灰であるので、流動床の下部から排出される灰に比べて粒度や密度が小さく、燃焼室12内の炉内状況の変動に対して鋭敏に成分が変化する。従ってこれを分析することにより、炉内状況を的確に反映したデータが取得され、これを制御装置27に入力して加圧流動床燃焼装置10の制御に資することができる。
(e)NN指示薬及びトリエタノールアミンを用いてろ液中のCaイオンの滴定を行うので、滴定操作を標準化された手順で行うことができ、信頼性と精度に優れ、測定作業を効率的に行うことができる。
(f)加圧流動床燃焼装置10から採取された灰のCa成分量を迅速に測定して、履歴データに基づいて石炭及び石灰石、高圧空気のそれぞれの供給量を調整することもできるので、Ca成分の変動による異常燃焼や、灰移送管の閉塞などを防止して、加圧流動床燃焼装置10を適正に稼動させることができる。
(g)燃料スラリーの成分などが変動しても加圧流動床燃焼装置10の燃焼状態が安定に制御されるので、エネルギーコストなどを最適化して操業を行うことができ、経済性に優れている。
【0021】
【発明の効果】
請求項1に記載の加圧流動床燃焼装置における灰中Ca成分量の測定方法によれば、以下の効果を有する。
(a)加圧流動床燃焼装置から灰を所定期間毎に採取する灰採取工程を有するので、時々刻々変化する炉内状況を把握するのに必要なCa成分量のデータを取得でき、これを用いて加圧流動床燃焼装置を適正に制御することができる。
(b)加熱、冷却に時間を要しないので、灰中のCa成分量を迅速に取得することができ、加圧流動床燃焼装置の稼動状況の変化に対応できる。
(c)Ca成分量測定の自動化を容易にして、異常燃焼や灰輸送管などの閉塞を防止して、加圧流動床燃焼装置を適正に制御することができる。
(d)灰中のCa成分のみを測定対象にしているので、加圧流動床燃焼装置を運転するの必要なデータを迅速かつ効率的に取得して、Ca成分の測定によるタイムラグを少なくできる。
【0022】
請求項2に記載の加圧流動床燃焼装置における灰中Ca成分量の測定方法によれば、請求項1の効果の他、以下の効果が得られる。
(a)灰採取工程で採取される灰がサイクロン灰又はEP灰であるので、流動床の下部から排出される灰に比べて粒度や密度が小さく、炉内状況の変動に対して鋭敏に成分が変化する。従ってこれを分析することにより、炉内状況を的確に反映したデータが取得され、加圧流動床燃焼装置の制御に資することができる。
【0023】
請求項3に記載の加圧流動床燃焼装置における灰中Ca成分量の測定方法によれば、請求項1又は2の効果の他、以下の効果が得られる。
(a)NN指示薬及びトリエタノールアミンを用いてろ液中のCaイオンの滴定を行うので、滴定操作を標準化された手順で行うことができ、信頼性と精度に優れ、測定作業を効率的に行うことができる。
【0024】
請求項4に記載の加圧流動床燃焼装置の制御方法によれば、以下の効果が得られる。
(a)加圧流動床燃焼装置から採取された灰のCa成分量を測定して、その履歴データに基づいて、石炭及び石灰石、高圧空気のそれぞれの供給量を調整するので、Ca成分の変動による異常燃焼や、灰移送管の閉塞などを防止して、加圧流動床燃焼装置の稼動状態を常時適正に維持させることができる。
(b)燃料スラリーの成分などが変動しても加圧流動床燃焼装置の燃焼状態が安定に制御されるので、エネルギーコストを最適化して操業を行うことができ、経済性に優れている。
(c)加圧流動床燃焼装置の操業において蓄積されたCa成分量の履歴データを有効に反映させることができるので、種々の変動が抑制して操業をより容易に行うことができる。
【図面の簡単な説明】
【図1】灰中Ca成分量の測定方法を適用する加圧流動床燃焼装置の構成図
【図2】測定用の灰を酸液に溶解させる溶解工程のフロー図
【図3】(a)サイクロン灰の酸処理前における粉末X線回折パターン
(b)サイクロン灰の酸処理後における粉末X線回折パターン
【図4】(a)セラミックチューブフィルタ灰の酸処理前の粉末X線回折パターン
(b)セラミックチューブフィルタ灰の酸処理後の粉末X線回折パターン
【符号の説明】
10 加圧流動床燃焼装置
11 圧力容器
12 燃焼室
13 サイクロン
14 燃料スラリーポンプ
15 灰貯留タンク
15a 採取装置
16 コンプレッサ
17 ガスタービン
18 発電機
19 蒸気タービン
20 発電機
21 復水器
22 給水ポンプ
23 排煙脱硝装置
24 排熱給水加熱器
25 電気集塵機
25a サンプリング装置
26 煙突
27 制御装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the amount of Ca component in ash in a pressurized fluidized bed combustor (PFBC) and a control method for a pressurized fluidized bed combustor using the same.
[0002]
[Prior art]
In a pressurized fluidized bed combustion apparatus employing an in-furnace desulfurization system, coal serving as fuel and limestone serving as a desulfurizing agent are mixed and supplied to the fluidized bed for combustion.
The combustion ash generated at this time contains components derived from coal ash (such as SiO 2 and Al 2 O 3 ) and components derived from limestone (such as CaCO 3 ), so the Ca component can be analyzed quickly. Acquiring and making it difficult to accurately control the pressurized fluidized bed combustor.
In addition, when the amount of Ca component in the ash collected by the cyclone into which the exhaust gas from the pressurized fluidized bed combustion apparatus is introduced increases, there is a problem that an adverse effect such as blocking the ash transfer pipe occurs.
Therefore, in order to stably operate the pressurized fluidized bed combustion apparatus, it is necessary to sample the ash in a timely manner and quickly analyze it to monitor the change in the Ca component amount.
Conventionally, the Ca component in ash discharged from a combustion furnace or the like has been measured as follows. That is, first, sodium carbonate is mixed with the sample to be measured, and this mixture is melted in a platinum crucible. The melt is dissolved in hydrochloric acid, and the filtrate obtained by perchloric acid treatment and the washing solution are collected. Next, ammonia water is added to the mixed solution of the filtrate and the washing solution, and iron, aluminum, magnesium, etc. in the solution are precipitated as hydroxides and separated by filtration. The solution from which these metals had been removed was titrated with an EDTA standard solution using an NN indicator with an interfering component masked with potassium cyanide, and the amount of Ca component in the ash was measured.
[0003]
[Problems to be solved by the invention]
However, the above conventional techniques have the following problems.
(1) Since it is necessary to completely melt a sample collected using sodium carbonate in a platinum crucible, this heating and cooling takes a lot of time, and the operating condition of the pressurized fluidized bed combustor changes. Correspondingly, there is a problem that it is difficult to accurately and quickly acquire the Ca component amount in the ash.
(2) Since the analysis of the Ca component includes a melting step by heating the sample, it is not suitable for automating or speeding up the process, and when constructing a control system for a pressurized fluidized bed combustion apparatus. There was a problem of causing trouble.
[0004]
The present invention solves the above-mentioned conventional problems, can quickly acquire the amount of Ca component in ash without requiring time for heating and cooling, and responds to changes in the operating status of the pressurized fluidized bed combustion apparatus Provides a method for measuring the amount of Ca component in ash in a pressurized fluidized bed combustor that can be easily automated and speeded up the measurement of the amount of Ca component. It aims at providing the control method of the pressurization fluidized-bed combustion apparatus which can perform control appropriately.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration.
The method for measuring the amount of Ca component in ash in the pressurized fluidized bed combustor according to claim 1 is characterized in that the ash of the fuel slurry is obtained from a pressurized fluidized bed combustor that burns fuel slurry containing coal and limestone in the fluidized bed. The ash collection step to collect, the dissolution step in which the ash is acid-treated with a mixed solution of hydrochloric acid and hypochlorous acid to dissolve the Ca component, and the Ca component in the filtrate obtained by dissolution in the dissolution step is quantified And a quantitative process.
With this configuration, the following effects can be obtained.
(A) Since there is an ash collection step for collecting ash from the pressurized fluidized bed combustion device at predetermined intervals, data on the amount of Ca component necessary to grasp the in-furnace situation that changes from time to time is obtained. Therefore, the operation of the pressurized fluidized bed combustion apparatus can be properly controlled.
(B) Since time is not required for heating and cooling, the amount of Ca component in the ash can be quickly acquired, and it is possible to cope with changes in the operating status of the pressurized fluidized bed combustion apparatus.
(C) It is possible to easily control the amount of Ca component, prevent abnormal combustion and blockage of the ash transport pipe, etc., and appropriately control the pressurized fluidized bed combustion apparatus.
(D) Since only the Ca component in the ash is measured, data necessary for operating the pressurized fluidized bed combustion apparatus can be acquired quickly and efficiently, and the time lag due to the measurement of the Ca component can be reduced.
[0006]
Here, the pressurized fluidized bed combustor is an in-furnace desulfurization type combustion device that uses slurry and dry particles containing limestone and coal as fuel, and burns with air in the fluidized bed. Non-pressurized type is included.
The fuel slurry is a slurry obtained by adding a predetermined amount of water and mixing coal and limestone pulverized at a predetermined ratio.
The ash collection process is a process of extracting ash from a cyclone into which exhaust gas from a pressurized fluidized bed combustion apparatus is introduced, an ash storage part such as an electric dust collector (EP), and an ash transfer pipe through which ash is transported. A sample for measurement can be automatically collected in a predetermined amount via a sampling tube or an aspirator inserted into the ash storage unit or the ash transfer tube.
The dissolution step is a step in which sample ash is placed in an acid solution having a predetermined concentration such as hydrochloric acid, and the calcium content in the sample ash is dissolved in the filtrate while stirring the treatment solution at a predetermined temperature.
The determination step includes a step of quantifying the calcium content in the filtrate by applying a titration method using EDTA, an inductively coupled plasma spectroscopy (ICP) method, an atomic absorption analysis method, or the like.
[0007]
The method for measuring the amount of Ca component in ash in the pressurized fluidized bed combustion apparatus according to claim 2 is the exhaust gas in which the ash collected in the ash collection step is generated from the fluidized bed in the invention according to claim 1. Is configured to be cyclone ash captured by a cyclone introduced or EP ash collected by an electric dust collector.
With this configuration, in addition to the operation of the first aspect, the following operation can be obtained.
(A) Since the ash collected in the ash collection process is cyclone ash or EP ash, the particle size and density are small compared to the ash discharged from the lower part of the fluidized bed, and the ingredients are sensitive to fluctuations in furnace conditions. Changes. Therefore, by analyzing this, data accurately reflecting the in-furnace situation can be acquired, which can contribute to the control of the pressurized fluidized bed combustion apparatus.
[0008]
The method for measuring the amount of Ca component in ash in the pressurized fluidized bed combustion apparatus according to claim 3 is the invention according to claim 1 or 2, wherein the quantification step uses NN indicator and triethanolamine as the filtrate. It is configured to be a titration step of adding and titrating Ca ions in the filtrate using EDTA.
With this configuration, in addition to the operation of the first or second aspect, the following operation can be obtained.
(A) Since titration of Ca ions in the filtrate is performed using an NN indicator and triethanolamine, the titration operation can be performed by a standardized procedure, and the measurement work is performed with high reliability and accuracy. be able to.
Here, the NN reagent is mixed with 100 parts by mass of potassium nitrate to 1 part by mass of 1- (2-hydroxy-4-sulfo-1-naphthylazo) -2-hydroxy-3-naphthoic acid until uniform. They are mixed and held in brown bottles.
EDTA is a standard solution (M / 100) of disodium ethylenediaminetetraacetate.
[0009]
The method for controlling a pressurized fluidized bed combustion apparatus according to claim 4 is measured by the method for measuring the amount of Ca component in ash of the pressurized fluidized bed combustion apparatus according to any one of claims 1 to 3. Comparing Ca component amount with Ca component amount history data of the pressurized fluidized bed combustor, each of the coal and limestone supplied to the pressurized fluidized bed combustor, and high pressure air forming the fluidized bed It is comprised so that the supply amount of may be adjusted.
With this configuration, the following effects can be obtained.
(A) Since the Ca component amount of the ash collected from the pressurized fluidized bed combustion apparatus is measured and the respective supply amounts of coal, limestone, and high-pressure air are adjusted based on the history data, fluctuations in the Ca component Thus, abnormal combustion caused by changes in the flow state and combustibility due to the above, and blockage of the ash transfer pipe, etc. can be prevented, and the operating state of the pressurized fluidized bed combustion apparatus can be maintained properly at all times.
(B) Since the combustion state of the pressurized fluidized bed combustor is stably controlled even if the components of the fuel slurry fluctuate, the operation can be performed by optimizing the energy cost and the like, and the economy is excellent. .
(C) Since the history data of the Ca component amount accumulated in the operation of the pressurized fluidized bed combustor can be effectively reflected, various operations can be suppressed and the operation can be performed more easily.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for measuring the amount of Ca component in ash and a method for controlling the pressurized fluidized bed combustion apparatus in the pressurized fluidized bed combustion apparatus according to one embodiment of the present invention will be described.
FIG. 1 is a configuration diagram of a pressurized fluidized bed combustion apparatus to which a method for measuring the amount of Ca component in ash in the pressurized fluidized bed combustion apparatus of one embodiment of the present invention is applied.
In FIG. 1, 10 is a pressurized fluidized bed combustion apparatus, 11 is a pressure vessel, 12 is a combustion chamber that is accommodated in the pressure vessel 11 and holds and burns fuel slurry in a fluidized state, and 13 is an upper portion of the combustion chamber 12. A multi-stage cyclone in which exhausted combustion gas is introduced, 14 is a fuel slurry pump that mixes predetermined amounts of coal, limestone, and water into the lower part of the combustion chamber 12 and supplies them to the lower part of the combustion chamber 12, 15 Is an ash storage tank for storing ash in the combustion gas taken out from the lower part of the cyclone 13, 15a is a sampling device for collecting ash (preferably the latest ash) from the ash storage tank 15, and 16 is a fuel in the combustion chamber 12. Compressor for supplying high-pressure air for fluidizing the slurry to form a fluidized bed, 17 is a gas turbine driven by combustion gas supplied from the upper part of the cyclone 13, 18 A generator rotated by the gas turbine 17, 19 is a steam turbine driven by steam heated via a heat exchange pipe in the combustion chamber 12, 20 is a generator rotated by the steam turbine 19, and 21 is steam A condenser for condensing the steam supplied from the turbine 19, 22 is a feed water pump for circulating supply of feed water between the combustion chamber 12 and the steam turbine 19, and 23 is for denitration of gas discharged from the gas turbine 17. A flue gas denitration device 24 for performing the exhaust heat feed water heater 24 for preheating the feed water sent to the combustion chamber 12 via the feed water pump 22 by the heat of the gas supplied from the flue gas denitration device 23, 25 An electric dust collector for removing fine solids contained in the exhaust gas of the hot water heater 24, 25a is a sampling device for ash captured by the electric dust collector 25, and 26 is an exhaust gas to the atmosphere. Analyzing data of cyclone ash and EP ash collected from the ash storage tank 15 and the electrostatic precipitator 25 through the sampling device 15a and the sampling device 25a, respectively, is input to the chimney 27 of the fuel slurry pump 14, the compressor 16, and the water supply pump 22. It is a control apparatus which controls.
[0011]
The control device 27 is provided as necessary, and constitutes a part of a control system that controls the entire pressurized fluidized bed combustion device 10. The control device 27 compares the measured Ca component amount in ash with the Ca component amount history data of the pressurized fluidized bed combustion device 10 according to a program stored in the memory in advance, and pressurized fluidized bed combustion device. The supply amounts of coal and limestone supplied to the ten combustion chambers 12 and high-pressure air supplied to the lower portion of the combustion chamber 12 by the compressor 16 can be adjusted.
The sampling device 15a and the sampling device 25a include a sampling tube inserted into the ash storage tank 15 and the electrostatic precipitator 25, a discharge tube provided at the bottom thereof, a suction device, etc., and an open / close valve configured in two stages. A predetermined amount of ash can be collected even when the pressurized fluidized bed combustion apparatus 10 is in operation.
[0012]
A method of measuring the amount of Ca component in ash in the pressurized fluidized bed combustion apparatus configured as described above will be described.
In the ash collection step, a predetermined amount of cyclone ash and EP ash are collected from the ash storage tank 15 and the electric dust collector 25 through the collection device 15a and the sampling device 25a, respectively, at predetermined intervals, for example, every 12 hours.
In the dissolution process, 20% HCl ( 5 ml) and 100% HClO (5 ml) are added to the collected cyclone ash and EP ash sample (2.0 g) as shown in the flow chart of the dissolution process shown in FIG. An acid treatment is performed under heating conditions of 90 ° C. to 110 ° C. for about 30 minutes to obtain a filtrate.
[0013]
In the quantification step, the filtrate obtained by dissolution in the dissolution step is collected, and the Ca ion concentration in the solution is measured according to the procedure shown below according to JIS R9101, and finally the Ca component amount converted as CaO is obtained.
That is, in this quantification step, the filtrate as a sample was transferred to a 500 ml volumetric flask, and diluted with water to the marked line was used as a sample solution for quantification of calcium oxide.
First, 25 ml is accurately taken from the sample solution, put into a beaker (300 ml), and water is added to make about 100 ml. To this, add 2 ml of triethanolamine (1 + 1), add an appropriate amount of potassium hydroxide solution (200 g / l), stir well, adjust the pH to 12.7 to 13.2, and leave it for 2 to 3 minutes. . To this solution. About 0.1 g of NN indicator was added, and titration was performed with a 0.01 mol / l EDTA standard solution. A titration step was performed with the point at which the color of the solution changed from reddish purple to clear blue and became a clear blue.
In the present example, this titration step was performed using an automatic titrator (APB-410, KYOTOBECTRONIC) for ion titration.
The content of calcium oxide in the sample is calculated by the following equation, for example.
CaO = (v × f × 0.0005608 / S) × (500/25) × 100
Here, CaO is the content of calcium oxide (mol%), v is the amount of 0.01 mol / l EDTA standard solution used (ml), f is the 0.01 mol / l EDTA standard solution factor, and S is the mass of the sample weighed ( g).
[0014]
Table 1 shows the measurement results of T-CaO in ash during 100% load operation in the pressurized fluidized bed combustor 10 in comparison with the results of the conventional Ca analysis method based on JIS for pre-melting the sample. Yes. It can be seen that the cyclone ash and the EP ash have a difference of 0.6% and 3.5%, respectively, compared with the conventional analysis data.
The difference in the case of EP ash is slightly larger than the difference in the case of cyclone ash, but the cyclone ash data collected on the side closer to the combustion chamber 12 more accurately reflects the operating state of the pressurized fluidized bed combustor 10. Therefore, if cyclone ash data is used, there is no problem in actual operation.
From this result, the reliability of the method for measuring the amount of Ca component in ash in the pressurized fluidized bed combustion apparatus 10 was confirmed.
[0015]
[Table 1]
Figure 0003898940
[0016]
(Example)
X-ray diffraction (using an X-ray diffractometer SAD-RB, Rigaku manufactured by Rigaku Corporation) was performed in order to examine changes in constituent materials before and after acid treatment in the dissolution process.
FIG. 3A is a chart showing a powder X-ray diffraction pattern before acid treatment of cyclone ash obtained during 75% load operation, and FIG. 3B is a chart after the acid treatment.
The change before and after the acid treatment was measured using cyclone ash obtained during the 75% load operation of the pressurized fluidized bed combustor 10.
As can be seen from FIG. 3, in the cyclone ash during the 75% load operation, the diffraction peak (◯) of CaCO 3 disappeared completely by acid treatment, and the diffraction peak (Δ) considered to be attributed to coal ash was retained. In addition, a diffraction peak considered to be a new hydroxide was observed by the acid treatment.
FIG. 4A shows a powder X-ray diffraction pattern before acid treatment when ceramic tube filter ash (CTF ash) of a combustion tester different from the pressurized fluidized bed combustion apparatus 10 is used. ) Shows the pattern after the acid treatment.
In FIG. 4, the diffraction peak (◎) of CaO disappeared completely by the acid treatment, and the diffraction peak (x) of CaSO 4 was slightly observed even after the acid treatment. Diffraction peaks (Δ) that are thought to be caused by coal ash are retained, and diffraction peaks that appear to be hydroxides that appear due to the acid treatment observed in the ash collected by the pressurized fluidized bed combustor 10 are not observed. I understood.
[0017]
Table 2 shows the ratio of the amount of Ca component during the 100% load operation and the 75% load operation of the pressurized fluidized bed combustion apparatus 10 for cyclone ash and EP ash. Compared with T-CaO, cyclone ash is more common. In comparison with the Ca compound form, EP ash has a high ratio of CaSO 4 (gypsum) and a low ratio of CaO and CaCO 3 . As can be seen from the XRD measurement described above, the CaSO 4 and CaCO 3 diffraction peaks disappeared slightly due to the acid treatment before and after the acid treatment.
From the above, in the method for measuring the amount of Ca component in the ash in the pressurized fluidized bed combustion apparatus, it was considered that the cyclone ash had higher accuracy than the EP ash.
[0018]
[Table 2]
Figure 0003898940
[0019]
In the control method of the pressurized fluidized bed combustor, the fuel slurry containing coal, limestone, and water supplied to the pressurized fluidized bed combustor 10 based on the data acquired by the method for measuring the amount of Ca component in ash And the supply amount of high-pressure air necessary to form a fluidized bed of solid particles in the combustion chamber 12 are adjusted. Such control can be performed by the control system 27 or the control device 27 that manages the system of the pressurized fluidized bed combustion apparatus 10, thereby preventing abnormal combustion due to fluctuations in the Ca component, blockage of the ash transfer pipe, and the like. Thus, the operating state of the pressurized fluidized bed combustor can be always properly maintained. Further, it is possible to effectively reflect the history data of the Ca component amount accumulated in the operation of the pressurized fluidized bed combustion apparatus.
[0020]
Since the measuring method of the Ca component amount in ash in the pressurized fluidized bed combustion apparatus according to one embodiment of the present invention is configured as described above, it has the following operation.
(A) Since there is an ash collection step for collecting ash from the pressurized fluidized bed combustion apparatus 10 every predetermined period, data on the amount of Ca component necessary for grasping the situation in the combustion chamber 12 can be efficiently and quickly obtained. The pressure fluidized bed combustor 10 can be appropriately controlled using this.
(B) Since the procedure of melting the sample in a platinum crucible and melting and cooling as in the conventional example can be omitted, the amount of Ca component in the ash can be obtained quickly, and the pressurized fluidized bed combustion apparatus 10 Can respond to changes in the operating status of
(C) Since there is no melting step of the collected sample, it is easy to automate the measurement of the Ca component amount, prevent abnormal combustion and blockage of the ash transport pipe, etc., and control the pressurized fluidized bed combustion apparatus 10 appropriately. It is possible.
(D) Since the ash collected in the ash collection step is cyclone ash or EP ash, the particle size and density are small compared to the ash discharged from the lower part of the fluidized bed, and the situation in the furnace in the combustion chamber 12 varies. In contrast, the ingredients change sharply. Therefore, by analyzing this, data accurately reflecting the in-furnace situation can be acquired and input to the control device 27 to contribute to the control of the pressurized fluidized bed combustion device 10.
(E) Since titration of Ca ions in the filtrate is performed using an NN indicator and triethanolamine, the titration operation can be performed by a standardized procedure, and is highly reliable and accurate, and performs the measurement work efficiently. be able to.
(F) Since the Ca component amount of the ash collected from the pressurized fluidized bed combustor 10 can be quickly measured, and the supply amounts of coal, limestone, and high-pressure air can be adjusted based on the history data, The pressurized fluidized bed combustion apparatus 10 can be properly operated by preventing abnormal combustion due to fluctuation of the Ca component, blockage of the ash transfer pipe, and the like.
(G) Since the combustion state of the pressurized fluidized bed combustor 10 is stably controlled even if the components of the fuel slurry fluctuate, the operation can be performed by optimizing the energy cost, etc. Yes.
[0021]
【The invention's effect】
According to the method for measuring the amount of Ca component in ash in the pressurized fluidized bed combustion apparatus according to claim 1, the following effects are obtained.
(A) Since there is an ash collection step for collecting ash from the pressurized fluidized bed combustion device at predetermined intervals, data on the amount of Ca component necessary to grasp the in-furnace situation that changes from time to time can be obtained. It is possible to properly control the pressurized fluidized bed combustion apparatus.
(B) Since time is not required for heating and cooling, the amount of Ca component in the ash can be quickly acquired, and it is possible to cope with changes in the operating status of the pressurized fluidized bed combustion apparatus.
(C) It is possible to easily control the amount of Ca component, prevent abnormal combustion and blockage of the ash transport pipe, etc., and appropriately control the pressurized fluidized bed combustion apparatus.
(D) Since only the Ca component in the ash is measured, data necessary for operating the pressurized fluidized bed combustion apparatus can be acquired quickly and efficiently, and the time lag due to the measurement of the Ca component can be reduced.
[0022]
According to the method for measuring the amount of Ca component in ash in the pressurized fluidized bed combustion apparatus according to claim 2, in addition to the effect of claim 1, the following effect is obtained.
(A) Since the ash collected in the ash collection process is cyclone ash or EP ash, the particle size and density are small compared to the ash discharged from the lower part of the fluidized bed, and the ingredients are sensitive to fluctuations in furnace conditions. Changes. Therefore, by analyzing this, data accurately reflecting the in-furnace situation can be acquired, which can contribute to the control of the pressurized fluidized bed combustion apparatus.
[0023]
According to the method for measuring the amount of Ca component in ash in the pressurized fluidized bed combustion apparatus according to claim 3, in addition to the effects of claim 1 or 2, the following effects are obtained.
(A) Since titration of Ca ions in the filtrate is performed using an NN indicator and triethanolamine, the titration operation can be performed by a standardized procedure, and the measurement work is performed with high reliability and accuracy. be able to.
[0024]
According to the control method of the pressurized fluidized bed combustion apparatus of the fourth aspect, the following effects can be obtained.
(A) Since the Ca component amount of the ash collected from the pressurized fluidized bed combustion apparatus is measured and the respective supply amounts of coal, limestone, and high-pressure air are adjusted based on the history data, fluctuations in the Ca component Thus, the abnormal combustion due to the ash and the blockage of the ash transfer pipe can be prevented, and the operating state of the pressurized fluidized bed combustion apparatus can be maintained properly at all times.
(B) Since the combustion state of the pressurized fluidized bed combustor is stably controlled even if the components of the fuel slurry fluctuate, the operation can be performed with the energy cost optimized, and the economy is excellent.
(C) Since the history data of the Ca component amount accumulated in the operation of the pressurized fluidized bed combustion apparatus can be effectively reflected, various fluctuations are suppressed and the operation can be performed more easily.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a pressurized fluidized bed combustion apparatus to which a method for measuring the amount of Ca component in ash is applied. FIG. 2 is a flow diagram of a dissolution process for dissolving ash for measurement in an acid solution. Powder X-ray diffraction pattern before acid treatment of cyclone ash (b) Powder X-ray diffraction pattern after acid treatment of cyclone ash [FIG. 4] (a) Powder X-ray diffraction pattern before acid treatment of ceramic tube filter ash (b ) Powder X-ray diffraction pattern after acid treatment of ceramic tube filter ash [Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Pressurized fluidized bed combustor 11 Pressure vessel 12 Combustion chamber 13 Cyclone 14 Fuel slurry pump 15 Ash storage tank 15a Sampling device 16 Compressor 17 Gas turbine 18 Generator 19 Steam turbine 20 Generator 21 Condenser 22 Water supply pump 23 Exhaust smoke Denitration device 24 Waste heat feed water heater 25 Electric dust collector 25a Sampling device 26 Chimney 27 Control device

Claims (4)

石炭及び石灰石を含む燃料スラリーを流動床中で燃焼させる加圧流動床燃焼装置から前記燃料スラリーの灰を採取する灰採取工程と、前記灰を塩酸と次亜塩素酸の混合溶液で酸処理してCa成分を溶解させる溶解工程と、前記溶解工程で溶解して得られたろ液中のCa成分を定量する定量工程とを有することを特徴とする加圧流動床燃焼装置における灰中Ca成分量の測定方法。An ash collection step for collecting ash of the fuel slurry from a pressurized fluidized bed combustor that burns a fuel slurry containing coal and limestone in a fluidized bed; and the ash is acid-treated with a mixed solution of hydrochloric acid and hypochlorous acid. The amount of Ca component in ash in a pressurized fluidized bed combustor comprising: a dissolution step for dissolving the Ca component; and a quantitative step for quantifying the Ca component in the filtrate obtained by dissolution in the dissolution step. Measuring method. 前記灰採取工程で採取される灰が、前記流動床から発生する排ガスが導入されるサイクロンで捕捉されるサイクロン灰又は電気集塵機で集塵されるEP灰であることを特徴とする請求項1に記載の加圧流動床燃焼装置における灰中Ca成分量の測定方法。The ash collected in the ash collection step is cyclone ash captured by a cyclone into which exhaust gas generated from the fluidized bed is introduced or EP ash collected by an electric dust collector. The measuring method of Ca component amount in ash in the pressurized fluidized bed combustion apparatus of description. 前記定量工程が、NN指示薬及びトリエタノールアミンを前記ろ液に添加し、EDTAを用いて前記ろ液中のCaイオンの滴定を行う滴定工程であることを特徴とする請求項1又は2に記載の加圧流動床燃焼装置における灰中Ca成分量の測定方法。3. The titration step is a titration step in which NN indicator and triethanolamine are added to the filtrate, and Ca ions in the filtrate are titrated using EDTA. 4. Of measuring the amount of Ca component in ash in a pressurized fluidized bed combustion apparatus. 請求項1乃至3の内いずれか1項に記載の加圧流動床燃焼装置の灰中Ca成分量の測定方法で測定されたCa成分量と、前記加圧流動床燃焼装置のCa成分量履歴データとを比較して、前記加圧流動床燃焼装置に供給する前記石炭及び前記石灰石、前記流動床を形成させる高圧空気のそれぞれの供給量を調整することを特徴とする加圧流動床燃焼装置の制御方法。The amount of Ca component measured by the method for measuring the amount of Ca component in ash of the pressurized fluidized bed combustor according to any one of claims 1 to 3, and the history of the amount of Ca component of the pressurized fluidized bed combustor. The pressurized fluidized bed combustor is characterized by adjusting the supply amounts of the coal, the limestone, and the high-pressure air that forms the fluidized bed supplied to the pressurized fluidized bed combustor by comparing with the data. Control method.
JP2001360031A 2001-11-26 2001-11-26 The measuring method of the Ca component amount in ash in a pressurized fluidized bed combustion apparatus, and the control method of a pressurized fluidized bed combustion apparatus. Expired - Fee Related JP3898940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001360031A JP3898940B2 (en) 2001-11-26 2001-11-26 The measuring method of the Ca component amount in ash in a pressurized fluidized bed combustion apparatus, and the control method of a pressurized fluidized bed combustion apparatus.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001360031A JP3898940B2 (en) 2001-11-26 2001-11-26 The measuring method of the Ca component amount in ash in a pressurized fluidized bed combustion apparatus, and the control method of a pressurized fluidized bed combustion apparatus.

Publications (2)

Publication Number Publication Date
JP2003161728A JP2003161728A (en) 2003-06-06
JP3898940B2 true JP3898940B2 (en) 2007-03-28

Family

ID=19170924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001360031A Expired - Fee Related JP3898940B2 (en) 2001-11-26 2001-11-26 The measuring method of the Ca component amount in ash in a pressurized fluidized bed combustion apparatus, and the control method of a pressurized fluidized bed combustion apparatus.

Country Status (1)

Country Link
JP (1) JP3898940B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106404997A (en) * 2016-10-14 2017-02-15 山西太钢不锈钢股份有限公司 Method for determining content of calcium in calcium-silicon alloy by potentiometric titration

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101701914A (en) * 2009-10-29 2010-05-05 江西稀有金属钨业控股集团有限公司 Analysis detection method for calcium element in ore
TW202426821A (en) * 2022-12-28 2024-07-01 日商住友重機械工業股份有限公司 Combustion device, combustion method, and combustion program
TW202426820A (en) * 2022-12-28 2024-07-01 日商住友重機械工業股份有限公司 Combustion device, combustion method, and combustion program
WO2024142710A1 (en) * 2022-12-28 2024-07-04 住友重機械工業株式会社 Combustion device, combustion method, and combustion program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106404997A (en) * 2016-10-14 2017-02-15 山西太钢不锈钢股份有限公司 Method for determining content of calcium in calcium-silicon alloy by potentiometric titration

Also Published As

Publication number Publication date
JP2003161728A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
CA2626189C (en) Method of mercury removal in a wet flue gas desulfurization system
CN100549527C (en) Be used for controlling the control system of the supply and the burning of glass-melting furnace dusty fuel
JP3898940B2 (en) The measuring method of the Ca component amount in ash in a pressurized fluidized bed combustion apparatus, and the control method of a pressurized fluidized bed combustion apparatus.
JP2001524449A (en) Controlling cement clinker production by analyzing the sulfur content of the final product
Yan et al. Case Studies: Problems Solving in Fluidized Bed Waste Fuel Incineration
JP3872681B2 (en) Method for measuring unburned ash content in combustion apparatus, and control method for combustion apparatus
CN109002687B (en) Method for determining ash share of circulating fluidized bed boiler based on calcium balance
JP6722458B2 (en) Fly ash treatment facility and method of supplying heavy metal fixing agent for fly ash treatment
JP4015842B2 (en) Method for measuring calorific value of fuel slurry and method for controlling combustion apparatus using the same
CN110520208A (en) The method for reducing the corrosion of the heat exchanger of the incinerator including heat exchanger
JP4671976B2 (en) Hazardous trace element elution inhibitor addition amount calculation method and harmful trace element elution suppression method using the same
KR101875039B1 (en) Fuel Additives and Fuel Additives Supply System for Coal Boilers Using Chemical Cleaning Wastewater
JP7570207B2 (en) Incinerator clogging risk assessment method and incinerator clogging prevention method
JP6909667B2 (en) Combustion exhaust gas treatment device
EP3556468A1 (en) Method and apparatus for forming a suspension of partly dissolved fly ash in a mineral acid
JP2020186416A (en) Sintered soot dust management method
Hajzler et al. Possibilities of ammonium ions fixation into mixed binders
JPWO2019082756A1 (en) Circulating fluidized bed boiler and its operation method
JP7077832B2 (en) Whitening prediction method for sintered main exhaust gas
JP5094043B2 (en) Management method of fly ash ash quantity by changing coal type in fluidized bed boiler
Livingston et al. Ash related issues in biomass combustion
JP3294046B2 (en) Flue gas treatment system
Lee et al. Measurement of alkali metal vapors and their removal from a pressurized fluidized-bed combustor process stream: Annual report, October 1987--September 1988
JP2021121777A (en) Boiler, and desulfurization method
Storm Pedersen et al. Full scale co-firing of straw and coal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees