JP3898707B2 - Manufacturing method of fuel cell membrane electrode assembly manufactured by printing process - Google Patents

Manufacturing method of fuel cell membrane electrode assembly manufactured by printing process Download PDF

Info

Publication number
JP3898707B2
JP3898707B2 JP2004140137A JP2004140137A JP3898707B2 JP 3898707 B2 JP3898707 B2 JP 3898707B2 JP 2004140137 A JP2004140137 A JP 2004140137A JP 2004140137 A JP2004140137 A JP 2004140137A JP 3898707 B2 JP3898707 B2 JP 3898707B2
Authority
JP
Japan
Prior art keywords
fuel cell
electrode assembly
membrane electrode
manufacturing
cell membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004140137A
Other languages
Japanese (ja)
Other versions
JP2005322531A (en
Inventor
長盈 陳
朋 楊
瀛生 李
金福 林
Original Assignee
行政院原子能委員會核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員會核能研究所 filed Critical 行政院原子能委員會核能研究所
Priority to JP2004140137A priority Critical patent/JP3898707B2/en
Publication of JP2005322531A publication Critical patent/JP2005322531A/en
Application granted granted Critical
Publication of JP3898707B2 publication Critical patent/JP3898707B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は一種の燃料電池の膜電極アセンブリの製造方法に係り、特に、印刷技術を用いた燃料電池の膜電極アセンブリの製造方法であり、イオン交換膜及び両極触媒層の一般のスプレーコーティング工程中での膨張及び亀裂の問題を克服する方法に関する。   The present invention relates to a method of manufacturing a fuel cell membrane electrode assembly, and more particularly, to a method of manufacturing a fuel cell membrane electrode assembly using a printing technique, during a general spray coating process of an ion exchange membrane and a bipolar catalyst layer. It relates to a method for overcoming expansion and cracking problems.

燃料電池(Fuel Cell)は電気化学反応により、直接水素含有燃料と空気を利用して電力を発生させる装置である。燃料電池は低汚染、高効率、高エネルギー密度等の長所を有するために、近年、各国で研究開発と推奨の対象となっている。   A fuel cell is a device that generates electric power by directly using hydrogen-containing fuel and air by an electrochemical reaction. Since fuel cells have advantages such as low pollution, high efficiency, and high energy density, they have recently been the subject of research and development and recommendations in various countries.

燃料電池の構造は一般に複数層の基本構造で組成されている。その中間層はイオンを伝送するイオン交換膜であり、イオン交換膜の両側が触媒層とされ、陽極と陰極の電気化学反応は該触媒層で行なわれる。二層の触媒層の外側は気体拡散層とされ、ほとんどは良好な排水性を具えたカーボンペーパー或いはカーボンクロス材料で製造され、陽極と陰極の反応物はこの二層の拡散層より触媒反応層に至り、生成物もまたこの二層を通り拡散排出される。二層の拡散層の外側は導流板とされ、ほとんどはカーボンプレート、金属板或いは複合石墨繊維板を加工して形成され、その拡散層との隣接側に気体導流溝が設けられ、陽極と陰極の反応物と生成物がこの二層の導流板を通り燃料電池を出入りする。上述の燃料電池の基本構造により電池ユニットが形成される。   The structure of a fuel cell is generally composed of a basic structure having a plurality of layers. The intermediate layer is an ion exchange membrane that transmits ions, and both sides of the ion exchange membrane serve as catalyst layers, and the electrochemical reaction between the anode and the cathode is carried out in the catalyst layer. The outside of the two catalyst layers is a gas diffusion layer, most of which is made of carbon paper or carbon cloth material with good drainage, and the anode and cathode reactants are more catalytic reaction layers than the two diffusion layers. The product is also diffused and discharged through these two layers. The outer side of the two diffusion layers is a flow guide plate, most of which is formed by processing a carbon plate, a metal plate or a composite graphite fiber plate, and a gas flow guide groove is provided on the side adjacent to the diffusion layer. And the reactants and products of the cathode enter and exit the fuel cell through the two-layer flow guide plate. A battery unit is formed by the basic structure of the fuel cell described above.

図1は典型的なイオン交換膜燃料電池ユニットの側面図である。この燃料電池ユニット1は膜電極アセンブリ10(Membrane Electrode Assembly;MEA)を具え、それはイオン交換膜11、陽極触媒層12、及び陰極触媒層13で構成されている。膜電極アセンブリ10の陽極は陽極気体拡散層2と陽極導流板3を具え、膜電極アセンブリの陰極は陰極気体拡散層4と陰極導流板5を具えている。   FIG. 1 is a side view of a typical ion exchange membrane fuel cell unit. The fuel cell unit 1 includes a membrane electrode assembly (MEA), which includes an ion exchange membrane 11, an anode catalyst layer 12, and a cathode catalyst layer 13. The anode of the membrane electrode assembly 10 includes an anode gas diffusion layer 2 and an anode current plate 3, and the cathode of the membrane electrode assembly includes a cathode gas diffusion layer 4 and a cathode current plate 5.

図2に示されるように、実際の応用中、燃料電池セット100は複数の燃料電池ユニット1が結合され、並びに陽極集電板61、陽極端板62、陰極集電板63、陰極端板64、及び複数のシールパッキングと固定部品が組み合わされてなる。このほか、実用化された燃料電池セット100中、該陽極端板62の外側に空気入口71aと空気出口71bが設けられて、燃料電池セット100の反応に必要な酸素ガスの供給に用いられる。該陽極端板62の外側には更に水素ガス入口72aと水素ガス出口72bが設けられ、燃料電池セット100の反応に必要な水素ガスの供給に用いられる。該陽極端板62の外部には更に冷却剤入口73aと冷却剤出口73bが設けられ、これにより燃料電池セット100が適当な温度下で操作されうる。   As shown in FIG. 2, during actual application, the fuel cell set 100 includes a plurality of fuel cell units 1 coupled together, and an anode current collector plate 61, an anode end plate 62, a cathode current collector plate 63, and a cathode end plate 64. , And a plurality of seal packings and fixing parts. In addition, an air inlet 71 a and an air outlet 71 b are provided outside the anode end plate 62 in the practical fuel cell set 100 and used for supplying oxygen gas necessary for the reaction of the fuel cell set 100. A hydrogen gas inlet 72 a and a hydrogen gas outlet 72 b are further provided outside the anode end plate 62 and are used for supplying hydrogen gas necessary for the reaction of the fuel cell set 100. A coolant inlet 73a and a coolant outlet 73b are further provided outside the anode end plate 62, so that the fuel cell set 100 can be operated at an appropriate temperature.

前述のイオン交換膜燃料電池の組成構造中、膜電極アセンブリは全体の燃料電池セット中で最も重要な部品であり、その陽極触媒層と陰極触媒層がイオン交換膜の両側に均一に形成されているか否かが、該膜電極アセンブリが応用性能を発揮できるか否かの鍵を握る。膜電極アセンブリの製造時には、その材料が比較的脆弱であり、材料コストも高いため、製造工程の設計もまた極めて重要である。   In the ion exchange membrane fuel cell composition described above, the membrane electrode assembly is the most important part of the entire fuel cell set, and the anode catalyst layer and the cathode catalyst layer are uniformly formed on both sides of the ion exchange membrane. Whether or not the membrane electrode assembly can exert application performance is the key. When manufacturing a membrane electrode assembly, the design of the manufacturing process is also very important because the material is relatively fragile and the material cost is high.

周知の各種の膜電極アセンブリ製造方法中、一部の製造方法は、工程の安定性の面で理想的でなく、触媒剤のスプレーコーティング工程で局部重複コーティングの現象が発生しやすく、工程時間を掌握しにくく、且つ厚さが不均一となる現象が発生し、このため製造された膜電極アセンブリの触媒層の局部の厚さ誤差が大きくなり、厚さと面積の制御が容易でない等の欠点を有している。また一部の周知の製造方法は、比較的良好な品質を達成するが、自動化生産に不適合で、産業上の利用性が低い。   Among various well-known membrane electrode assembly manufacturing methods, some of the manufacturing methods are not ideal in terms of process stability, and the phenomenon of localized overlapping coating is likely to occur in the spray coating process of the catalyst agent. The phenomenon that it is difficult to grasp and the thickness becomes non-uniform occurs, so that the local thickness error of the catalyst layer of the manufactured membrane electrode assembly becomes large and the control of the thickness and area is not easy. Have. Some known manufacturing methods also achieve relatively good quality, but are incompatible with automated production and have low industrial applicability.

更に膜電極アセンブリの触媒剤スプレーコーティング工程で、イオン交換膜が触媒剤スプレーコーティング後に、触媒剤内の溶剤を吸収して膨張(swelling)現象を発生し、この現象により触媒層に亀裂が発生する問題がある。   Further, in the catalyst agent spray coating process of the membrane electrode assembly, the ion exchange membrane absorbs the solvent in the catalyst agent after the catalyst agent spray coating and causes a swelling phenomenon, which causes a crack in the catalyst layer. There's a problem.

良好な特性の膜電極アセンブリを製造し、触媒剤に発生する膨張亀裂の問題を克服するために各種の技術が研究されている。例えば特許文献1には、溶剤でイオン交換膜を処理する燃料電池の製造方法が記載され、高分子膜コーティング時に変形しやすい問題を克服するものとされる。その採用する方法によると、先ずイオン交換膜を溶剤中に浸すか或いは先にアルコール類等の溶剤を用いてイオン交換膜のプレ膨張処理を行ない、イオン交換膜を十分に膨張させる。次に、触媒スラリーを均一にイオン交換膜の表面に塗布し、この時、高分子膜は変形しない。更に触媒スラリーをベークしてイオン交換膜を均一に収縮させ、ベーク時にコーティング後の高分子膜を均一に収縮させて良好な膜電極アセンブリ製品を得る。最後に、触媒層をコーティングしたイオン交換膜を二つの拡散層の間に挟み、並びに熱圧して燃料電池の膜電極アセンブリを完成する。   Various techniques have been studied to produce membrane electrode assemblies with good characteristics and to overcome the problem of expansion cracks that occur in the catalyst agent. For example, Patent Document 1 describes a method for producing a fuel cell in which an ion exchange membrane is treated with a solvent, and overcomes the problem of being easily deformed during polymer membrane coating. According to the method employed, the ion exchange membrane is first immersed in a solvent, or pre-expansion treatment of the ion exchange membrane is first performed using a solvent such as alcohol to sufficiently expand the ion exchange membrane. Next, the catalyst slurry is uniformly applied to the surface of the ion exchange membrane, and at this time, the polymer membrane is not deformed. Further, the catalyst slurry is baked to uniformly shrink the ion exchange membrane, and the polymer membrane after coating is uniformly shrunk during baking to obtain a good membrane electrode assembly product. Finally, an ion exchange membrane coated with a catalyst layer is sandwiched between two diffusion layers, and heat-pressed to complete a fuel cell membrane electrode assembly.

また、特許文献2には、溶剤でイオン交換膜を処理する燃料電池製造方法が記載され、その方法によると、アルコール類等の溶剤で燃料電池の電解質膜を膨張処理し、その後、更に触媒スラリーをその両表面にスプレーコーティングし、更に触媒層をコーティングした電解質膜を二つの拡散層の間に挟み、並びに熱圧ベークし、燃料電池の膜電極アセンブリを完成する。この周知の技術中、更に二種類の異なるアルコール類溶剤でツーステップの浸漬を行ない該電解質膜の膨張処理を完成し、それによると、先ず高揮発性モノアルコール類溶剤にある時間浸漬させた後、低揮発性多価アルコールに浸漬させる。そのうち高揮発性モノアルコールは、メタノール、エタノール、アセトン或いはその混合物とされ、低揮発性多価アルコールは、エチレングリコール、プロピレングリコール、ブチレングリコール、グリセリン、或いはその混合物とされる。   Patent Document 2 describes a fuel cell manufacturing method in which an ion exchange membrane is treated with a solvent. According to the method, an electrolyte membrane of a fuel cell is expanded with a solvent such as alcohols, and then further a catalyst slurry. The membrane electrode assembly of the fuel cell is completed by spray-coating the electrolyte membrane on both surfaces and sandwiching the electrolyte membrane coated with the catalyst layer between the two diffusion layers and baking with heat and pressure. In this well-known technique, two-step immersion with two different alcohol solvents is further performed to complete the expansion treatment of the electrolyte membrane. According to this, first, after being immersed in a highly volatile monoalcohol solvent for a certain period of time. Soak in low volatile polyhydric alcohol. Among them, the highly volatile monoalcohol is methanol, ethanol, acetone or a mixture thereof, and the low volatile polyalcohol is ethylene glycol, propylene glycol, butylene glycol, glycerin or a mixture thereof.

しかし、これらの周知の技術は、事実上、膜電極アセンブリの触媒剤が発生する膨張と亀裂の問題に対する有効な改善がなされていない。且つその技術を採用する時、イオン交換膜は多種類のアルコール類溶剤でプレ膨張処理され、品質制御面で容易でなく、製造方法は産業上の利用価値を有するとは言えない。   However, these known techniques have not been effectively improved against the problems of expansion and cracking that are effectively generated by the catalyst of the membrane electrode assembly. In addition, when the technology is adopted, the ion exchange membrane is pre-expanded with various kinds of alcohol solvents and is not easy in terms of quality control, and the manufacturing method cannot be said to have industrial utility value.

台湾特許公告第447160号明細書Taiwan Patent Notice 447160 Specification 台湾特許公告第529195号明細書Taiwan Patent Publication No. 529195 Specification

本発明の主要な目的は、印刷工程で製造する燃料電池膜電極アセンブリの新規な製造方法を提供することにある。   A main object of the present invention is to provide a novel manufacturing method of a fuel cell membrane electrode assembly manufactured by a printing process.

本発明の別の目的は、燃料電池膜電極アセンブリの安定した製造方法を提供し、全体の膜電極アセンブリの製造工程にあって、膜電極アセンブリの触媒層の局部厚さ誤差を小さくし、厚さと面積の制御を容易とすることにある。   Another object of the present invention is to provide a stable manufacturing method of a fuel cell membrane electrode assembly, in the manufacturing process of the entire membrane electrode assembly, to reduce the local thickness error of the catalyst layer of the membrane electrode assembly, and to increase the thickness. It is to facilitate the control of the area.

本発明のまた別の目的は、燃料電池膜電極アセンブリの自動化生産に適合する製造方法を提供し、膜電極アセンブリの触媒層コーティングを自動化の生産システムに適用できるようにすることにある。   It is another object of the present invention to provide a manufacturing method that is compatible with automated production of fuel cell membrane electrode assemblies so that the catalyst layer coating of membrane electrode assemblies can be applied to automated production systems.

本発明のさらにまた別の目的は、膜電極アセンブリの触媒層コーティング時に発生する膨張と亀裂現象を効果的に改善できる製造方法を提供し、良好な膜電極アセンブリの製品品質を提供できるようにすることにある。   Still another object of the present invention is to provide a manufacturing method capable of effectively improving the expansion and cracking phenomenon that occurs when coating a catalyst layer of a membrane electrode assembly, and to provide a good product quality of the membrane electrode assembly. There is.

請求項1の発明は、印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、
(a)イオン交換膜、陽極触媒剤及び陰極触媒剤溶液を準備する工程、
(b)必要な面積に裁断したイオン交換膜を薄板基板上に位置決めし、更に該薄板基板をスクリーン印刷台上に置く工程、
(c)選定した印刷板材を該スクリーン印刷台のスクリーン固定フレームに固定する工程、
(d)スキージで触媒剤に印刷板材パターン上を均一に被覆させ、この印刷板材パターン上の触媒剤を薄板基板上のイオン交換膜に印刷する工程、
(e)スクリーン印刷完成後にイオン交換膜を加熱板上に置き加熱し、イオン交換膜を平坦に回復させてイオン交換膜上に均一な触媒層を形成する工程、
以上の工程を具えたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
請求項2の発明は、請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、(a)の工程中に、更にイオン交換膜に対する洗浄の工程を具えたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
請求項3の発明は、請求項2記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、前記洗浄工程が、
(a)イオン交換膜を摂氏80度の純水中で一時間洗浄する工程、
(b)摂氏80度の1体積モル濃度の過酸化水素水溶液中で一時間洗浄する工程、
(c)摂氏80度の純水中で一時間洗浄する工程、
(d)摂氏80度の1Mの硫酸中に放置する工程、
(e)摂氏80度の純水で2−3回洗浄する工程、
以上の工程を具えたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
請求項4の発明は、請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、イオン交換膜の陽極側に陽極触媒剤を印刷して加熱する工程を行なってから、イオン交換膜の陰極側に陰極触媒剤を印刷して加熱する工程を行なうことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
請求項5の発明は、請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、イオン交換膜の陰極側に陰極触媒剤を印刷して加熱する工程を行なってから、イオン交換膜の陽極側に陽極触媒剤を印刷して加熱する工程を行なうことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
請求項6の発明は、請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、イオン交換膜の陰極側に陰極触媒剤を、陽極側に陽極触媒剤を、同時に印刷して加熱する工程を行なうことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
請求項7の発明は、請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、(a)の工程中で準備する陽極触媒剤はPt−Ru−Cを含有し、陰極触媒剤はPt−Cを含有することを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
請求項8の発明は、請求項7記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、陽極触媒剤の準備は、
(a)重量比2:1:2のPt−Ru−Cのナノ触媒粒子を使用し、容器中で1グラムを調合する工程、
(b)4〜8ミリリットルのナフィオンソリューション(Nafion Solution)を加える工程、
(c)調合した陽極触媒剤材料を超音波振動或いは高速攪拌して陽極触媒剤を製造する工程、
を具えたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
請求項9の発明は、請求項7記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、調合した陽極触媒剤材料を更に高速攪拌して均一な陽極触媒剤を製造することを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
請求項10の発明は、請求項7記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、陰極触媒剤の準備は、
(a)重量比1:1のPt−Cのナノ触媒粒子を使用し、容器中で1グラムを調合する工程、
(b)4〜8ミリリットルのナフィオンソリューション(Nafion Solution)を加える工程、
(c)調合した陰極触媒剤材料を超音波振動して陰極触媒剤を製造する工程、
以上の工程を具えたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
請求項11の発明は、請求項10記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、調合した陰極触媒剤材料を更に高速攪拌して均一な陰極触媒剤を製造することを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
請求項12の発明は、請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、(a)の工程で準備する陽極触媒剤はPt−Cを含有するものとされ、陰極触媒剤もPt−Cを含有するものとされることを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
請求項13の発明は、請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、(e)の工程中、イオン交換膜を加熱板上に置いて加熱する時の温度は摂氏70〜80度、時間は1〜5分間とされることを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
請求項14の発明は、請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、()の工程の後、スクリーン印刷工程を既に完成したイオン交換膜を熱圧機に置いて熱圧加工する工程を具えたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
請求項15の発明は、請求項14記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、イオン交換膜の熱圧加工を行なう時、イオン交換膜の受ける圧力は20〜100kgf/cm2 、温度は摂氏110〜140度、時間は1〜3分間であることを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
請求項16の発明は、請求項15記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、陽極触媒層と陰極触媒層を具え既に熱圧加工されたイオン交換膜の正反両面に、必要面積に裁断された拡散層カーボンクロスを置いて、陽極気体拡散層と陰極気体拡散層となす工程を更に具えたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
請求項17の発明は、請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、印刷板材が網径と網目を具えたスクリーンとされたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
請求項18の発明は、請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、印刷板材が渡り幅と間隙を具えた鋼板とされたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法としている。
The invention of claim 1 is a method of manufacturing a fuel cell membrane electrode assembly manufactured by a printing process.
(A) preparing an ion exchange membrane, an anode catalyst agent and a cathode catalyst agent solution;
(B) positioning the ion exchange membrane cut to a required area on a thin plate substrate, and further placing the thin plate substrate on a screen printing table;
(C) fixing the selected printing plate material to the screen fixing frame of the screen printing stand;
(D) A step of uniformly coating the printing plate material pattern on the catalyst agent with a squeegee, and printing the catalyst agent on the printing plate material pattern on an ion exchange membrane on the thin plate substrate,
(E) a step of placing the ion exchange membrane on a heating plate after completion of screen printing and heating to recover the ion exchange membrane to form a uniform catalyst layer on the ion exchange membrane;
A manufacturing method of a fuel cell membrane electrode assembly manufactured by a printing process, characterized by comprising the above processes.
The invention of claim 2 is a method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to claim 1, further comprising a step of cleaning the ion exchange membrane during the step (a). In this method, the fuel cell membrane electrode assembly is manufactured by a printing process.
Invention of Claim 3 is a manufacturing method of the fuel cell membrane electrode assembly manufactured by the printing process of Claim 2, In the said washing | cleaning process,
(A) washing the ion exchange membrane in pure water at 80 degrees Celsius for 1 hour;
(B) a step of washing in a 1 volume molar hydrogen peroxide aqueous solution at 80 degrees Celsius for 1 hour;
(C) a step of washing in pure water at 80 degrees Celsius for 1 hour;
(D) a step of leaving in 1 M sulfuric acid at 80 degrees Celsius;
(E) A step of washing 2-3 times with pure water at 80 degrees Celsius,
A manufacturing method of a fuel cell membrane electrode assembly manufactured by a printing process, characterized by comprising the above processes.
According to a fourth aspect of the present invention, in the method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing step according to the first aspect, the step of printing an anode catalyst agent on the anode side of the ion exchange membrane and heating is performed, and then the ion A method for producing a fuel cell membrane electrode assembly produced in a printing process is characterized in that a step of printing and heating a cathode catalyst agent on the cathode side of the exchange membrane is performed.
According to a fifth aspect of the present invention, in the method of manufacturing a fuel cell membrane electrode assembly manufactured in the printing step according to the first aspect, the step of printing a cathode catalyst agent on the cathode side of the ion exchange membrane and heating is performed, A method for producing a fuel cell membrane electrode assembly produced in a printing process is characterized in that an anode catalyst agent is printed on the anode side of the exchange membrane and heated.
According to a sixth aspect of the present invention, in the method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to the first aspect, the cathode catalyst agent is printed on the cathode side of the ion exchange membrane and the anode catalyst agent is printed on the anode side simultaneously. The method of manufacturing a fuel cell membrane electrode assembly manufactured in a printing process is characterized by performing a heating process.
The invention of claim 7 is the method for producing a fuel cell membrane electrode assembly produced in the printing process according to claim 1, wherein the anode catalyst agent prepared in the step (a) contains Pt-Ru-C, The catalyst agent contains Pt—C, and is a method for manufacturing a fuel cell membrane electrode assembly manufactured by a printing process.
The invention of claim 8 is the method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to claim 7, wherein the preparation of the anode catalyst agent is:
(A) using a 2: 1: 2 weight ratio of Pt—Ru—C nanocatalyst particles to formulate 1 gram in a container;
(B) adding 4-8 milliliters of Nafion Solution;
(C) a step of producing an anode catalyst agent by ultrasonic vibration or high-speed stirring of the prepared anode catalyst material;
A method of manufacturing a fuel cell membrane electrode assembly manufactured by a printing process.
The invention according to claim 9 is the method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to claim 7, wherein the prepared anode catalyst material is further stirred at a high speed to produce a uniform anode catalyst agent. And a manufacturing method of a fuel cell membrane electrode assembly manufactured in a printing process.
The invention of claim 10 is the method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to claim 7, wherein the preparation of the cathode catalyst agent comprises:
(A) using Pt—C nanocatalyst particles with a weight ratio of 1: 1 to prepare 1 gram in a container;
(B) adding 4-8 milliliters of Nafion Solution;
(C) a step of producing a cathode catalyst agent by ultrasonically vibrating the prepared cathode catalyst material;
A manufacturing method of a fuel cell membrane electrode assembly manufactured by a printing process, characterized by comprising the above processes.
The invention according to claim 11 is the method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to claim 10, wherein the prepared cathode catalyst material is further stirred at a high speed to produce a uniform cathode catalyst agent. And a manufacturing method of a fuel cell membrane electrode assembly manufactured in a printing process.
The invention of claim 12 is the method of manufacturing a fuel cell membrane electrode assembly manufactured in the printing process according to claim 1, wherein the anode catalyst agent prepared in the process (a) contains Pt-C, The method for producing a fuel cell membrane electrode assembly produced by a printing process is characterized in that the catalyst agent also contains Pt-C.
According to a thirteenth aspect of the present invention, in the method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing step according to the first aspect, during the step (e), the temperature when the ion exchange membrane is placed on the heating plate and heated is The method of manufacturing a fuel cell membrane electrode assembly manufactured by a printing process is characterized in that the temperature is 70 to 80 degrees Celsius and the time is 1 to 5 minutes.
The invention of claim 14 is the method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to claim 1, wherein after the step ( e ), the ion-exchange membrane that has already undergone the screen printing process is placed in a hot press. And a method of manufacturing a fuel cell membrane electrode assembly manufactured in a printing process, comprising a step of hot-pressing.
According to a fifteenth aspect of the present invention, in the method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to the fourteenth aspect, when the ion exchange membrane is hot-pressed, the pressure received by the ion exchange membrane is 20 to 100 kgf / cm. 2. The temperature is 110 to 140 degrees Celsius, and the time is 1 to 3 minutes. This is a method for manufacturing a fuel cell membrane electrode assembly manufactured by a printing process.
According to a sixteenth aspect of the present invention, there is provided a method for manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to the fifteenth aspect of the present invention on both the positive and negative sides of an ion exchange membrane that has an anode catalyst layer and a cathode catalyst layer and is already hot-pressed. A method of manufacturing a fuel cell membrane electrode assembly manufactured in a printing process, further comprising the step of placing a diffusion layer carbon cloth cut into a required area to form an anode gas diffusion layer and a cathode gas diffusion layer It is said.
The invention of claim 17 is the method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to claim 1, wherein the printing plate material is a screen having a mesh diameter and a mesh. This is a method of manufacturing a fuel cell membrane electrode assembly to be manufactured.
The invention according to claim 18 is the method of manufacturing a fuel cell membrane electrode assembly manufactured in the printing process according to claim 1, wherein the printing plate is a steel plate having a transition width and a gap. This is a method of manufacturing a fuel cell membrane electrode assembly to be manufactured.

本発明の燃料電池の製造方法で製造した膜電極アセンブリは以下のような長所を有している。
(1)工程が安定している。
本発明は触媒層をイオン交換膜に形成する時、スクリーン印刷工程を使用し、使用するスキージは均一で孔も均一であり、固定厚さの触媒剤をイオン交換膜に印刷することができ、ゆえに局部厚さ誤差が小さく、厚さと面積の制御が容易で、周知のスプレーコーティング技術における、局部重複スプレーコーティングが容易に発生し、工程時間が掌握しにくく、厚さが不均一となる問題を発生しない。
(2)自動化生産に適用される。
スクリーン印刷機は適当な濃度の触媒層を異なる網径及び網目数のスクリーン或いは適当な渡り幅及び間隙の鋼板を使用し、触媒層含有量と印刷厚さを制御でき、自動化の生産システムに適用できる。
(3)イオン交換膜の陽極触媒層の膨張及び亀裂の現象の解決に有効である。
本発明の工程中、イオン交換膜に陽極触媒剤を印刷後、イオン交換膜を加熱処理し、イオン交換膜が吸収しうる有機溶剤がイオン交換膜の加熱により揮発し、また触媒剤自体が加熱により凝固するため、イオン交換膜の陽極触媒層を加熱板で加熱処理する時、僅かな膨張変形しか発生せず、それも次第に平坦に回復し、亀裂の現象を発生せず、ゆえにその製品の品質は良好となる。
The membrane electrode assembly manufactured by the fuel cell manufacturing method of the present invention has the following advantages.
(1) The process is stable.
The present invention uses a screen printing process when forming the catalyst layer on the ion exchange membrane, the squeegee used is uniform and the pores are uniform, and the fixed thickness catalyst agent can be printed on the ion exchange membrane, Therefore, local thickness error is small, control of thickness and area is easy, local spray coating in the well-known spray coating technology easily occurs, process time is difficult to grasp, and thickness is uneven. Does not occur.
(2) Applied to automated production.
The screen printing machine uses an appropriate concentration of catalyst layer with different mesh diameter and mesh number screen or steel plate with appropriate transition width and gap, and can control the catalyst layer content and printing thickness, and can be applied to automated production system it can.
(3) It is effective in solving the phenomenon of expansion and cracking of the anode catalyst layer of the ion exchange membrane.
During the process of the present invention, after the anode catalyst agent is printed on the ion exchange membrane, the ion exchange membrane is heated, and the organic solvent that can be absorbed by the ion exchange membrane is volatilized by heating the ion exchange membrane, and the catalyst agent itself is heated. When the anode catalyst layer of the ion exchange membrane is heat-treated with a heating plate, only a slight expansion deformation occurs, and it gradually recovers to a flat state and does not cause a cracking phenomenon. Quality is good.

本発明が周知の技術の問題を解決するために採用する技術手段によると、まずイオン交換膜の洗浄工程と、陽極触媒剤溶液と陰極触媒剤溶液の準備工程を実行する。洗浄を終え適当な大きさに裁断したイオン交換膜を薄板基板上に位置決めし、さらに薄板基板をスクリーン印刷台上に置く。選定した印刷板材(例えば適当な網径と網目を有するスクリーン或いは或いは適当な渡り幅と間隙を具えた鋼板)を該スクリーン印刷台のスクリーン固定フレームに固定する。スキージで準備を終えた触媒剤に印刷板材パターン上を均一に被覆させ、更に印刷板材パターンを被覆した触媒剤を薄板基板上に置いたイオン交換膜に印刷する。スクリーン印刷完成後に、イオン交換膜を加熱板上に置いて摂氏70度から80度に加熱し、イオン交換膜を平坦に回復させてイオン交換膜上に均一な触媒層を形成する。   According to the technical means employed in order to solve the known technical problems of the present invention, an ion exchange membrane cleaning step and an anode catalyst agent solution and cathode catalyst agent solution preparation step are first executed. After the cleaning, the ion exchange membrane cut to an appropriate size is positioned on the thin plate substrate, and the thin plate substrate is placed on the screen printing stand. The selected printing plate material (for example, a screen having an appropriate mesh diameter and mesh or a steel plate having an appropriate transition width and gap) is fixed to the screen fixing frame of the screen printing stand. The printing agent material pattern is evenly coated on the catalyst agent that has been prepared with a squeegee, and the catalyst agent coated with the printing plate material pattern is further printed on an ion exchange membrane placed on a thin plate substrate. After the screen printing is completed, the ion exchange membrane is placed on a heating plate and heated from 70 degrees Celsius to 80 degrees Celsius to restore the ion exchange membrane flat and form a uniform catalyst layer on the ion exchange membrane.

本発明の好ましい実施例によると、完成したイオン交換膜に熱圧工程を実行した後、適当な大きさに裁断した拡散層カーボンクロスをイオン交換膜の正反両面の触媒層上に置いて陽極気体拡散層及び陰極気体拡散層となす。   According to a preferred embodiment of the present invention, after the hot pressing process is performed on the completed ion exchange membrane, a diffusion layer carbon cloth cut to an appropriate size is placed on the catalyst layers on both the opposite sides of the ion exchange membrane and the anode. It becomes a gas diffusion layer and a cathode gas diffusion layer.

本発明の採用する技術により、膜電極アセンブリのイオン交換膜上にコーティングされた触媒層は、厚さが均一で、局部厚さ誤差が小さく、厚さ及び面積の制御が容易で、孔が均一であり、有効に周知のスプレーコーティング技術における、局部重複スプレーコーティングが発生しやすく、工程時間の掌握が容易でなく、厚さが不均一となる問題を解決する。本発明の製造方法により、イオン交換膜及び陽極触媒層を加熱処理する時、僅かな膨張現象を有し得るが、平坦な表面に回復し、並びに亀裂の現象を発生せず、ゆえに製品は良好な品質を有する。更に、本発明の技術は自動化生産に適合し、産業上の利用価値を提供する。   With the technology adopted by the present invention, the catalyst layer coated on the ion exchange membrane of the membrane electrode assembly has a uniform thickness, small local thickness error, easy thickness and area control, and uniform pores. In the well-known spray coating technique, it is easy to cause local overlapping spray coating, and it is not easy to grasp the process time and solves the problem of uneven thickness. According to the production method of the present invention, when heat-treating the ion exchange membrane and the anode catalyst layer, it may have a slight expansion phenomenon, but it recovers to a flat surface and does not generate a crack phenomenon, so the product is good. Quality. Furthermore, the technology of the present invention is compatible with automated production and provides industrial utility value.

本発明の膜電極アセンブリ製造プロセスの前には、イオン交換膜の洗浄工程と、陽極触媒剤溶液と陰極触媒剤溶液の準備工程を行なう必要がある。
図3は本発明のイオン交換膜の洗浄工程のフローチャートである。まず、イオン交換膜を準備する(工程101)。該イオン交換膜はデュポン(Du Pont)社製のNafionを使用可能である。好ましくは、本発明はメタノール透過性による陽極触媒層Pt(白金)毒化問題を考慮し、厚さが175μmのNafion 117のイオン交換膜を使用する。
Prior to the membrane electrode assembly manufacturing process of the present invention, it is necessary to perform an ion exchange membrane cleaning step and a preparation step for an anode catalyst solution and a cathode catalyst solution.
FIG. 3 is a flowchart of the ion exchange membrane cleaning process of the present invention. First, an ion exchange membrane is prepared (step 101). As the ion exchange membrane, Nafion manufactured by Du Pont can be used. Preferably, the present invention uses a Nafion 117 ion exchange membrane having a thickness of 175 μm in consideration of the poisoning problem of the anode catalyst layer Pt (platinum) due to methanol permeability.

続いて、前述のように準備したイオン交換膜に対して洗浄工程を行なう。本発明中、洗浄工程は、イオン交換膜を摂氏80度の純水中で一時間洗浄する(工程102)。更に摂氏80度の1体積モル濃度(M)の過酸化水素水溶液中で一時間洗浄する(工程103)。更に摂氏80度の純水中で一時間洗浄する(工程104)。更に摂氏80度の1Mの硫酸中に放置する(工程105)。最後に摂氏80度の純水で2−3回洗浄する(工程106)。   Subsequently, a cleaning process is performed on the ion exchange membrane prepared as described above. In the present invention, in the cleaning step, the ion exchange membrane is cleaned in pure water at 80 degrees Celsius for one hour (step 102). Further, it is washed for one hour in an aqueous hydrogen peroxide solution having a volume concentration (M) of 80 degrees Celsius (step 103). Further, it is washed in pure water at 80 degrees Celsius for 1 hour (step 104). Further, it is left in 1 M sulfuric acid at 80 degrees Celsius (step 105). Finally, it is washed 2-3 times with pure water at 80 degrees Celsius (Step 106).

前述の洗浄工程で洗浄完成後のイオン交換膜を常温下で乾燥させる(工程107)。   The ion exchange membrane that has been cleaned in the above-described cleaning step is dried at room temperature (step 107).

図4は本発明の触媒剤溶液製造のフローチャートである。このフロー中、先ず触媒剤の製造材料を準備する(工程201)。本発明の好ましい実施例によると、DMFC燃料電池システム中に応用される場合、該触媒剤の主要な製造材料としてデュポン社製のNafion Solution Se5112とジョンソンマッシー(Johnson Matthey)社製のPt−Ru/Cを陽極触媒剤の主要な製造材料とし、陰極触媒剤にはPt−Cを使用する。本発明の技術がPEMFC燃料電池システムに応用される時は、その使用する陽極触媒剤はPt−Cを含有し、陰極触媒剤もPt−Cを含有するものとする。   FIG. 4 is a flowchart of manufacturing the catalyst agent solution of the present invention. In this flow, first, a catalyst agent production material is prepared (step 201). According to a preferred embodiment of the present invention, when applied in a DMFC fuel cell system, the main production materials for the catalyst agent are Nafion Solution Se 5112 from DuPont and Pt-Ru / from Johnson Matthey. C is the main production material for the anode catalyst, and Pt-C is used for the cathode catalyst. When the technology of the present invention is applied to a PEMFC fuel cell system, the anode catalyst used is assumed to contain Pt—C, and the cathode catalyst is assumed to contain Pt—C.

続いて陽極触媒剤製造工程を実行する(工程202)。この工程中、重量比2:1:2のPt−Ru−Cのナノ触媒粒子を使用し、ガラスフラスコ中で1グラムを調合し、更に4〜8ミリリットルのNafion Solutionを加える。その後、調合した陽極触媒剤材料を超音波振動或いは高速攪拌して均一な陽極触媒剤を製造する(工程203)。   Then, an anode catalyst agent manufacturing process is performed (process 202). During this process, using a 2: 1: 2 weight ratio of Pt—Ru—C nanocatalyst particles, formulate 1 gram in a glass flask and add 4-8 milliliters of Nafion Solution. Thereafter, the prepared anode catalyst material is subjected to ultrasonic vibration or high-speed stirring to produce a uniform anode catalyst agent (step 203).

更に陰極触媒剤製造工程を実行する(工程204)。陰極触媒剤製造工程中、重量比1:1のPt−Cのナノ触媒粒子を使用し、ガラスフラスコ中で1グラムを調合し、更に4〜8ミリリットルのNafion Solutionを加える。その後、調合した陰極触媒剤材料を超音波振動して均一な陰極触媒剤を製造する(工程205)。   Furthermore, a cathode catalyst agent manufacturing process is executed (process 204). During the cathodic catalyst production process, use a 1: 1 weight ratio of Pt-C nanocatalyst particles, formulate 1 gram in a glass flask and add 4-8 milliliters of Nafion Solution. Thereafter, the prepared cathode catalyst material is ultrasonically vibrated to produce a uniform cathode catalyst agent (step 205).

上述のイオン交換膜の洗浄工程、陽極触媒剤溶液準備工程、陰極触媒剤溶液準備工程を終えた後、膜電極アセンブリの製造工程を行なう。図5は本発明の膜電極アセンブリ製造工程のフローチャートである。   After the above-described ion exchange membrane cleaning step, anode catalyst solution preparation step, and cathode catalyst solution preparation step are completed, a membrane electrode assembly manufacturing step is performed. FIG. 5 is a flowchart of the manufacturing process of the membrane electrode assembly of the present invention.

先ず、イオン交換膜を適当な面積に裁断し、洗浄後に該イオン交換膜をステンレス薄板基板の上に位置決めする(工程301)。更にステンレス薄板基板をスクリーン印刷台の上に置く。本発明の実施例では、該イオン交換膜は7cm×7cmの面積に裁断され、並びに8cm×8cm面積、0.2mm厚さのステンレス薄板基板の上に位置決めされる。   First, the ion exchange membrane is cut into an appropriate area, and after cleaning, the ion exchange membrane is positioned on a stainless steel thin plate substrate (step 301). Further, a stainless steel thin plate substrate is placed on a screen printing table. In an embodiment of the present invention, the ion exchange membrane is cut into an area of 7 cm × 7 cm and positioned on a stainless steel thin plate having an area of 8 cm × 8 cm and a thickness of 0.2 mm.

続いて、0.05〜0.3mm網径、30〜160網目(mesh)のスチールスクリーン或いは類似の適当な渡り幅及び間隙を具えた鋼板を印刷板材として選定し、並びに該印刷板材をスクリーン印刷台のスクリーン固定フレームに固定する(工程302)。スキージで準備を終えた陽極触媒剤に5cm×5cm面積印刷板材パターン上を均一に被覆させる(工程303)。更に印刷板材パターンを被覆した陽極触媒剤をステンレス薄板基板上に置いたイオン交換膜に印刷する(工程304)。   Subsequently, a steel screen having a mesh diameter of 0.05 to 0.3 mm and a mesh size of 30 to 160 (mesh) or a similar steel plate having an appropriate transition width and gap is selected as a printing plate material, and the printing plate material is screen-printed. It fixes to the screen fixing frame of a stand (process 302). A 5 cm × 5 cm area printed plate material pattern is uniformly coated on the anode catalyst agent that has been prepared with a squeegee (step 303). Further, the anode catalyst agent coated with the printing plate material pattern is printed on the ion exchange membrane placed on the stainless steel thin plate substrate (step 304).

イオン交換膜に陽極触媒剤を印刷した後、該イオン交換膜は触媒剤内の溶剤を吸収して膨張の現象を発生しやすいため、スクリーン印刷後に即時該イオン交換膜を加熱板上に置き(工程305)、イオン交換膜と陽極触媒剤を摂氏70度から80度に加熱し、加熱時間は1〜5分間である。   After the anode catalyst agent is printed on the ion exchange membrane, the ion exchange membrane absorbs the solvent in the catalyst agent and tends to cause a phenomenon of expansion. Therefore, immediately after screen printing, the ion exchange membrane is placed on a heating plate ( Step 305), the ion exchange membrane and the anode catalyst agent are heated from 70 degrees Celsius to 80 degrees Celsius, and the heating time is 1 to 5 minutes.

イオン交換膜が加熱後に吸収する有機溶剤は熱を受けて揮発し、更に触媒剤自体の加熱凝固により、イオン交換膜及び陽極触媒剤が加熱板上で加熱処理される時、僅かな膨張現象のみ発生しうる。しかし次第に平坦な表面に回復し、並びに亀裂の現象は発生しない。   The organic solvent that the ion exchange membrane absorbs after heating is volatilized by the heat, and when the ion exchange membrane and anode catalyst agent are heated on the heating plate due to the heat solidification of the catalyst agent itself, only a slight expansion phenomenon occurs. Can occur. However, it gradually recovers to a flat surface and no cracking phenomenon occurs.

イオン交換膜が平坦に回復すると、即ち、イオン交換膜の陽極側に均一な陽極触媒層が形成される。その後、さらにイオン交換膜の陰極側に陰極触媒剤層の印刷工程を行なう(工程306)。陰極触媒剤層の製造工程は、ほぼ前述の陽極触媒層の印刷製造工程と同じであり、即ちその工程は前述の工程301から工程304を重複して行なうが、陽極触媒剤を陰極触媒剤に改める。   When the ion exchange membrane recovers flatly, that is, a uniform anode catalyst layer is formed on the anode side of the ion exchange membrane. Thereafter, a cathode catalyst agent layer printing step is further performed on the cathode side of the ion exchange membrane (step 306). The production process of the cathode catalyst agent layer is almost the same as the printing production process of the anode catalyst layer described above, that is, the process is performed by repeating the steps 301 to 304 described above, but the anode catalyst agent is used as the cathode catalyst agent. Revise.

陰極触媒剤に陰極触媒剤を印刷製造した後、イオン交換膜を加熱板上に置き(工程307)、イオン交換膜と陰極触媒剤を摂氏70度から80度に加熱し、その加熱時間は1〜5分間である。   After the cathode catalyst agent is printed on the cathode catalyst agent, the ion exchange membrane is placed on a heating plate (step 307), the ion exchange membrane and the cathode catalyst agent are heated to 70 to 80 degrees Celsius, and the heating time is 1 ~ 5 minutes.

イオン交換膜の陽極側と陰極側にそれぞれ陽極触媒層と陰極触媒剤層を形成した後に、スクリーン印刷工程を終えたイオン交換膜を熱圧機に置いて熱圧工程を実行する(工程308)。熱圧工程の圧力は20〜100kg/cm2 、温度は摂氏110〜140度、時間は1〜3分間である。 After forming an anode catalyst layer and a cathode catalyst agent layer on the anode side and cathode side of the ion exchange membrane, respectively, the ion exchange membrane after the screen printing process is placed in a hot press to perform a hot press process (process 308). The pressure in the hot pressing process is 20 to 100 kg / cm 2 , the temperature is 110 to 140 degrees Celsius, and the time is 1 to 3 minutes.

熱圧工程完成後のイオン交換膜は、その正反両面に上述の工程処理により完成した陽極触媒層とイオン交換膜層を具えている。更に5cm×5cmに裁断した拡散層カーボンクロスをイオン交換膜の正反両面の触媒層上に置き(工程309)陽極気体拡散層と陰極気体拡散層となし、以上で膜電極アセンブリを完成する(工程310)。   The ion exchange membrane after completion of the hot-pressing step has an anode catalyst layer and an ion exchange membrane layer completed by the above-described process treatment on both the opposite sides. Further, the diffusion layer carbon cloth cut to 5 cm × 5 cm is placed on the catalyst layers on both the front and back sides of the ion exchange membrane (step 309), and the anode gas diffusion layer and the cathode gas diffusion layer are formed, thus completing the membrane electrode assembly ( Step 310).

前述の処理工程中、先ずイオン交換膜の陽極側に陽極触媒剤を印刷してから加熱し、更にイオン交換膜の陰極側に陰極触媒剤を印刷して加熱している。しかし実際の製造時には先にイオン交換膜の陰極側に陰極触媒剤を印刷して加熱してから、イオン交換膜の陽極側に陽極触媒剤を印刷してから加熱してもよい。当然、イオン交換膜の陰極側と陽極側に同時に陰極及び陽極触媒剤を印刷し加熱してもよい。   During the above-described processing steps, first, the anode catalyst agent is printed on the anode side of the ion exchange membrane and then heated, and further, the cathode catalyst agent is printed on the cathode side of the ion exchange membrane and heated. However, in actual production, the cathode catalyst agent may be printed on the cathode side of the ion exchange membrane and heated first, and then the anode catalyst agent may be printed on the anode side of the ion exchange membrane and then heated. Of course, the cathode and the anode catalyst agent may be simultaneously printed and heated on the cathode side and the anode side of the ion exchange membrane.

以上の実施例は本発明の権利請求範囲を限定するものではなく、以上の説明及び図面に基づきなしうる細部の修飾或いは改変は、いずれも本発明の権利請求範囲に属するものとする。   The above embodiments do not limit the scope of claims of the present invention, and any modification or change in detail that can be made based on the above description and drawings shall fall within the scope of the claims of the present invention.

典型的なイオン交換膜燃料電池ユニットの側面図である。It is a side view of a typical ion exchange membrane fuel cell unit. 周知の燃料電池セットの、複数の燃料電池ユニットを組み立て、並びに陽極集電板、陽極端板、陰極集電板、陰極端板等関係部品を組み合わせた後の立体図である。It is a three-dimensional view after assembling a plurality of fuel cell units of a known fuel cell set and combining related parts such as an anode current collector plate, an anode end plate, a cathode current collector plate, and a cathode end plate. 本発明のイオン交換膜の洗浄工程のフローチャートである。It is a flowchart of the washing | cleaning process of the ion exchange membrane of this invention. 本発明の触媒剤溶液製造のフローチャートである。It is a flowchart of catalyst agent solution manufacture of this invention. 本発明の膜電極アセンブリ製造工程のフローチャートである。It is a flowchart of the membrane electrode assembly manufacturing process of this invention.

符号の説明Explanation of symbols

1 燃料電池ユニット
10 膜電極アセンブリ
100 燃料電池セット
11 イオン交換膜
12 陽極触媒層
13 陰極触媒層
2 陽極気体拡散層
3 陽極導流板
4 陰極気体拡散層
5 陰極導流板
61 陽極集電板
62 陽極端板
63 陰極集電板
64 陰極端板
71a 空気入口
71b 空気出口
72a 水素ガス入口
72b 水素ガス出口
73a 冷却剤入口
73b 冷却剤出口
DESCRIPTION OF SYMBOLS 1 Fuel cell unit 10 Membrane electrode assembly 100 Fuel cell set 11 Ion exchange membrane 12 Anode catalyst layer 13 Cathode catalyst layer 2 Anode gas diffusion layer 3 Anode conduction plate 4 Cathode gas diffusion layer 5 Cathode conduction plate 61 Anode current collection plate 62 Anode end plate 63 Cathode collector plate 64 Cathode end plate 71a Air inlet 71b Air outlet 72a Hydrogen gas inlet 72b Hydrogen gas outlet 73a Coolant inlet 73b Coolant outlet

Claims (18)

印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、
(a)イオン交換膜、陽極触媒剤及び陰極触媒剤溶液を準備する工程、
(b)必要な面積に裁断したイオン交換膜を薄板基板上に位置決めし、更に該薄板基板をスクリーン印刷台上に置く工程、
(c)選定した印刷板材を該スクリーン印刷台のスクリーン固定フレームに固定する工程、
(d)スキージで触媒剤に印刷板材パターン上を均一に被覆させ、この印刷板材パターン上の触媒剤を薄板基板上のイオン交換膜に印刷する工程、
(e)スクリーン印刷完成後にイオン交換膜を加熱板上に置き加熱し、イオン交換膜を平坦に回復させてイオン交換膜上に均一な触媒層を形成する工程、
以上の工程を具えたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。
In the manufacturing method of the fuel cell membrane electrode assembly manufactured in the printing process,
(A) preparing an ion exchange membrane, an anode catalyst agent and a cathode catalyst agent solution;
(B) positioning the ion exchange membrane cut to a required area on a thin plate substrate, and further placing the thin plate substrate on a screen printing table;
(C) fixing the selected printing plate material to the screen fixing frame of the screen printing stand;
(D) a step of uniformly coating the printing plate material pattern on the printing plate material pattern with a squeegee and printing the catalyst agent on the printing plate material pattern on an ion exchange membrane on the thin plate substrate;
(E) a step of placing the ion exchange membrane on a heating plate after completion of screen printing and heating to recover the ion exchange membrane to form a uniform catalyst layer on the ion exchange membrane;
A method of manufacturing a fuel cell membrane electrode assembly manufactured in a printing process, comprising the above steps.
請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、(a)の工程中に、更にイオン交換膜に対する洗浄の工程を具えたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。   2. The method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to claim 1, further comprising a step of cleaning the ion exchange membrane during the step (a). A method of manufacturing a fuel cell membrane electrode assembly. 請求項2記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、前記洗浄工程が、
(a)イオン交換膜を摂氏80度の純水中で一時間洗浄する工程、
(b)摂氏80度の1体積モル濃度の過酸化水素水溶液中で一時間洗浄する工程、
(c)摂氏80度の純水中で一時間洗浄する工程、
(d)摂氏80度の1Mの硫酸中に放置する工程、
(e)摂氏80度の純水で2−3回洗浄する工程、
以上の工程を具えたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。
3. The method of manufacturing a fuel cell membrane electrode assembly manufactured by a printing process according to claim 2, wherein the cleaning step includes
(A) washing the ion exchange membrane in pure water at 80 degrees Celsius for 1 hour;
(B) a step of washing in a 1 volume molar hydrogen peroxide aqueous solution at 80 degrees Celsius for 1 hour;
(C) a step of washing in pure water at 80 degrees Celsius for 1 hour;
(D) a step of leaving in 1 M sulfuric acid at 80 degrees Celsius;
(E) A step of washing 2-3 times with pure water at 80 degrees Celsius,
A method of manufacturing a fuel cell membrane electrode assembly manufactured in a printing process, comprising the above steps.
請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、イオン交換膜の陽極側に陽極触媒剤を印刷して加熱する工程を行なってから、イオン交換膜の陰極側に陰極触媒剤を印刷して加熱する工程を行なうことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。   2. The method of manufacturing a fuel cell membrane electrode assembly according to claim 1, wherein the step of printing an anode catalyst agent on the anode side of the ion exchange membrane and heating is performed, and then the cathode on the cathode side of the ion exchange membrane. A method for producing a fuel cell membrane electrode assembly produced in a printing process, comprising the step of printing and heating a catalyst agent. 請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、イオン交換膜の陰極側に陰極触媒剤を印刷して加熱する工程を行なってから、イオン交換膜の陽極側に陽極触媒剤を印刷して加熱する工程を行なうことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。   2. The method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to claim 1, wherein the step of printing and heating the cathode catalyst agent on the cathode side of the ion exchange membrane is performed and then the anode on the anode side of the ion exchange membrane. A method for producing a fuel cell membrane electrode assembly produced in a printing process, comprising the step of printing and heating a catalyst agent. 請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、イオン交換膜の陰極側に陰極触媒剤を、陽極側に陽極触媒剤を、同時に印刷して加熱する工程を行なうことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。   The method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to claim 1, wherein the step of simultaneously printing and heating the cathode catalyst agent on the cathode side and the anode catalyst agent on the anode side of the ion exchange membrane is performed. A method of manufacturing a fuel cell membrane electrode assembly manufactured by a printing process. 請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、(a)の工程中で準備する陽極触媒剤はPt−Ru−Cを含有し、陰極触媒剤はPt−Cを含有することを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。   2. The method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to claim 1, wherein the anode catalyst agent prepared in the step (a) contains Pt-Ru-C, and the cathode catalyst agent contains Pt-C. A method for producing a fuel cell membrane electrode assembly produced by a printing process. 請求項7記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、陽極触媒剤の準備は、
(a)重量比2:1:2のPt−Ru−Cのナノ触媒粒子を使用し、容器中で1グラムを調合する工程、
(b)4〜8ミリリットルのナフィオンソリューション(Nafion Solution)を加える工程、
(c)調合した陽極触媒剤材料を超音波振動或いは高速攪拌して陽極触媒剤を製造する工程、
を具えたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。
The method of manufacturing a fuel cell membrane electrode assembly manufactured by a printing process according to claim 7, wherein the preparation of the anode catalyst agent is:
(A) using a Pt—Ru—C nanocatalyst particle in a 2: 1: 2 weight ratio to formulate 1 gram in a container;
(B) adding 4-8 milliliters of Nafion Solution;
(C) a step of producing an anode catalyst agent by ultrasonic vibration or high-speed stirring of the prepared anode catalyst material;
A method of manufacturing a fuel cell membrane electrode assembly manufactured by a printing process.
請求項7記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、調合した陽極触媒剤材料を更に高速攪拌して均一な陽極触媒剤を製造することを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。   8. The method of manufacturing a fuel cell membrane electrode assembly manufactured by a printing process according to claim 7, wherein the prepared anode catalyst material is further stirred at a high speed to produce a uniform anode catalyst agent. A method of manufacturing a fuel cell membrane electrode assembly. 請求項7記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、陰極触媒剤の準備は、
(a)重量比1:1のPt−Cのナノ触媒粒子を使用し、容器中で1グラムを調合する工程、
(b)4〜8ミリリットルのナフィオンソリューション(Nafion Solution)を加える工程、
(c)調合した陰極触媒剤材料を超音波振動して陰極触媒剤を製造する工程、
以上の工程を具えたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。
The method of manufacturing a fuel cell membrane electrode assembly manufactured by a printing process according to claim 7, wherein the preparation of the cathode catalyst agent is:
(A) using Pt—C nanocatalyst particles with a weight ratio of 1: 1 to prepare 1 gram in a container;
(B) adding 4-8 milliliters of Nafion Solution;
(C) a step of producing a cathode catalyst agent by ultrasonically vibrating the prepared cathode catalyst material;
A method of manufacturing a fuel cell membrane electrode assembly manufactured in a printing process, comprising the above steps.
請求項10記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、調合した陰極触媒剤材料を更に高速攪拌して均一な陰極触媒剤を製造することを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。   11. The method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to claim 10, wherein the prepared cathode catalyst material is further stirred at a high speed to manufacture a uniform cathode catalyst agent. A method of manufacturing a fuel cell membrane electrode assembly. 請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、(a)の工程で準備する陽極触媒剤はPt−Cを含有するものとされ、陰極触媒剤もPt−Cを含有するものとされることを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。   2. The method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to claim 1, wherein the anode catalyst agent prepared in the step (a) contains Pt-C, and the cathode catalyst agent also contains Pt-C. A method for producing a fuel cell membrane electrode assembly produced by a printing process, characterized by comprising: 請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、(e)の工程中、イオン交換膜を加熱板上に置いて加熱する時の温度は摂氏70〜80度、時間は1〜5分間とされることを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。   2. The method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to claim 1, wherein during the step (e), the temperature when the ion exchange membrane is placed on the heating plate and heated is 70 to 80 degrees Celsius, time The method of manufacturing a fuel cell membrane electrode assembly manufactured by a printing process, characterized in that is performed for 1 to 5 minutes. 請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、()の工程の後、スクリーン印刷工程を既に完成したイオン交換膜を熱圧機に置いて熱圧加工する工程を具えたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。 2. The method of manufacturing a fuel cell membrane electrode assembly manufactured by the printing process according to claim 1, wherein after the step ( e ), the ion-exchange membrane that has already undergone the screen printing step is placed in a hot press to perform hot pressing. A method of manufacturing a fuel cell membrane electrode assembly manufactured by a printing process, comprising: 請求項14記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、イオン交換膜の熱圧加工を行なう時、イオン交換膜の受ける圧力は20〜100kgf/cm2 、温度は摂氏110〜140度、時間は1〜3分間であることを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。 15. The method of manufacturing a fuel cell membrane electrode assembly manufactured by a printing process according to claim 14, wherein when the ion exchange membrane is subjected to hot pressure processing, the pressure received by the ion exchange membrane is 20 to 100 kgf / cm < 2 > and the temperature is 110 to Celsius. 140. The method for manufacturing a fuel cell membrane electrode assembly manufactured in a printing process, characterized in that the time is from 1 to 3 minutes. 請求項15記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、陽極触媒層と陰極触媒層を具え既に熱圧加工されたイオン交換膜の正反両面に、必要面積に裁断された拡散層カーボンクロスを置いて、陽極気体拡散層と陰極気体拡散層となす工程を更に具えたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。   16. The method of manufacturing a fuel cell membrane electrode assembly manufactured by a printing process according to claim 15, wherein the anode catalyst layer and the cathode catalyst layer are provided on both the front and back surfaces of an ion exchange membrane that has already been hot-pressed and cut into a required area. A method for producing a fuel cell membrane electrode assembly produced in a printing process, further comprising the step of placing a diffusion layer carbon cloth to form an anode gas diffusion layer and a cathode gas diffusion layer. 請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、印刷板材が網径と網目を具えたスクリーンとされたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。   2. The fuel cell membrane electrode assembly manufactured by a printing process according to claim 1, wherein the printing plate material is a screen having a mesh diameter and a mesh. Manufacturing method. 請求項1記載の印刷工程で製造する燃料電池膜電極アセンブリの製造方法において、印刷板材が渡り幅と間隙を具えた鋼板とされたことを特徴とする、印刷工程で製造する燃料電池膜電極アセンブリの製造方法。   2. A fuel cell membrane electrode assembly manufactured in a printing process according to claim 1, wherein the printing plate material is a steel plate having a cross width and a gap. Manufacturing method.
JP2004140137A 2004-05-10 2004-05-10 Manufacturing method of fuel cell membrane electrode assembly manufactured by printing process Expired - Fee Related JP3898707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004140137A JP3898707B2 (en) 2004-05-10 2004-05-10 Manufacturing method of fuel cell membrane electrode assembly manufactured by printing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004140137A JP3898707B2 (en) 2004-05-10 2004-05-10 Manufacturing method of fuel cell membrane electrode assembly manufactured by printing process

Publications (2)

Publication Number Publication Date
JP2005322531A JP2005322531A (en) 2005-11-17
JP3898707B2 true JP3898707B2 (en) 2007-03-28

Family

ID=35469634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004140137A Expired - Fee Related JP3898707B2 (en) 2004-05-10 2004-05-10 Manufacturing method of fuel cell membrane electrode assembly manufactured by printing process

Country Status (1)

Country Link
JP (1) JP3898707B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119664B (en) * 2018-08-28 2023-12-12 北京林业大学 Fuel cell based on biomass pyrolysis product and preparation method of membrane electrode

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3489148B2 (en) * 1993-09-03 2004-01-19 トヨタ自動車株式会社 Method for removing impurities from polymer ion exchange membrane
US5547911A (en) * 1994-10-11 1996-08-20 E. I. Du Pont De Nemours And Company Process of imprinting catalytically active particles on membrane
JPH1064574A (en) * 1996-08-26 1998-03-06 Fuji Electric Co Ltd Manufacture of solid high polymer electrolyte type fuel cell
NL1006322C2 (en) * 1996-11-06 1998-05-11 Dsm Nv Electrolytic membrane, method for its manufacture and application.
JP2001160405A (en) * 1999-12-02 2001-06-12 Asahi Glass Co Ltd Manufacturing method of solid polymer fuel cell
JP2002280012A (en) * 2001-03-15 2002-09-27 Matsushita Electric Ind Co Ltd Method of manufacturing for electrolyte membrane electrode joint body for fuel cell
JP2002280003A (en) * 2001-03-21 2002-09-27 Matsushita Electric Ind Co Ltd Method for manufacturing electrode of polymer electrolyte fuel cell and electrolyte membrane electrode joining body
JP2003100314A (en) * 2001-09-25 2003-04-04 Mitsubishi Heavy Ind Ltd Fabricating method of cell for solid polymer electrolyte fuel cell and its fabricating method

Also Published As

Publication number Publication date
JP2005322531A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
KR100409042B1 (en) Membrane Electrode Assembly and method for producing the same
CN113517449B (en) Membrane electrode assembly and preparation method thereof
JP5942982B2 (en) Method and apparatus for producing membrane / electrode assembly for polymer electrolyte fuel cell, polymer electrolyte fuel cell
CN107437628A (en) A kind of preparation method of fuel cell membrane electrode assembly
CN102496726B (en) Preparation method and forming fixture of membrane electrode of proton exchange membrane fuel cell
CN101557001A (en) Fuel cell film electrode and preparation method thereof
CN111584880B (en) Low-platinum proton exchange membrane fuel cell membrane electrode and preparation method thereof
US6475249B1 (en) Method for manufacturing membrane electrode assembly of fuel cell
CN110289420A (en) A kind of preparation method of PEM fuel cell membrane electrode
CN111261878A (en) Catalyst slurry containing aqueous gel, catalyst layer and fuel cell electrode produced therefrom
CN103165904B (en) Integrated regenerative fuel cell membrane electrode assembly and preparation method thereof
CA2640961A1 (en) Method of making membrane electrode assemblies
CN102522570A (en) Method for preparing enhanced membrane electrode (MEA) of proton exchange membrane fuel cell (PEMFC)
CN108767297A (en) A kind of preparation method of fuel cell membrane electrode
JP2007213988A (en) Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP3898707B2 (en) Manufacturing method of fuel cell membrane electrode assembly manufactured by printing process
EP2283533A1 (en) Activation method for membrane electrode assembly, membrane electrode assembly, and solid polymer-type fuel cell using same
US7041191B2 (en) Method for manufacturing membrane electrode assembly of fuel cell by printing processes
CN100567555C (en) A kind of apparatus and method that are used to prepare catalyst coat film
CN100486006C (en) Production method of membrane electrode of proton-exchange membrane fuel battery
JP5838688B2 (en) Manufacturing method of membrane electrode assembly
CN108011120B (en) Preparation method of membrane electrode
CN112599799A (en) Preparation method of HT-PEMFC gas diffusion electrode, membrane electrode and preparation method thereof
CN105932316A (en) Production method of bipolar membrane electrode
TWI267222B (en) New process for fabricating the membrane electrode assembly of fuel cells

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060913

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees