JP3898179B2 - Manufacturing method of non-tempered steel parts and non-tempered steel parts using the same - Google Patents

Manufacturing method of non-tempered steel parts and non-tempered steel parts using the same Download PDF

Info

Publication number
JP3898179B2
JP3898179B2 JP2003414154A JP2003414154A JP3898179B2 JP 3898179 B2 JP3898179 B2 JP 3898179B2 JP 2003414154 A JP2003414154 A JP 2003414154A JP 2003414154 A JP2003414154 A JP 2003414154A JP 3898179 B2 JP3898179 B2 JP 3898179B2
Authority
JP
Japan
Prior art keywords
mass
less
processing
steel
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003414154A
Other languages
Japanese (ja)
Other versions
JP2005171334A (en
Inventor
樹一 伊藤
広明 吉田
幸宏 五十川
隼平 小川
智則 宮澤
義夫 岡田
淳 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Nissan Motor Co Ltd
Original Assignee
Daido Steel Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Nissan Motor Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2003414154A priority Critical patent/JP3898179B2/en
Publication of JP2005171334A publication Critical patent/JP2005171334A/en
Application granted granted Critical
Publication of JP3898179B2 publication Critical patent/JP3898179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、非調質鋼部品の製造方法及びそれを用いた非調質鋼部品に関する。   The present invention relates to a method for producing a non-heat treated steel part and a non-heat treated steel part using the same.

特開2003−55714号公報JP 2003-55714 A

自動車や建設機械などの機械構造用部品は、強度や靭性が求められ、従来、熱間鍛造後に焼入れ・焼戻し処理を施して製造されてきた。例えば、自動車用のエンジン部品や足回り部品、あるいはその他の構造用部品等などは、機械構造用炭素鋼や合金鋼を用いて熱間鍛造により成形した後、機械加工と調質処理とを施して所望の形状や強度を得ていた。   Mechanical structural parts such as automobiles and construction machines are required to have strength and toughness, and have conventionally been manufactured by quenching and tempering after hot forging. For example, automotive engine parts, undercarriage parts, and other structural parts are formed by hot forging using carbon steel or alloy steel for mechanical structure, and then subjected to machining and tempering treatment. The desired shape and strength were obtained.

しかし、調質処理は、焼入れ焼き戻し処理などの熱処理の回数が増えるばかりでなく、歪や焼割れも生じやすいため、部品寸法精度が低下しやすく、また、熱処理後の加工ないし矯正などの余分な工程も必要になり不経済である。そこで近年、このような調質処理に要するエネルギーの節約やコストの低減、製造工程の簡略化のため、熱間鍛造のままで使用できる非調質鋼の開発が行われてきた。このような非調質型熱間鍛造用鋼の多くは、中炭素鋼にいわゆる析出硬化型合金元素のV、Nb、Ti、Zr等を微量に添加した析出硬化型非調質鋼であり、熱間鍛造後の冷却工程においてこれらを炭化物、窒化物あるいは炭窒化物などの形で析出させ、その析出硬化によって高強度を得ようとするものである。   However, the tempering treatment not only increases the number of heat treatments such as quenching and tempering, but also tends to cause distortion and tempering. It is uneconomical because it requires a complicated process. Therefore, in recent years, in order to save energy required for such tempering treatment, reduce costs, and simplify the manufacturing process, non-tempered steel that can be used as it is in hot forging has been developed. Many of such non-tempered hot forging steels are precipitation hardened non-tempered steels obtained by adding a small amount of so-called precipitation hardening alloying elements V, Nb, Ti, Zr, etc. to medium carbon steel, In the cooling step after hot forging, these are precipitated in the form of carbide, nitride, carbonitride, etc., and high strength is obtained by precipitation hardening.

特に中炭素鋼(C含有量0.2〜0.5質量%)に微量のVなどを添加したフェライト+パーライト型非調質鋼は、比較的高い被削性を有し、加工コスト低減を図る上で有利なので、機械構造用部品に広く用いられている。この非調質鋼は、熱間鍛造後に冷却してフェライト+パーライト組織とし、そのフェライト部にVやNbの炭化物または窒化物(あるいは炭窒化物)を微細析出させ、所望の強度を得るものである。これは、熱間鍛造後の焼入れ・焼戻し処理を必要とせず、また矯正加工を簡略することができ、さらに焼割れによる不良品が減る等の利点があり、製造コストの大幅な低減を可能とする。   In particular, ferrite + pearlite type non-heat treated steel with a small amount of V added to medium carbon steel (C content 0.2 to 0.5 mass%) has a relatively high machinability and reduces machining costs. Since it is advantageous in planning, it is widely used for machine structural parts. This non-tempered steel is cooled after hot forging to a ferrite + pearlite structure, and V or Nb carbide or nitride (or carbonitride) is finely precipitated in the ferrite part to obtain a desired strength. is there. This eliminates the need for quenching and tempering after hot forging, simplifies the straightening process, and further reduces the number of defective products due to fire cracking, enabling a significant reduction in manufacturing costs. To do.

フェライト+パーライト型非調質鋼を鍛造加工して、自動車部品等を製造する場合、1100〜1200℃程度の高温で熱間鍛造加工する。例えば、自動車用エンジンに使用されるコネクティングロッドは、V添加非調質鋼(S40VC)を熱間鍛造(約1200℃)により成形している。しかしながらこのような高温の熱間加工では、再結晶による結晶粒粗大化が進行しやすく、耐力や靭性が低下する問題があり、例えば耐力の場合、実質的に500〜700Paが限界となる。また鍛造加工温度を低下させれば、フェライト+パーライト組織がより微細になるが、フェライト分率が増大するため硬さが低下しやすく、軽量化が要求される小断面積のコネクティングロッドでは信頼性の低下につながる場合がある。   When manufacturing automobile parts and the like by forging ferrite + pearlite type non-heat treated steel, hot forging is performed at a high temperature of about 1100 to 1200 ° C. For example, a connecting rod used for an automobile engine is formed by hot forging (about 1200 ° C.) of V-added non-tempered steel (S40VC). However, such high-temperature hot working tends to cause coarsening of crystal grains due to recrystallization, resulting in a decrease in yield strength and toughness. For example, in the case of yield strength, the limit is substantially 500 to 700 Pa. In addition, if the forging temperature is lowered, the ferrite + pearlite structure becomes finer, but the ferrite fraction increases, so the hardness tends to decrease, and the connecting rod with a small cross-sectional area that requires light weight is reliable. May lead to a decline.

そこで、特許文献1においては、鋼を熱間鍛造してフェライト+パーライト組織を有する中間鍛造加工品を得たのち、Ar1点以下〜200℃の温度領域でさらに鍛造加工し、高耐力・鋼疲労度を有する非調質鋼の鍛造加工品が開示されている。   Therefore, in Patent Document 1, after hot forging steel to obtain an intermediate forged product having a ferrite + pearlite structure, forging is further performed in a temperature range of Ar 1 point or lower to 200 ° C. to obtain high yield strength and steel fatigue. A forged product of non-tempered steel having a degree is disclosed.

しかしながら、上記特許文献1の非調質鋼の鍛造加工品は、鍛造温度が低いため加工率を大きくすることが難しく、より軽量・高強度化が求められる近年の自動車向けの用途では、耐力や靭性の不足が問題となりやすい欠点がある。また、無理に加工率を高くしようとすると、加工割れなどの不良増加につながる問題を生ずる。   However, the forged product of the non-heat treated steel of Patent Document 1 is difficult to increase the processing rate because the forging temperature is low, and in recent automobile applications where lighter and higher strength is required, There is a drawback that lack of toughness tends to be a problem. In addition, forcibly increasing the processing rate causes a problem that increases the number of defects such as processing cracks.

本発明の課題は、大きな加工率を採用することができて製造能率が高く、しかも高耐力を確保できる非調質鋼部品の製造方法、及びこれを用いた非調質鋼部品を提供することにある。   An object of the present invention is to provide a method for producing a non-heat treated steel part capable of adopting a large processing rate, having a high production efficiency, and ensuring a high yield strength, and a non-heat treated steel part using the same. It is in.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために、本発明の非調質鋼部品の製造方法の第一は、
Fe:95質量%以上、C:0.18質量%以上0.45質量%以下、Si:0.10質量%以上2.00質量%以下、Mn:0.40質量%以上1.80質量%以下、Cr:0.05質量%以上0.50質量%以下、Al:0.003質量%以上0.040質量%以下、N:0.005質量%以上0.020質量%以下を含有した鋼材を、1000℃以上1300℃以下に加熱してオーステナイト化を行い、その後、Fe系相がオーステナイト単相となり、かつ1300℃以下に設定される予備加工温度をTp、予備加工時の平均歪をεとして、
Xr≡1−exp(−ε×(750/Tp)−10)>0.8 ‥(1)
の条件を満たすようにTp及びεを設定して予備加工を実施し、さらに該予備加工にて得られる予備加工体を、680℃以上850℃以下にて鍛造することにより部品形状を得る本加工を行なうとともに、前記本加工の加工率を、圧縮加工率にて30%以上となすことを特徴とする。
In order to solve the above problems, the first of the methods for producing a non-tempered steel part of the present invention is:
Fe: 95% by mass or more, C: 0.18% by mass to 0.45% by mass, Si: 0.10% by mass to 2.00% by mass, Mn: 0.40% by mass to 1.80% by mass Hereinafter, steel containing Cr: 0.05 mass% or more and 0.50 mass% or less, Al: 0.003 mass% or more and 0.040 mass% or less, N: 0.005 mass% or more and 0.020 mass% or less Is austenitized by heating to 1000 ° C. or higher and 1300 ° C. or lower, after which the Fe-based phase becomes an austenite single phase and the pre-processing temperature set to 1300 ° C. or lower is Tp, and the average strain during the pre-processing is ε As
Xr≡1-exp (−ε × (750 / Tp) −10 )> 0.8 (1)
Preliminary processing is performed by setting Tp and ε so as to satisfy the above condition, and further, forging a preliminary processing body obtained by the preliminary processing at 680 ° C. or higher and 850 ° C. or lower to obtain a part shape And the processing rate of the main processing is 30% or more in terms of compression processing rate.

上記本発明の方法では、炭化物、特にV炭化物(最終的な部材の析出強化に寄与する)を十分マトリックスに固溶させるため、鋼材のオーステナイト化を1000℃以上1300℃以下の高温で行う。熱処理は、低すぎるとオーステナイト化できず、また、炭化物などの析出物を十分に固溶させることができない。また熱処理が高すぎると、オーステナイト粒が粗大化しやすくなる。したがって熱処理温度は1000℃以上1300℃以下(望ましくは1000℃以上1250℃以下)とする。   In the above-described method of the present invention, the austenitization of the steel material is performed at a high temperature of 1000 ° C. or higher and 1300 ° C. or lower in order to sufficiently dissolve carbide, particularly V carbide (contributing to precipitation strengthening of the final member) into the matrix. If the heat treatment is too low, austenite cannot be formed, and precipitates such as carbides cannot be sufficiently dissolved. If the heat treatment is too high, the austenite grains are likely to be coarsened. Therefore, the heat treatment temperature is set to 1000 ° C. or higher and 1300 ° C. or lower (desirably 1000 ° C. or higher and 1250 ° C. or lower).

次に、鋼材の合金組成を上記のごとく規制し、さらに予備加工における鍛造条件を、前記(1)式を充足するXr値が得られるように最適化することにより、再結晶の核発生数密度と成長速度とが適度にバランスし、予備加工後のオーステナイト組織を微細化することができる。ここで、予備加工の平均歪εは、予備加工に供する丸棒状素材を該予備加工により断面減少させたとき、その最も細径となった部分の減面率をQ(%)として、ε≡(Q/100)1/2にて定義する。なお、丸棒状素材の鍛造前の断面積をA、鍛造後の最小断面部のバリを除いた面積をBとして、減面率Q(%)は、
Q=(A−B)/A×100
で定義される。
Next, by restricting the alloy composition of the steel as described above, and further optimizing the forging conditions in the preliminary processing so as to obtain an Xr value satisfying the expression (1), the number of nucleation numbers of recrystallization is obtained. And the growth rate are appropriately balanced, and the austenite structure after preliminary processing can be refined. Here, the average strain ε of the pre-processing is defined as ε≡ where Q (%) is the area reduction rate of the portion having the smallest diameter when the cross section of the round bar-shaped material subjected to the pre-processing is reduced by the pre-processing. (Q / 100) Defined with 1/2 . In addition, the cross-sectional area before forging of the round bar-shaped material is A, and the area excluding burrs of the minimum cross-section after forging is B, and the area reduction rate Q (%) is
Q = (A−B) / A × 100
Defined by

Xr値は、(1)式のごとく、平均歪εと予備加工温度Tpによって決まる値であり、材料の再結晶程度を反映した指標としての意味をもつ。具体的には、Xr>0.8の範囲で、再結晶によるオーステナイト粒の微細化を顕著なものとすることができる。予備加工のより適正な温度は、平均歪εの値にもよるが、例えばε=0.4程度にした場合、予備加工温度Tpは900〜1050℃程度である。図2は、種々の予備加工温度Tpにおいて、平均歪εによりXr値がどのように変化するかを示すグラフである。0.8以上のXr値を実現するには、概ね900℃以上での予備加工が必要である。なお、予備加工中にV等の炭化物が析出すると、予備加工自体がある程度高温で行なわれるため炭化物が急速に成長して粗大化し(これらは析出強化には寄与しない)、本加工後の冷却時に十分な炭化物を析出できなくなるので耐力の低下につながる。従って、予備加工温度Tpは該炭化物の析出温度以上(例えば930℃以上)に設定することが必要である。また、粗大な炭化物析出を抑制するため、オーステナイト化温度から予備加工温度へは、直接変化させることが望ましく、少なくとも炭化物の析出温度より下げない。   The Xr value is a value determined by the average strain ε and the preliminary processing temperature Tp as shown in the equation (1), and has a meaning as an index reflecting the degree of recrystallization of the material. Specifically, in the range of Xr> 0.8, austenite grain refinement by recrystallization can be made remarkable. The more appropriate temperature for the preliminary processing depends on the value of the average strain ε, but for example, when ε = 0.4, the preliminary processing temperature Tp is about 900 to 1050 ° C. FIG. 2 is a graph showing how the Xr value varies depending on the average strain ε at various preliminary processing temperatures Tp. In order to achieve an Xr value of 0.8 or higher, preliminary processing at approximately 900 ° C. or higher is required. When carbides such as V are precipitated during the pre-processing, the pre-processing itself is performed at a certain high temperature, so that the carbide grows rapidly and becomes coarse (these do not contribute to precipitation strengthening), and during cooling after the main processing, Sufficient carbides cannot be precipitated, leading to a decrease in yield strength. Therefore, it is necessary to set the preliminary processing temperature Tp to be equal to or higher than the precipitation temperature of the carbide (for example, 930 ° C. or higher). Further, in order to suppress coarse carbide precipitation, it is desirable to change directly from the austenitizing temperature to the pre-processing temperature, and at least not lower than the carbide precipitation temperature.

次に、予備加工体に施す本加工は、加工率30%以上の圧縮加工にて行なう。圧縮加工を施す理由は、45°方向に剪断歪が入るため結晶粒が分断されてさらに微細化するためである。そして、圧縮加工率を30%以上とすることで、結晶粒の顕著な微細化(温度にもよるが、適度な加工硬化が寄与することもある)等により、耐力を従来比にて例えば30%以上も高めることができる。ここで圧縮加工率とは、予備加工にて最も細径となった断面において、圧縮方向に最も変化した直径の変化率で定義する。すなわち最も細径の断面の直径をCとし、圧縮後の長さをDとして、(C−D)/C×100(%)である。   Next, the main processing applied to the preliminary processed body is performed by compression processing with a processing rate of 30% or more. The reason why the compression processing is performed is that since the shear strain enters in the 45 ° direction, the crystal grains are divided and further refined. Then, by setting the compression processing rate to 30% or more, the yield strength is reduced to, for example, 30 compared with the conventional one by remarkably miniaturizing the crystal grains (depending on the temperature, moderate work hardening may contribute). % Or more can be increased. Here, the compression rate is defined as the rate of change of the diameter that has changed most in the compression direction in the cross section that has become the smallest diameter in the preliminary processing. In other words, the diameter of the thinnest cross section is C, and the length after compression is D, (C−D) / C × 100 (%).

なお、表記組成の鋼材の場合、30%以上もの高い加工率にて圧縮加工を行なうことは、冷間加工では割れ発生等により非常に困難であり、加工の均質性と変形抵抗低減のため加工温度を680℃以上に設定することが必須である。特に、パーライト変態点を超える温度域(例えば730℃以上)では、オーステナイト相が主体となるため、変形抵抗低減と剪断歪による結晶粒分断ひいては結晶粒の微細化効果を一層顕著とすることができる。しかし、鍛造温度が850℃を超えると、回復により加工歪が抜けやすく十分な耐力を得ることができなくなる。   In the case of steel materials with the indicated composition, it is very difficult to perform compression processing at a processing rate as high as 30% or more due to cracking etc. in cold processing, and processing to reduce processing uniformity and deformation resistance. It is essential to set the temperature to 680 ° C. or higher. In particular, in the temperature range exceeding the pearlite transformation point (for example, 730 ° C. or higher), the austenite phase is the main component, so that the deformation resistance can be reduced, and the crystal grain breaking due to shear strain and thus the grain refinement effect can be made more prominent. . However, if the forging temperature exceeds 850 ° C., the work strain is likely to be lost due to recovery, and sufficient yield strength cannot be obtained.

次に本発明においては、前述の鋼材にV:0.05質量%以上0.40質量%以下を含有させることができる。Vの添加により、部材の耐力を向上することができる。   Next, in the present invention, V: 0.05% by mass or more and 0.40% by mass or less can be contained in the above-described steel material. By adding V, the proof stress of the member can be improved.

また、前述の鋼材に、P:0.03質量%以上0.15質量%以下を含有させることができる。Pを添加することにより、フェライト相の強度が増すので、部材の耐力を向上することができる。   Moreover, P: 0.03 mass% or more and 0.15 mass% or less can be contained in the above-mentioned steel materials. By adding P, the strength of the ferrite phase is increased, so that the yield strength of the member can be improved.

さらに前述の鋼材には、Nb:0.02質量%以上0.10質量%以下を含有させることもできる。Nbを添加することにより結晶粒を微細化することができ、耐力がより向上する。   Furthermore, Nb: 0.02 mass% or more and 0.10 mass% or less can be contained in the above-mentioned steel materials. By adding Nb, crystal grains can be refined, and the proof stress is further improved.

さらに本発明においては、前述の鋼材組成にさらに、S:0.03質量%以上0.20質量%以下、Ca:0.001質量%以上0.010質量%以下、Bi:0.01質量%以上0.10質量%以下、Pb:0.02質量%以上0.20質量%以下から選んだ1種または2種以上を含有させることもできる。S、Ca、Bi、Pbを添加することにより、鋼材の被削性を向上することができる。これにより製造された非調質鋼部品の加工性をあげることができる。   Furthermore, in the present invention, S: 0.03 mass% to 0.20 mass%, Ca: 0.001 mass% to 0.010 mass%, Bi: 0.01 mass%, in addition to the steel material composition described above. One or two or more selected from 0.10% by mass or less and Pb: 0.02% by mass or more and 0.20% by mass or less can also be contained. By adding S, Ca, Bi, and Pb, the machinability of the steel material can be improved. Thereby, the workability of the manufactured non-heat treated steel part can be improved.

以下、本発明における鋼材の組成限定理由を述べる。
C:0.18質量%以上0.45質量%以下
Cは添加量によって強度を決定する元素であり、本発明では、高強度を得るため0.18質量%以上含有させる。しかし0.45質量%を超えて含有させると、パーライト粒が粗大となって靭性が大幅に低下するため、上限を0.45質量%とする。
Hereinafter, the reasons for limiting the composition of the steel material in the present invention will be described.
C: 0.18% by mass or more and 0.45% by mass or less C is an element that determines the strength depending on the addition amount. In the present invention, C is contained by 0.18% by mass or more in order to obtain high strength. However, if the content exceeds 0.45% by mass, the pearlite grains become coarse and the toughness is significantly reduced, so the upper limit is made 0.45% by mass.

Si:0.10質量%以上2.00質量%以下
脱酸素剤として作用するとともに、フェライト組織に固溶して耐力や疲労強度の向上にも有効に作用する。このため0.10質量%以上含有させる必要がある。しかし多すぎると、冷却時にベイナイト組織を生じやすくなり、切削性の低下を招くほか、熱間鍛造後の脱炭量も増加しやすいので2.00質量%以下とする。好ましくは、1.80質量%とする。
Si: 0.10% by mass or more and 2.00% by mass or less In addition to acting as an oxygen scavenger, it effectively dissolves in the ferrite structure and effectively improves yield strength and fatigue strength. For this reason, it is necessary to contain 0.10 mass% or more. However, if the amount is too large, a bainite structure is likely to occur during cooling, leading to a decrease in machinability, and the amount of decarburization after hot forging tends to increase. Preferably, it is 1.80 mass%.

Mn:0.40質量%以上1.80質量%以下
Mnは変態温度を低下させて、パーライトのラメラー間隔を細かくし、パーライトの硬度を向上させ、熱間鍛造後の強度や靭性を高める作用も有するので、強度確保のため0.40質量%以上含有させる。しかし過度に含まれると、冷却時にベイナイト組織を生じやすくなり切削性が低下する。したがって1.80質量%以下とする。好ましくは、1.50質量%とする。
Mn: 0.40% by mass or more and 1.80% by mass or less Mn reduces the transformation temperature, reduces the pearlite lamellar spacing, improves the pearlite hardness, and also increases the strength and toughness after hot forging. Therefore, 0.40% by mass or more is contained for securing the strength. However, if it is contained excessively, a bainite structure is likely to occur during cooling, and the machinability deteriorates. Therefore, it is 1.80 mass% or less. Preferably, it is 1.50 mass%.

Cr:0.05質量%以上0.50質量%以下
Crは、鋼表面の炭素濃度を増加させる作用を有し、部材の耐摩耗性改善等に作用する。しかし過度に含有されると冷却時にベイナイト組織が生成しやすくなり、切削性が低下するので0.50質量%以下とする。好ましくは、0.30質量%とする。
Cr: 0.05 mass% or more and 0.50 mass% or less Cr has the effect | action which increases the carbon concentration of the steel surface, and acts on the wear resistance improvement of a member, etc. However, if it is contained excessively, a bainite structure is likely to be formed during cooling, and the machinability is lowered, so the content is made 0.50% by mass or less. Preferably, it is 0.30 mass%.

Al:0.003質量%以上0.040質量%以下
脱酸素原子として作用し、Nと結合してAlNを形成し、オーステナイト粒の粗大化を抑制し、組織の微細化に寄与する。しかし過度に含有しても効果は飽和し、Alが増加することで、切削性低下を招くので0.040質量%以下とする。なお、脱酸剤等による不可避不純物として含有される場合がある。
Al: 0.003 mass% or more and 0.040 mass% or less It acts as a deoxygenated atom, forms AlN by combining with N, suppresses coarsening of austenite grains, and contributes to refinement of the structure. However excessive effect contained is saturated, that Al 2 O 3 is increased, and 0.040 mass% or less so leading to machinability decrease. It may be contained as an inevitable impurity due to a deoxidizer or the like.

N:0.005質量%以上0.020質量%以下
Alと結合してAlNを形成し、オーステナイト粒の粗大化を抑制し、組織の微細化に寄与する。またV、Ti、Nb等と窒化物あるいは、炭窒化物を形成しフェライトの強化に寄与する。0.020質量%以上は添加自体が困難である。他方、不可避不純物として含有される場合もある。
N: 0.005 mass% or more and 0.020 mass% or less Combines with Al to form AlN, suppresses coarsening of austenite grains, and contributes to refinement of the structure. Further, it forms nitrides or carbonitrides with V, Ti, Nb, etc. and contributes to strengthening of ferrite. Addition of 0.020% by mass or more is difficult. On the other hand, it may be contained as an inevitable impurity.

V:0.05質量%以上0.40質量%以下
Vは、オーステナイトから変態したフェライト中に炭化物、窒化物ないし炭窒化物として析出し、フェライトを強化する。また結晶粒を微細化する。しかし過度に含有しても効果が飽和するうえ、靭性を低下させるので0.40質量%以下とする。
V: 0.05 mass% or more and 0.40 mass% or less V precipitates as carbide, nitride, or carbonitride in the ferrite transformed from austenite, and strengthens the ferrite. The crystal grains are refined. However, even if it contains excessively, an effect will be saturated and toughness will be reduced, so it shall be 0.40 mass% or less.

P:0.03質量%以上0.15質量%以下
Pは、フェライト相の強度を確保し、被削性を向上させるのに有効な元素であるが、過度に添加すると靭性が劣化し、衝撃強度を低下させる上、粒界偏析の原因ともなるので、0.15質量%を上限とする。他方、不可避不純物として含有される場合もある。
P: 0.03 mass% or more and 0.15 mass% or less P is an element effective for ensuring the strength of the ferrite phase and improving the machinability, but if added excessively, the toughness deteriorates and the impact In addition to reducing the strength, it also causes grain boundary segregation, so the upper limit is made 0.15% by mass. On the other hand, it may be contained as an inevitable impurity.

Nb:0.02質量%以上0.10質量%以下
Nbは、オーステナイトから変態したフェライト中に炭窒化物として析出し、フェライトを強化する。また結晶粒を微細化する。しかしNbは、過度に含有しても効果が飽和する上、固溶度が低いため、強度低下につながる場合があるので、0.10質量%を上限とする。
Nb: 0.02% by mass or more and 0.10% by mass or less Nb precipitates as carbonitride in ferrite transformed from austenite and strengthens the ferrite. The crystal grains are refined. However, even if Nb is contained excessively, the effect is saturated and the solid solubility is low, which may lead to a decrease in strength. Therefore, the upper limit is 0.10% by mass.

S:0.03質量%以上0.20質量%以下
Sは被削性を高める作用のある元素であるが、過度に含有すると疲労強度が低下し、鍛造性を阻害するので、0.20質量%を上限とする。他方、不可避不純物として含有される場合もある。
S: 0.03 mass% or more and 0.20 mass% or less S is an element that has an effect of improving machinability, but if contained excessively, fatigue strength decreases and forgeability is inhibited, so 0.20 mass. % Is the upper limit. On the other hand, it may be contained as an inevitable impurity.

Ca:0.001質量%以上0.010質量%以下
Caは被削性を向上する元素であるが、過度に含有しても効果は飽和するので、0.010質量%を上限とする。
Ca: 0.001% by mass or more and 0.010% by mass or less Ca is an element that improves machinability, but even if contained excessively, the effect is saturated, so 0.010% by mass is made the upper limit.

Bi:0.01質量%以上0.10質量%以下
Biは被削性を向上する元素であるが、過度の添加は靭性を劣化させるし、効果も飽和するので、0.10質量%を上限とする。
Bi: 0.01% by mass or more and 0.10% by mass or less Bi is an element that improves machinability, but excessive addition degrades toughness and saturates the effect, so the upper limit is 0.10% by mass. And

Pb:0.02質量%以上0.20質量%以下
Pbは被削性を向上する元素であるが、過度に含有しても効果は飽和するので、0.20質量%を上限とする。
Pb: 0.02% by mass or more and 0.20% by mass or less Pb is an element that improves machinability, but even if contained excessively, the effect is saturated, so 0.20% by mass is the upper limit.

また、本発明の製造方法の第二は、
Fe:95質量%以上、C:0.18質量%以上0.45質量%以下、Si:0.10質量%以上2.00質量%以下、Mn:0.40質量%以上1.80質量%以下、Cr:0.05質量%以上0.50質量%以下、Al:0.003質量%以上0.040質量%以下、Ti:0.02質量%以上0.10質量%以下、N:0.005質量%以上0.030質量%以下、を含有した鋼材を、1000℃以上1300℃以下に加熱してオーステナイト化を行い、その後、Fe系相がオーステナイト単相となり、かつ1300℃以下に設定される予備加工温度をTp、予備加工時の平均歪をεとして、
1−exp(−ε×(750÷Tp)−10)>0.8
の条件を満たすようにTp及びεを設定して予備加工を実施し、さらに該予備加工にて得られる予備加工体を、680℃以上850℃以下にて鍛造することにより部品形状を得る本加工を行なうとともに、前記本加工の加工率を、圧縮加工率にて30%以上となすことを特徴とする。
The second of the production methods of the present invention is
Fe: 95% by mass or more, C: 0.18% by mass to 0.45% by mass, Si: 0.10% by mass to 2.00% by mass, Mn: 0.40% by mass to 1.80% by mass Hereinafter, Cr: 0.05% by mass or more and 0.50% by mass or less, Al: 0.003% by mass or more and 0.040% by mass or less, Ti: 0.02% by mass or more and 0.10% by mass or less, N: 0 A steel material containing 0.005 mass% or more and 0.030 mass% or less is heated to 1000 ° C. or more and 1300 ° C. or less to be austenitized, and then the Fe-based phase becomes an austenite single phase and is set to 1300 ° C. or less. The pre-processing temperature is Tp, and the average strain during pre-processing is ε,
1-exp (−ε × (750 ÷ Tp) −10 )> 0.8
Preliminary processing is performed by setting Tp and ε so as to satisfy the above condition, and further, forging a preliminary processing body obtained by the preliminary processing at 680 ° C. or higher and 850 ° C. or lower to obtain a part shape And the processing rate of the main processing is 30% or more in terms of compression processing rate.

高耐力非調質鋼部品を製造するために、結晶粒を微細化することが有効である。第二の製造方法においては、Tiを添加する。TiとNはTiNを形成するため、Tiを添加する場合は、添加するNを増やす方が望ましい。そこでNを0.005質量%以上0.030質量%以下添加する。TiやNを添加することにより、結晶粒を微細化したり、AlNによる結晶粒微細化を確保することができる。他の点については、第一の製造方法と同様なので省略する。   In order to manufacture a high yield strength non-heat treated steel part, it is effective to refine the crystal grains. In the second manufacturing method, Ti is added. Since Ti and N form TiN, when adding Ti, it is desirable to increase N to be added. Therefore, N is added in an amount of 0.005 mass% to 0.030 mass%. By adding Ti or N, crystal grains can be refined or crystal grain refinement by AlN can be ensured. About another point, since it is the same as that of the 1st manufacturing method, it abbreviate | omits.

Ti:0.02質量%以上0.10質量%以下
TiはNと化合してTiNを形成し、これを核とした結晶粒微細化効果を有するので、耐力のさらなる向上に寄与する。しかし、多量に添加すると鋼の清浄度を害するし、効果も飽和するので0.10質量%を上限とする。
Ti: 0.02% by mass or more and 0.10% by mass or less Ti combines with N to form TiN, and has the effect of refining crystal grains using this as a nucleus, which contributes to further improvement in yield strength. However, if added in a large amount, the cleanliness of the steel is impaired and the effect is saturated, so the upper limit is made 0.10% by mass.

N:0.005質量%以下0.030質量%以下
Ti添加により固定化される窒素を生ずるため、第一発明よりも多い0.030質量%まで添加可能である。
N: 0.005 mass% or less 0.030 mass% or less Since nitrogen is fixed by addition of Ti, it can be added up to 0.030 mass%, which is higher than that of the first invention.

本発明の非調質鋼部品は、前述のいずれかの製造方法によって実現可能であり、平均結晶粒径が5μm以下のフェライト+パーライト組織からなる。これにより、特許文献1等に開示された従来の非調質鋼部品よりも高耐力の部品が実現する(常識的な熱間鍛造工程条件で達成できる平均結晶粒径の下限値は50μm程度である)。平均結晶粒径とは、鍛伸方向と直交する断面における各結晶粒の最大長さの平均を意味する。またパーライト相は硬質のため耐力向上に寄与し、フェライト相は軟質のため被削性改善に寄与するので、両者のバランスを最適化する観点にて、本発明の非調質鋼は、パーライトの面積比を30%以上65%以下とすること(特にフェライトとパーライトの面積比が50:50程度とすること)が望ましい。   The non-tempered steel part of the present invention can be realized by any of the above-described manufacturing methods, and consists of a ferrite + pearlite structure having an average crystal grain size of 5 μm or less. As a result, parts having higher proof stress than the conventional non-heat treated steel parts disclosed in Patent Document 1 and the like are realized (the lower limit of the average grain size that can be achieved under common-sense hot forging process conditions is about 50 μm). is there). The average crystal grain size means the average of the maximum length of each crystal grain in a cross section perpendicular to the forging direction. In addition, since the pearlite phase is hard, it contributes to improved yield strength, and the ferrite phase is soft, which contributes to improvement of machinability.From the viewpoint of optimizing the balance between the two, the non-tempered steel of the present invention is made of pearlite. It is desirable that the area ratio is 30% or more and 65% or less (particularly, the area ratio of ferrite and pearlite is about 50:50).

本発明の実施例を詳述する。まず本発明の非調質鋼材の製造方法及び試験方法について説明する。表1に示す化学組成の発明鋼1〜11、比較鋼A〜Cをそれぞれ溶製後、熱間圧延により図1(a)に示すように直径42mmの丸棒10を製造した。この丸棒10から、(c)に示す非調質鋼鍛造部品であるコンロッド30を製造する。該コンロッド30は、大端部33(シャフト挿通孔33hを有する)、小端部31(シャフト挿通孔31hを有する)及び両者を連結する竿部32とを有する。   Examples of the present invention will be described in detail. First, the production method and test method of the non-heat treated steel material of the present invention will be described. After melting inventive steels 1 to 11 and comparative steels A to C having chemical compositions shown in Table 1, round bars 10 having a diameter of 42 mm were manufactured by hot rolling as shown in FIG. 1 (a). From this round bar 10, the connecting rod 30 which is a non-tempered steel forged part shown in (c) is manufactured. The connecting rod 30 has a large end portion 33 (having a shaft insertion hole 33h), a small end portion 31 (having a shaft insertion hole 31h), and a flange portion 32 connecting the both.

コンロッド30の形状を得るのに先立って、丸棒10には予備加工が施され、図1に示す予備加工体20とされる。該予備加工体20は、コンロッド30の小端部31、竿部32及び大端部33にそれぞれ対応した円形断面形状の第一軸部21、第二軸部22及び第三軸部23を有する(断面外径は、第三軸部23、第一軸部21、第二軸部22の順に縮小する)。予備加工は、図3の鍛造金型1を用いて圧縮加工によりなされる。鍛造金型1は、対をなす鍛造ロール2,2を備え、図中の外周面展開図及び深さ方向プロファイル図に示すように、各ロール2の外周面には、第一軸部21、第二軸部22及び第三軸部23に対応した幅及び深さの鍛造キャビティ3a,3b,3cが周方向にこの順で形成されている。これら2つのロール2,2は、鍛造キャビティ3a,3b,3cの位相を合わせた状態で外周面にて対向配置される。   Prior to obtaining the shape of the connecting rod 30, the round bar 10 is preliminarily processed to obtain a preliminarily processed body 20 shown in FIG. The preliminary processed body 20 has a first shaft portion 21, a second shaft portion 22, and a third shaft portion 23 having a circular cross-sectional shape corresponding to the small end portion 31, the flange portion 32, and the large end portion 33 of the connecting rod 30, respectively. (The cross-sectional outer diameter decreases in the order of the third shaft portion 23, the first shaft portion 21, and the second shaft portion 22). The preliminary processing is performed by compression using the forging die 1 of FIG. The forging die 1 includes paired forging rolls 2 and 2, and as shown in an outer peripheral surface development view and a depth direction profile diagram in the figure, the outer peripheral surface of each roll 2 has a first shaft portion 21, Forging cavities 3a, 3b, 3c having widths and depths corresponding to the second shaft portion 22 and the third shaft portion 23 are formed in this order in the circumferential direction. These two rolls 2 and 2 are arranged to face each other on the outer peripheral surface in a state where the phases of the forging cavities 3a, 3b, and 3c are matched.

丸棒10はオーステナイト化後、そのまま予め定められた予備加工温度まで降温し、両ロール2,2を回転させながら、鍛造キャビティ3a(第一軸部21)の開始位相にて両ロール2,2間に挿入される。そして、鍛造キャビティ3a→3b→3cの順で順次圧縮鍛造され、予備加工体20となる。そして、その予備加工体20を、予め定められた鍛造温度にて本加工の鍛造を行ない、(c)に示すように、コンロッド30の形状を得る(シャフト挿通孔31h、33hは後加工により穿設する)。各加熱は高周波加熱を用いて行うことができる。本加工後の冷却条件は、衝風冷却あるいは空冷である。   After the round bar 10 is austenitized, the temperature is lowered to a predetermined preliminary processing temperature as it is, and both rolls 2, 2 are rotated at the start phase of the forging cavity 3a (first shaft portion 21) while rotating both rolls 2, 2. Inserted between. Then, the forging cavities 3a → 3b → 3c are sequentially compressed and forged to form a pre-processed body 20. Then, the preliminary processing body 20 is forged by main processing at a predetermined forging temperature, and the shape of the connecting rod 30 is obtained as shown in (c) (the shaft insertion holes 31h and 33h are formed by post-processing. Set). Each heating can be performed using high frequency heating. The cooling condition after this processing is blast cooling or air cooling.

表1に本発明の発明鋼1ないし11の各組成を示す。また比較のために使用した比較鋼AないしCについても同様に示す。表1に示すように、比較鋼Aは、Mnが0.22質量%と発明鋼に対し、少なくなっている。比較鋼Bは、Siが0.05質量%と発明鋼に対し少なくなっている。さらに比較鋼Cは、Cが0.55質量%と発明鋼に対し多くなっている。   Table 1 shows the compositions of the inventive steels 1 to 11 of the present invention. Moreover, it shows similarly about the comparative steel A thru | or C used for the comparison. As shown in Table 1, the comparative steel A has a Mn of 0.22% by mass, which is less than that of the invention steel. In comparative steel B, Si is 0.05% by mass, which is less than that of the invention steel. Further, the comparative steel C has a C content of 0.55% by mass, which is larger than that of the inventive steel.

上記予備加工及び本加工の条件を表2に示す。前述のごとく、平均歪εは、図1において、(a)の丸棒10に(b)の予備加工を行った場合に、予備加工によって最も細径となった部位で(第二軸部22)バリ部を除いた部分の、丸棒10に対する減面率をQ(%)として、(Q/100)1/2にて定義する。Xr値は、この平均歪εと予備加工温度Tpとによって(1)式にて決まる値である。また、圧縮加工率は、予備加工にて最も細径となる第二軸部22の断面において、圧縮方向に最も変化した直径の、丸棒10の直径に対する変化率で定義する。すなわち(b)において最も細径の断面の直径をCとし、(c)において圧縮後の長さをDとして、(C−D)/C×100%である。 Table 2 shows the conditions for the preliminary processing and the main processing. As described above, the average strain ε in FIG. 1 is the portion (second shaft portion 22) having the smallest diameter due to the preliminary processing when the preliminary processing (b) is performed on the round bar 10 (a). ) The area reduction ratio of the part excluding the burr part with respect to the round bar 10 is defined as (Q / 100) 1/2 as Q (%). The Xr value is a value determined by the equation (1) based on the average strain ε and the preliminary processing temperature Tp. The compression rate is defined as the rate of change of the diameter most changed in the compression direction with respect to the diameter of the round bar 10 in the cross section of the second shaft portion 22 that has the smallest diameter in the preliminary processing. That is, the diameter of the narrowest cross section in (b) is C, and the length after compression is D in (c), which is (C−D) / C × 100%.

比較工程Aは、比較鋼Aを用いてXr値が0.534と小さい場合である。比較工程Bは、比較鋼Bを用いて同様にXr値が0.534と小さい場合である。比較工程Cは、比較鋼Cを用いて、オーステナイト化処理温度が1280℃と高く、鍛造温度も1200℃と高い場合である。比較工程Dは、比較鋼Bを用いて、オーステナイト化処理温度が1280℃と高い場合である。比較工程Eは、発明鋼1を用いて、オーステナイト化処理温度が600℃と低く、Xr値が0.018と小さく、鍛造温度も500℃と低い場合である。比較工程Fは、比較鋼Aを用いている点を除き、他の条件は、他の発明工程と同様である。   Comparative process A is a case where Xr value is as small as 0.534 using comparative steel A. Comparative process B is a case where Xr value is as small as 0.534 using comparative steel B. The comparative process C is a case where the austenitizing temperature is as high as 1280 ° C. and the forging temperature is as high as 1200 ° C. using the comparative steel C. The comparative process D is a case where the austenitizing temperature is as high as 1280 ° C. using the comparative steel B. The comparative process E is the case where the austenitizing temperature is as low as 600 ° C., the Xr value is as low as 0.018, and the forging temperature is as low as 500 ° C. using the inventive steel 1. The comparative process F is the same as the other inventive processes except that the comparative steel A is used.

以上のように製造された非調質鋼のコンロッドから、耐力測定を行うための試験片を切り出し、中央の平滑部の直径が2.5mmで、両端を試験機に取り付けられるようにM4のネジを切削加工した引張り試験片に加工した。これを用いて、油圧サーボに変位計とロードセルを取り付けた試験機により毎分10mmの速度で引張試験を行い、変位―荷重線図から耐力(0.2%)を求めた。結果を表2に示す。発明鋼1〜11を用いた発明工程1〜13では、耐力が、700MPa以上となった。比較工程A〜Hでは、耐力が700MPa未満となった。比較工程Fでは、比較鋼Aを用いて、オーステナイト化処理温度、予備加工温度、予備加工における平均歪、Xr値、鍛造温度、鍛造加工率をすべて発明工程と同条件で行なった。すなわち比較工程Fでは、Mnの添加量が発明工程と異なる。この結果、耐力は528MPaとなった。さらに比較鋼Aを用いた比較工程Aでは、Xr値を小さくした場合であるが、耐力は、さらに小さい値を示した。   A test piece for measuring the yield strength is cut out from the non-heat treated steel connecting rod manufactured as described above, and the center smooth part has a diameter of 2.5 mm and both ends are attached to the testing machine with M4 screws. Were cut into tensile test pieces. Using this, a tensile test was performed at a speed of 10 mm / min with a testing machine in which a displacement meter and a load cell were attached to a hydraulic servo, and the yield strength (0.2%) was obtained from the displacement-load diagram. The results are shown in Table 2. In invention steps 1 to 13 using the inventive steels 1 to 11, the yield strength was 700 MPa or more. In the comparison steps A to H, the proof stress was less than 700 MPa. In the comparative process F, using the comparative steel A, the austenitizing temperature, the preliminary processing temperature, the average strain in the preliminary processing, the Xr value, the forging temperature, and the forging rate were all performed under the same conditions as in the invention process. That is, in the comparison process F, the amount of Mn added is different from that of the invention process. As a result, the yield strength was 528 MPa. Furthermore, in the comparative process A using the comparative steel A, the Xr value was reduced, but the proof stress showed a smaller value.

比較工程Bでは、比較鋼Bを用い、かつXr値が小さいため、耐力が小さくなっている。比較工程Dでは、比較鋼Bを用いオーステナイト化処理温度を高くした場合であるが、耐力は636MPaと多少大きくなったものの、大幅な改善は見られなかった。比較工程Cでは、比較鋼Cを用いて、オーステナイト化処理温度、鍛造温度を上げた場合であるが、大きな耐力は得られない。比較工程Eでは、発明鋼1を用いて、オーステナイト化処理温度、鍛造温度を下げ、Xr値を小さくした場合であるが、やはり耐力は大きな値を示さない。比較工程Gは、Xr値が小さく、比較工程Hは、鍛造加工率が小さい場合だが、大きな耐力は得られない。しかし、発明鋼に発明工程を組み合わせた場合には、耐力が700MPa以上となり、大きな耐力を示すことが分かる。   In the comparison process B, since the comparison steel B is used and the Xr value is small, the proof stress is small. In comparative process D, although comparative steel B was used and the austenitizing temperature was increased, the yield strength was slightly increased to 636 MPa, but no significant improvement was observed. In the comparative process C, the comparative steel C is used to raise the austenitizing temperature and the forging temperature, but a large yield strength cannot be obtained. In the comparative process E, the inventive steel 1 is used to lower the austenitizing temperature and the forging temperature and reduce the Xr value, but the proof stress does not show a large value. Although the comparison process G has a small Xr value and the comparison process H has a small forging rate, a large yield strength cannot be obtained. However, it can be seen that when the inventive process is combined with the inventive steel, the yield strength is 700 MPa or more, indicating a large yield strength.

図6は、発明工程の一例にて得られたコンロッドの、竿部32(図1)の垂直断面にて観察した光学顕微鏡組織画像である(倍率1000倍)。具体的な条件は、発明鋼7の組成を採用し、1000℃でオーステナイト化し、970℃で予備加工し、750℃で本加工の鍛造を行った場合である。Xr値は1.0、圧縮加工率は70%である。パーライト面積率は、40%である。非常に微細なパーライト結晶粒が得られており、平均結晶粒径は約4μmである。平均結晶粒径は、図4に示すように、鍛造により延伸した各パーライト結晶粒41の軸垂直断面において最大長さEを計測したときの、該Eの平均値にて求めたものである。一方、図7は、従来の工程にて得られたコンロッドの、同様の組織画像である。具体的な条件は、発明鋼7の組成を採用し、1200℃でオーステナイト化し、1100℃で予備加工し、1020℃で本加工の鍛造を行った場合である。Xr値は1.0、圧縮加工率は70%である。平均結晶粒径は約15μmと粗大である。パーライト面積率は、35%である。   FIG. 6 is an optical microscope tissue image of a connecting rod obtained in an example of the invention process, observed in a vertical section of the collar portion 32 (FIG. 1) (magnification 1000 times). The specific conditions are the case where the composition of Invention Steel 7 is adopted, austenitized at 1000 ° C., pre-processed at 970 ° C., and forged for main processing at 750 ° C. The Xr value is 1.0 and the compression rate is 70%. The pearlite area ratio is 40%. Very fine pearlite crystal grains are obtained, and the average crystal grain size is about 4 μm. As shown in FIG. 4, the average crystal grain size is obtained from an average value of E when the maximum length E is measured in the axial vertical section of each pearlite crystal grain 41 stretched by forging. On the other hand, FIG. 7 is a similar tissue image of the connecting rod obtained in the conventional process. The specific conditions are when the composition of Invention Steel 7 is adopted, austenitized at 1200 ° C., pre-processed at 1100 ° C., and forged for main processing at 1020 ° C. The Xr value is 1.0 and the compression rate is 70%. The average crystal grain size is as coarse as about 15 μm. The pearlite area ratio is 35%.

本発明の工程にてパーライト結晶粒が微細化できるメカニズムを、図5に模式的に示す。(a)はオーステナイト熱処理後の組織を示し、再結晶及びオストワルト成長の進行により比較的大きな結晶粒が形成されている。これに、前記Xr値の範囲を満たす予備加工を施すことにより、(b)に示すように、転位などの多数の格子欠陥が導入される。この格子欠陥は再結晶の核生成サイトとして振舞いやすいので、導入された格子欠陥の数が多ければ発生する核の数も多くなり、結果として再結晶粒の微細化が進み、(c)に示すように、微細化したオーステナイト結晶粒となる。更に680℃以上850℃以下で30%以上の圧縮加工を加えると、(d)に示すようにオーステナイト粒がつぶれて、転位が導入される。ここでは、オストワルト成長が進むような高温ではないため微細粒のままである。その後、(e)に示すようにA変態点以下になると、転位欠陥からフェライトに変態し、オーステナイト粒を分断するために微細化された形で形成される。そして、A変態点以下に冷却されると、残留したオーステナイト相がパーライト変態し、(f)に示すように微細化したパーライト組織が得られる。 The mechanism by which the pearlite crystal grains can be refined in the process of the present invention is schematically shown in FIG. (A) shows the structure after the austenite heat treatment, and relatively large crystal grains are formed by the progress of recrystallization and Ostwald growth. By applying a preliminary process that satisfies the range of the Xr value, a large number of lattice defects such as dislocations are introduced as shown in FIG. Since this lattice defect tends to act as a nucleation site for recrystallization, the number of nuclei generated increases as the number of introduced lattice defects increases, and as a result, the recrystallized grains become finer, as shown in (c). Thus, it becomes the refined austenite crystal grain. Furthermore, when compression processing of 30% or more is applied at 680 ° C. or more and 850 ° C. or less, the austenite grains are crushed and dislocations are introduced as shown in (d). Here, since the temperature is not high enough to cause Ostwald growth, the fine grains remain. Thereafter, when below A 3 transformation point (e), the transformed from dislocation defects in the ferrite, is formed in miniaturized form in order to divide the austenite grains. Then, when cooled below the A 1 transformation point, residual austenite phase is pearlite transformation, is miniaturized pearlite structure as shown in (f) is obtained.

本発明の一例を示す工程説明図。Process explanatory drawing which shows an example of this invention. 予備加工温度、予備加工平均歪とXr値との関係を示す図。The figure which shows the relationship between preliminary processing temperature, preliminary processing average distortion, and Xr value. 予備加工に使用する鍛造ロールの一例を示す模式図。The schematic diagram which shows an example of the forging roll used for preliminary processing. 結晶粒径の概念を説明する図。The figure explaining the concept of a crystal grain diameter. 本発明による組織微細化のメカニズムを説明する図。The figure explaining the mechanism of structure refinement | miniaturization by this invention. 発明工程にて得られる部材の断面組織を示す光学顕微鏡観察画像。The optical microscope observation image which shows the cross-sectional structure | tissue of the member obtained in an invention process. 比較工程にて得られる部材の断面組織を示す光学顕微鏡観察画像。The optical microscope observation image which shows the cross-sectional structure | tissue of the member obtained at a comparison process.

符号の説明Explanation of symbols

10 丸棒
20 予備加工体
30 コンロッド
10 Round bar 20 Pre-processed body 30 Connecting rod

Claims (9)

:0.18質量%以上0.45質量%以下、Si:0.10質量%以上2.00質量%以下、Mn:0.40質量%以上1.80質量%以下、Cr:0.05質量%以上0.50質量%以下、Al:0.003質量%以上0.040質量%以下、N:0.005質量%以上0.020質量%以下を含有し、残部Fe及び不可避的不純物からなる鋼材を、1000℃以上1300℃以下に加熱してオーステナイト化を行い、その後、Fe系相がオーステナイト単相となり、かつ1300℃以下に設定される予備加工温度をTp、予備加工時の平均歪をεとして、
1−exp(−ε×(750÷Tp)−10)>0.8
の条件を満たすようにTp及びεを設定して予備加工を実施し、さらに該予備加工で得られる予備加工体を、680℃以上850℃以下にて鍛造することにより部品形状を得る本加工を行なうとともに、前記本加工の加工率を、圧縮加工率にて30%以上となすことを特徴とする非調質鋼部品の製造方法。
C : 0.18 mass% or more and 0.45 mass% or less, Si: 0.10 mass% or more and 2.00 mass% or less, Mn: 0.40 mass% or more and 1.80 mass% or less, Cr: 0.05 Contains from 0.5% by mass to 0.50% by mass, Al: 0.003% by mass to 0.040% by mass, N: 0.005% by mass to 0.020% by mass , and the balance from Fe and inevitable impurities The steel material is heated to 1000 ° C. or more and 1300 ° C. or less to be austenitized, and then the Fe-based phase becomes an austenite single phase and the pre-processing temperature set to 1300 ° C. or less is Tp, and the average strain during the pre-processing Is ε,
1-exp (−ε × (750 ÷ Tp) −10 )> 0.8
Preliminary processing is performed by setting Tp and ε so as to satisfy the above conditions, and further, main processing for obtaining a part shape by forging a preliminary processing body obtained by the preliminary processing at 680 ° C. or higher and 850 ° C. or lower is performed. A method for producing a non-tempered steel part, wherein the processing rate of the main processing is 30% or more in terms of the compression processing rate.
:0.18質量%以上0.45質量%以下、Si:0.10質量%以上2.00質量%以下、Mn:0.40質量%以上1.80質量%以下、Cr:0.05質量%以上0.50質量%以下、Al:0.003質量%以上0.040質量%以下、Ti:0.02質量%以上0.10質量%以下、N:0.005質量%以上0.030質量%以下、を含有し、残部Fe及び不可避的不純物からなる鋼材を、1000℃以上1300℃以下に加熱してオーステナイト化を行い、その後、Fe系相がオーステナイト単相となり、かつ1300℃以下に設定される予備加工温度をTp、予備加工時の平均歪をεとして、
1−exp(−ε×(750÷Tp)−10)>0.8
の条件を満たすようにTp及びεを設定して予備加工を実施し、さらに該予備加工にて得られる予備加工体を、680℃以上850℃以下にて鍛造することにより部品形状を得る本加工を行なうとともに、前記本加工の加工率を、圧縮加工率にて30%以上となすことを特徴とする非調質鋼部品の製造方法。
C : 0.18% by mass to 0.45% by mass, Si: 0.10% by mass to 2.00% by mass, Mn: 0.40% by mass to 1.80% by mass, Cr: 0.05 Mass% or more and 0.50 mass% or less, Al: 0.003 mass% or more and 0.040 mass% or less, Ti: 0.02 mass% or more and 0.10 mass% or less, N: 0.005 mass% or more. A steel material containing 030 mass% or less and the balance Fe and inevitable impurities is heated to 1000 ° C. or higher and 1300 ° C. or lower to be austenitized, and then the Fe-based phase becomes an austenite single phase and 1300 ° C. or lower. The pre-processing temperature set to Tp and the average strain during pre-processing as ε,
1-exp (−ε × (750 ÷ Tp) −10 )> 0.8
Preliminary processing is performed by setting Tp and ε so as to satisfy the above condition, and further, forging a preliminary processing body obtained by the preliminary processing at 680 ° C. or higher and 850 ° C. or lower to obtain a part shape And a processing rate of the main processing is 30% or more in terms of compression processing rate.
前記鋼材として、V:0.05質量%以上0.40質量%以下を含有したものを使用する請求項1又は2に記載の非調質鋼部品の製造方法。   The manufacturing method of the non-heat-treated steel part of Claim 1 or 2 which uses what contains V: 0.05 mass% or more and 0.40 mass% or less as said steel material. 前記鋼材として、P:0.03質量%以上0.15質量%以下を含有したものを使用する請求項1ないし3のいずれか1項に記載の非調質鋼部品の製造方法。   The manufacturing method of the non-heat-treated steel part of any one of Claim 1 thru | or 3 which uses what contains P: 0.03 mass% or more and 0.15 mass% or less as said steel materials. 前記鋼材として、Nb:0.02質量%以上0.10質量%以下を含有したものを使用する請求項1ないし4のいずれか1項に記載の非調質鋼部品の製造方法。   The method for producing a non-tempered steel part according to any one of claims 1 to 4, wherein the steel material contains Nb: 0.02 mass% or more and 0.10 mass% or less. 前記鋼材として、S:0.03質量%以上0.20質量%以下、Ca:0.001質量%以上0.010質量%以下、Bi:0.01質量%以上0.10質量%以下、Pb:0.02質量%以上0.20質量%以下から選んだ1種又は2種以上を含有したものを使用する請求項1ないし5のいずれか1項に記載の非調質鋼部品の製造方法。   As the steel material, S: 0.03% by mass to 0.20% by mass, Ca: 0.001% by mass to 0.010% by mass, Bi: 0.01% by mass to 0.10% by mass, Pb The method for producing a non-tempered steel part according to any one of claims 1 to 5, wherein one containing at least one selected from 0.02 mass% to 0.20 mass% is used. . 前記予備加工は、V炭化物の析出温度より高温にて行う請求項3ないし6のいずれか1項に記載の非調質鋼部品の製造方法。   The method for producing a non-tempered steel part according to any one of claims 3 to 6, wherein the preliminary processing is performed at a temperature higher than a precipitation temperature of V carbide. 請求項1ないし7のいずれか1項に記載の製造方法によって製造された非調質鋼部品であって、平均結晶粒径が5μm以下のフェライト+パーライト組織からなることを特徴とする非調質鋼部品。   A non-tempered steel part manufactured by the manufacturing method according to any one of claims 1 to 7, wherein the non-tempered steel part is composed of a ferrite and a pearlite structure having an average crystal grain size of 5 µm or less. Steel parts. 断面組織中に観察されるパーライトの面積率が30%以上65%以下である請求項8に記載の非調質鋼部品。   The non-heat treated steel part according to claim 8, wherein the area ratio of pearlite observed in the cross-sectional structure is 30% or more and 65% or less.
JP2003414154A 2003-12-12 2003-12-12 Manufacturing method of non-tempered steel parts and non-tempered steel parts using the same Expired - Fee Related JP3898179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414154A JP3898179B2 (en) 2003-12-12 2003-12-12 Manufacturing method of non-tempered steel parts and non-tempered steel parts using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414154A JP3898179B2 (en) 2003-12-12 2003-12-12 Manufacturing method of non-tempered steel parts and non-tempered steel parts using the same

Publications (2)

Publication Number Publication Date
JP2005171334A JP2005171334A (en) 2005-06-30
JP3898179B2 true JP3898179B2 (en) 2007-03-28

Family

ID=34734041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414154A Expired - Fee Related JP3898179B2 (en) 2003-12-12 2003-12-12 Manufacturing method of non-tempered steel parts and non-tempered steel parts using the same

Country Status (1)

Country Link
JP (1) JP3898179B2 (en)

Also Published As

Publication number Publication date
JP2005171334A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
KR101113575B1 (en) Case-hardened steel pipe excellent in workability and process for production thereof
JP5458048B2 (en) Case-hardened steel, its manufacturing method, and machine structural parts using case-hardened steel
JP5332646B2 (en) Manufacturing method of carburizing steel with excellent cold forgeability
KR101965520B1 (en) Rolled steel bar or rolled wire material for cold-forged component
US20060096671A1 (en) Non-heat treated steel for soft-nitriding
JP2008133530A (en) Bearing steel component and its production method, and bearing
US5476556A (en) Method of manufacturing steel for machine structural use exhibiting excellent free cutting characteristic, cold forging characteristic and post-hardening/tempering fatigue resistance
WO2007000888A1 (en) Hot-forged products excellent in fatigue strength, process for production thereof, and machine structural parts
WO2017115842A1 (en) Case-hardened steel, carburized component, and process for producing case-hardened steel
JP6064047B2 (en) Steel wire rod excellent in strength and ductility and manufacturing method thereof
WO2006090604A1 (en) Non-tempered steel soft nitrided component
JP4793298B2 (en) Non-tempered steel and manufacturing method thereof
JP5153221B2 (en) Soft nitriding non-tempered machine parts
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
JP2004027334A (en) Steel for induction tempering and method of producing the same
EP3272896B1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
JPH1017928A (en) Production of gear steel stock for induction hardening, excellent in machinability and fatigue strength
JP3898179B2 (en) Manufacturing method of non-tempered steel parts and non-tempered steel parts using the same
JP4170294B2 (en) Steel for machine structures and drive shafts with excellent rolling, fire cracking and torsional properties
JPH09202921A (en) Production of wire for cold forging
JP2008144270A (en) Non-heat-treated steel for machine structure excellent in fatigue property and toughness, its manufacturing method, component for machine structure, and its manufacturing method
JP3888288B2 (en) Steel material to be used after deformed drawing and induction hardening, and method of manufacturing steel member using the same
JP7184209B2 (en) Manufacturing method of crankshaft and cast material for crankshaft
JP2000219915A (en) Production of seamless steel pipe having high strength and high toughness
JPH0517822A (en) Production 0f tie rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees