JP3898329B2 - Method of measuring LSAW propagation characteristics using an acoustic microscope - Google Patents

Method of measuring LSAW propagation characteristics using an acoustic microscope Download PDF

Info

Publication number
JP3898329B2
JP3898329B2 JP06541798A JP6541798A JP3898329B2 JP 3898329 B2 JP3898329 B2 JP 3898329B2 JP 06541798 A JP06541798 A JP 06541798A JP 6541798 A JP6541798 A JP 6541798A JP 3898329 B2 JP3898329 B2 JP 3898329B2
Authority
JP
Japan
Prior art keywords
lsaw
sample
frequency
change
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06541798A
Other languages
Japanese (ja)
Other versions
JPH11258216A (en
Inventor
淳一 櫛引
雄二 大橋
Original Assignee
淳一 櫛引
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淳一 櫛引 filed Critical 淳一 櫛引
Priority to JP06541798A priority Critical patent/JP3898329B2/en
Publication of JPH11258216A publication Critical patent/JPH11258216A/en
Application granted granted Critical
Publication of JP3898329B2 publication Critical patent/JP3898329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波顕微鏡を用いて薄い試料の音響特性、すなわちLSAWの伝搬速度の測定方法に関するものである。
【0002】
【従来の技術】
新しい物質・材料特性の解析・評価技術として超音波顕微鏡が開発されている。超音波顕微鏡による計測法には、画像計測法と定量計測法がある。定量計測法においてはV(z)曲線解析法が使われ、試料表面に励起されるLSAWの伝搬特性(音速、伝搬減衰)が計測される。この計測のためには、点集束超音波ビーム(PFB)と直線集束超音波ビーム(LFB)が使用できる。ここでは、定量計測専用のLFB超音波顕微鏡(参考文献1参照)を取り上げて説明する。図1は、その基本原理であるLFB超音波デバイス(超音波トランスジューサ1と音響レンズ3を形成したロッド2を指す)と試料系の断面図を示す。座標軸は焦点6を原点として図に示すようにとる。
【0003】
超音波トランスジューサ1により励振された平面超音波は、半円筒形に形成された音響レンズ3の開口面によってくさび状に集束され、液体音場媒体である水4を介して試料5の表面に照射される。このとき、臨界角θLSAWで入射した超音波は、試料表面にLSAWを励振する。LSAWはθLSAWの角度で水中に縦波を再放射しながら伝搬する。試料5からの反射超音波は再び水4及び音響レンズ3を介してトランスジューサ1へ戻るが、試料が焦点6にある状態からLFB超音波デバイスを試料側へ近付けると(この操作をデフォーカスと呼ぶ)トランスジューサ出力に実効的に寄与する成分は、従来の測定モデルから近似的に図1に示す#0と#1の経路をとる2つの成分のみとなる。#0の経路をとる成分は試料表面からの直接反射成分であり、一方、#1の経路をとる成分はLSAWの伝搬特性を含む成分である。デフォーカスを行なうことによりトランスジューサ出力として、V(z)曲線と呼ばれる上記の2つの成分の干渉波形が得られる(図2参照)。V(z)曲線のディップの周期ΔzをV(z)曲線解析法に基づいて求めることにより、LSAWの位相速度VLSAWは式(1)から求まる。
【0004】
VLSAW=VW/√{1-(1-VW/2fΔz)2} (1)
ここで、VWは水中の縦波音速、fは超音波周波数である。
実際の測定において、トランスジューサには電気信号として高周波バーストパルスを入力し、その入力信号をトランスジューサにより超音波に変換し、水を介して試料に照射させる。200MHz帯用として曲率半径1mmの円筒レンズが用いられており、通常はパルス幅をおよそ500nsec 、パルスの繰り返し周波数を20kHz 程度としている。電気端やレンズ開口面や試料等からの反射信号のうち、試料からの反射信号のみを高周波ゲート回路により抽出して信号処理を行なう。図1の#0’の経路を伝搬する裏面から反射波成分について考えると、パルス信号を使用しているので、試料が十分厚い場合、ゲート回路により例えば図3Aに示すようにゲート期間PG の間だけ信号を抽出することにより、試料表面からの反射波31に対し試料裏面からの反射波32は完全に分離できるが、試料が薄い場合には図3Bに示すように分離できなくなる。
【0005】
試料の裏面からの反射波(以下、裏面反射波とする)が検波信号に含まれるような薄い試料に対して、超音波周波数を変化させてLSAW速度を測定すると、図4Bの太実線に示すように周期的な変化が現われる。この周期ΔFは試料厚さh、及び試料中のバルク縦波音速VL に依存しており、式(2)により表される。
ΔF=VL/2h (2)
このことから分かるように、裏面反射波の影響により超音波周波数や試料厚さに依存して、測定値に誤差が含まれてしまうという問題があった。しかし、この裏面反射波の影響による測定誤差、即ち速度変化は、VLSAW(f, h) が図4Bの太実線のような周期性をもつことから、測定したLSAW速度の周波数特性に対しΔFの周期で移動平均を行なうことで除去できることがわかっている(文献2参照)。
【0006】
【発明が解決しようとする課題】
LFB超音波顕微鏡装置は、微視的領域の音響特性を試料面上の広範囲にわたって測定が行なえるという特徴を有する。しかし、例えばウェハのように薄くて大口径の試料に対して音響特性の面内不均一の評価を行なう場合、前記のように各測定点においてLSAW速度の周波数特性を測定し、その移動平均を行なって各点の真値を求める方法では非常に多くの時間を要し、迅速かつ正確な測定が行なえないという欠点があった。一般的に試料の厚さには分布があり、従って裏面反射波の影響による測定誤差の大きさは各測定点で異なるため、前記以外の方法で真値を得ることが困難であった。
【0007】
本発明の目的は、測定時間の短縮ができ、効率よくLSAW伝搬速度を測定する方法を提供することである。
【0008】
【課題を解決するための手段】
試料面上のある1点におけるLSAW速度の周波数特性をもとにして作成した換算曲線と、他の測定点における2つの周波数での測定値の差分との対応関係から、各測定点での裏面反射波の影響による測定LSAW速度変化を見積もり、測定値を補正する。
【0009】
【発明の実施の形態】
図4Aに示すような凹面形状の厚さ分布のある試料に対するLSAW速度の測定値を補正する場合について説明する。まず試料の音響特性が均一であると仮定する。厚さh0 の試料面上の測定点P0 を選び、その点においてLSAW速度の周波数特性を測定する。このとき、裏面反射波の影響により図4Bの太実線のような周波数特性VLSAW(f,h0) が得られたとする。実際の測定では、更に超音波デバイスの周波数特性による測定値の変化が含まれるが、簡単のためここでは省いて説明する。図4Bの太実線に対し周期ΔFで移動平均をとると、測定点P0 におけるLSAW速度の真値VLSAW (点線)が求まる。ここで、試料面上の他の任意の測定点をPa とし、測定点P0 より測定点Pa の厚さが微少量Δh(Δh<<h0)だけ厚いとすると、測定点Pa における周波数特性VLSAW(f, h0+Δh)は、図4Bの細実線で示すように厚さh0 における周波数特性(太実線)をΔfシフトさせたものとなり、次式(3)のような関係がある。
【0010】
VLSAW(f, h0+Δh)= VLSAW(f+Δf, h0) (3)
図4Bにおいて、周波数fにおける太実線、細実線それぞれのLSAW速度の測定値に注目すると、厚さΔhの差により、ΔV'LSAW=VLSAW(f+Δf, h0)-VLSAW(f, h0)の差が生じることがわかる。よって、厚さΔhの差と等価な周波数差Δfは、図4Bの太実線において次式(4)を満たす周波数を求めることにより得られる。
【0011】
VLSAW(f+Δf, h0)= VLSAW(f, h0) + ΔV'LSAW (4)
即ち、周波数fと試料の厚さhの積が一定であるとした次式(5)の関係を満たす周波数変化Δfを求めることに相当する。
(h0+Δh)f=h0(f+Δf) (5)
従って、厚さh0の試料に対する周波数f+Δfにおける音速の測定値と真値VLSAWとの音速差を
ΔVLSAW(f+Δf, h0)= VLSAW(f+Δf, h0)−VLSAW (6)
とおくと、式(3)を式(6)に代入してえられる次式(7)により測定点Pa における真値を求めることができる。
【0012】
VLSAW= VLSAW(f, h0+Δh)−ΔVLSAW(f+Δf, h0) (7)
つまり、測定点P0 におけるLSAW速度の周波数特性と移動平均により得られた真値を利用することによって、他の任意の測定点においてLSAW速度の周波数特性を測定することなく裏面反射波の影響を補正することができることになる。
次に、試料の音響特性に不均一がある一般的な場合について考える。このとき、任意の測定点Pa におけるLSAW速度の真値VLSAWaは測定点P0 における真値VLSAW と異なるため、図4Bの細実線VLSAW(f, h0+Δh)は上下にもシフトすることになる。そこで、2つの周波数における音速変化の差を利用することにより、LSAW速度に分布がある場合でも適用可能となる測定方法の手順を以下に示す。
【0013】
まず、前述したように、図4Aの試料に対し試料面上の基準測定点P0 (ここでは最も薄い点と仮定する)で測定したLSAW速度の周波数特性(図4Bの太実線)から、真値VLSAW (図4Bの点線)を差し引き、測定点P0 において周波数fを変化させたときの裏面反射波の影響による音速変化ΔVLSAW(f, h0)を求める。結果を図5Aに示す。ここで、図5Aに示すように例えば速度変化ΔVLSAW(f, h0)がそれぞれ最小、最大となる周波数f1、f2を選択し、Δf12=f2-f1 とする。厚さh=h0+Δhの任意の測定点Pa において、周波数f1、f2でLSAW速度を測定すると、測定値はそれぞれ次式(8)、(9)のように表される。
【0014】
VLSAW(f1, h)= VLSAWa + ΔVLSAW(f1, h) (8)
VLSAW(f2, h)= VLSAWa + ΔVLSAW(f2, h) (9)
ここで、VLSAWaは測定点Pa での真値を表し、ΔVLSAW(f1, h)、ΔVLSAW(f2, h)は裏面反射波の影響による真値からのLSAW速度変化を表す。式(8)から式(9)を引くことにより、f1、f2における裏面反射波の影響による音速変化分の差ΔV(Δf, h) が次式(10)のように得られる。
【0015】

Figure 0003898329
次に、音速変化の差分ΔV(Δf, h0)と周波数変化Δfの関係を求めるために、図5Aの曲線から次式(11)により図5Bに示す換算曲線を求める。
ΔV(Δf, h0)=ΔVLSAW(f1+Δf, h0)−ΔVLSAW(f2+Δf, h0) (11)
ただし、0 ≦Δf ≦Δf12 (12)
ここで、図5Bの曲線は単調増加関数となっており、ΔV(Δf, h0)とΔfの間に1対1の対応関係が成立する。厚さhでのVLSAW(f, h) は図4Bに示した厚さh0 でのVLSAW(f, h0)の周波数特性波形をそのまま周波数軸方向及び速度軸方向にずらした波形となるので、式(10)と式(11)を比較すると、図5Bの換算曲線からΔV(Δf, h)=ΔV(Δf, h0)となるΔf=Δfcを求めることにより、厚さがΔh異なることと等価な周波数変化Δfcが求められることがわかる。即ち、測定点Pa で周波数f1とf2でそれぞれ音速VLSAW(f1, h)及びVLSAW(f2, h)を測定して式(10)よりΔV(Δf, h) を求め、図5Bから対応するΔfcが決定される。これより図5Aを利用して、任意の測定点Pa におけるΔVLSAW(f1, h)及びΔVLSAW(f2, h)に対応する測定点P0 におけるΔVLSAW(f1+Δfc, h0)及びΔVLSAW(f2+Δfc, h0)が求まるので、式(8),(9)から任意の測定点Pa での真値VLSAWaが次式(13)のように求められる。
【0016】
Figure 0003898329
以上、本発明の測定手順を示した。ここでは、簡単のために2つの周波数f1、f2を図5Aにおいてそれぞれ最小、最大となるように選択したが、換算曲線における1対1の対応がつく範囲ならばどの周波数を選択してもよい。例えば図5Aの音速変化ΔVLSAW(f, h0)の曲線において、周波数f1とf2を互いに逆勾配の単調変化領域内、例えば極小値から周波数fと共に増加して極大値までの周波数領域と、その極大値から減少して次の極小値までの周波数領域とからそれぞれ任意に選択すれば、図5Bの換算曲線は必ず単調関数となる。実際に例えばf2をΔVLSAW(f, h0)の極大値を与える周波数近傍(ただし、極大値を与える周波数より大)に選べば、極小値近傍でのΔVLSAW(f, h0)の変化率が極大値近傍でのそれより小さいため、例えばf1を図5Aに示す速度変化曲線の極小値を与える周波数より多少低く選択しても換算曲線は単調関数となる。
【0017】
換算曲線の単調増加の関係を保ちつつ、式(12)に示すΔfの範囲が最大になるようにf1、f2(f1<f2) を選択したとき、本手法において測定可能な試料の厚さ分布の最大値Δhmaxは、試料中のバルク縦波音速をVLとして次式(14)で与えられる。厚さ分布がΔhmaxを越える場合は、Δhmaxを越えない範囲に測定領域を分割し、それぞれの領域内で測定基準点を決め分割領域毎に測定を行えばよい。
【0018】
Δhmax=(VL/2f2)(Δf12/ΔF) (14)
実施例
以上、この発明による測定方法の原理を基準測定点P0 に対し任意の測定点Pa での真値VLSAWaを求める場合について説明したが、実際の測定においては試料面上の所望の直線(例えば直径)に沿って一定間隔でVLSAW を測定する場合の手順を具体例で以下に説明する。
【0019】
ステップS1: 試料は3インチの両面光学研磨されたZカットのLiNbO3ウェハで、中央部の厚さが約 377μm、周辺部の厚さが約381〜382μmと厚さに分布があり、ちょうど図4Aのような形状をしている。試料面上で最も薄いと予想される中央の点(原点P0 とし、厚さをh0 とする)において、結晶Y軸方向伝搬のLSAW速度の周波数特性を、200〜240MHz の範囲で0.2MHzごとに測定した。結果を図6Aに実線で示す。この曲線は図4Bにおける太実線の曲線に対応する。図中の点線は、実線の測定値に対してΔF=9.6MHzの周期で2回の移動平均を行なった結果であり、裏面反射波の影響による測定誤差を除去したものである。周波数によって得られる値が異なっているが、これは超音波デバイスの周波数特性と考えられる。
【0020】
ステップS2: 図6Aの実線から点線を差し引くことにより、裏面反射波の影響による音速変化ΔVLSAW(f, h0)を求めた結果を図6Bに示す。この曲線は図5Aの曲線に対応する。ここで、図6Bにおいて周波数f1、f2を、予想される厚さの最大変化約5μmの変化による誤差を補正できることと、測定点P0 が必ずしも試料の最も薄い場所ではないということを考慮して、f1=220.4MHz、f2=224.6MHzとした。
【0021】
ステップS3: ウェハ直径上において、周波数f1、f2でのY軸伝搬のLSAW速度VLSAW(f1, h),VLSAW(f2, h)の分布を、測定点P0 を通る直線に沿って1mmごとに±30mmの範囲で測定した。結果を図7Aに示す。LSAW速度のプロファイルはf1、f2で異なるが、この原因は主に裏面反射波の影響によるものである。また、それぞれの測定値には図6Aの点線に示されるように、超音波デバイスの周波数特性による音速変化が含まれている。
【0022】
ステップS4: f1、f2における裏面反射波の影響による音速変化分の差ΔV(Δf, h)を求めるために、図7Aの実線から点線を差し引き、更に図6Aに示す音速シフト分ΔVf12を差し引く。結果を図7Bに示す。
ステップS5: 次に、図6BからΔV(Δf, h0)と周波数変化Δfの関係を示す換算曲線を式(11)により求める。ただし、Δfの範囲は次式(15)を満たすものとする。
【0023】
-(f2-fm) ≦Δf ≦ (fm-f1) (15)
図8Aに求めた換算曲線を示す。ここで、図6BのΔVLSAW(Δf, h0)が最大となる周波数がfm=224.2MHzであるので、-0.4MHz≦Δf≦3.8MHzである。
ステップS6: 図7Bの音速変化の差分ΔV(Δf, h) と、図8Aの換算曲線からΔV(Δf, h)=ΔV(Δf, h0) となるΔf=Δfcを各測定点に対して求めることにより、厚さがΔh 異なることと等価な周波数の変化Δf を見積もることができる。結果を図8Bに示す。なお、換算曲線においてデータのない部分は前後のデータを用いて直線補間した。
【0024】
ステップS7: 図8Bより、f1、f2における各測定点の裏面反射波の影響による音速変化は、それぞれ図6BからΔVLSAW(f1+Δfc, h0)及びΔVLSAW(f2+Δfc, h0)として求められる。f1、f2に対して求めた裏面反射波の影響による音速変化曲線をそれぞれ図9Aに実線、点線で示す。図9Aより、裏面反射波による音速変化ΔVLSAW(f+Δfc, h0) は最大で4.82m/s であることがわかる。
【0025】
ステップS8: 図7Aに示したLSAW速度の測定値から、図9Aの音速変化をそれぞれ差し引くことにより、裏面反射波により生じた誤差を補正する。f1、f2に対する補正後の結果をそれぞれ図9Bに実線、点線で示す。図9Bの補正結果はf1とf2で絶対値が異なっているが、これは前述した超音波デバイスの周波数特性によるものであり、相対的な音速分布を調べる上では問題にならない。絶対値が必要な場合は、標準試料を用いた絶対校正法(文献3参照)により絶対値を得ることができる。
【0026】
ここで絶対校正法について簡単に説明する。まず、標準試料(例えばGGG単結晶)に対し実際に測定した弾性定数より計算したLSAW速度の理論値を求める。このときのV(z)曲線の干渉周期Δz(図2参照)に相当する値をΔzST(calc.) とする。次に、同じ標準試料に対してLFB超音波顕微鏡システムでLSAW速度を測定し、その時のΔzに相当する値をΔzST(meas.) とする。この両者の比をとることで次式(16)に示す校正係数が決定する。
【0027】
K(V)=ΔzST(calc.)/ΔzST(meas.) (16)
後は、実際の試料に対して測定されたLSAW速度(図9Bの実線及び点線)のΔzに相当する値、Δz(measured)に対し、それぞれ次式(17)に示すように校正係数K(V)を掛けて、得られたΔz(calibrated)を式(1)に代入することでLSAW速度の絶対値が得られる。
【0028】
Δz(calibrated)=K(V)Δz(measured) (17)
図9Bの測定結果が正しく測定されているか確認するため、試料の測定ライン上の0、±15、±30mmの位置でそれぞれLSAW速度の周波数特性を測定し、その移動平均を行なった結果を、f1、f2に対して図9Bにそれぞれ○、□で表す。この結果と先に得られた測定結果とは、±0.5m/s以内でよく一致している。このことから、本手法による補正によって裏面反射波の影響による測定誤差を十分除去できていることがわかる。
【0029】
以上、この発明によるLSAW伝搬特性の測定方法を説明した。上記では簡便な例として、測定対象である薄い試料に対するLSAW速度の周波数特性の移動平均値を用いて、超音波デバイスの周波数特性を除去する手順を示したが、その他の方法として次のようなことが考えられる。測定試料と同種で、裏面反射波の影響がない厚い試料を準備し、その試料に対してLSAW速度の周波数特性を測定すれば、それがそのまま超音波デバイスの周波数特性として得られ、移動平均を使った上記測定方法と同様に測定が行える。この場合、移動平均値を用いるよりも正確な超音波デバイスの周波数特性が得られ、測定精度が向上すると考えられる。あるいは、準備する厚い試料を標準試料(例えばGGG単結晶)としても同様な超音波デバイスの周波数特性が得られると考えられる。ただし、絶対値に関しては前述した絶対値校正法により校正されるものである。
【0030】
【発明の効果】
以上述べたようにこの発明によれば、試料の厚さ分布を直接測定することを必要とせず、試料上のある1点についてのみLSAW速度の周波数特性の測定を行ない、他の測定点は2つの周波数で測定を行なうだけ、すなわち各点で2回の測定を行なうだけで各測定点の真値を得ることができ、測定点が多ければ多いほど、測定時間の大幅な短縮が実現できる。また、PFB超音波顕微鏡を用いた場合も同様な手順で、同様な効果が得られる。
【0031】
なお、この発明では上述したように薄い試料におけるLSAW伝搬特性の分布を効率よく測定できるが、もし、試料のLASW伝搬特性の分布が均一であると仮定できる場合は、逆に試料の厚さの分布が測定できる。例えば式(5)から任意の測定点Pa での試料の厚さはh=h0+Δh=h0(1+Δf/f)と表せるので、Δf として図8Bに示した各測定点Pa に対応するΔfcを与え、fとしてf1又はf2を与えることにより測定点Pa での試料の厚さhを基準位置P0 での厚さh0に対する割合として計算できる。基準位置P0 での厚さh0は、例えば測定した周波数特性ΔF及び試料中の縦波音速VLの測定値又は理論値を用いて式(2)から計算することができる。
【図面の簡単な説明】
【図1】LFB超音波顕微鏡の測定原理を説明する図。
【図2】 V(z)曲線を示す図。
【図3】試料の表面及び裏面からの反射波のタイムチャートを示しており、Aが厚い試料の場合の図、Bが薄い試料の場合の図である。
【図4】Aは厚さ分布のある試料形状の例を示した図、Bは薄い試料に対するLSAW速度の周波数特性を示す図である。
【図5】Aは裏面反射波の影響による見掛け上の音速変化を示す図、Bは換算曲線を示す図である。
【図6】Aは試料上の最も薄い点におけるLSAW速度の周波数特性を示す図、Bは裏面反射波の影響による見掛け上の音速変化を示す図である。
【図7】Aは試料の径方向のLSAW速度分布の測定結果を示す図、BはAに示す測定結果の差分を示す図である。
【図8】Aは換算曲線を示す図、Bは試料厚さの変化をそれと等価な周波数の変化に見積った結果を示す図である。
【図9】Aは見積った補正すべき値の結果を示す図、Bは補正結果を示す図である。
(参考文献)
(文献1)J. Kushibiki and N. Chubachi, "Material Characterization by Line-Focus-Beam Acoustic Microscope," IEEE Trans. Sonics and Ultrason., vol.SU-32, pp. 189-212 (1985).
(文献2)櫛引、荒川、大橋、"直線集束ビーム超音波顕微鏡による材料評価法における試料裏面反射波の影響--試料厚さに関する検討--"、日本音響学会春季講演論文集、pp.1035-1036、平成9年3月.
(文献3)J. Kushibiki and M. Arakawa, "A Method for Calibrating theLine-Focus-Beam Acoustic Microscopy System.", IEEE Trans. UFFC., vol. 45, no. 2,March(1998), in press.[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the acoustic characteristics of a thin sample, that is, the LSAW propagation velocity, using an ultrasonic microscope.
[0002]
[Prior art]
An ultrasonic microscope has been developed as a technique for analyzing and evaluating new substances and material properties. Measurement methods using an ultrasonic microscope include an image measurement method and a quantitative measurement method. In the quantitative measurement method, the V (z) curve analysis method is used, and the propagation characteristics (sound speed, propagation attenuation) of LSAW excited on the sample surface are measured. For this measurement, a point focused ultrasonic beam (PFB) and a linearly focused ultrasonic beam (LFB) can be used. Here, an LFB ultrasonic microscope dedicated to quantitative measurement (see Reference 1) will be taken up and described. FIG. 1 shows a cross-sectional view of an LFB ultrasonic device (referring to a rod 2 on which an ultrasonic transducer 1 and an acoustic lens 3 are formed) and a sample system as the basic principle. The coordinate axes are taken as shown in the figure with the focal point 6 as the origin.
[0003]
The plane ultrasonic wave excited by the ultrasonic transducer 1 is focused in a wedge shape by the opening surface of the acoustic lens 3 formed in a semi-cylindrical shape, and is irradiated onto the surface of the sample 5 through the water 4 which is a liquid sound field medium. Is done. At this time, the ultrasonic wave incident at the critical angle θ LSAW excites the LSAW on the sample surface. LSAW propagates while re-radiating longitudinal waves into water at an angle of θ LSAW . The reflected ultrasonic wave from the sample 5 returns to the transducer 1 again through the water 4 and the acoustic lens 3, but when the LFB ultrasonic device is moved closer to the sample side from the state where the sample is at the focal point 6 (this operation is called defocusing). ) The components that effectively contribute to the transducer output are only two components that approximately take the paths of # 0 and # 1 shown in FIG. 1 from the conventional measurement model. The component taking the # 0 path is a direct reflection component from the sample surface, while the component taking the # 1 path is a component including the LSAW propagation characteristics. By performing defocusing, an interference waveform of the above two components called a V (z) curve is obtained as a transducer output (see FIG. 2). By obtaining the dip period Δz of the V (z) curve based on the V (z) curve analysis method, the phase velocity V LSAW of the LSAW is obtained from the equation (1).
[0004]
V LSAW = V W / √ {1- (1-V W / 2fΔz) 2 } (1)
Here, V W is the longitudinal sound velocity in water, and f is the ultrasonic frequency.
In actual measurement, a high frequency burst pulse is input to the transducer as an electrical signal, the input signal is converted into ultrasonic waves by the transducer, and the sample is irradiated through water. A cylindrical lens with a radius of curvature of 1 mm is used for the 200 MHz band, and the pulse width is usually about 500 nsec and the pulse repetition frequency is about 20 kHz. Of the reflected signals from the electrical end, the lens opening surface, the sample, etc., only the reflected signal from the sample is extracted by the high frequency gate circuit to perform signal processing. Considering reflected wave component from the back propagating a path # 0 'in FIG. 1, the use of the pulse signal, when the sample is sufficiently thick, the gate period P G by a gate circuit as shown in FIG. 3A for example By extracting the signal only in the interval, the reflected wave 32 from the back surface of the sample can be completely separated from the reflected wave 31 from the sample surface, but cannot be separated as shown in FIG. 3B when the sample is thin.
[0005]
When the LSAW velocity is measured by changing the ultrasonic frequency for a thin sample in which a reflected wave from the back surface of the sample (hereinafter referred to as a back surface reflected wave) is included in the detection signal, it is shown by a thick solid line in FIG. 4B. Periodic changes appear. This period ΔF depends on the sample thickness h and the bulk longitudinal wave sound velocity V L in the sample, and is expressed by the equation (2).
ΔF = V L / 2h (2)
As can be seen from this, there is a problem that an error is included in the measured value depending on the ultrasonic frequency and the sample thickness due to the influence of the back surface reflected wave. However, the measurement error due to the influence of this back surface reflected wave, that is, the speed change, is such that V LSAW (f, h) has a periodicity as shown by the thick solid line in FIG. It is known that it can be removed by performing a moving average with a period of (see reference 2).
[0006]
[Problems to be solved by the invention]
The LFB ultrasonic microscope apparatus has a feature that the acoustic characteristics of the microscopic region can be measured over a wide range on the sample surface. However, for example, when performing in-plane evaluation of acoustic characteristics on a thin, large-diameter sample such as a wafer, the frequency characteristics of the LSAW speed are measured at each measurement point as described above, and the moving average is calculated. The method of obtaining the true value of each point by performing the measurement requires a very long time, and there is a drawback that a quick and accurate measurement cannot be performed. In general, the thickness of the sample has a distribution, and therefore the magnitude of the measurement error due to the influence of the back-surface reflected wave differs at each measurement point, and it is difficult to obtain a true value by a method other than the above.
[0007]
An object of the present invention is to provide a method that can shorten the measurement time and efficiently measure the LSAW propagation velocity.
[0008]
[Means for Solving the Problems]
From the correspondence between the conversion curve created based on the frequency characteristics of the LSAW velocity at one point on the sample surface and the difference between the measured values at the two frequencies at the other measurement points, the back surface at each measurement point. Estimate changes in measured LSAW speed due to the effect of reflected waves, and correct the measured values.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
A case where the measured value of the LSAW speed for a sample having a concave thickness distribution as shown in FIG. 4A is corrected will be described. First, it is assumed that the acoustic characteristics of the sample are uniform. A measurement point P 0 on the sample surface having a thickness h 0 is selected, and the frequency characteristic of the LSAW speed is measured at that point. At this time, it is assumed that the frequency characteristic V LSAW (f, h 0 ) as shown by the thick solid line in FIG. 4B is obtained due to the influence of the back surface reflected wave. The actual measurement further includes a change in the measurement value due to the frequency characteristics of the ultrasonic device, but will be omitted here for simplicity. When a moving average is taken with a period ΔF with respect to the thick solid line in FIG. 4B, a true value V LSAW (dotted line) of the LSAW speed at the measurement point P 0 is obtained. Here, if any other measurement point on the sample surface is Pa, and the thickness of the measurement point Pa is thicker than the measurement point P 0 by a minute amount Δh (Δh << h 0 ), the frequency characteristic at the measurement point Pa is obtained. V LSAW (f, h 0 + Δh) is obtained by shifting the frequency characteristic (thick solid line) at thickness h 0 by Δf as shown by the thin solid line in FIG. is there.
[0010]
V LSAW (f, h 0 + Δh) = V LSAW (f + Δf, h 0 ) (3)
In FIG. 4B, when attention is paid to the measured values of the LSAW speeds of the thick solid line and the thin solid line at the frequency f, ΔV ′ LSAW = V LSAW (f + Δf, h 0 ) −V LSAW (f, It can be seen that a difference of h 0 ) occurs. Therefore, the frequency difference Δf equivalent to the difference in thickness Δh can be obtained by obtaining a frequency satisfying the following expression (4) on the thick solid line in FIG. 4B.
[0011]
V LSAW (f + Δf, h 0 ) = V LSAW (f, h 0 ) + ΔV ' LSAW (4)
That is, this corresponds to obtaining a frequency change Δf that satisfies the relationship of the following equation (5), where the product of the frequency f and the thickness h of the sample is constant.
(h 0 + Δh) f = h 0 (f + Δf) (5)
Therefore, the difference in sound speed between the measured value of the sound speed at the frequency f + Δf and the true value V LSAW for the sample of thickness h 0 is expressed as ΔV LSAW (f + Δf, h 0 ) = V LSAW (f + Δf, h 0 ) − V LSAW (6)
Then, the true value at the measurement point Pa can be obtained by the following equation (7) obtained by substituting equation (3) into equation (6).
[0012]
V LSAW = V LSAW (f, h 0 + Δh) −ΔV LSAW (f + Δf, h 0 ) (7)
That is, by using the frequency characteristic of the LSAW velocity at the measurement point P 0 and the true value obtained by the moving average, the influence of the back surface reflected wave can be obtained without measuring the frequency characteristic of the LSAW velocity at any other measurement point. It can be corrected.
Next, consider the general case where the acoustic properties of the sample are non-uniform. At this time, since the true value V LSAWa of the LSAW speed at an arbitrary measurement point Pa is different from the true value V LSAW at the measurement point P 0 , the thin solid line V LSAW (f, h 0 + Δh) in FIG. Will do. Therefore, a procedure of a measurement method that can be applied even when there is a distribution in the LSAW speed by using the difference in sound speed change at the two frequencies is shown below.
[0013]
First, as described above, from the frequency characteristic of the LSAW velocity (thick solid line in FIG. 4B) measured at the reference measurement point P 0 (assumed to be the thinnest point here) on the sample surface with respect to the sample of FIG. The value V LSAW (dotted line in FIG. 4B) is subtracted to obtain the sound velocity change ΔV LSAW (f, h 0 ) due to the influence of the back surface reflected wave when the frequency f is changed at the measurement point P 0 . The result is shown in FIG. 5A. Here, as shown in FIG. 5A, for example, the frequencies f 1 and f 2 at which the speed change ΔV LSAW (f, h 0 ) is minimum and maximum are selected, and Δf 12 = f 2 −f 1 . When the LSAW speed is measured at the frequencies f 1 and f 2 at an arbitrary measurement point Pa with the thickness h = h 0 + Δh, the measured values are expressed by the following equations (8) and (9), respectively.
[0014]
V LSAW (f 1 , h) = V LSAWa + ΔV LSAW (f 1 , h) (8)
V LSAW (f 2 , h) = V LSAWa + ΔV LSAW (f 2 , h) (9)
Here, V LSAWa represents the true value at the measurement point Pa, and ΔV LSAW (f 1 , h) and ΔV LSAW (f 2 , h) represent the LSAW velocity change from the true value due to the influence of the back surface reflected wave. By subtracting equation (9) from equation (8), the difference ΔV (Δf, h) of the change in sound velocity due to the influence of the back surface reflected wave at f 1 and f 2 is obtained as in the following equation (10).
[0015]
Figure 0003898329
Next, in order to obtain the relationship between the difference in sound speed change ΔV (Δf, h 0 ) and the frequency change Δf, a conversion curve shown in FIG. 5B is obtained from the curve in FIG. 5A by the following equation (11).
ΔV (Δf, h 0 ) = ΔV LSAW (f 1 + Δf, h 0 ) −ΔV LSAW (f 2 + Δf, h 0 ) (11)
However, 0 ≤ Δf ≤ Δf 12 (12)
Here, the curve in FIG. 5B is a monotonically increasing function, and a one-to-one correspondence relationship is established between ΔV (Δf, h 0 ) and Δf. V LSAW (f, h) at the thickness h is a waveform obtained by shifting the frequency characteristic waveform of V LSAW (f, h 0 ) at the thickness h 0 shown in FIG. 4B in the frequency axis direction and the velocity axis direction as it is. since, when compared to formula (10) wherein the (11), [Delta] V (Delta] f, h) from the calibration curve of FIG. 5B = ΔV (Δf, h 0 ) by obtaining the become Delta] f = Delta] f c, the thickness it can be seen that Δh different equivalent frequency change Delta] f c is determined. That is, the sound speeds V LSAW (f 1 , h) and V LSAW (f 2 , h) are measured at the measurement points Pa at the frequencies f 1 and f 2 , respectively, and ΔV (Δf, h) is obtained from the equation (10), corresponding Delta] f c is determined from FIG. 5B. Thus, using FIG. 5A, ΔV LSAW (f 1 + Δf c , h at a measurement point P 0 corresponding to ΔV LSAW (f 1 , h) and ΔV LSAW (f 2 , h) at an arbitrary measurement point Pa 0 ) and ΔV LSAW (f 2 + Δf c , h 0 ) are obtained, the true value V LSAWa at an arbitrary measurement point Pa is obtained from the equations (8) and (9) as in the following equation (13). .
[0016]
Figure 0003898329
The measurement procedure of the present invention has been described above. Here, for the sake of simplicity, the two frequencies f 1 and f 2 are selected to be the minimum and maximum in FIG. 5A, respectively. However, any frequency can be selected as long as it has a one-to-one correspondence in the conversion curve. Also good. For example, in the curve of the sound speed change ΔV LSAW (f, h 0 ) in FIG. 5A, the frequencies f 1 and f 2 are in a monotonic change region with opposite slopes, for example, the frequency region from the minimum value to the maximum value by increasing with the frequency f. If the frequency range from the maximum value to the next minimum value is arbitrarily selected, the conversion curve in FIG. 5B always becomes a monotone function. For example, if f 2 is selected near the frequency that gives the maximum value of ΔV LSAW (f, h 0 ) (but larger than the frequency that gives the maximum value), ΔV LSAW (f, h 0 ) near the minimum value Since the rate of change is smaller than that in the vicinity of the maximum value, for example, even if f 1 is selected somewhat lower than the frequency that gives the minimum value of the speed change curve shown in FIG. 5A, the conversion curve becomes a monotone function.
[0017]
When f 1 and f 2 (f 1 <f 2 ) are selected so that the range of Δf shown in Equation (12) is maximized while maintaining the relationship of monotonic increase of the conversion curve, the sample that can be measured in this method The maximum value Δh max of the thickness distribution is given by the following equation (14), where the bulk longitudinal wave velocity in the sample is V L. When the thickness distribution exceeds Delta] h max is to divide the measurement area in the range not exceeding Delta] h max, may be performed measured every determined divided regions reference point within each region.
[0018]
Δh max = (V L / 2f 2 ) (Δf 12 / ΔF) (14)
The principle of the measurement method according to the present invention has been described above for the case where the true value V LSAWa is obtained at an arbitrary measurement point Pa with respect to the reference measurement point P 0. In actual measurement, a desired straight line on the sample surface is obtained. The procedure for measuring V LSAW at regular intervals along (for example, the diameter) will be described below as a specific example.
[0019]
Step S1: The sample is a 3 inch double-sided optically polished Z-cut LiNbO 3 wafer, with a central thickness of about 377 μm and a peripheral thickness of about 381 to 382 μm. It has a shape like 4A. The frequency characteristic of the LSAW velocity of propagation in the crystal Y-axis direction is 0.2 MHz in the range of 200 to 240 MHz at the center point (the origin is P 0 and the thickness is h 0 ) that is expected to be the thinnest on the sample surface. Measured every time. The result is shown by a solid line in FIG. 6A. This curve corresponds to the thick solid curve in FIG. 4B. The dotted line in the figure is the result of performing a moving average twice with a period of ΔF = 9.6 MHz on the measurement value of the solid line, and is obtained by removing the measurement error due to the influence of the back surface reflected wave. Although the value obtained differs depending on the frequency, this is considered to be the frequency characteristic of the ultrasonic device.
[0020]
Step S2: FIG. 6B shows the result of obtaining the sound velocity change ΔV LSAW (f, h 0 ) due to the influence of the back surface reflected wave by subtracting the dotted line from the solid line in FIG. 6A. This curve corresponds to the curve of FIG. 5A. Here, in FIG. 6B, it is considered that the frequencies f 1 and f 2 can correct errors due to the expected maximum change in thickness of about 5 μm, and that the measurement point P 0 is not necessarily the thinnest place of the sample. F 1 = 220.4 MHz and f 2 = 224.6 MHz.
[0021]
Step S3: A straight line passing through the measurement point P 0 on the distribution of the LSAW velocities V LSAW (f 1 , h) and V LSAW (f 2 , h) of Y-axis propagation at the frequencies f 1 and f 2 on the wafer diameter And measured within a range of ± 30 mm every 1 mm. The results are shown in FIG. 7A. The LSAW velocity profile differs between f 1 and f 2 , but this is mainly due to the influence of the back reflected wave. Each measurement value includes a change in sound speed due to the frequency characteristics of the ultrasonic device, as indicated by the dotted line in FIG. 6A.
[0022]
Step S4: In order to obtain the difference ΔV (Δf, h) of the sound speed change due to the influence of the back surface reflected wave at f 1 and f 2, the dotted line is subtracted from the solid line in FIG. 7A, and further the sound speed shift amount ΔV f12 shown in FIG. Is deducted. The result is shown in FIG. 7B.
Step S5: Next, a conversion curve indicating the relationship between ΔV (Δf, h 0 ) and the frequency change Δf is obtained from the equation (11) from FIG. 6B. However, the range of Δf satisfies the following formula (15).
[0023]
-(f 2 -f m ) ≤ Δf ≤ (f m -f 1 ) (15)
FIG. 8A shows the calculated conversion curve. Here, since the frequency at which ΔV LSAW (Δf, h 0 ) in FIG. 6B is maximum is f m = 224.2 MHz, −0.4 MHz ≦ Δf ≦ 3.8 MHz.
Step S6: sound velocity change of the difference ΔV (Δf, h) of FIG. 7B and, ΔV (Δf, h) from the calibration curve of FIG. 8A = ΔV (Δf, h 0 ) and the respective measurement points Delta] f = Delta] f c made to Thus, it is possible to estimate a frequency change Δf equivalent to a difference in thickness Δh. The result is shown in FIG. 8B. In the conversion curve, the portion without data was linearly interpolated using the preceding and following data.
[0024]
Step S7: From FIG. 8B, the change in sound velocity due to the influence of the back surface reflected wave at each measurement point at f 1 and f 2 is ΔV LSAW (f 1 + Δf c , h 0 ) and ΔV LSAW (f 2 + Δf c , h 0 ). The sound velocity change curves due to the influence of the back surface reflection wave obtained for f 1 and f 2 are shown by solid lines and dotted lines in FIG. 9A, respectively. FIG. 9A shows that the maximum change in sound speed ΔV LSAW (f + Δf c , h 0 ) due to the back-surface reflected wave is 4.82 m / s.
[0025]
Step S8: The error caused by the back-surface reflected wave is corrected by subtracting the sound speed change in FIG. 9A from the measured value of the LSAW speed shown in FIG. 7A. The results after correction for f 1 and f 2 are shown by solid lines and dotted lines in FIG. 9B, respectively. Although the absolute value of the correction result in FIG. 9B is different between f 1 and f 2 , this is due to the frequency characteristics of the ultrasonic device described above, and this is not a problem in examining the relative sound velocity distribution. When an absolute value is required, the absolute value can be obtained by an absolute calibration method using a standard sample (see Document 3).
[0026]
Here, the absolute calibration method will be briefly described. First, the theoretical value of the LSAW velocity calculated from the elastic constant actually measured for a standard sample (for example, GGG single crystal) is obtained. A value corresponding to the interference period Δz (see FIG. 2) of the V (z) curve at this time is defined as Δz ST (calc.). Next, the LSAW velocity is measured with the LFB ultrasonic microscope system for the same standard sample, and a value corresponding to Δz at that time is set to Δz ST (meas.). By taking the ratio of the two, the calibration coefficient shown in the following equation (16) is determined.
[0027]
K (V) = Δz ST (calc.) / Δz ST (meas.) (16)
Thereafter, with respect to the value corresponding to Δz of the LSAW velocity (solid line and dotted line in FIG. 9B) measured for the actual sample, Δz (measured), as shown in the following equation (17), the calibration coefficient K ( The absolute value of the LSAW velocity can be obtained by multiplying V) and substituting the obtained Δz (calibrated) into equation (1).
[0028]
Δz (calibrated) = K (V) Δz (measured) (17)
In order to confirm whether the measurement result of FIG. 9B is measured correctly, the frequency characteristics of the LSAW velocity were measured at 0, ± 15, and ± 30 mm positions on the measurement line of the sample, respectively, and the result of moving average was obtained. For f 1 and f 2 , in FIG. This result and the previously obtained measurement result agree well within ± 0.5 m / s. From this, it can be seen that the measurement error due to the influence of the back surface reflected wave can be sufficiently removed by the correction by this method.
[0029]
The LSAW propagation characteristic measuring method according to the present invention has been described above. In the above, as a simple example, the procedure for removing the frequency characteristic of the ultrasonic device using the moving average value of the frequency characteristic of the LSAW velocity for the thin sample to be measured has been shown. It is possible. If you prepare a thick sample that is the same type as the measurement sample and is not affected by the reflected wave from the back surface, and measure the frequency characteristic of the LSAW velocity for that sample, it can be obtained as it is as the frequency characteristic of the ultrasonic device, and the moving average is calculated. Measurement can be performed in the same manner as the above-described measurement method. In this case, it is considered that the frequency characteristic of the ultrasonic device is more accurate than using the moving average value, and the measurement accuracy is improved. Alternatively, it is considered that the same frequency characteristic of the ultrasonic device can be obtained even if a thick sample to be prepared is used as a standard sample (eg, GGG single crystal). However, the absolute value is calibrated by the absolute value calibration method described above.
[0030]
【The invention's effect】
As described above, according to the present invention, it is not necessary to directly measure the thickness distribution of the sample, the frequency characteristic of the LSAW speed is measured only at one point on the sample, and the other measurement points are 2 The true value of each measurement point can be obtained only by performing measurement at one frequency, that is, by performing measurement twice at each point. The more measurement points, the greater the reduction in measurement time can be realized. In addition, when a PFB ultrasonic microscope is used, the same effect can be obtained by the same procedure.
[0031]
In the present invention, as described above, the distribution of LSAW propagation characteristics in a thin sample can be measured efficiently. However, if the distribution of LASW propagation characteristics of the sample can be assumed to be uniform, the thickness of the sample is reversed. Distribution can be measured. For example, the thickness of the sample at an arbitrary measurement point Pa can be expressed as h = h 0 + Δh = h 0 (1 + Δf / f) from the equation (5), so that Δf is shown at each measurement point Pa shown in FIG. 8B. to give the corresponding Delta] f c, it can be calculated a thickness h of the sample at the measurement point Pa as a percentage of the thickness h 0 of the reference position P 0 by providing f 1 or f 2 as f. Thickness h at the reference position P 0 0 can be calculated from equation (2) using, for example, measurements or theoretical value of the longitudinal wave acoustic velocity V L of the frequency characteristic ΔF and samples were measured.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the measurement principle of an LFB acoustic microscope.
FIG. 2 is a diagram showing a V (z) curve.
FIGS. 3A and 3B are time charts of reflected waves from the front surface and the back surface of a sample. FIG. 3A is a diagram in the case of a thick sample, and FIG.
FIG. 4A is a diagram showing an example of a sample shape having a thickness distribution, and FIG. 4B is a diagram showing frequency characteristics of LSAW speed for a thin sample.
FIG. 5A is a diagram showing an apparent change in sound speed due to the influence of a back-surface reflected wave, and B is a diagram showing a conversion curve.
FIG. 6A is a diagram showing the frequency characteristics of the LSAW velocity at the thinnest point on the sample, and B is a diagram showing an apparent change in sound velocity due to the influence of the back surface reflected wave.
7A is a diagram showing the measurement result of the LSAW velocity distribution in the radial direction of the sample, and B is a diagram showing the difference between the measurement results shown in A. FIG.
FIG. 8A is a diagram showing a conversion curve, and FIG. 8B is a diagram showing a result of estimating a change in sample thickness to a change in frequency equivalent to that.
9A is a diagram showing a result of an estimated value to be corrected, and B is a diagram showing a correction result. FIG.
(References)
(Reference 1) J. Kushibiki and N. Chubachi, "Material Characterization by Line-Focus-Beam Acoustic Microscope," IEEE Trans. Sonics and Ultrason., Vol.SU-32, pp. 189-212 (1985).
(Reference 2) Kushibiki, Arakawa, Ohashi, "Effects of reflected waves on the back of a sample in a material evaluation method using a linearly focused beam ultrasonic microscope--Examination of the thickness of a sample-", Spring Meeting of the Acoustical Society of Japan, pp.1035 -1036, March 1997.
(Reference 3) J. Kushibiki and M. Arakawa, "A Method for Calibrating the Line-Focus-Beam Acoustic Microscopy System.", IEEE Trans. UFFC., Vol. 45, no. 2, March (1998), in press.

Claims (6)

超音波顕微鏡により、薄い試料に対して試料表面を伝搬する漏洩弾性表面波(LSAW)の伝搬特性を測定する方法において、
(a) 上記試料面上の基準点におけるLSAW速度の周波数特性を測定し、上記周波数特性から上記試料の裏面からの反射の影響によるLSAW速度変化の周波数特性を得て、
(b) 上記基準点における一定差の2つの周波数での上記LSAW速度変化の差分を換算曲線として上記2つの周波数の変化に対して求め、
(c) 上記試料面上の複数の任意の各点で上記一定差の2つの周波数でのLSAW速度をそれぞれ測定し、それらの差分値を求め、
(d) 上記換算曲線により、上記各点での差分値に対応する速度変化を見積もり、それによって上記各点で測定したLSAW速度を補正する。
In the method of measuring the propagation characteristics of leaky surface acoustic waves (LSAW) propagating on the surface of a thin sample with an ultrasonic microscope,
(a) Measure the frequency characteristics of the LSAW speed at the reference point on the sample surface, obtain the frequency characteristics of the LSAW speed change due to the reflection from the back surface of the sample from the frequency characteristics,
(b) A difference between the two LSAW speed changes at two constant frequencies at the reference point is obtained as a conversion curve with respect to the two frequency changes.
(c) Measure the LSAW speeds at the two constant frequencies at each of a plurality of arbitrary points on the sample surface, and obtain the difference between them.
(d) The speed change corresponding to the difference value at each point is estimated from the conversion curve, thereby correcting the LSAW speed measured at each point.
請求項のLSAW伝搬特性測定方法において、上記基準点及び任意の点での上記試料の厚さをそれぞれh0及びh と表すと、
上記ステップ(a) は、
(a-1) 上記試料上の基準点においてLSAW速度VLSAW(f, h0)を各周波数fに対して測定し、
(a-2) 上記基準点における各周波数での上記試料の裏面反射によるLSAW速度変化ΔVLSAW(f, h0)を上記速度変化の周波数特性として得て、
上記ステップ(b) は、
(b-1) 2つの周波数f1とf2を上記LSAW速度変化の互いに逆勾配のほぼ単調変化領域内でそれぞれ選択し、
(b-2) 上記ステップ(a-2) で得た上記LSAW速度変化ΔVLSAW(f, h0)から上記2つの周波数f1とf2をそれぞれΔfずらした場合の速度変化ΔVLSAW (f 1 + Δ f, h 0 ) とΔ V LSAW (f 2 + Δ f, h 0 )の差分ΔV(Δf, h0)を換算曲線として求め、
上記ステップ(c) は
(c-1) 上記試料上の上記任意の各点において上記2つの周波数f1とf2でLSAW速度VLSAW(f1, h)とVLSAW(f2, h)を測定し、
(c-2) 上記任意の各点での2つのLSAW速度VLSAW(f1, h)とVLSAW(f2, h)の差分ΔV(Δf, h) をその点での速度変化差分として求め、その速度変化差分に対応する上記基準点での周波数変化Δfcを上記換算曲線から求め、
上記ステップ(d) は、
(d-1) 上記任意の各点での上記2つの周波数f1とf2における上記裏面反射による速度変化を換算速度変化ΔVLSAW(f1+Δfc, h0)とΔVLSAW(f2+Δfc, h0)として上記周波数変化Δfcと上記基準点における上記速度変化ΔVLSAW(f, h0)の周波数特性から求め、
(d-2) 上記ステップ(c-1) で求めた上記任意の各点における上記2つの周波数f1とf2での上記LSAW速度VLSAW(f1, h)とVLSAW(f2, h)の少なくとも一方から上記ステップ(d-1) で求めた換算速度変化ΔVLSAW(f1+Δfc, h0)とΔV LSAW (f2+Δfc, h0)の対応するものを引き算することによって補正し、その点での速度の真値VLSAWaを得る。
In the LSAW propagation characteristic measuring method according to claim 1 , when the thicknesses of the sample at the reference point and an arbitrary point are represented as h 0 and h, respectively.
Step (a) above is
(a-1) Measure the LSAW velocity V LSAW (f, h 0 ) for each frequency f at the reference point on the sample,
(a-2) Obtain LSAW speed change ΔV LSAW (f, h 0 ) due to back reflection of the sample at each frequency at the reference point as frequency characteristics of the speed change,
Step (b) above is
(b-1) Two frequencies f 1 and f 2 are selected within a substantially monotonic change region of opposite slopes of the LSAW speed change, respectively.
(b-2) above LSAW velocity change obtained in step (a-2) ΔV LSAW ( f, h 0) speed change when the above two frequencies f 1 and f 2 shifted Δf respectively [Delta] V LSAW (f 1 + Δ f, h 0 ) and Δ V LSAW (f 2 + Δ f, h 0 ) , the difference ΔV (Δf, h 0 ) is obtained as a conversion curve,
Step (c) above is
(c-1) Measure the LSAW velocities V LSAW (f 1 , h) and V LSAW (f 2 , h) at the two frequencies f 1 and f 2 at each arbitrary point on the sample,
(c-2) The difference ΔV (Δf, h) between the two LSAW velocities V LSAW (f 1 , h) and V LSAW (f 2 , h) at each of the above points as the speed change difference at that point determined, determine the frequency change Delta] f c at the reference point corresponding to the speed change difference from the calibration curve,
Step (d) above is
(d-1) A change in velocity due to the back reflection at the two frequencies f 1 and f 2 at each arbitrary point is converted into a converted velocity change ΔV LSAW (f 1 + Δf c , h 0 ) and ΔV LSAW (f 2 + Δf c, h 0) as determined from the frequency characteristics of the speed change [Delta] V LSAW in the frequency change Delta] f c and the reference point (f, h 0),
(d-2) The LSAW velocities V LSAW (f 1 , h) and V LSAW (f 2 , f 2 at the two frequencies f 1 and f 2 at each arbitrary point obtained in step (c-1) Subtract the corresponding change in the converted speed change ΔV LSAW (f 1 + Δf c , h 0 ) and ΔV LSAW (f 2 + Δf c , h 0 ) obtained in step (d-1) from at least one of h) To obtain the true value V LSAWa of the speed at that point.
請求項のLSAW伝搬特性測定方法において、上記ステップ(a-2) は、上記測定したLSAW速度VLSAW(f, h0)の周波数特性を移動平均し、得られた移動平均値を上記LSAW速度の周波数特性から減算して上記測定速度変化の周波数特性を得るステップである。 3. The method of measuring LSAW propagation characteristics according to claim 2 , wherein the step (a-2) includes moving average the frequency characteristics of the measured LSAW velocity V LSAW (f, h 0 ), and using the obtained moving average value as the LSAW. This is a step of obtaining the frequency characteristic of the change in the measured speed by subtracting from the frequency characteristic of the speed. 請求項又はのLSAW伝搬特性測定方法において、上記2つの周波数f1とf2は上記LSAW速度変化の曲線がほぼ最小となる周波数と、ほぼ最大となる周波数にそれぞれ選択する。In LSAW propagation characteristics measuring method according to claim 2 or 3, the two frequencies f 1 and f 2 is the frequency at which the curve of the LSAW velocity change is almost minimum, selecting each frequency becomes substantially maximum. 請求項1乃至4のいずれか記載のLSAW伝搬特性測定方法において、上記LSAW速度の測定は、上記試料の厚さの分布が所定値以内の領域に分割して行う。5. The LSAW propagation characteristic measurement method according to claim 1, wherein the LSAW velocity is measured by dividing the sample thickness distribution into regions within a predetermined value. 請求項1乃至5のいずれか記載のLSAW伝搬特性測定方法において、予め標準試料に対しその弾性定数から計算したLSAW速度の理論値に基づいて得たV(z)曲線の干渉周期Δz(calc.) と、上記標準試料のLSAW速度を上記超音波顕微鏡で測定して得たV(z)曲線の干渉周期Δz(meas.) とから決定した校正係数によって、上記ステップ(a)及び(c)における測定されたLSAW速度を校正するステップを含み、上記LSAW速度としてその校正された値を使用する。6. The method of measuring LSAW propagation characteristics according to claim 1, wherein the interference period Δz (calc. Of the V (z) curve obtained based on the theoretical value of the LSAW velocity calculated from the elastic constant of the standard sample in advance. ) And the calibration coefficient determined from the interference period Δz (meas.) Of the V (z) curve obtained by measuring the LSAW speed of the standard sample with the ultrasonic microscope, the above steps (a) and (c) Calibrating the measured LSAW speed at, using the calibrated value as the LSAW speed.
JP06541798A 1998-03-16 1998-03-16 Method of measuring LSAW propagation characteristics using an acoustic microscope Expired - Fee Related JP3898329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06541798A JP3898329B2 (en) 1998-03-16 1998-03-16 Method of measuring LSAW propagation characteristics using an acoustic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06541798A JP3898329B2 (en) 1998-03-16 1998-03-16 Method of measuring LSAW propagation characteristics using an acoustic microscope

Publications (2)

Publication Number Publication Date
JPH11258216A JPH11258216A (en) 1999-09-24
JP3898329B2 true JP3898329B2 (en) 2007-03-28

Family

ID=13286463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06541798A Expired - Fee Related JP3898329B2 (en) 1998-03-16 1998-03-16 Method of measuring LSAW propagation characteristics using an acoustic microscope

Country Status (1)

Country Link
JP (1) JP3898329B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560625B2 (en) * 2005-03-03 2010-10-13 国立大学法人東北大学 Preparation method of standard material for calibration of ultrasonic material property analyzer for materials with striae
JP4621913B2 (en) * 2005-03-04 2011-02-02 国立大学法人東北大学 Ultrasonic velocity / attenuation coefficient measurement method

Also Published As

Publication number Publication date
JPH11258216A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
Esward et al. Extending the frequency range of the National Physical Laboratory primary standard laser interferometer for hydrophone calibrations to 80 MHz
JP4036268B2 (en) Method for evaluating linear expansion coefficient of ultra-low expansion glass materials
Fortunko et al. Absolute measurements of elastic‐wave phase and group velocities in lossy materials
JPS6156450B2 (en)
JP3898329B2 (en) Method of measuring LSAW propagation characteristics using an acoustic microscope
Rychagov et al. Multipath flowrate measurements of symmetric and asymmetric flows
JP4534309B2 (en) Method for measuring thickness resonance spectrum of metal thin plate and method for measuring electromagnetic ultrasonic wave of metal thin plate
EP1199548B1 (en) Method and apparatus for measuring LSAW propagation characteristics
Simonetti et al. Ultrasonic interferometry for the measurement of shear velocity and attenuation in viscoelastic solids
JP2792286B2 (en) Method for measuring elastic constant of specimen
JP3140244B2 (en) Grain size measurement method
Wu et al. Quantitative estimation of ultrasonic attenuation in a solid in the immersion case with correction of diffraction effects
JP2818615B2 (en) Ultrasonic measuring device
JP4621913B2 (en) Ultrasonic velocity / attenuation coefficient measurement method
JP4673686B2 (en) Surface inspection method and surface inspection apparatus
KR101961267B1 (en) Device and method for estimating ultrasonic absolute nonlinear parameter by using ultrasonic relative nonlinear parameter and calculation of proportional correction factor
Kushibiki et al. Influence of reflected waves from the back surface of thin solid-plate specimen on velocity measurements by line-focus-beam acoustic microscopy
JP2007309850A5 (en)
Hatakeyama et al. Measurement of speed of sound in skull bone and its thickness using a focused ultrasonic wave
Litniewski et al. Acoustic velocity determination in cytoplasm by V (z) shift
Ma et al. Stress measurement of aero-engine thin-walled catheter based on ultrasonic guided wave
Predoi et al. Recent results about Lamb waves reflection at the free edge of an elastic layer
JPH06201659A (en) Apparatus for measuring crystal grain size
Yusof et al. Acoustic refractive index measurement using tone burst signal as an alternative to broadband pulse by through-transmission method
Fitch Jr New methods for measuring ultrasonic attenuation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees