JP3898005B2 - Fire-resistant outside insulation exterior wall finishing method - Google Patents

Fire-resistant outside insulation exterior wall finishing method Download PDF

Info

Publication number
JP3898005B2
JP3898005B2 JP2001222461A JP2001222461A JP3898005B2 JP 3898005 B2 JP3898005 B2 JP 3898005B2 JP 2001222461 A JP2001222461 A JP 2001222461A JP 2001222461 A JP2001222461 A JP 2001222461A JP 3898005 B2 JP3898005 B2 JP 3898005B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
wall
finishing
wall finishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001222461A
Other languages
Japanese (ja)
Other versions
JP2003035024A (en
Inventor
勝 近藤
俊才 長井
浩平 高西
敏秀 松本
正道 坪井
Original Assignee
有限会社近藤勝設計事務所
フジ化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社近藤勝設計事務所, フジ化成工業株式会社 filed Critical 有限会社近藤勝設計事務所
Priority to JP2001222461A priority Critical patent/JP3898005B2/en
Publication of JP2003035024A publication Critical patent/JP2003035024A/en
Application granted granted Critical
Publication of JP3898005B2 publication Critical patent/JP3898005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、不燃性断熱材を用いる外断熱の外壁仕上施工方法に関し、更に詳しくは施工に際して煩雑な工程が簡略化された廉価で耐火性、耐候性の高い外壁を提供できる耐火外断熱外壁仕上工法に関するものである。
【0002】
【従来の技術】
建築の断熱には内断熱工法と外断熱工法とが有り、特にコンクリート建築については内断熱より外断熱の方が室内の結露防止による衛生面、建築躯体保護、長寿命化、省エネルギーの点で優れていることは周知であり、最近では外断熱が主流となりつつあるが、都市計画法の防火地域での建築の外壁外側に使用する材料は、不燃性か耐火性であることが建築基準法で要求されている。
図2に、従来の外断熱工法による外壁の断面図を示す。
【0003】
従来、不燃性、耐火性のある断熱材5には、ガラス繊維系、ロックウール系、発泡ガラスがあり、これらを用いて外断熱を施す。この際には先ず、建築躯体外壁1の外側面に断熱材5の厚みと通気層7を確保する寸法と仕上下地8と仕上材3の重量に耐える支持金物6、支持ボルト4を必要数取り付ける。すなわち、該断熱材5を、該支持ボルト4が貫通した状態で外壁面に貼り付けてから、該支持ボルト4に支持金属の桟木6等(チャンネル6)を取り付け、該桟木に通気層7を設け、仕上パネル8を取り付ける。またはタイル仕上とするならば、タイル3で仕上した乾式タイルパネル8を取り付ける。前記工法に併せて、断熱材5に発泡ガラスを使用した場合、支持ボルト4が貫通した状態で、該断熱材5を外壁面に貼り付け、ボルトに金網やガラスメッシュ等を締結、または熔接し、モルタルを塗り、該断熱材に負荷負担をかけないパネル状の仕上下地8を構成してからタイル3等の仕上を施すこともある。
【0004】
これまで外断熱工法で、該断熱材に直接仕上としてのタイル貼り、モルタル塗りが施されなかったのは、ガラス繊維系断熱材やロックウール系断熱材には仕上材を支持するだけの接着力と支持力が無いからである。
また、発泡ガラス断熱材に直接タイル等を貼る工法を採ると、該断熱材の外側に貼られたタイルは、断熱材に直接貼られているため、下地や躯体コンクリートとの間の熱移動が行われず、その温度は日射を受けると急激に上昇し高温となりやすく、降雨時には急速に下降するというように、気象変化に影響されやすくその温度変化は急激で温度差も大きい。該断熱材は可撓性が極めて小さいので、気温や日射に因る仕上タイル等の温度変化に伴う伸縮に、接着面で該断熱材はその伸縮に追従出来ず、界面破壊が発生し、やがてタイル等の剥離、脱落につながると懸念されるからである。さらに、外部から衝撃が加わると該断熱材とタイル等の接着面での剥離破壊ではなく、亀裂した線に囲まれた部分がドーム状に仕上タイル等とともに、削り取られるような形態で脱落し、外壁仕上の補修は該断熱材の補修と同時に困難となっていた。
【0005】
上記のことから、従来の外断熱工法に於いて、断熱材に直接仕上タイル等を施す工法は採用されず、前記に示すように外壁躯体に貼られた断熱材の外側に、更に金物やボルトで支持された外壁仕上下地を構成してから、仕上が施された。このような工法では工事工程が煩雑になり、資材も必要となり、結果建設費が嵩むので、コンクリート建築での断熱方法で、最良と周知されている、外断熱の普及をはばんできた。また、タイル仕上とする前記工法では、タイル3で仕上した乾式タイルパネル8自体が剥離,脱落すると、人命に係わるような大事故を生じる危険性もあり、複雑な工程と共に安全性の観点からも、より簡易な構造による外壁仕上工法が待望されていた。
【0006】
外断熱工法は、コンクリート建築にとって、冬期における室内結露防止に極めて有効であり、構造体に日射や気温の変化による熱ストレスを直接及ぼさないのでコンクリートの構造クラックの発生が抑えられることは周知である。また構造体外部を断熱材で覆うことは、外部からのコンクリートにとって有害な雨水や有害ガス等のコンクリート内部への浸入をより防ぐこととなり、建築の構造体の寿命を更に延ばす効果もある。また、コンクリート構造体外部を断熱材で覆う外断熱は、室内側に断熱層を設けないので、室内の空気が、比較的大きい熱容量を持つコンクリート躯体に、直接、熱的に接触することになる。このことは、コンクリート躯体の温度より室内の気温が低くなったり高くなれば、該躯体と室内空気間で熱移動が起こり、室内気温をより安定させ、冷暖房の最大負荷を軽減させるので、省エネルギーにも効果がある。
【0007】
該外断熱仕上工法の断熱材として必要とされる条件、性質は
▲1▼ 屋根や外壁外側といった部位で用いられるので、雨水、有害ガス等の浸入、含水性、経年による断熱性能の劣化が極めて小さい、独立した気泡体で構成されていること。
▲2▼ タイルの直貼り、モルタル等の直塗り、コンクリート打ち込み工法が可能な形状維持性と耐圧性が有ること。
▲3▼ 建築基準法による耐火性、不燃性を持つこと。
▲4▼ タイルの直貼り、モルタル等の直塗りをしても、温度変化等で剥離や脱落現象が起きないような可撓性が有ること。
断熱材が上記▲2▼の形状維持性と上記▲3▼の耐火性と上記▲4▼の可撓性を併せ持つことは、外断熱外壁仕上のための特別な下地を不必要として、外断熱工事費のローコスト化が図れ、外断熱建築の普及につながるため重要である。
【0008】
【発明が解決しようとする課題】
従来、不燃、耐火性のある外断熱工法においては、不燃断熱材として形状維持性の低いガラス繊維系、ロックウール系と、可撓性が極めて小さく脆い発泡ガラスが用いられてきたので、前記したように躯体外壁から支持金物や支持ボルト等を介して、該断熱材に力がかからないよう該断熱材類を挟む形で、仕上のための下地を構成してからタイル貼り等の仕上を施すという煩雑な工程を踏み、施工中は該断熱材の破損や雨水からの保護、すなわち養生が必要となり、それらの分、工事期間が必要で、工事費も嵩んでいた。
本発明は、かかる従来の耐火外断熱の普及を阻んできた問題点を解消するためになされたものであり、その目的とするところは、可撓性を有する不燃性断熱材に直接タイル等の仕上を施すことで、仕上のための下地工程を簡略化し、工事期間の短縮、工事費の低廉化が計れる耐火外断熱仕上工法を提供することにある。
【0009】
【課題を解決するための手段】
本発明では、可撓性のある板状の該不燃性断熱材をコンクリート型枠内の必要面に予め配置して、コンクリートの打設を行いコンクリートと一体化させる打ち込み工法等により、強固な外壁仕上基盤を構成し、該断熱材の表面に直接タイル用接着モルタルを介してタイル仕上を施す。あるいは該断熱材の表面にモルタル等を直塗りする。したがって、外壁仕上のための支持金物、支持ボルト、下地パネル等の部材や工事を必要とせず、従来の工法に比べ、廉価で工期も短縮できる。
【0010】
すなわち、本発明は、コンクリート打込み工法で、コンクリートと一体化させた該不燃断熱材、又は、既存の外壁に接着剤で該不燃断熱材を貼り付けて一体化した、可撓性を有する板状の不燃断熱材を用いる、外断熱による外壁仕上工法であって、該不燃断熱材の表面に直接外壁仕上材を貼り付け、もしくは塗布する外壁仕上工程を行うことを特徴とする外壁仕上施工方法を提供するものである。ここで、前記不燃性断熱材は、独立気泡の発泡体で構成されていることが必要であり、また、雨水等が侵入しても含水せず、吸水性が極めて小さいことが必要である。前記外壁仕上工程において、具体的には不燃性断熱材の表面に直接仕上タイルを接着モルタル等で貼り付けること、あるいは、不燃性断熱材の表面にモルタルを直塗りすることができる。
【0011】
前記打込み工法による外壁仕上基盤形成においては、通常、一対の型枠によって形成される空間の内側に、不燃性断熱材を型枠の一方(外壁の外面を構成する側)に密着させた状態に配置してから、コンクリートを流し込む。外壁仕上基盤形成では、コンクリートを硬化させた後、型枠を外すことにより、不燃性断熱材とコンクリートとが接着して一体化した外壁仕上基盤、または既存の外壁面に接着剤で該不燃断熱材を貼り付けて一体化した外壁仕上基盤を形成する。この施工方法によれば、タイル等の外壁仕上部材を断熱材へ直接取り付けることが可能になるので、下地工程などが一切不要になり、材料的にも時間的にも有利に、また熱変化や経時変化にも強い強固な外壁が得られる。
このように、可撓性を有する該不燃性断熱材の粘り強い性質によって、直貼りタイルあるいはモルタル自体のひび割れを防止し、該外壁仕上部材の剥離脱落等を効果的に防止できる。
【0012】
本発明では、可撓性のある不燃断熱材、例えば炭酸カルシウム系発泡断熱材(商品名:ロックセルボード)等に、セメント、砂、水で構成されるモルタル等を接着剤として用い、必要に応じて例えば梅彦(株)UMボンドフィラー等を使用して、直接タイル等の外壁仕上部材を貼り付ける、あるいはモルタル直塗りする。本発明によれば、経時変化による躯体コンクリートの収縮などにより、躯体にヒビ割れが生じても、可撓性がある断熱材がその変化を吸収するため、仕上面まで亀裂が伝達されず、よってタイル等の外壁仕上部材の剥落脱落などが起きにくい。これにより、断熱工法の理想とされている外断熱工法を、断熱材に直接タイルを貼り付ける、またはモルタルを直接塗るという簡単な施工方法で行うことが可能となり、建造物の外壁を施工することができる。
以下、本発明の実施の形態について、説明する。
【0013】
【発明の実施の形態】
本発明は、可撓性のある板状不燃断熱材によって形成された外壁基盤表面に、タイルなどの外壁仕上材を直接貼り付けもしくは塗布する外壁仕上施工方法である。外壁仕上基盤は、板状の該不燃性断熱材をコンクリート型枠内の必要面に予め配置して、コンクリートの打設を行いコンクリートと一体化させる打ち込み工法によって、または既存の外壁に接着剤を全面に塗布して該不燃断熱材を貼り付けて一体化することによって、形成することができる。可撓性のある板状不燃性断熱材を用いることにより、断熱材に直接外壁仕上部材を施した耐火性のある外断熱構造とするものであり、省エネルギー化を図ることができる。
【0014】
本発明には可撓性のある不燃性断熱材として、例えば炭酸カルシウム系発泡断熱板が好適に用いられる。成分ついては特に限定されないが、例えば炭酸カルシウムを主成分とした無機質充填剤55〜75重量部、有機系バインダー樹脂5〜10重量部、水酸化マグネシウム20〜30重量部、および適量の発泡剤を混合した混合物を発泡させてなる炭酸カルシウム系発泡断熱板が適している。
該発泡断熱板の大きさは任意であるが、厚さは通常5mm〜50mm程度、好ましくは25mm〜50mmである。密度は通常80〜100kg/m3程度であり、圧縮強度は通常1.5〜2.0kgf/cm2程度である。
該発泡断熱板の製造方法としても特に限定されないが、例えば以下のような方法が挙げられる。炭酸カルシウム等の無機充填剤と有機系バインダー樹脂と水酸化マグネシウムと発泡剤とを加え、さらに一次可塑剤を加えて混練する。得られたペースト状の混合物を高圧プレスの金型内において加熱し、発泡剤を分解して気化するガスで発泡させる。該発泡体から一次可塑剤を除去して、本発明の不燃性断熱材が得られる。
以下、このような断熱材を用いる本発明の仕上施工方法について、図1を用いて詳細に説明する。
【0015】
本発明の仕上施工を行う場合、板状の不燃断熱材2をコンクリート型枠内の必要面に予め配置して、コンクリート1の打設を行いコンクリートと一体化させる打ち込み工法等によって、または既存の外壁に接着剤を全面に塗布して該不燃断熱材を貼り付けて一体化することによって、強固な外壁仕上基盤を形成しておく。該打込み工程による外壁基盤形成においては、通常、一対の型枠によって形成される空間の内側に、不燃性断熱材2を型枠の一方(外壁外面を構成する側)に密着させた状態に配置してから、コンクリート1を流し込む。流し込んだコンクリートは硬化のため、通常1日〜1週間、好ましくは3〜4日間、常温で放置する。外壁基盤形成では、コンクリート1を硬化させた後、一対の型枠を外すことにより、不燃性断熱材2とコンクリート1とが接着して一体化した外壁仕上基盤を形成する。可撓性のある該不燃断熱材は、コンクリートとの接着性に優れているので剥離等の問題は生じなく、打ち込み工法に極めて適している。
【0016】
次いで、本発明の仕上施工方法は、外壁仕上工程として、不燃性断熱材の表面にモルタル等の接着剤を用いてタイル等の外壁仕上部材を直接貼り付けるか、あるいは、直塗りする工法である。
従来法では、図2に示すように、ガラス繊維系等の断熱材5を用いて外断熱を施した後、建築躯体外壁外側面に断熱厚と通気層7を確保する寸法と仕上下地8と仕上材3の重量に耐える支持金物、支持ボルト4を必要数取り付けていた。該断熱材5を、該金物ボルト類4が貫通した状態で外壁面に貼り付けてから、該金物、ボルトに金属の桟木等(チャンネル6)を取り付け、下地を構成し、通気層7を設け、仕上パネル8を取り付け、その上にタイル3を施していた。
本発明では、従来法の複雑な工程は不要となり、不燃性断熱材の表面に直接外壁部材を貼り付けることができる。接着剤としては特に限定されるものではないが、通常、セメント、砂、水の混合されたモルタルや、必要に応じて樹脂が混入された樹脂モルタルなどが用いられる。また、この外壁仕上工程においては、不燃性断熱材の表面にモルタルを直塗りすることもできる。
【0017】
なお、外壁仕上材として用いるタイルとしては、例えばコンクリート圧着用タイルなどが挙げられる。また、外壁仕上材として用いるモルタルとしては、セメント:砂が1:1〜3の範囲、特に好ましくは1:1のものを例示できる。水の重量比は特に限定されないが、通常の堅練モルタルの範囲20〜40重量%が好適である。
このように本実施の形態によれば、不燃性断熱材の上に直接に外壁仕上材を貼ることができるとともに、熱変化や経時変化にも強い外壁を提供できる。特に、耐火性および不燃性を有するとともに、仕上のための特別な下地を不必要とし、タイルの直貼りやモルタルの直塗りが可能で剥離脱落がない。
【0018】
【発明の効果】
本発明によれば、断熱工法の理想とされている外断熱工法を、複雑な工程を経ることなく材料的にも時間的にも有利に、外断熱用の断熱材に直接タイル等を貼り付けるという簡単な方法で、建物の外壁を断熱性と耐火性のある仕上にすることができる。
また、本発明の仕上施工方法による外壁は、可撓性のある断熱材を用いているので、コンクリート躯体が長期間経過して収縮などの経時変化があった場合にも、断熱材がその変位を吸収するため、仕上表面に躯体亀裂(ボディークラック)が及ばず、外壁仕上材の剥落などが生じない。
【図面の簡単な説明】
【図1】本発明の外壁仕上施工方法を行った際の外壁断面図を示すものである。
【図2】従来の外断熱工法による外壁の断面図を示すものである。
【符号の説明】
1 コンクリート
2 可撓性不燃断熱材
3 タイル(外壁仕上材)
4 支持ボルト
5 耐火、耐熱断熱材(フォームグラス、グラスウール等)
6 チャンネル
7 通気層
8 仕上下地
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for finishing an outer wall of an outer heat insulation using a non-combustible heat insulating material, and more specifically, a fire-resistant outer heat insulating outer wall finish capable of providing an inexpensive, fire-resistant and weather-resistant outer wall with simplified complicated processes. It relates to the construction method.
[0002]
[Prior art]
There are two types of heat insulation for buildings: the inner heat insulation method and the outer heat insulation method. Especially for concrete buildings, the outer heat insulation is better than the inner heat insulation in terms of hygiene, protection of the building frame, longer life, and energy saving. Recently, external insulation is becoming the mainstream, but the building standards law states that the materials used on the outer walls of buildings in fire-prevention areas under the City Planning Act are non-flammable or fire-resistant. It is requested.
In FIG. 2, sectional drawing of the outer wall by the conventional outer heat insulation construction method is shown.
[0003]
Conventionally, the non-flammable and fire-resistant heat insulating material 5 includes glass fiber type, rock wool type, and foamed glass, and these are used for external heat insulation. In this case, first, the necessary number of supporting hardware 6 and supporting bolts 4 that can withstand the thickness of the heat insulating material 5 and the size of the ventilation layer 7 and the weight of the finishing base 8 and the finishing material 3 are attached to the outer surface of the outer wall 1 of the building frame. . That is, the heat insulating material 5 is attached to the outer wall surface with the support bolt 4 penetrating, and then a support metal pier 6 or the like (channel 6) is attached to the support bolt 4, and the ventilation layer 7 is attached to the pier. Install and attach the finishing panel 8. Alternatively, if tile finishing is used, the dry tile panel 8 finished with the tile 3 is attached. When foamed glass is used for the heat insulating material 5 in conjunction with the above method, the heat insulating material 5 is pasted on the outer wall surface with the support bolt 4 penetrating, and a wire mesh or a glass mesh is fastened or welded to the bolt. In some cases, the tile 3 or the like is finished after the mortar is applied to form a panel-like finish base 8 that does not place a load on the heat insulating material.
[0004]
Tile and mortar coating has not been applied directly to the heat insulating material by the outer heat insulation method until now, because the glass fiber heat insulating material and the rock wool heat insulating material have enough adhesive strength to support the finishing material. This is because there is no support.
In addition, when a method of sticking tiles etc. directly to the foamed glass heat insulating material is adopted, since the tile attached to the outside of the heat insulating material is directly attached to the heat insulating material, there is no heat transfer between the base and the concrete frame. It is not carried out, and its temperature rises rapidly when exposed to solar radiation and tends to become high temperature. When it rains, the temperature changes easily, and the temperature change is abrupt and the temperature difference is large. Since the heat insulating material is extremely low in flexibility, the heat insulating material cannot follow the expansion and contraction due to the temperature change of the finished tile or the like due to the air temperature or solar radiation, and the interface breakage occurs before long. This is because there is a concern that it may lead to peeling and dropping of tiles. Furthermore, when an impact is applied from the outside, the part surrounded by the cracked line is dropped in a form that is scraped off with the finished tile etc. in a dome shape, instead of peeling failure at the adhesive surface such as the heat insulating material, Repair of finishing the outer wall was difficult at the same time as repairing the heat insulating material.
[0005]
From the above, in the conventional outer heat insulation method, the method of applying finishing tiles etc. directly to the heat insulating material is not adopted, and as shown above, further outside the heat insulating material attached to the outer wall casing, hardware and bolts After finishing the outer wall finishing foundation supported by, finishing was applied. Such a construction method complicates the construction process, requires materials, and results in an increase in construction costs. Therefore, the heat insulation method in concrete construction has been widely spread and the outer insulation, which is well known, has been popularized. Further, in the above-mentioned method of finishing with tiles, if the dry tile panel 8 finished with the tile 3 is peeled off or dropped off, there is a risk of causing a serious accident related to human life. From the viewpoint of safety as well as complicated processes. The exterior wall finishing method with a simpler structure has been awaited.
[0006]
It is well known that the exterior insulation method is extremely effective for concrete buildings to prevent indoor dew condensation in the winter, and does not directly apply thermal stress to the structure due to solar radiation or changes in temperature, so that the occurrence of structural cracks in the concrete can be suppressed. . Further, covering the outside of the structure with a heat insulating material further prevents the rainwater and harmful gases that are harmful to the concrete from entering the inside of the concrete, and has the effect of further extending the life of the building structure. In addition, the outer heat insulation covering the exterior of the concrete structure with a heat insulating material does not provide a heat insulation layer on the indoor side, so the indoor air is in direct thermal contact with the concrete frame having a relatively large heat capacity. . This means that if the indoor air temperature becomes lower or higher than the temperature of the concrete housing, heat transfer occurs between the housing and indoor air, making the indoor air temperature more stable and reducing the maximum load of air conditioning. Is also effective.
[0007]
The conditions and properties required for the heat insulation of the outer heat insulation finishing method are as follows: (1) Since it is used in areas such as the roof and outside of the outer wall, it has extremely deteriorated heat insulation performance due to infiltration of rainwater and harmful gases, moisture content, and aging. Consists of small, independent bubbles.
(2) It must have shape maintenance and pressure resistance that allow direct application of tiles, direct application of mortar, etc., and concrete placement.
(3) Have fire resistance and nonflammability according to the Building Standard Law.
(4) Flexibility to prevent peeling or dropping off due to temperature change, etc. even when tiles are directly attached or mortar is applied directly.
The heat insulating material having the shape maintenance property of (2) above, the fire resistance of (3) above and the flexibility of (4) above, eliminates the need for a special foundation for finishing the outer heat insulating outer wall, This is important because it can reduce the construction cost and lead to the spread of external insulation architecture.
[0008]
[Problems to be solved by the invention]
Conventionally, in the non-combustible and fire-resistant outer heat insulating method, glass fiber system and rock wool system having low shape maintenance property and foam glass having extremely small flexibility have been used as the non-combustible heat insulating material. In this way, the heat insulation is sandwiched from the outer wall of the housing through support hardware, support bolts, etc. so that no force is applied to the heat insulation. It took a complicated process, and during the construction, it was necessary to protect the heat insulating material from damage and rainwater, that is, to cure it, which required a construction period, and the construction cost was high.
The present invention has been made in order to solve the problems that have prevented the spread of the conventional heat-resistant outside heat insulation, and the object of the present invention is to directly apply a tile or the like to a flexible non-combustible heat insulating material. By finishing, it is intended to provide a heat-resistant outside heat insulation finishing method that simplifies the foundation process for finishing, shortens the construction period, and reduces the construction cost.
[0009]
[Means for Solving the Problems]
In the present invention, a strong outer wall is formed by a placement method or the like in which the flexible plate-like incombustible heat insulating material is arranged in advance on a necessary surface in a concrete mold, and the concrete is placed and integrated with the concrete. A finishing base is formed, and the tile finish is applied directly to the surface of the heat insulating material through a tile adhesive mortar. Alternatively, mortar or the like is directly applied to the surface of the heat insulating material. Therefore, members such as support hardware, support bolts, and base panel for finishing the outer wall, and construction work are not required, and the cost can be reduced and the construction period can be shortened as compared with the conventional construction method.
[0010]
That is, the present invention is a flexible plate-like material in which the non-combustible heat insulating material integrated with the concrete by the concrete driving method, or the non-combustible heat insulating material attached to the existing outer wall with an adhesive and integrated. A non-combustible heat insulating material, and an external wall finishing method by external heat insulation, characterized in that an external wall finishing process is performed in which an external wall finishing material is directly applied or applied to the surface of the non-combustible heat insulating material. It is to provide. Here, the non-combustible heat insulating material needs to be composed of a closed-cell foam, and even if rainwater or the like enters, it does not contain water and needs to have extremely low water absorption. In the outer wall finishing step, specifically, the finishing tile can be directly attached to the surface of the noncombustible heat insulating material with an adhesive mortar or the like, or the surface of the noncombustible heat insulating material can be directly applied.
[0011]
In the outer wall finishing base formation by the driving method, the incombustible heat insulating material is usually in close contact with one side of the mold (the side constituting the outer surface of the outer wall) inside the space formed by the pair of molds. After placement, pour concrete. In the formation of an outer wall finish base, after the concrete is hardened, the formwork is removed to bond the non-combustible heat insulating material and the concrete together, or the non-combustible heat insulation with an adhesive on the existing outer wall surface. Forming an integrated outer wall finish by pasting materials together. According to this construction method, since it is possible to directly attach an outer wall finishing member such as a tile to a heat insulating material, there is no need for a base process, which is advantageous in terms of material and time, and heat changes and A strong outer wall that is resistant to changes over time can be obtained.
Thus, the tenacity of the flexible non-combustible heat insulating material can prevent cracking of the directly attached tile or the mortar itself, and can effectively prevent the outer wall finishing member from peeling off.
[0012]
In the present invention, a flexible non-combustible heat insulating material, for example, calcium carbonate-based foam heat insulating material (trade name: Rock Cell Board), etc. is used as a mortar composed of cement, sand, water as an adhesive. In response to this, for example, Umehiko Co., Ltd. UM bond filler or the like is used, and an outer wall finishing member such as a tile is directly attached or mortar is directly applied. According to the present invention, even if cracking occurs in the casing due to shrinkage of the casing concrete due to changes over time, the flexible heat insulating material absorbs the change, so the crack is not transmitted to the finished surface, It is difficult for the outer wall finishing members such as tiles to fall off. This makes it possible to carry out the exterior insulation method, which is considered the ideal insulation method, with a simple construction method in which tiles are directly attached to the insulation or mortar is applied directly, and the outer wall of the building is constructed. Can do.
Hereinafter, embodiments of the present invention will be described.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is an outer wall finishing construction method in which an outer wall finishing material such as a tile is directly affixed or applied to the surface of an outer wall base formed by a flexible plate-like incombustible heat insulating material. For the outer wall finishing base, the plate-like incombustible heat insulating material is placed in advance on the required surface in the concrete formwork, and the concrete is placed and integrated with the concrete, or an adhesive is applied to the existing outer wall. It can form by apply | coating to the whole surface, sticking this nonflammable heat insulating material, and integrating. By using a flexible plate-like incombustible heat insulating material, a heat-resistant outer heat insulating structure in which an outer wall finishing member is directly applied to the heat insulating material is provided, and energy saving can be achieved.
[0014]
In the present invention, for example, a calcium carbonate foam heat insulating plate is suitably used as a flexible non-combustible heat insulating material. Although it does not specifically limit about an ingredient, For example, the inorganic filler 55-75 weight part which has calcium carbonate as a main component, the organic type binder resin 5-10 weight part, magnesium hydroxide 20-30 weight part, and a suitable quantity of foaming agents are mixed. A calcium carbonate-based foam insulation board obtained by foaming the prepared mixture is suitable.
The size of the foam heat insulating plate is arbitrary, but the thickness is usually about 5 mm to 50 mm, preferably 25 mm to 50 mm. The density is usually about 80 to 100 kg / m 3 and the compressive strength is usually about 1.5 to 2.0 kgf / cm 2 .
Although it does not specifically limit as a manufacturing method of this foam heat insulating board, For example, the following methods are mentioned. An inorganic filler such as calcium carbonate, an organic binder resin, magnesium hydroxide and a foaming agent are added, and a primary plasticizer is further added and kneaded. The obtained paste-like mixture is heated in a high-pressure press mold, and foamed with a gas that decomposes and vaporizes the foaming agent. The primary plasticizer is removed from the foam to obtain the nonflammable heat insulating material of the present invention.
Hereinafter, the finishing construction method of the present invention using such a heat insulating material will be described in detail with reference to FIG.
[0015]
When finishing construction of the present invention is performed, a plate-like incombustible heat insulating material 2 is placed in advance on a necessary surface in a concrete formwork, and the concrete 1 is placed and integrated with the concrete or by an existing construction method. A strong outer wall finishing base is formed by applying an adhesive to the entire outer wall and pasting and integrating the non-combustible heat insulating material. In forming the outer wall base by the driving step, the nonflammable heat insulating material 2 is usually placed in close contact with one side of the mold (the side forming the outer surface of the outer wall) inside the space formed by the pair of molds. Then pour concrete 1 into it. The poured concrete is left to stand at normal temperature for 1 to 1 week, preferably 3 to 4 days for hardening. In the formation of the outer wall base, after the concrete 1 is cured, the pair of molds are removed to form an outer wall finishing base in which the non-combustible heat insulating material 2 and the concrete 1 are bonded and integrated. The flexible non-combustible heat insulating material is excellent in adhesiveness with concrete, and thus does not cause a problem such as peeling, and is extremely suitable for a driving method.
[0016]
Next, the finishing construction method of the present invention is a construction method in which an outer wall finishing member such as a tile is directly pasted or directly applied to the surface of the non-combustible heat insulating material as an outer wall finishing step using an adhesive such as mortar. .
In the conventional method, as shown in FIG. 2, after heat insulation using a heat insulating material 5 such as a glass fiber system, a size and a finishing base 8 for securing a heat insulation thickness and a ventilation layer 7 on the outer surface of the outer wall of the building frame. A necessary number of supporting hardware and supporting bolts 4 that can withstand the weight of the finishing material 3 were attached. The heat insulating material 5 is affixed to the outer wall surface with the metal bolts 4 penetrated, and then a metal pedestal or the like (channel 6) is attached to the metal hardware and bolts to form a foundation and a ventilation layer 7 is provided. The finishing panel 8 was attached, and the tile 3 was applied thereon.
In this invention, the complicated process of the conventional method becomes unnecessary and an outer wall member can be directly affixed on the surface of a nonflammable heat insulating material. Although it does not specifically limit as an adhesive agent, Usually, the mortar with which cement, sand, and water were mixed, the resin mortar with which resin was mixed as needed, etc. are used. Moreover, in this outer wall finishing process, mortar can also be directly applied to the surface of a nonflammable heat insulating material.
[0017]
In addition, as a tile used as an outer wall finishing material, a concrete crimping tile etc. are mentioned, for example. Moreover, as a mortar used as an outer wall finishing material, the range of cement: sand is 1: 1-3, Most preferably, the thing of 1: 1 can be illustrated. The weight ratio of water is not particularly limited, but a range of 20 to 40% by weight of a normal mortar is preferable.
As described above, according to the present embodiment, the outer wall finishing material can be directly pasted on the non-combustible heat insulating material, and an outer wall that is resistant to thermal changes and changes with time can be provided. In particular, it has fire resistance and non-flammability, does not require a special groundwork for finishing, can be directly applied to tiles or directly applied to mortar, and does not come off.
[0018]
【The invention's effect】
According to the present invention, the outer heat insulation method, which is considered to be an ideal heat insulation method, is applied to the heat insulation material for outer heat insulation directly, without having to go through complicated steps. With this simple method, the outer wall of the building can be finished with heat insulation and fire resistance.
In addition, since the outer wall by the finish construction method of the present invention uses a flexible heat insulating material, even when the concrete frame has changed over time such as shrinkage after a long period of time, the heat insulating material is displaced. Therefore, the body surface is not cracked (body crack) and the outer wall finishing material is not peeled off.
[Brief description of the drawings]
FIG. 1 shows a sectional view of an outer wall when the outer wall finishing construction method of the present invention is performed.
FIG. 2 is a sectional view of an outer wall by a conventional outer heat insulation method.
[Explanation of symbols]
1 Concrete 2 Flexible Incombustible Insulating Material 3 Tile (Outer Wall Finishing Material)
4 Support bolt 5 Fireproof, heat-resistant insulation (foam glass, glass wool, etc.)
6 Channel 7 Ventilation layer 8 Finish base

Claims (3)

可撓性を有する板状の不燃性断熱材を用いる、外断熱による外壁仕上工法であって、
該不燃性断熱材が、独立した発泡体で構成され、建築基準法で要求される不燃性を持ち、
該不燃性断熱材の表面に、セメント、砂、水の混合されたモルタルを接着剤として用い、直接外壁仕上材を貼り付けする外壁仕上工程を行う
ことを特徴とする外壁仕上施工方法。
Using a plate-like non-combustible heat insulating material having flexibility, an outer wall finishing method by external heat insulation,
The non-combustible heat insulating material is composed of an independent foam and has non-combustibility required by the Building Standards Act,
An outer wall finishing construction method comprising performing an outer wall finishing step in which a mortar mixed with cement, sand and water is used as an adhesive on the surface of the non-combustible heat insulating material, and an outer wall finishing material is directly attached.
前記外壁仕上材が、タイルである請求項1に記載の外壁仕上施工方法。  The outer wall finishing construction method according to claim 1, wherein the outer wall finishing material is a tile. 前記不燃性断熱材が、可塑剤を除去したものである請求項に記載の外壁仕上施工方法。The outer wall finishing construction method according to claim 1 , wherein the non-combustible heat insulating material is obtained by removing a plasticizer.
JP2001222461A 2001-07-24 2001-07-24 Fire-resistant outside insulation exterior wall finishing method Expired - Fee Related JP3898005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222461A JP3898005B2 (en) 2001-07-24 2001-07-24 Fire-resistant outside insulation exterior wall finishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222461A JP3898005B2 (en) 2001-07-24 2001-07-24 Fire-resistant outside insulation exterior wall finishing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006281322A Division JP2007002667A (en) 2006-10-16 2006-10-16 Construction method for finishing fire resistant external heat insulating outer wall

Publications (2)

Publication Number Publication Date
JP2003035024A JP2003035024A (en) 2003-02-07
JP3898005B2 true JP3898005B2 (en) 2007-03-28

Family

ID=19055939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222461A Expired - Fee Related JP3898005B2 (en) 2001-07-24 2001-07-24 Fire-resistant outside insulation exterior wall finishing method

Country Status (1)

Country Link
JP (1) JP3898005B2 (en)

Also Published As

Publication number Publication date
JP2003035024A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
CN103174226B (en) All with the external heat insulating wall of the inorganic modified flame-retardant foam plate of mechanical anchor reinforcement
CA2885829C (en) High performance, lightweight precast composite insulated concrete panels and high energy-efficient structures and methods of making same
JP4057361B2 (en) Fireproof insulation board
CN205399729U (en) Integration system is decorated to AB assembly type structure energy -saving insulation wall body and wall body
RU2651850C1 (en) Thermal insulating composite facade panel, method of its preparation and use of thermal insulating composite facade panel
CN111962760A (en) Anti-knock and anti-impact composite wallboard
JP2009299296A (en) Fire-resistive covering structure, mounting bracket for alc panel, and alc panel fixing method
WO2019237760A1 (en) Energy-saving building system using porous silicate material for thermal insulation
KR101863704B1 (en) A composite water-proof structure
JP3898005B2 (en) Fire-resistant outside insulation exterior wall finishing method
JP2007002667A (en) Construction method for finishing fire resistant external heat insulating outer wall
CN107933019A (en) A kind of inorganic composite aluminium alloy facing fireproof heated board and its manufacture method
CN209907671U (en) Prefabricated assembled CCA board grout wall body
CN107119813A (en) AB assembled architectures energy-saving heat-insulating wall and wall body decoration integral system
JP3628942B2 (en) Segment of fireproof lining body for tunnel, fireproof lining body for tunnel, and method for forming segment of fireproof lining body for tunnel
JP3224338U (en) Mortar structure having insulative function and incombustible core material
US20040035081A1 (en) Autoclaved aerated concrete fire sentry encasements
CN209907662U (en) Building local outer enclosing structure
CN219411337U (en) Indoor perlite fireproof sound-insulation coating structure
CN219491508U (en) Heat-insulating fireproof roof structure
CN219672103U (en) Cast-in-situ disassembly-free heat preservation template and energy-saving building structure
JP2004339712A (en) Fire resistant finishing structure and fire resistant finishing construction method
CN215442650U (en) Composite energy-saving thermal shock-resistant unburned brick
KR102625133B1 (en) Reinforcement structure with improved fire resistance and Construction method thereof
JP2001295387A (en) Outside heat insulation structural body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060426

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

R150 Certificate of patent or registration of utility model

Ref document number: 3898005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees