JP2003161728A - METHOD FOR MEASURING AMOUNT OF Ca CONSTITUENT IN ASH IN PRESSURIZED FLUIDIZED BED COMBUSTION APPARATUS, AND CONTROL METHOD OF THE PRESSURIZED FLUIDIZED BED COMBUSTION APPARATUS - Google Patents

METHOD FOR MEASURING AMOUNT OF Ca CONSTITUENT IN ASH IN PRESSURIZED FLUIDIZED BED COMBUSTION APPARATUS, AND CONTROL METHOD OF THE PRESSURIZED FLUIDIZED BED COMBUSTION APPARATUS

Info

Publication number
JP2003161728A
JP2003161728A JP2001360031A JP2001360031A JP2003161728A JP 2003161728 A JP2003161728 A JP 2003161728A JP 2001360031 A JP2001360031 A JP 2001360031A JP 2001360031 A JP2001360031 A JP 2001360031A JP 2003161728 A JP2003161728 A JP 2003161728A
Authority
JP
Japan
Prior art keywords
ash
fluidized bed
pressurized fluidized
amount
combustion apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001360031A
Other languages
Japanese (ja)
Other versions
JP3898940B2 (en
Inventor
Eisaku Nakajima
英作 中島
Fukuo Someya
福夫 染矢
Yoichi Takahashi
洋一 高橋
Shisho Hirayama
士章 平山
Tatsuro Harada
達朗 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2001360031A priority Critical patent/JP3898940B2/en
Publication of JP2003161728A publication Critical patent/JP2003161728A/en
Application granted granted Critical
Publication of JP3898940B2 publication Critical patent/JP3898940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measurement method that can acquire the amount of Ca constit uent in ash rapidly without any time for dissolving a sample and can measure the amount of Ca constituent in ash in a pressurized fluidized bed combustion apparatus for coping with the change in the operation condition in the pressurized fluidized bed combustion apparatus, and at the same time, to provide a control method of the pressurized fluidized bed combustion apparatus which is easily automated and speeded up and by which the amount of Ca constituent can be measured, and the working condition of the pressurized fluidized bed combustion apparatus can be rapidly grasped and the control can be appropriately performed. <P>SOLUTION: The control method includes an ash-sampling process for sampling the ash of fuel slurry at each specific period from the pressurized fluidized bed combustion apparatus by burning the fuel slurry containing carbon and limestone in a fluidized bed, a dissolution process for dissolving a Ca constituent by performing the acid treatment of the ash, and a determining process for determining the amount of Ca constituents in liquid obtained by dissolution in the dissolution process. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は加圧流動床燃焼装置
(PFBC)における灰中Ca成分量の測定方法及びこ
れを用いた加圧流動床燃焼装置の制御方法に関する。
TECHNICAL FIELD The present invention relates to a method for measuring the amount of Ca in ash in a pressurized fluidized bed combustion apparatus (PFBC) and a method for controlling the pressurized fluidized bed combustion apparatus using the same.

【0002】[0002]

【従来の技術】炉内脱硫方式を採用した加圧流動床燃焼
装置では、燃料となる石炭と脱硫剤となる石灰石とを混
合して、これを流動床に供給して燃焼を行っている。こ
のとき発生する燃焼灰中には石炭灰に由来する成分(S
iO2、Al23など)と石灰石に由来する成分(Ca
CO3など)とが混在しているので、Ca成分を迅速に
分析取得して加圧流動床燃焼装置を的確に制御するのを
困難にしている。また、加圧流動床燃焼装置の排ガスが
導入されるサイクロンで回収される灰中のCa成分量が
高まると、灰移送配管を閉塞させるなどの弊害が生じる
という問題がある。従って、加圧流動床燃焼装置を安定
運転させるために、適時灰をサンプリングして分析を迅
速に行ってCa成分量の変化を監視する必要がある。従
来、燃焼炉などから排出される灰中のCa成分は以下の
ようにして測定されていた。即ち、まず、測定しようと
する試料に炭酸ナトリウムを混合し、この混合物を白金
るつぼ中で融解する。その融成物を塩酸に溶解し、過塩
素酸処理をして得られるろ液及びその洗液を集める。次
に、ろ液及び洗液の混合液にアンモニア水を加えて液中
の鉄、アルミニウム、マグネシウムなどを水酸化物とし
て沈殿させてろ別する。これらの金属が除去された溶液
をシアン化カリウムにより妨害成分をマスクしてNN指
示薬を用いてEDTA標準溶液で滴定し、灰中のCa成
分量が測定されていた。
2. Description of the Related Art In a pressurized fluidized bed combustion apparatus employing an in-furnace desulfurization system, coal as a fuel and limestone as a desulfurizing agent are mixed and supplied to a fluidized bed for combustion. In the combustion ash generated at this time, a component (S
iO 2 , Al 2 O 3, etc.) and components derived from limestone (Ca
(For example, CO 3 ) is mixed, it is difficult to quickly analyze and acquire the Ca component and accurately control the pressurized fluidized bed combustion device. Further, when the amount of Ca component in the ash collected by the cyclone into which the exhaust gas of the pressurized fluidized bed combustion apparatus is introduced is increased, there is a problem that an ash transfer pipe is blocked. Therefore, in order to stably operate the pressurized fluidized bed combustor, it is necessary to sample the ash at a suitable time and perform a quick analysis to monitor the change in the amount of Ca component. Conventionally, the Ca component in ash discharged from a combustion furnace or the like has been measured as follows. That is, first, sodium carbonate is mixed with the sample to be measured, and this mixture is melted in a platinum crucible. The melt obtained is dissolved in hydrochloric acid, and the filtrate obtained by perchloric acid treatment and the washing liquid are collected. Next, ammonia water is added to the mixed liquid of the filtrate and the washing liquid to precipitate iron, aluminum, magnesium, etc. in the liquid as hydroxides, and the mixture is filtered. The solution from which these metals had been removed was titrated with an EDTA standard solution using an NN indicator while masking the interfering components with potassium cyanide, and the amount of Ca component in the ash was measured.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の技術では以下の課題を有していた。 (1)炭酸ナトリウムを用いて採取された試料を完全に
白金るつぼ中で融解させる必要があるため、この加熱、
冷却に多大の時間を要し、加圧流動床燃焼装置の稼動状
況の変化に対応して灰中のCa成分量を的確、迅速に取
得するのが困難であるという課題があった。 (2)Ca成分の分析には、試料の加熱による融解工程
が含まれるので、工程を自動化したり、高速化したりす
るのに適さず、加圧流動床燃焼装置の制御システムを構
築する場合に支障を生じるという課題があった。
However, the above conventional techniques have the following problems. (1) Since it is necessary to completely melt a sample collected using sodium carbonate in a platinum crucible, this heating,
There is a problem that it takes a lot of time for cooling, and it is difficult to accurately and promptly acquire the amount of Ca component in the ash in response to changes in the operating condition of the pressurized fluidized bed combustor. (2) Since the Ca component analysis includes a melting process by heating the sample, it is not suitable for automating or speeding up the process, and when constructing a control system for a pressurized fluidized bed combustor. There was a problem of causing trouble.

【0004】本発明は上記従来の課題を解決するもの
で、加熱、冷却に時間を要さず迅速に灰中のCa成分量
を取得することができ、加圧流動床燃焼装置の稼動状況
の変化に対応できる加圧流動床燃焼装置における灰中C
a成分量の測定方法を提供すると共に、Ca成分量測定
の自動化、高速化が容易であり加圧流動床燃焼装置の稼
動状況を迅速に把握してその制御を適正に行うことので
きる加圧流動床燃焼装置の制御方法を提供することを目
的とする。
The present invention is intended to solve the above-mentioned conventional problems, and it is possible to quickly obtain the amount of Ca component in ash without requiring time for heating and cooling, and to check the operating condition of the pressurized fluidized bed combustion apparatus. C in ash in a pressurized fluidized bed combustor capable of adapting to changes
While providing a method for measuring the amount of a component, it is easy to automate and speed up the measurement of the amount of Ca component, and pressurization that can quickly grasp the operating status of the pressurized fluidized bed combustion device and perform its control appropriately. An object is to provide a method for controlling a fluidized bed combustion device.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明は以下の構成を有している。請求項1に記載の
加圧流動床燃焼装置における灰中Ca成分量の測定方法
は、石炭及び石灰石を含む燃料スラリーを流動床中で燃
焼させる加圧流動床燃焼装置から前記燃料スラリーの灰
を採取する灰採取工程と、前記灰を酸処理してCa成分
を溶解させる溶解工程と、前記溶解工程で溶解して得ら
れたろ液中のCa成分を定量する定量工程とを有して構
成されている。この構成によって以下の作用が得られ
る。 (a)加圧流動床燃焼装置から灰を所定期間毎に採取す
る灰採取工程を有するので、時々刻々変化する炉内状況
を把握するのに必要なCa成分量のデータを取得し、こ
のデータに基づいて加圧流動床燃焼装置の運転を適正に
制御できる。 (b)加熱、冷却に時間を要しないので、灰中のCa成
分量を迅速に取得することができ、加圧流動床燃焼装置
の稼動状況の変化に対応できる。 (c)Ca成分量測定の自動化を容易にして、異常燃焼
や灰輸送管などの閉塞を防止して、加圧流動床燃焼装置
を適正に制御することができる。 (d)灰中のCa成分のみを測定対象にしているので、
加圧流動床燃焼装置を運転するの必要なデータを迅速か
つ効率的に取得して、Ca成分の測定によるタイムラグ
を少なくできる。
In order to achieve the above object, the present invention has the following constitution. The method for measuring the amount of Ca in ash in a pressurized fluidized bed combustor according to claim 1, wherein the ash of the fuel slurry is combusted from a pressurized fluidized bed combustor that combusts a fuel slurry containing coal and limestone in a fluidized bed. It comprises an ash collecting step of collecting, a dissolving step of acid-treating the ash to dissolve the Ca component, and a quantifying step of quantifying the Ca component in the filtrate obtained by dissolving the ash in the dissolving step. ing. With this configuration, the following effects can be obtained. (A) Since it has an ash collection process that collects ash from the pressurized fluidized bed combustor every predetermined period, it acquires the data of the amount of Ca component necessary to grasp the in-reactor situation that changes from moment to moment, and this data Based on the above, the operation of the pressurized fluidized bed combustion device can be appropriately controlled. (B) Since heating and cooling do not take time, the amount of Ca component in ash can be quickly acquired, and the operating condition of the pressurized fluidized bed combustor can be changed. (C) It is possible to facilitate the automation of the Ca component amount measurement, prevent abnormal combustion and blockage of the ash transport pipe, and appropriately control the pressurized fluidized bed combustion apparatus. (D) Since only the Ca component in the ash is measured,
The data necessary for operating the pressurized fluidized bed combustor can be acquired quickly and efficiently, and the time lag due to the measurement of the Ca component can be reduced.

【0006】ここで、加圧流動床燃焼装置は、石灰石と
石炭とを含むスラリーや乾燥粒子を燃料として、流動床
中で空気を用いて燃焼させる炉内脱硫方式の燃焼装置で
あり、加圧型の他に非加圧型のものが含まれる。燃料ス
ラリーは、石炭及び石灰石を所定比率で粉砕したものに
所定量の水を加えて混合したスラリーである。灰採取工
程は、加圧流動床燃焼装置の排ガスが導入されるサイク
ロンや、電気集塵機(EP)などの灰貯留部や、灰が輸
送される灰移送管から灰を抜き出す工程であって、この
灰貯留部や灰移送管に挿入されたサンプリング管や吸引
器などを介して、自動的に測定用の試料を所定量づつ採
取できる。溶解工程は、塩酸などの所定濃度の酸液中に
試料灰を入れ、処理液を所定温度で撹拌しながら試料灰
中のカルシウム分をろ液中に溶解させる工程である。定
量工程は、EDTAを用いた滴定法や、誘導結合高周波
プラズマ分光分析(ICP)法、原子吸光分析法などを
適用してろ液中のカルシウム分を定量する工程が含まれ
る。
Here, the pressurized fluidized bed combustor is an in-furnace desulfurization type combustor in which slurry or dry particles containing limestone and coal are used as fuel to burn with air in the fluidized bed. Besides, non-pressurized type is also included. The fuel slurry is a slurry obtained by crushing coal and limestone at a predetermined ratio and adding and mixing a predetermined amount of water. The ash extraction step is a step of extracting ash from a cyclone into which exhaust gas from a pressurized fluidized bed combustor is introduced, an ash storage section such as an electrostatic precipitator (EP), or an ash transfer pipe in which ash is transported. It is possible to automatically collect a predetermined amount of a sample for measurement via a sampling tube or an aspirator inserted in the ash storage section or the ash transfer tube. The dissolving step is a step of putting the sample ash in an acid solution having a predetermined concentration such as hydrochloric acid and dissolving the calcium content in the sample ash in the filtrate while stirring the treatment liquid at a predetermined temperature. The quantification step includes a step of quantifying the calcium content in the filtrate by applying a titration method using EDTA, an inductively coupled high frequency plasma spectroscopic analysis (ICP) method, an atomic absorption analysis method, or the like.

【0007】請求項2に記載の加圧流動床燃焼装置にお
ける灰中Ca成分量の測定方法は、請求項1に記載の発
明において、前記灰採取工程で採取される灰が、前記流
動床から発生する排ガスが導入されるサイクロンで捕捉
されるサイクロン灰又は電気集塵機で集塵されるEP灰
であるように構成されている。この構成によって、請求
項1の作用の他、以下の作用が得られる。 (a)灰採取工程で採取される灰がサイクロン灰又はE
P灰であるので、流動床の下部から排出される灰に比べ
て粒度や密度が小さく、炉内状況の変動に対して鋭敏に
成分が変化する。従ってこれを分析することにより、炉
内状況を的確に反映したデータが取得され、加圧流動床
燃焼装置の制御に資することができる。
The method for measuring the amount of Ca in ash in the pressurized fluidized bed combustor according to claim 2 is the method according to claim 1, wherein the ash collected in the ash collecting step is from the fluidized bed. It is configured to be cyclone ash captured by a cyclone into which the generated exhaust gas is introduced or EP ash collected by an electric dust collector. With this configuration, in addition to the operation of claim 1, the following operation can be obtained. (A) The ash collected in the ash collection process is cyclone ash or E
Since it is P ash, its particle size and density are smaller than that of ash discharged from the lower part of the fluidized bed, and the components change sensitively to changes in the conditions inside the furnace. Therefore, by analyzing this, data that accurately reflects the situation inside the furnace can be acquired, which can contribute to the control of the pressurized fluidized bed combustion apparatus.

【0008】請求項3に記載の加圧流動床燃焼装置にお
ける灰中Ca成分量の測定方法は、請求項1又は2に記
載の発明において、前記定量工程が、NN指示薬及びト
リエタノールアミンを前記ろ液に添加し、EDTAを用
いて前記ろ液中のCaイオンの滴定を行う滴定工程であ
るように構成されている。この構成によって、請求項1
又は2の作用の他、以下の作用が得られる。 (a)NN指示薬及びトリエタノールアミンを用いてろ
液中のCaイオンの滴定を行うので、滴定操作を標準化
された手順で行うことができ、信頼性と精度に優れ、測
定作業を効率的に行うことができる。ここでNN試薬
は、1−(2−ヒドロキシ−4−スルホ−1−ナフチル
アゾ)−2−ヒドロキシ−3−ナフトエ酸の1質量部に
対して100質量部の硝酸カリウムを混合して均一にな
るまですり混ぜ、褐色瓶などに保有したものである。E
DTAは、エチレンジアミン四酢酸ニナトリウムの標準
溶液(M/100)である。
A method for measuring the amount of Ca in ash in a pressurized fluidized bed combustor according to a third aspect is the method according to the first or the second aspect, wherein the quantification step comprises adding an NN indicator and triethanolamine. It is configured to be a titration step of adding to the filtrate and titrating Ca ions in the filtrate using EDTA. With this configuration, claim 1
Alternatively, the following action can be obtained in addition to the action of 2. (A) Since Ca ions in the filtrate are titrated using the NN indicator and triethanolamine, the titration operation can be performed in a standardized procedure, which is excellent in reliability and accuracy, and the measurement work can be performed efficiently. be able to. Here, the NN reagent was mixed with 100 parts by mass of potassium nitrate to 1 part by mass of 1- (2-hydroxy-4-sulfo-1-naphthylazo) -2-hydroxy-3-naphthoic acid until homogeneous. It is mixed and kept in a brown bottle. E
DTA is a standard solution (M / 100) of disodium ethylenediaminetetraacetate.

【0009】請求項4に記載の加圧流動床燃焼装置の制
御方法は、請求項1乃至3の内いずれか1項に記載の加
圧流動床燃焼装置の灰中Ca成分量の測定方法で測定さ
れたCa成分量と、前記加圧流動床燃焼装置のCa成分
量履歴データとを比較して、前記加圧流動床燃焼装置に
供給する前記石炭及び前記石灰石、前記流動床を形成さ
せる高圧空気のそれぞれの供給量を調整するように構成
されている。この構成によって、以下の作用が得られ
る。 (a)加圧流動床燃焼装置から採取された灰のCa成分
量を測定して、その履歴データに基づいて、石炭及び石
灰石、高圧空気のそれぞれの供給量を調整するので、C
a成分の変動による流動状態や燃焼性の変化によって生
じる異常燃焼や、灰移送管の閉塞などを防止して、加圧
流動床燃焼装置の稼動状態を常時適正に維持させること
ができる。 (b)燃料スラリーの成分などが変動しても加圧流動床
燃焼装置の燃焼状態が安定に制御されるので、エネルギ
ーコストなどを最適化して操業を行うことができ、経済
性に優れている。 (c)加圧流動床燃焼装置の操業において蓄積されたC
a成分量の履歴データを有効に反映させることができる
ので、種々の変動を抑制して操業をより容易に行うこと
ができる。
According to a fourth aspect of the present invention, there is provided a method for controlling a pressurized fluidized bed combustion device according to any one of the first to third aspects, which is a method for measuring the amount of Ca component in ash of the pressurized fluidized bed combustion device. The measured Ca component amount and the Ca component amount history data of the pressurized fluidized bed combustor are compared, and the coal and the limestone supplied to the pressurized fluidized bed combustor and the high pressure for forming the fluidized bed are compared. It is configured to regulate the respective supply of air. With this configuration, the following effects can be obtained. (A) Since the amount of Ca component in the ash collected from the pressurized fluidized bed combustor is measured and the amounts of coal, limestone, and high-pressure air supplied are adjusted based on the historical data, C
It is possible to prevent abnormal combustion caused by changes in the fluid state and combustibility due to fluctuations in the a component, blockage of the ash transfer pipe, and the like, and to always maintain the operating state of the pressurized fluidized bed combustion apparatus appropriately. (B) Since the combustion state of the pressurized fluidized bed combustor is stably controlled even if the components of the fuel slurry and the like fluctuate, it is possible to optimize the energy cost and perform the operation, which is excellent in economic efficiency. . (C) C accumulated during operation of the pressurized fluidized bed combustor
Since the historical data of the amount of a component can be effectively reflected, various fluctuations can be suppressed and the operation can be performed more easily.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施の形態に係
る加圧流動床燃焼装置における灰中Ca成分量の測定方
法及び加圧流動床燃焼装置の制御方法について説明す
る。図1は本発明の一実施の形態の加圧流動床燃焼装置
における灰中Ca成分量の測定方法を適用する加圧流動
床燃焼装置の構成図である。図1において、10は加圧
流動床燃焼装置、11は圧力容器、12は圧力容器11
内に収容され燃料スラリーを流動化状態で保持して燃焼
させる燃焼室、13は燃焼室12の上部から排出される
燃焼ガスが導入される多段構成のサイクロン、14は燃
焼室12の下部に石炭、石灰石、水のそれぞれの所定量
を混合して燃焼室12内の下部に供給する燃料スラリー
ポンプ、15はサイクロン13下部から取り出される燃
焼ガス中の灰を貯留するための灰貯留タンク、15aは
灰貯留タンク15の灰(好ましくは最新の灰)を採取す
る採取装置、16は燃焼室12内の燃料スラリーを流動
化させて流動床を形成させるための高圧空気を供給する
コンプレッサ、17はサイクロン13の上部から供給さ
れる燃焼ガスで駆動されるガスタービン、18はガスタ
ービン17で回転される発電機、19は燃焼室12内の
熱交換用配管を介して加熱された蒸気により駆動される
蒸気タービン、20は蒸気タービン19で回転される発
電機、21は蒸気タービン19から供給される蒸気を凝
縮させる復水器、22は燃焼室12と蒸気タービン19
との間に給水を循環供給させるための給水ポンプ、23
はガスタービン17から排出されるガスの脱硝を行うた
めの排煙脱硝装置、24は排煙脱硝装置23から供給さ
れるガスの熱で燃焼室12に給水ポンプ22を介して送
られる給水を予熱するための排熱給水加熱器、25は排
熱給水加熱器24の排ガスに含まれる微細固形分を除去
するための電気集塵機、25aは電機集塵機25で捕捉
された灰のサンプリング装置、26は排ガスを大気中に
逃がすための煙突、27は灰貯留タンク15及び電気集
塵機25から採取装置15a及びサンプリング装置25
aを介してそれぞれ採取されたサイクロン灰、EP灰の
分析データが入力され燃料スラリーポンプ14やコンプ
レッサ16、給水ポンプ22を制御する制御装置であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION A method for measuring the amount of Ca in ash and a method for controlling a pressurized fluidized bed combustion device in a pressurized fluidized bed combustion device according to an embodiment of the present invention will be described below. FIG. 1 is a configuration diagram of a pressurized fluidized bed combustion device to which a method for measuring the amount of Ca in ash in a pressurized fluidized bed combustion device according to an embodiment of the present invention is applied. In FIG. 1, 10 is a pressurized fluidized bed combustor, 11 is a pressure vessel, and 12 is a pressure vessel 11.
A combustion chamber accommodated in the combustion chamber for holding and burning the fuel slurry in a fluidized state, 13 is a multi-stage cyclone into which combustion gas discharged from the upper portion of the combustion chamber 12 is introduced, and 14 is coal at the lower portion of the combustion chamber 12. , A fuel slurry pump for mixing a predetermined amount of each of limestone and water and supplying the mixture to the lower portion in the combustion chamber 12, 15 is an ash storage tank for storing ash in the combustion gas extracted from the lower portion of the cyclone 13, and 15a is A collecting device for collecting the ash (preferably the latest ash) of the ash storage tank 15, a compressor 16 for supplying high pressure air for fluidizing the fuel slurry in the combustion chamber 12 to form a fluidized bed, and a cyclone 17 A gas turbine driven by combustion gas supplied from the upper portion of 13, a generator rotated by a gas turbine 17, and 19 through a heat exchange pipe in combustion chamber 12. A steam turbine driven by the heated steam Te, 20 generator to be rotated by the steam turbine 19, 21 is a condenser for condensing the steam supplied from the steam turbine 19, 22 is the combustion chamber 12 and the steam turbine 19
A water supply pump for circulating supply of water between
Is a flue gas denitration device for performing denitration of the gas discharged from the gas turbine 17, and 24 is a heat source of the gas supplied from the flue gas denitration device 23 for preheating the feed water sent to the combustion chamber 12 via the water feed pump 22. For removing heat, 25 is an electric dust collector for removing fine solids contained in the exhaust gas of the exhaust heat water heater 24, 25a is a sampling device for ash captured by the electric dust collector 25, and 26 is exhaust gas Of the ash storage tank 15 and the electrostatic precipitator 25 for collecting the smoke from the stack 15a and the sampling device 25.
The control device controls the fuel slurry pump 14, the compressor 16, and the water supply pump 22 by inputting the analysis data of the cyclone ash and the EP ash collected via a.

【0011】制御装置27は必要に応じて設けられ、加
圧流動床燃焼装置10の全体を制御する制御システムの
一部を構成している。この制御装置27によって、予め
メモリに記憶されたプログラムに従って、測定された灰
中Ca成分量と、加圧流動床燃焼装置10のCa成分量
履歴データとを比較して、加圧流動床燃焼装置10の燃
焼室12に供給する石炭及び石灰石、コンプレッサ16
によって燃焼室12の下部に供給される高圧空気のそれ
ぞれの供給量を調整することができる。採取装置15a
及びサンプリング装置25aは灰貯留タンク15及び電
気集塵機25に挿入されたサンプリング管やその底部に
開口して設けられた排出管、吸引器などからなり、2段
に構成された開閉弁などを備えて加圧流動床燃焼装置1
0が稼動中でも所定量の灰を採取できるようになってい
る。
The control device 27 is provided as necessary and constitutes a part of a control system for controlling the entire pressurized fluidized bed combustion device 10. The controller 27 compares the measured Ca component amount in ash with the Ca component amount history data of the pressurized fluidized bed combustor 10 according to a program stored in advance in the memory, and the pressurized fluidized bed combustor is compared. Coal and limestone supplied to the combustion chamber 12 of 10 and compressor 16
The amount of high-pressure air supplied to the lower portion of the combustion chamber 12 can be adjusted by. Sampling device 15a
The sampling device 25a includes a sampling pipe inserted into the ash storage tank 15 and the electrostatic precipitator 25, a discharge pipe provided at the bottom of the sampling pipe, a suction device, and the like, and includes an opening / closing valve configured in two stages. Pressurized fluidized bed combustor 1
A certain amount of ash can be collected even when 0 is in operation.

【0012】以上のように構成された加圧流動床燃焼装
置における灰中Ca成分量の測定方法について説明す
る。灰採取工程では、灰貯留タンク15及び電気集塵機
25から採取装置15a、サンプリング装置25aなど
を介してそれぞれ所定量のサイクロン灰、EP灰を所定
間隔毎、例えば12時間毎に採取する。溶解工程では、
図2に示す溶解工程フロー図のように20%HCl(l
8.5ml)と100%HClO(5ml)を前記採取
されたサイクロン灰、EP灰の試料(2.0g)に加え
て温度90℃〜110℃、時間約30分の加熱条件で酸
処理を行って、ろ液を得る。
A method for measuring the amount of Ca component in ash in the pressurized fluidized bed combustion apparatus configured as described above will be described. In the ash collection step, a predetermined amount of cyclone ash and EP ash are collected from the ash storage tank 15 and the electrostatic precipitator 25 via the collection device 15a, the sampling device 25a, etc., at predetermined intervals, for example, every 12 hours. In the melting process,
As shown in the dissolution process flow chart in FIG. 2, 20% HCl (l
8.5 ml) and 100% HClO (5 ml) were added to the collected cyclone ash and EP ash samples (2.0 g) and acid treatment was performed under heating conditions of 90 ° C. to 110 ° C. for about 30 minutes. To obtain the filtrate.

【0013】定量工程では、溶解工程で溶解して得られ
るろ液を回収し、JISR9101に準ずる以下に示す
手順に従って溶液中のCaイオン濃度を測定し、最終的
にCaOとして換算されたCa成分量を得る。即ち、こ
の定量工程では試料となるろ液を500mlのメスフラ
スコに移し、水で標線まで薄めたものを試料溶液として
酸化カルシウムの定量に用いた。まず、試料溶液から2
5mlを正確に分取して、ビーカー(300ml)に入
れ、水を加えて約100mlとする。これに、トリエタ
ノールアミン(1+1)2mlを加え、適量の水酸化カ
リウム溶液(200g/l)を加えてよくかき混ぜ、p
Hを12.7〜13.2に調節し、2〜3分間静置す
る。この溶液に.NN指示薬約0.1gを加え、0.0
1mol/lEDTA標準溶液で滴定し、溶液の色が赤
紫から赤みが全く消えて鮮明な青色となった点を終点と
した滴定工程を実施した。なお、本実施例においては、
この滴定工程をイオン滴定は自動滴定装置(APB−4
10,KYOTOBLECTRONIC)を用いて行っ
た。試料中の酸化カルシウムの含有率は例えば次式によ
って算出される。 CaO=(v×f×0.0005608/S)×(50
0/25)×100 ここでCaOは酸化カルシウムの含有率(モル%)、v
は0.01mol/lEDTA標準溶液の使用量(m
l)、fは0.01mol/lEDTA標準溶液ファク
ター、Sははかり取った試料の質量(g)である。
In the quantifying step, the filtrate obtained by dissolving in the dissolving step is collected, the Ca ion concentration in the solution is measured according to the procedure described below according to JIS R9101, and finally the Ca component amount converted as CaO is calculated. To get That is, in this quantification step, the filtrate as a sample was transferred to a 500 ml volumetric flask, diluted with water to the marked line, and used as a sample solution for quantification of calcium oxide. First, 2 from the sample solution
Accurately collect 5 ml, put it in a beaker (300 ml), and add water to make about 100 ml. To this, add 2 ml of triethanolamine (1 + 1), add an appropriate amount of potassium hydroxide solution (200 g / l), stir well, and p
Adjust H to 12.7 to 13.2 and let stand for 2-3 minutes. To this solution. Add about 0.1 g of NN indicator and add 0.0
Titration was carried out with a 1 mol / l EDTA standard solution, and a titration step was carried out with the end point being the point at which the color of the solution changed from magenta to reddish and became a clear blue color. In this example,
This titration process is performed by ion titration using an automatic titrator (APB-4
10, KYOTOBLECTRONIC). The content rate of calcium oxide in the sample is calculated, for example, by the following formula. CaO = (v × f × 0.0005608 / S) × (50
0/25) × 100 where CaO is the calcium oxide content (mol%), v
Is the amount of 0.01 mol / l EDTA standard solution used (m
l) and f are 0.01 mol / l EDTA standard solution factor, and S is the mass (g) of the sample weighed.

【0014】表1に加圧流動床燃焼装置10における1
00%負荷運転時の灰中T−CaOの測定結果を、試料
を予め融解処理するJISに準拠した従来のCa分析方
法による結果と比較して示している。サイクロン灰、E
P灰では従来の分析データに比べてそれぞれ0.6%、
3.5%の差があることがわかる。EP灰の場合の差は
サイクロン灰の場合の差よりやや大きいが、燃焼室12
により近い側で採取されるサイクロン灰のデータの方が
加圧流動床燃焼装置10の運転状態をより的確に反映し
たものとなるので、サイクロン灰のデータを用いれば実
運用面では問題ないと考えられる。この結果より加圧流
動床燃焼装置10における灰中Ca成分量の測定方法の
信頼性が確認された。
Table 1 shows the characteristics of the pressurized fluidized bed combustor 10
The measurement result of T-CaO in ash at the time of 00% load driving | operation is shown in comparison with the result by the conventional Ca analysis method based on JIS which melt-processes a sample beforehand. Cyclone ash, E
For P ash, 0.6% each compared to the conventional analysis data,
It can be seen that there is a difference of 3.5%. Although the difference in the case of EP ash is slightly larger than that in the case of cyclone ash,
Since the data of cyclone ash collected on the side closer to _____________________________________________________________________ To be From these results, the reliability of the method for measuring the amount of Ca component in ash in the pressurized fluidized bed combustor 10 was confirmed.

【0015】[0015]

【表1】 [Table 1]

【0016】(実施例)溶解工程における酸処理前後の
構成物質変化を調べるためにX線回折(理学電機株式会
社製X線回折装置SAD−RB、Rigakuを使用)
を行った。図3(a)は75%負荷運転時において得ら
れたサイクロン灰の酸処理前における粉末X線回折パタ
ーンを示すチャート図であり、図3(b)はその酸処理
後におけるチャート図である。加圧流動床燃焼装置10
の75%負荷運転時に得られたサイクロン灰を用いて酸
処理前後の変化を測定した。図3から分かるように75
%負荷運転時のサイクロン灰は酸処理によりCaCO3
の回折ピーク(○)が完全に消失し、石炭灰に起因する
と思われる回折ピーク(△)は保持されていた。また、
酸処理により新たな水酸化物と思われる回折ピークが観
測された。図4(a)は加圧流動床燃焼装置10とは別
の燃焼試験機のセラミックチューブフィルタ灰(CTF
灰)を用いた場合における酸処理前の粉末X線回折パタ
ーンを示し、図4(b)はその酸処理後のパターンを示
している。図4においては、CaOの回折ピーク(◎)
は酸処理により完全に消失し、CaSO4の回折ピーク
(×)は酸処理後にも若干観測された。石炭灰に起因す
ると思われる回折ピーク(△)は保持されて、加圧流動
床燃焼装置10で採取された灰に見られた酸処理により
発現する水酸化物と思われる回折ピークは観測されない
ことが分かった。
(Example) X-ray diffraction (using an X-ray diffractometer SAD-RB, Rigaku manufactured by Rigaku Denki Co., Ltd.) in order to investigate changes in constituent substances before and after acid treatment in the dissolution step.
I went. FIG. 3A is a chart diagram showing a powder X-ray diffraction pattern of cyclone ash before acid treatment, which is obtained during 75% load operation, and FIG. 3B is a chart diagram after the acid treatment. Pressurized fluidized bed combustor 10
The change before and after the acid treatment was measured using the cyclone ash obtained during the 75% load operation. 75 as can be seen from FIG.
Cyclone ash during% load operation is treated with acid to produce CaCO 3
The diffraction peak (○) completely disappeared, and the diffraction peak (△), which is probably due to coal ash, was retained. Also,
A diffraction peak, which seems to be a new hydroxide, was observed by the acid treatment. FIG. 4A shows a ceramic tube filter ash (CTF) of a combustion tester different from the pressurized fluidized bed combustor 10.
4 shows a powder X-ray diffraction pattern before acid treatment when ash) is used, and FIG. 4B shows a pattern after the acid treatment. In FIG. 4, the CaO diffraction peak (⊚)
Completely disappeared by the acid treatment, and a diffraction peak (x) of CaSO 4 was slightly observed even after the acid treatment. Diffraction peaks (Δ) that are considered to be caused by coal ash are retained, and diffraction peaks that are thought to be hydroxides that appear due to the acid treatment and are observed in the ash collected by the pressurized fluidized bed combustor 10 are not observed. I understood.

【0017】表2にサイクロン灰、EP灰の加圧流動床
燃焼装置10の100%負荷運転時及び75%負荷運転
時におけるCa成分量の割合を示す。T−CaOで比較
するとサイクロン灰の方が多い。また、Ca化合物形態
で比較するとEP灰はCaSO4(石膏)の比率が高
く、CaO、CaCO3の比率が低い。前述のXRD測
定で分かるように酸処理前後の酸処理によりCaO、C
aCO3の回折ピークが完全に消失するのに比して、C
aSO4の回折ピークは若干残留していた。以上から、
加圧流動床燃焼装置における灰中Ca成分量の測定方法
において、EP灰に比べてサイクロン灰の方が高い精度
が得られる原因と考えられた。
Table 2 shows the proportion of the amount of Ca component during the 100% load operation and the 75% load operation of the pressurized fluidized bed combustion apparatus 10 for cyclone ash and EP ash. Compared with T-CaO, there are more cyclone ash. Further, when compared in the Ca compound form, EP ash has a high ratio of CaSO 4 (gypsum) and a low ratio of CaO and CaCO 3 . As can be seen from the XRD measurement described above, CaO and C were treated by acid treatment before and after acid treatment.
Compared to the complete disappearance of the aCO 3 diffraction peak, C
The diffraction peak of aSO 4 remained slightly. From the above,
In the method of measuring the amount of Ca in ash in the pressurized fluidized bed combustor, cyclone ash was considered to be the cause of obtaining higher accuracy than EP ash.

【0018】[0018]

【表2】 [Table 2]

【0019】加圧流動床燃焼装置の制御方法において
は、前記灰中Ca成分量の測定方法で取得されるデータ
に基づいて、加圧流動床燃焼装置10に供給される石
炭、石灰石、水を含む燃料スラリーの構成及び供給量、
燃焼室12内に固体粒子の流動床を形成させるのに必要
な高圧空気の供給量などを調整する。このような制御
は、加圧流動床燃焼装置10のシステムを管理する制御
システムや制御装置27により行うことができ、これに
よってCa成分の変動による異常燃焼や、灰移送管の閉
塞などを防止して、加圧流動床燃焼装置の稼動状態を常
時適正に維持させることができる。また、加圧流動床燃
焼装置の操業において蓄積されたCa成分量の履歴デー
タを有効に反映させることが可能になる。
In the method for controlling the pressurized fluidized bed combustor, the coal, limestone, and water supplied to the pressurized fluidized bed combustor 10 are calculated based on the data obtained by the method for measuring the amount of Ca in ash. Composition and supply of fuel slurry,
The supply amount of high-pressure air required to form a fluidized bed of solid particles in the combustion chamber 12 is adjusted. Such control can be performed by the control system or the control device 27 that manages the system of the pressurized fluidized bed combustor 10, thereby preventing abnormal combustion due to changes in the Ca component and blockage of the ash transfer pipe. As a result, the operating state of the pressurized fluidized bed combustion device can be always maintained properly. Further, it becomes possible to effectively reflect the historical data of the amount of Ca component accumulated in the operation of the pressurized fluidized bed combustor.

【0020】本発明の一実施の形態に係る加圧流動床燃
焼装置における灰中Ca成分量の測定方法は以上のよう
に構成されているので以下の作用を有する。 (a)加圧流動床燃焼装置10から灰を所定期間毎に採
取する灰採取工程を有するので、燃焼室12内の状況を
把握するのに必要なCa成分量のデータを効率的かつ迅
速に取得でき、これを用いて加圧流動床燃焼装置10を
適正に制御することができる。 (b)従来例のように試料を白金るつぼに入れて融解し
て冷却するような手順を省略できるので、灰中のCa成
分量を迅速に取得することができ、加圧流動床燃焼装置
10の稼動状況の変化に対応できる。 (c)採取した試料の融解工程がないので、Ca成分量
測定の自動化を容易にして、異常燃焼や灰輸送管などの
閉塞を防止して、加圧流動床燃焼装置10を適正に制御
することができ。 (d)灰採取工程で採取される灰がサイクロン灰又はE
P灰であるので、流動床の下部から排出される灰に比べ
て粒度や密度が小さく、燃焼室12内の炉内状況の変動
に対して鋭敏に成分が変化する。従ってこれを分析する
ことにより、炉内状況を的確に反映したデータが取得さ
れ、これを制御装置27に入力して加圧流動床燃焼装置
10の制御に資することができる。 (e)NN指示薬及びトリエタノールアミンを用いてろ
液中のCaイオンの滴定を行うので、滴定操作を標準化
された手順で行うことができ、信頼性と精度に優れ、測
定作業を効率的に行うことができる。 (f)加圧流動床燃焼装置10から採取された灰のCa
成分量を迅速に測定して、履歴データに基づいて石炭及
び石灰石、高圧空気のそれぞれの供給量を調整すること
もできるので、Ca成分の変動による異常燃焼や、灰移
送管の閉塞などを防止して、加圧流動床燃焼装置10を
適正に稼動させることができる。 (g)燃料スラリーの成分などが変動しても加圧流動床
燃焼装置10の燃焼状態が安定に制御されるので、エネ
ルギーコストなどを最適化して操業を行うことができ、
経済性に優れている。
The method for measuring the amount of Ca component in ash in the pressurized fluidized bed combustion apparatus according to one embodiment of the present invention is configured as described above and therefore has the following effects. (A) Since it has an ash collecting step for collecting ash from the pressurized fluidized bed combustion device 10 at every predetermined period, it is possible to efficiently and quickly obtain the data on the amount of Ca component necessary for grasping the situation in the combustion chamber 12. It can be acquired, and the pressurized fluidized bed combustion device 10 can be appropriately controlled using this. (B) Since the procedure of putting the sample in a platinum crucible and melting and cooling the sample as in the conventional example can be omitted, the amount of Ca component in the ash can be quickly acquired, and the pressurized fluidized bed combustion apparatus 10 can be used. Can respond to changes in operating conditions. (C) Since there is no melting step of the collected sample, automation of Ca component amount measurement is facilitated, abnormal combustion and blockage of the ash transport pipe, etc. are prevented, and the pressurized fluidized bed combustion apparatus 10 is appropriately controlled. It is possible. (D) The ash collected in the ash collection process is cyclone ash or E
Since it is P ash, its particle size and density are smaller than that of ash discharged from the lower part of the fluidized bed, and the components change sensitively to changes in the conditions inside the furnace in the combustion chamber 12. Therefore, by analyzing this, data that accurately reflects the situation inside the furnace can be obtained and input to the control device 27 to contribute to the control of the pressurized fluidized bed combustion device 10. (E) Since Ca ions in the filtrate are titrated using the NN indicator and triethanolamine, the titration operation can be performed in a standardized procedure, which is excellent in reliability and accuracy, and enables efficient measurement work. be able to. (F) Ca of ash collected from the pressurized fluidized bed combustor 10
It is also possible to quickly measure the amount of components and adjust the amount of each of coal, limestone, and high-pressure air supplied based on historical data, so prevent abnormal combustion due to fluctuations in Ca components and blockage of ash transfer pipes. Thus, the pressurized fluidized bed combustion device 10 can be operated properly. (G) Since the combustion state of the pressurized fluidized bed combustor 10 is stably controlled even if the components of the fuel slurry and the like fluctuate, the energy cost and the like can be optimized for operation.
It is highly economical.

【0021】[0021]

【発明の効果】請求項1に記載の加圧流動床燃焼装置に
おける灰中Ca成分量の測定方法によれば、以下の効果
を有する。 (a)加圧流動床燃焼装置から灰を所定期間毎に採取す
る灰採取工程を有するので、時々刻々変化する炉内状況
を把握するのに必要なCa成分量のデータを取得でき、
これを用いて加圧流動床燃焼装置を適正に制御すること
ができる。 (b)加熱、冷却に時間を要しないので、灰中のCa成
分量を迅速に取得することができ、加圧流動床燃焼装置
の稼動状況の変化に対応できる。 (c)Ca成分量測定の自動化を容易にして、異常燃焼
や灰輸送管などの閉塞を防止して、加圧流動床燃焼装置
を適正に制御することができる。 (d)灰中のCa成分のみを測定対象にしているので、
加圧流動床燃焼装置を運転するの必要なデータを迅速か
つ効率的に取得して、Ca成分の測定によるタイムラグ
を少なくできる。
The method for measuring the amount of Ca component in ash in the pressurized fluidized bed combustion apparatus according to the first aspect of the invention has the following effects. (A) Since it has an ash collection process that collects ash from the pressurized fluidized bed combustor at every predetermined period, it is possible to acquire data on the amount of Ca component necessary for grasping the in-reactor situation that changes moment by moment.
This can be used to properly control the pressurized fluidized bed combustor. (B) Since heating and cooling do not take time, the amount of Ca component in ash can be quickly acquired, and the operating condition of the pressurized fluidized bed combustor can be changed. (C) It is possible to facilitate the automation of the Ca component amount measurement, prevent abnormal combustion and blockage of the ash transport pipe, and appropriately control the pressurized fluidized bed combustion apparatus. (D) Since only the Ca component in the ash is measured,
The data necessary for operating the pressurized fluidized bed combustor can be acquired quickly and efficiently, and the time lag due to the measurement of the Ca component can be reduced.

【0022】請求項2に記載の加圧流動床燃焼装置にお
ける灰中Ca成分量の測定方法によれば、請求項1の効
果の他、以下の効果が得られる。 (a)灰採取工程で採取される灰がサイクロン灰又はE
P灰であるので、流動床の下部から排出される灰に比べ
て粒度や密度が小さく、炉内状況の変動に対して鋭敏に
成分が変化する。従ってこれを分析することにより、炉
内状況を的確に反映したデータが取得され、加圧流動床
燃焼装置の制御に資することができる。
According to the method for measuring the amount of Ca in ash in the pressurized fluidized bed combustion apparatus according to the second aspect, the following effects can be obtained in addition to the effect of the first aspect. (A) The ash collected in the ash collection process is cyclone ash or E
Since it is P ash, its particle size and density are smaller than that of ash discharged from the lower part of the fluidized bed, and the components change sensitively to changes in the conditions inside the furnace. Therefore, by analyzing this, data that accurately reflects the situation inside the furnace can be acquired, which can contribute to the control of the pressurized fluidized bed combustion apparatus.

【0023】請求項3に記載の加圧流動床燃焼装置にお
ける灰中Ca成分量の測定方法によれば、請求項1又は
2の効果の他、以下の効果が得られる。 (a)NN指示薬及びトリエタノールアミンを用いてろ
液中のCaイオンの滴定を行うので、滴定操作を標準化
された手順で行うことができ、信頼性と精度に優れ、測
定作業を効率的に行うことができる。
According to the method for measuring the amount of Ca component in ash in the pressurized fluidized bed combustion apparatus according to claim 3, the following effects can be obtained in addition to the effect of claim 1 or 2. (A) Since Ca ions in the filtrate are titrated using the NN indicator and triethanolamine, the titration operation can be performed in a standardized procedure, which is excellent in reliability and accuracy, and the measurement work can be performed efficiently. be able to.

【0024】請求項4に記載の加圧流動床燃焼装置の制
御方法によれば、以下の効果が得られる。 (a)加圧流動床燃焼装置から採取された灰のCa成分
量を測定して、その履歴データに基づいて、石炭及び石
灰石、高圧空気のそれぞれの供給量を調整するので、C
a成分の変動による異常燃焼や、灰移送管の閉塞などを
防止して、加圧流動床燃焼装置の稼動状態を常時適正に
維持させることができる。 (b)燃料スラリーの成分などが変動しても加圧流動床
燃焼装置の燃焼状態が安定に制御されるので、エネルギ
ーコストを最適化して操業を行うことができ、経済性に
優れている。 (c)加圧流動床燃焼装置の操業において蓄積されたC
a成分量の履歴データを有効に反映させることができる
ので、種々の変動が抑制して操業をより容易に行うこと
ができる。
According to the method of controlling the pressurized fluidized bed combustion apparatus described in claim 4, the following effects can be obtained. (A) Since the amount of Ca component in the ash collected from the pressurized fluidized bed combustor is measured and the amounts of coal, limestone, and high-pressure air supplied are adjusted based on the historical data, C
It is possible to prevent abnormal combustion due to fluctuations in the component a, blockage of the ash transfer pipe, and the like, and always maintain the operating state of the pressurized fluidized bed combustion apparatus appropriately. (B) Since the combustion state of the pressurized fluidized bed combustor is stably controlled even if the components of the fuel slurry and the like fluctuate, the energy cost can be optimized for operation, and the economy is excellent. (C) C accumulated during operation of the pressurized fluidized bed combustor
Since the historical data of the a component amount can be effectively reflected, various fluctuations can be suppressed and the operation can be performed more easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】灰中Ca成分量の測定方法を適用する加圧流動
床燃焼装置の構成図
FIG. 1 is a block diagram of a pressurized fluidized bed combustion apparatus to which the method for measuring the amount of Ca in ash is applied.

【図2】測定用の灰を酸液に溶解させる溶解工程のフロ
ー図
FIG. 2 is a flow chart of a dissolution process in which ash for measurement is dissolved in an acid solution.

【図3】(a)サイクロン灰の酸処理前における粉末X
線回折パターン (b)サイクロン灰の酸処理後における粉末X線回折パ
ターン
FIG. 3 (a) Powder X before acid treatment of cyclone ash
Line diffraction pattern (b) X-ray powder diffraction pattern after acid treatment of cyclone ash

【図4】(a)セラミックチューブフィルタ灰の酸処理
前の粉末X線回折パターン (b)セラミックチューブフィルタ灰の酸処理後の粉末
X線回折パターン
FIG. 4 (a) Powder X-ray diffraction pattern of ceramic tube filter ash before acid treatment (b) Powder X-ray diffraction pattern of ceramic tube filter ash after acid treatment

【符号の説明】[Explanation of symbols]

10 加圧流動床燃焼装置 11 圧力容器 12 燃焼室 13 サイクロン 14 燃料スラリーポンプ 15 灰貯留タンク 15a 採取装置 16 コンプレッサ 17 ガスタービン 18 発電機 19 蒸気タービン 20 発電機 21 復水器 22 給水ポンプ 23 排煙脱硝装置 24 排熱給水加熱器 25 電気集塵機 25a サンプリング装置 26 煙突 27 制御装置 10 Pressurized fluidized bed combustor 11 Pressure vessel 12 Combustion chamber 13 cyclone 14 Fuel slurry pump 15 Ash storage tank 15a sampling device 16 compressor 17 gas turbine 18 generator 19 Steam turbine 20 generator 21 condenser 22 Water pump 23 Flue gas denitration equipment 24 Waste heat feed water heater 25 Electric dust collector 25a Sampling device 26 chimney 27 Control device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 31/16 F23C 11/02 304 31/22 122 F23J 15/00 Z (72)発明者 高橋 洋一 福岡県京都郡苅田町長浜町1番1号 九州 電力株式会社苅田発電所内 (72)発明者 平山 士章 福岡県京都郡苅田町長浜町1番1号 九州 電力株式会社苅田発電所内 (72)発明者 原田 達朗 福岡県福岡市中央区白金1丁目17番8号 西日本環境エネルギー株式会社内 Fターム(参考) 2G042 AA01 BC02 CA10 CB06 DA06 DA08 EA01 FA06 FA11 FB03 GA05 3K003 FA03 FB04 FB05 FC04 FC05 GA06 3K064 AA02 AB01 AC05 AC07 AC16 AD05 AE01 AE11 AF03 BA13 BA17 BA24 3K070 DA07 DA29 DA30 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 31/16 F23C 11/02 304 31/22 122 F23J 15/00 Z (72) Inventor Yoichi Takahashi Fukuoka No. 1-1 Nagahama-cho, Kanda-cho, Kyoto-gun Kyushu Electric Power Co., Inc. Kanda power plant (72) Inventor Shisho Hirayama 1-1, Nagahama-cho, Kanda-ku, Kyoto-gun Kyushu Electric Power Co., Ltd. (72) Inventor Tatsuro Harada Fukuoka 1-17-8 Shirokane, Chuo-ku, Fukuoka-shi, Japan F-term in West Japan Environmental Energy Co., Ltd. (reference) 2G042 AA01 BC02 CA10 CB06 DA06 DA08 EA01 FA06 FA11 FB03 GA05 3K003 FA03 FB04 FB05 FC04 FC05 GA06 3K064 AA02 AB01 AC05 AC07 AC16 AD05 AE01 AE11 AF03 BA13 BA17 BA24 3K070 DA07 DA29 DA30

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】石炭及び石灰石を含む燃料スラリーを流動
床中で燃焼させる加圧流動床燃焼装置から前記燃料スラ
リーの灰を採取する灰採取工程と、前記灰を酸処理して
Ca成分を溶解させる溶解工程と、前記溶解工程で溶解
して得られたろ液中のCa成分を定量する定量工程とを
有することを特徴とする加圧流動床燃焼装置における灰
中Ca成分量の測定方法。
1. An ash collecting step of collecting ash of the fuel slurry from a pressurized fluidized bed combustion apparatus in which a fuel slurry containing coal and limestone is burned in a fluidized bed, and an acid treatment of the ash to dissolve a Ca component. A method for measuring the amount of Ca in ash in a pressurized fluidized bed combustor, comprising: a dissolving step of: and a quantitative step of quantifying a Ca component in the filtrate obtained by dissolving in the dissolving step.
【請求項2】前記灰採取工程で採取される灰が、前記流
動床から発生する排ガスが導入されるサイクロンで捕捉
されるサイクロン灰又は電気集塵機で集塵されるEP灰
であることを特徴とする請求項1に記載の加圧流動床燃
焼装置における灰中Ca成分量の測定方法。
2. The ash collected in the ash collecting step is cyclone ash captured by a cyclone into which exhaust gas generated from the fluidized bed is introduced or EP ash collected by an electrostatic precipitator. The method for measuring the amount of Ca in ash in the pressurized fluidized bed combustor according to claim 1.
【請求項3】前記定量工程が、NN指示薬及びトリエタ
ノールアミンを前記ろ液に添加し、EDTAを用いて前
記ろ液中のCaイオンの滴定を行う滴定工程であること
を特徴とする請求項1又は2に記載の加圧流動床燃焼装
置における灰中Ca成分量の測定方法。
3. The quantification step is a titration step in which a NN indicator and triethanolamine are added to the filtrate, and Ca ions in the filtrate are titrated using EDTA. The method for measuring the amount of Ca component in ash in the pressurized fluidized bed combustor according to 1 or 2.
【請求項4】請求項1乃至3の内いずれか1項に記載の
加圧流動床燃焼装置の灰中Ca成分量の測定方法で測定
されたCa成分量と、前記加圧流動床燃焼装置のCa成
分量履歴データとを比較して、前記加圧流動床燃焼装置
に供給する前記石炭及び前記石灰石、前記流動床を形成
させる高圧空気のそれぞれの供給量を調整することを特
徴とする加圧流動床燃焼装置の制御方法。
4. The amount of Ca component measured by the method of measuring the amount of Ca component in ash of the pressurized fluidized bed combustion device according to claim 1, and the pressurized fluidized bed combustion device. And the amount of each of the coal and the limestone supplied to the pressurized fluidized bed combustor and the high pressure air that forms the fluidized bed is adjusted. Control method for a pressurized fluidized bed combustion apparatus.
JP2001360031A 2001-11-26 2001-11-26 The measuring method of the Ca component amount in ash in a pressurized fluidized bed combustion apparatus, and the control method of a pressurized fluidized bed combustion apparatus. Expired - Fee Related JP3898940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001360031A JP3898940B2 (en) 2001-11-26 2001-11-26 The measuring method of the Ca component amount in ash in a pressurized fluidized bed combustion apparatus, and the control method of a pressurized fluidized bed combustion apparatus.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001360031A JP3898940B2 (en) 2001-11-26 2001-11-26 The measuring method of the Ca component amount in ash in a pressurized fluidized bed combustion apparatus, and the control method of a pressurized fluidized bed combustion apparatus.

Publications (2)

Publication Number Publication Date
JP2003161728A true JP2003161728A (en) 2003-06-06
JP3898940B2 JP3898940B2 (en) 2007-03-28

Family

ID=19170924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001360031A Expired - Fee Related JP3898940B2 (en) 2001-11-26 2001-11-26 The measuring method of the Ca component amount in ash in a pressurized fluidized bed combustion apparatus, and the control method of a pressurized fluidized bed combustion apparatus.

Country Status (1)

Country Link
JP (1) JP3898940B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509566A (en) * 2009-10-29 2013-03-14 チャンシー レア アース アンド レア メタルズ タングステン グループ コーポレーション Analysis and detection method of calcium element in ore

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106404997A (en) * 2016-10-14 2017-02-15 山西太钢不锈钢股份有限公司 Method for determining content of calcium in calcium-silicon alloy by potentiometric titration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509566A (en) * 2009-10-29 2013-03-14 チャンシー レア アース アンド レア メタルズ タングステン グループ コーポレーション Analysis and detection method of calcium element in ore

Also Published As

Publication number Publication date
JP3898940B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP3527156B2 (en) Removal of mercury in public facility wet scrubbers using chelating agents
Frandsen et al. Quantification of the release of inorganic elements from biofuels
EP1972369A2 (en) Method of mercury removal in a wet flue gas desulfurization system
EP1505141A2 (en) Method and system for heavy oil treating.
CN101717208B (en) Process method and process system of exhaust gas of cement calcination equipment
EA005827B1 (en) System and process for removal of pollutants from gas stream
Yan et al. Case Studies: Problems Solving in Fluidized Bed Waste Fuel Incineration
JP2003161728A (en) METHOD FOR MEASURING AMOUNT OF Ca CONSTITUENT IN ASH IN PRESSURIZED FLUIDIZED BED COMBUSTION APPARATUS, AND CONTROL METHOD OF THE PRESSURIZED FLUIDIZED BED COMBUSTION APPARATUS
JP3872681B2 (en) Method for measuring unburned ash content in combustion apparatus, and control method for combustion apparatus
JP5012508B2 (en) How to remove acidic deposits
CN109002687B (en) Method for determining ash share of circulating fluidized bed boiler based on calcium balance
JP2007322070A (en) Furnace bed temperature/bed height management method following coal type switching in fluidized bed boiler
KR101875039B1 (en) Fuel Additives and Fuel Additives Supply System for Coal Boilers Using Chemical Cleaning Wastewater
CN110520208A (en) The method for reducing the corrosion of the heat exchanger of the incinerator including heat exchanger
JP2003161404A (en) Calorific value measuring method of fuel slurry and control method of combustion equipment using this method
JP2021151642A (en) Sewage sludge incineration treatment method and sewage sludge incineration treatment facility
CN101309740A (en) Emission control system utilizing chlorine dioxide and hydrogen peroxide
JPWO2019082756A1 (en) Circulating fluidized bed boiler and its operation method
JPH11128659A (en) Device for treating waste gas in starting coal gasification plant
SCRUBBER U. 9. DEPARTMENT OF ENERGY INNOVATIVE CLEAR COAL TECHNOLOGY DEMONSTRATION PROJECT
Farthing et al. Advanced emissions control development program
Hajzler et al. Possibilities of ammonium ions fixation into mixed binders
JP5094043B2 (en) Management method of fly ash ash quantity by changing coal type in fluidized bed boiler
Foerster et al. Flue gas cleanup at temperatures about 1400 C for a coal fired combined cycle power plant: state and perspectives in the pressurized pulverized coal combustion (PPCC) project
JP2002174406A (en) Method of estimating wear rate of fluidized particle in pressurized fluidized bed incinerator and method of estimating size distribution of fluidized particle in the incinerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061222

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees