JP3897237B2 - Three-layer biodegradable multifilm - Google Patents

Three-layer biodegradable multifilm Download PDF

Info

Publication number
JP3897237B2
JP3897237B2 JP2001399120A JP2001399120A JP3897237B2 JP 3897237 B2 JP3897237 B2 JP 3897237B2 JP 2001399120 A JP2001399120 A JP 2001399120A JP 2001399120 A JP2001399120 A JP 2001399120A JP 3897237 B2 JP3897237 B2 JP 3897237B2
Authority
JP
Japan
Prior art keywords
aliphatic
weight
resin
polyester resin
dicarboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001399120A
Other languages
Japanese (ja)
Other versions
JP2003191418A (en
Inventor
博文 奥野
昭一 佐谷
晃 西片
英明 橋本
英隆 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CI Kasei Co Ltd
Original Assignee
CI Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CI Kasei Co Ltd filed Critical CI Kasei Co Ltd
Priority to JP2001399120A priority Critical patent/JP3897237B2/en
Publication of JP2003191418A publication Critical patent/JP2003191418A/en
Application granted granted Critical
Publication of JP3897237B2 publication Critical patent/JP3897237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は生分解性マルチフィルムに関するものである。さらに詳しくは、特定の生分解性樹脂を配合した生分解性樹脂組成物を特定の層構成としたことにより、引裂強度が高く、インフレーション成形時および/または成型後に亀裂が生じにくい三層生分解性マルチフィルムに関するものである。
【0002】
【従来の技術】
従来、多くの野菜、花、果樹等の栽培では、土の跳ね返りによる病害感染の防除、肥料養分の溶脱防止、雑草防除、地温調節、土壌水分の蒸発抑制などの目的で、マルチフィルムが用いられ、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル等の汎用プラスチックからなるフィルムが広く使用されていた。使用後のマルチフィルムは、畑地から取り除かれ、回収されてリサイクルされるか、埋め立てまたは焼却により廃棄処理される。
【0003】
しかしながら、このようなマルチフィルムは、大量に使用されるため、回収するのは容易ではない。そこで、回収の労力を省略するため、生分解性樹脂からなるマルチフィルムが提案されている。そのような生分解性樹脂としては、従来デンプン系、脂肪族ポリエステル系などが知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、デンプン系生分解性樹脂からなる組成物を用いた場合、インフレーション成形は困難である。また、脂肪族ポリエステル系生分解性樹脂からなる組成物を用いればインフレーション成形は可能であるが、成形したフィルムはインフレーション成形特有の分子の縦配向が顕著に見られ、成形時および/または成形後に配向方向へ亀裂が発生し易いという問題が生じていた。
【0005】
特に、着色フィルムとした場合、この現象が頻繁に見られるため、一般的に黒色、銀色、白色などの着色フィルムの形態で提供される、マルチフィルムの製造において重大な問題となっていた。
【0006】
本発明は、この点に鑑みてなされたものであり、特定の生分解性樹脂を配合した生分解性樹脂組成物を特定の層構成としたことにより、引裂強度が高く、インフレーション成形時および/または成型後に亀裂が生じにくい三層生分解性マルチフィルムを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の三層生分解性マルチフィルムは、脂肪族ジカルボン酸および芳香族ジカルボン酸よりなるジカルボン酸成分と脂肪族ジオールよりなるジオール成分とを縮合してなる脂肪族芳香族ポリエステルからなる融点105〜115℃の脂肪族芳香族ポリエステル系樹脂(A)1〜14重量%および脂肪族ジカルボン酸よりなるジカルボン酸成分と脂肪族ジオールからなるジオール成分とを縮合してなる脂肪族ポリエステルからなる融点110〜120℃の脂肪族ポリエステル系樹脂(B)86〜99重量%の樹脂成分100重量部に対して、酸化チタン15〜50重量部を配合した生分解性樹脂組成物からなる白色表面層と、上記脂肪族芳香族ポリエステル系樹脂(A)50〜90重量%および上記脂肪族ポリエステル系樹脂(B)10〜50重量%の樹脂成分100重量部に対して、カーボンブラック1〜20重量部を配合した生分解性樹脂組成物からなる黒色表面層と、上記脂肪族芳香族ポリエステル系樹脂(A)50〜90重量%および上記脂肪族ポリエステル系樹脂(B)10〜50重量%の生分解性樹脂組成物からなる中間層で、該中間層の厚さがフィルム全体の30〜70%の厚さであることを特徴とするものである。
また、該三層生分解性マルチフィルムをインフレーション成形によってフィルム化したことを特徴とするものである。
【0008】
また、脂肪族芳香族ポリエステル系樹脂(A)は、脂肪族ジカルボン酸および芳香族ジカルボン酸からなるジカルボン酸成分と脂肪族ジオールからなるジオール成分との縮合物を多官能イソシアネートで高分子化した脂肪族芳香族ポリエステル系樹脂であることが好ましい。
脂肪族ポリエステル系樹脂(B)は、脂肪族ジカルボン酸からなるジカルボン酸成分と脂肪族ジオールからなるジオール成分との縮合物を多官能イソシアネートで高分子化した脂肪族ポリエステル系樹脂からなることが好ましい。
【0009】
【発明の実施の形態】
本発明に用いられる生分解性樹脂組成物の樹脂成分は、脂肪族ジカルボン酸および芳香族ジカルボン酸よりなるジカルボン酸成分と脂肪族ジオールよりなるジオール成分とを縮合してなる脂肪族芳香族ポリエステルからなる融点105〜115℃の脂肪族芳香族ポリエステル系樹脂(A)と、脂肪族ジカルボン酸よりなるジカルボン酸成分と脂肪族ジオールからなるジオール成分とを縮合してなる脂肪族ポリエステルからなる融点110〜120℃の脂肪族ポリエステル系樹脂(B)からなる。
【0010】
脂肪族ジカルボン酸成分としては、例えば、コハク酸、アジピン酸、セバシン酸、イタコン酸等やこれらの混合物が挙げられる。
芳香族ジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸、2,6−ナフタル酸および1,5−ナフタル酸等やこれらの混合物が挙げられる。
脂肪族ジオール成分としては、例えば、エチレングリコール、プロピレングリコール、2,3−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,4−ペンタンジオール、1,5ペンタンジオール−、2,4−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール等やこれらの混合物が挙げられる。
好ましくは、脂肪族芳香族ポリエステル系樹脂(A)は、アジピン酸およびテレフタル酸からなるジカルボン酸成分と、1,4−ブタンジオールからなるジオール成分との縮合物を多官能イソシアネートで高分子化した脂肪族芳香族ポリエステルである。
【0011】
本発明の酸化チタンを配合した白色表面層の樹脂成分は、上記脂肪族芳香族ポリエステル系樹脂(A)1〜14重量%と、上記脂肪族ポリエステル系樹脂(B)86〜99重量%からなり、さらに好ましくは、脂肪族芳香族ポリエステル系樹脂(A)1〜9重量%と、脂肪族ポリエステル系樹脂(B)91〜99重量%からなる。
この脂肪族芳香族ポリエステル系樹脂(A)が14重量%を超えるとインフレーション成形時のバブル安定性に劣るようになり、厚み精度が悪化する。
また、白色表面層は、上記樹脂成分100重量部に対して、酸化チタン15〜50重量部、好ましくは、20〜45重量部の範囲からなる。
【0012】
カーボンブラックを配合した黒色表面層の樹脂成分は、上記脂肪族芳香族ポリエステル系樹脂(A)50〜90重量部%と、上記脂肪族ポリエステル系樹脂(B)10〜50重量%からなり、さらに好ましくは、脂肪族芳香族ポリエステル系樹脂(A)60〜90重量%と、脂肪族ポリエステル系樹脂(B)10〜40重量%からなる。
脂肪族芳香族ポリエステル系樹脂(A)の割合が50重量%未満であるとインフレーション成形性や引裂き強度が著しく低下するので好ましくない。
また、黒色表面層は、上記樹脂成分100重量部に対して、カーボンブラック1〜20重量部、好ましくは、2.5〜15重量部の範囲からなる。
【0013】
中間層の樹脂成分は、上記脂肪族芳香族ポリエステル系樹脂(A)50〜90重量%と、上記脂肪族ポリエステル系樹脂(B)10〜50重量%からなり、さらに好ましくは、脂肪族芳香族ポリエステル系樹脂(A)60〜90重量%と、脂肪族ポリエステル系樹脂(B)10〜40重量%からなる。
脂肪族芳香族ポリエステル系樹脂(A)の割合が50重量%未満であると縦裂き強度の向上が少なくなり好ましくない。
【0014】
上記各樹脂組成物の融点は、脂肪族芳香族ポリエステル系樹脂(A)が105〜115℃、脂肪族ポリエステル系樹脂(B)が110〜120℃の範囲である。
融点がこの範囲をはずれるとインフレーション成形時のバブルが不安定になり、フィルム厚さの精度が悪くなる。
【0015】
本発明の三層生分解性マルチフィルムは、本発明の効果を損なわない範囲において、他の生分解性高分子材料を添加してもよく、また、成形加工性その他フィルムの物性を調整する目的で、任意に添加剤を併用することができる。配合される添加剤としては、公知の生分解性樹脂添加剤全般を挙げることができる。例えば、可塑剤、充填剤、熱安定剤、滑剤、ブロッキング防止剤、核剤、酸化防止剤、紫外線吸収剤、抗菌剤、帯電防止剤、デンプンなどが挙げられる。
【0016】
本発明に用いられる充填剤としては、例えば、炭酸カルシウム、ケイ酸カルシウム、パーライト、アルミナ、ゼオライト、セピオライト、蛭石、活性白土、カオリン、タルク、ハイドロタルサイト、ベントナイト、ケイソウ土、活性炭など各種の公知の無機充填剤が挙げられる。
これらの無機充填剤は、平均粒径30μm以下の粉体として使用されるのが好ましく、10μm以下がさらに好ましい。
【0017】
本発明の生分解性組成物、および必要に応じて添加される各種添加剤との混練方法は、特に制限はなく、プラスチック組成物の混練に一般的に使用されている方法、例えば、ヘンシェルミキサー、リボンミキサー、単軸や2軸の押出機、バンバリーミキサー、ニーダー、ミキシングロールなどを用いて調整することができる。
【0018】
【実施例】
以下、実施例を挙げるが、本発明はかかる実施例によって何ら限定されるものではない。また、本発明において得られるフィルムは、次の評価項目によって評価した。
以下の実施例において、特に記載のない場合、3層インフレーション成形機を用い、内側から順番に、白色表面層、中間層、黒色表面層の各組成物を各押出機に供給し、厚さ20μm、幅5.5mの三層フィルムを製造した。
【0019】
(成形性)
インフレーション成形時のバブル形成の安定性を、目視にて観察し、以下の基準で評価した。
◎:ダイ出口からのバブルが非常に安定している。
○:ダイ出口からのバブルが安定している。
△:ダイ出口からのバブルが不安定で、厚みの調整が不可能。
×:溶融粘度が小さく、成形困難。
【0020】
(縦裂き強度)
フィルムの縦方向(押出方向)のエレメンドルフ引裂強度をそれぞれ測定し、その平均値を次の基準で評価した。
○:5kgf/cm以上
△:2kgf/cm以上、5kgf/cm未満
×:2kgf/cm未満
【0021】
実施例1
白色表面層:アジピン酸およびテレフタル酸と1,4−ブタンジオールからなる脂肪族芳香族ポリエステルを多官能イソシアネートで高分子化した脂肪族芳香族ポリエステル系樹脂(A)「エコフレックス」(BASF社製、融点:110℃)3.5重量%ならびに1,4−ブタンジオールとコハク酸からなる脂肪族ポリエステルを多官能イソシアネートで高分子化した脂肪族ポリエステル系樹脂(B)「ビオノーレ#1001」(昭和高分子社製、融点:114℃)96.5重量%の樹脂成分100重量部に対して、酸化チタン41.5重量部、中間層:脂肪族芳香族ポリエステル系樹脂(A)「エコフレックス」70重量%および脂肪族ポリエステル系樹脂(B)「ビオノーレ#1001」30重量%、黒色表面層:脂肪族芳香族ポリエステル系樹脂(A)「エコフレックス」66.7重量%および脂肪族ポリエステル系樹脂(B)「ビオノーレ#1001」33.3重量%の樹脂成分100重量部に対して、カーボンブラック7.5重量部をそれぞれ配合して白色表面層、中間層、黒色表面層の各層の厚さがそれぞれ5μm、10μm、5μmの三層フィルムを製造した。フィルムの評価を表1に示す。
【0022】
実施例2、3
黒色表面層の樹脂組成を表1のとおりに変えた以外は実施例1に従って配合して三層フィルムを製造した。フィルムの評価を表1に示す。
【0023】
比較例1
白色表面層および黒色表面層の樹脂組成を表1のとおりに変えた以外は実施例1に従って配合して三層フィルムを製造した。フィルムの評価を表1に示す。
【0024】
比較例2
中間層および黒色表面層の樹脂組成を表1のとおりに変えた以外は実施例1に従って配合して三層フィルムを製造した。フィルムの評価を表1に示す。
【0025】
比較例3
黒色表面層の樹脂組成を表1のとおりに変えた以外は実施例1に従って配合して三層フィルムを製造した。フィルムの評価を表1に示す。
【0026】
比較例4
白色表面層:脂肪族芳香族ポリエステル系樹脂(A)「エコフレックス」(BASF社製)20.5重量%および脂肪族ポリエステル系樹脂(B)「ビオノーレ#1001」(昭和高分子社製)79.5重量%の樹脂成分100重量部に対して、酸化チタン13.6重量部、黒色表面層:脂肪族芳香族ポリエステル系樹脂(A)「エコフレックス」55.9重量%および脂肪族ポリエステル系樹脂(B)「ビオノーレ#1001」44.1重量%の樹脂成分100重量部に対して、カーボンブラック7.5重量部をそれぞれ配合した生分解性樹脂組成物を、3層インフレーション成形機を用い、内側の2層に白色表面層、最外層に黒色表面層の各組成物を各押出機に供給し、白色表面層および黒色表面層の各層の厚さがそれぞれ12μm、8μm(全体の厚さ20μm)、幅5.5mの実質的に二層のフィルムを製造した。フィルムの評価を表1に示す。
【0027】
【表1】

Figure 0003897237
【0028】
【発明の効果】
本発明によれば、特定の生分解性樹脂を配合した生分解性樹脂組成物を特定の層構成としたことにより、引裂強度が高く、インフレーション成形時および/または成型後に亀裂が生じにくい三層生分解性マルチフィルムを提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biodegradable multifilm. More specifically, a three-layer biodegradation that has high tear strength and is less prone to cracking during and / or after inflation molding by making the biodegradable resin composition blended with a specific biodegradable resin into a specific layer structure. It is related with sex multi film.
[0002]
[Prior art]
Conventionally, in the cultivation of many vegetables, flowers, fruit trees, etc., multi-films have been used for the purpose of controlling disease infection due to rebounding of soil, preventing leaching of fertilizer nutrients, controlling weeds, controlling soil temperature, and controlling evaporation of soil moisture. Films made of general-purpose plastics such as polyethylene, polypropylene, polystyrene, and polyvinyl chloride have been widely used. After use, the multi-film is removed from the field and collected and recycled, or disposed of by landfill or incineration.
[0003]
However, since such a multi-film is used in large quantities, it is not easy to collect. Therefore, in order to omit the labor of collection, a multifilm made of a biodegradable resin has been proposed. As such a biodegradable resin, starch-based, aliphatic polyester-based and the like are conventionally known.
[0004]
[Problems to be solved by the invention]
However, when a composition comprising a starch-based biodegradable resin is used, inflation molding is difficult. Inflation molding is possible by using a composition comprising an aliphatic polyester-based biodegradable resin. However, the molded film has a remarkable vertical orientation of molecules unique to inflation molding, and during and / or after molding. There has been a problem that cracks tend to occur in the orientation direction.
[0005]
In particular, in the case of a colored film, this phenomenon is frequently observed, so that it has been a serious problem in the production of multi-films generally provided in the form of colored films such as black, silver and white.
[0006]
The present invention has been made in view of this point, and by making a biodegradable resin composition containing a specific biodegradable resin a specific layer structure, the tear strength is high, and during inflation molding and / or Alternatively, an object is to provide a three-layer biodegradable multi-film that is less likely to crack after molding.
[0007]
[Means for Solving the Problems]
The three-layer biodegradable multifilm of the present invention has a melting point of 105 to 105 comprising an aliphatic aromatic polyester obtained by condensing a dicarboxylic acid component comprising an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid and a diol component comprising an aliphatic diol. 115 ° C. aliphatic aromatic polyester-based resin (A) 1 to 14% by weight and melting point 110 to 10 composed of an aliphatic polyester obtained by condensing a dicarboxylic acid component composed of an aliphatic dicarboxylic acid and a diol component composed of an aliphatic diol A white surface layer composed of a biodegradable resin composition in which 15 to 50 parts by weight of titanium oxide is blended with 100 parts by weight of a resin component of 86 to 99% by weight of an aliphatic polyester resin (B) at 120 ° C .; Aliphatic aromatic polyester resin (A) 50 to 90% by weight and the above aliphatic polyester resin (B) 10 to 5 A black surface layer composed of a biodegradable resin composition containing 1 to 20 parts by weight of carbon black based on 100 parts by weight of a resin component of 50% by weight, and 50 to 90 weights of the aliphatic aromatic polyester resin (A). % And the aliphatic polyester-based resin (B) 10 to 50% by weight of the biodegradable resin composition, wherein the thickness of the intermediate layer is 30 to 70% of the total film thickness. It is a feature.
Further, the three-layer biodegradable multi-film is formed into a film by inflation molding.
[0008]
The aliphatic aromatic polyester resin (A) is a fatty acid obtained by polymerizing a condensate of a dicarboxylic acid component composed of an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid and a diol component composed of an aliphatic diol with a polyfunctional isocyanate. An aromatic polyester-based resin is preferable.
The aliphatic polyester resin (B) is preferably composed of an aliphatic polyester resin obtained by polymerizing a condensate of a dicarboxylic acid component composed of an aliphatic dicarboxylic acid and a diol component composed of an aliphatic diol with a polyfunctional isocyanate. .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The resin component of the biodegradable resin composition used in the present invention is an aliphatic aromatic polyester obtained by condensing a dicarboxylic acid component composed of an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid and a diol component composed of an aliphatic diol. An aliphatic aromatic polyester resin (A) having a melting point of 105 to 115 ° C., a melting point of 110 to 10 comprising an aliphatic polyester obtained by condensing a dicarboxylic acid component comprising an aliphatic dicarboxylic acid and a diol component comprising an aliphatic diol. It consists of 120 degreeC aliphatic polyester-type resin (B).
[0010]
Examples of the aliphatic dicarboxylic acid component include succinic acid, adipic acid, sebacic acid, itaconic acid, and mixtures thereof.
Examples of the aromatic dicarboxylic acid component include terephthalic acid, isophthalic acid, 2,6-naphthalic acid, 1,5-naphthalic acid, and the like, and mixtures thereof.
Examples of the aliphatic diol component include ethylene glycol, propylene glycol, 2,3-butanediol, 1,3-butanediol, 1,4-butanediol, 1,4-pentanediol, 1,5-pentanediol, Examples include 2,4-pentanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, and the like, and mixtures thereof.
Preferably, the aliphatic aromatic polyester resin (A) is obtained by polymerizing a condensate of a dicarboxylic acid component composed of adipic acid and terephthalic acid and a diol component composed of 1,4-butanediol with a polyfunctional isocyanate. Aliphatic aromatic polyester.
[0011]
The resin component of the white surface layer containing the titanium oxide of the present invention comprises 1 to 14% by weight of the aliphatic aromatic polyester resin (A) and 86 to 99% by weight of the aliphatic polyester resin (B). More preferably, it comprises 1 to 9% by weight of the aliphatic aromatic polyester resin (A) and 91 to 99% by weight of the aliphatic polyester resin (B).
If the aliphatic aromatic polyester resin (A) exceeds 14% by weight, the bubble stability at the time of inflation molding will be inferior, and the thickness accuracy will deteriorate.
Moreover, a white surface layer consists of 15-50 weight part of titanium oxide with respect to 100 weight part of said resin components, Preferably, it consists of the range of 20-45 weight part.
[0012]
The resin component of the black surface layer containing carbon black is composed of 50 to 90 parts by weight of the aliphatic aromatic polyester resin (A) and 10 to 50% by weight of the aliphatic polyester resin (B). Preferably, it comprises 60 to 90% by weight of the aliphatic aromatic polyester resin (A) and 10 to 40% by weight of the aliphatic polyester resin (B).
If the proportion of the aliphatic aromatic polyester-based resin (A) is less than 50% by weight, the inflation moldability and tear strength are remarkably lowered, which is not preferable.
Moreover, a black surface layer consists of 1-20 weight part of carbon black with respect to 100 weight part of said resin components, Preferably, it consists of the range of 2.5-15 weight part.
[0013]
The resin component of the intermediate layer is composed of 50 to 90% by weight of the aliphatic aromatic polyester resin (A) and 10 to 50% by weight of the aliphatic polyester resin (B), more preferably aliphatic aromatic. It consists of 60 to 90% by weight of the polyester resin (A) and 10 to 40% by weight of the aliphatic polyester resin (B).
If the proportion of the aliphatic aromatic polyester resin (A) is less than 50% by weight, the improvement in longitudinal tear strength is unfavorable.
[0014]
The melting point of each resin composition is in the range of 105 to 115 ° C. for the aliphatic aromatic polyester resin (A) and 110 to 120 ° C. for the aliphatic polyester resin (B).
If the melting point is out of this range, bubbles during inflation molding become unstable, and the accuracy of the film thickness deteriorates.
[0015]
The three-layer biodegradable multifilm of the present invention may be added with other biodegradable polymer materials as long as the effects of the present invention are not impaired, and the object is to adjust the moldability and other film properties. Thus, an additive can be optionally used in combination. Examples of the additive to be blended include all known biodegradable resin additives. Examples include plasticizers, fillers, heat stabilizers, lubricants, antiblocking agents, nucleating agents, antioxidants, ultraviolet absorbers, antibacterial agents, antistatic agents, and starches.
[0016]
Examples of the filler used in the present invention include various types such as calcium carbonate, calcium silicate, pearlite, alumina, zeolite, sepiolite, meteorite, activated clay, kaolin, talc, hydrotalcite, bentonite, diatomaceous earth, and activated carbon. A well-known inorganic filler is mentioned.
These inorganic fillers are preferably used as a powder having an average particle size of 30 μm or less, more preferably 10 μm or less.
[0017]
The kneading method of the biodegradable composition of the present invention and various additives added as necessary is not particularly limited, and a method generally used for kneading a plastic composition, for example, a Henschel mixer It can be adjusted using a ribbon mixer, a single-screw or twin-screw extruder, a Banbury mixer, a kneader, a mixing roll, and the like.
[0018]
【Example】
Hereinafter, examples will be described, but the present invention is not limited to the examples. Moreover, the film obtained in the present invention was evaluated by the following evaluation items.
In the following examples, unless otherwise specified, using a three-layer inflation molding machine, the composition of the white surface layer, the intermediate layer, and the black surface layer is supplied to each extruder in order from the inside, and the thickness is 20 μm. A three-layer film having a width of 5.5 m was manufactured.
[0019]
(Formability)
The stability of bubble formation during inflation molding was visually observed and evaluated according to the following criteria.
A: Bubbles from the die exit are very stable.
○: Bubble from the die exit is stable.
Δ: Bubbles from the die exit are unstable and the thickness cannot be adjusted.
X: The melt viscosity is small and molding is difficult.
[0020]
(Vertical tear strength)
The longitudinal strength (extrusion direction) Elmendorf tear strength of the film was measured, and the average value was evaluated according to the following criteria.
○: 5 kgf / cm or more Δ: 2 kgf / cm or more, less than 5 kgf / cm x: less than 2 kgf / cm
Example 1
White surface layer: Aliphatic aromatic polyester resin (A) "Ecoflex" (manufactured by BASF Corp.) obtained by polymerizing aliphatic aromatic polyester composed of adipic acid and terephthalic acid and 1,4-butanediol with polyfunctional isocyanate , Melting point: 110 ° C.) 3.5% by weight, and aliphatic polyester resin (B) “Bionole # 1001” obtained by polymerizing an aliphatic polyester composed of 1,4-butanediol and succinic acid with a polyfunctional isocyanate (Showa) 41.5 parts by weight of titanium oxide, intermediate layer: aliphatic aromatic polyester resin (A) “Ecoflex” 70% by weight and aliphatic polyester resin (B) “Bionole # 1001” 30% by weight, black surface layer: aliphatic aromatic polyester 7.5% by weight of carbon black with respect to 100 parts by weight of resin component of tellurium resin (A) “Ecoflex” 66.7% by weight and aliphatic polyester resin (B) “Bionore # 1001” 33.3% by weight Each part was blended to produce a three-layer film in which the thickness of each of the white surface layer, the intermediate layer, and the black surface layer was 5 μm, 10 μm, and 5 μm, respectively. The evaluation of the film is shown in Table 1.
[0022]
Examples 2 and 3
A three-layer film was produced by blending according to Example 1 except that the resin composition of the black surface layer was changed as shown in Table 1. The evaluation of the film is shown in Table 1.
[0023]
Comparative Example 1
A three-layer film was produced by blending according to Example 1 except that the resin composition of the white surface layer and the black surface layer was changed as shown in Table 1. The evaluation of the film is shown in Table 1.
[0024]
Comparative Example 2
A three-layer film was produced by blending according to Example 1 except that the resin composition of the intermediate layer and the black surface layer was changed as shown in Table 1. The evaluation of the film is shown in Table 1.
[0025]
Comparative Example 3
A three-layer film was produced by blending according to Example 1 except that the resin composition of the black surface layer was changed as shown in Table 1. The evaluation of the film is shown in Table 1.
[0026]
Comparative Example 4
White surface layer: Aliphatic aromatic polyester resin (A) “Ecoflex” (BASF) 20.5% by weight and aliphatic polyester resin (B) “Bionole # 1001” (Showa Polymers) 79 13.6 parts by weight of titanium oxide with respect to 100 parts by weight of the resin component of 0.5% by weight, black surface layer: aliphatic aromatic polyester resin (A) “Ecoflex” 55.9% by weight and aliphatic polyester system A biodegradable resin composition in which 7.5 parts by weight of carbon black is blended with 100 parts by weight of resin component (B) “Bionole # 1001” of 44.1% by weight using a three-layer inflation molding machine. The composition of the white surface layer and the black surface layer as the outermost layer were supplied to each extruder, and the thicknesses of the white surface layer and the black surface layer were 12 μm and 8 μm, respectively. A substantially bilayer film of m (total thickness 20 μm) and width of 5.5 m was produced. The evaluation of the film is shown in Table 1.
[0027]
[Table 1]
Figure 0003897237
[0028]
【The invention's effect】
According to the present invention, the biodegradable resin composition blended with a specific biodegradable resin has a specific layer structure, so that it has a high tear strength and is less likely to crack during and / or after inflation molding. A biodegradable multifilm can be provided.

Claims (2)

脂肪族ジカルボン酸および芳香族ジカルボン酸よりなるジカルボン酸成分と脂肪族ジオールよりなるジオール成分とを縮合してなる脂肪族芳香族ポリエステルからなる融点105〜115℃の脂肪族芳香族ポリエステル系樹脂(A)1〜14重量%および脂肪族ジカルボン酸よりなるジカルボン酸成分と脂肪族ジオールからなるジオール成分とを縮合してなる脂肪族ポリエステルからなる融点110〜120℃の脂肪族ポリエステル系樹脂(B)86〜99重量%の樹脂成分100重量部に対して、酸化チタン15〜50重量部を配合した生分解性樹脂組成物からなる白色表面層と、
上記脂肪族芳香族ポリエステル系樹脂(A)50〜90重量%および上記脂肪族ポリエステル系樹脂(B)10〜50重量%の樹脂成分100重量部に対して、カーボンブラック1〜20重量部を配合した生分解性樹脂組成物からなる黒色表面層と、
上記脂肪族芳香族ポリエステル系樹脂(A)50〜90重量%および上記脂肪族ポリエステル系樹脂(B)10〜50重量%の生分解性樹脂組成物からなる中間層で、該中間層の厚さがフィルム全体の30〜70%の厚さであることを特徴とする三層生分解性マルチフィルム。
Aliphatic aromatic polyester resin (A) having a melting point of 105 to 115 ° C. comprising an aliphatic aromatic polyester obtained by condensing a dicarboxylic acid component comprising an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid and a diol component comprising an aliphatic diol ) Aliphatic polyester resin (B) 86 having a melting point of 110 to 120 ° C. composed of an aliphatic polyester obtained by condensing 1 to 14% by weight of a dicarboxylic acid component composed of an aliphatic dicarboxylic acid and a diol component composed of an aliphatic diol. A white surface layer comprising a biodegradable resin composition containing 15 to 50 parts by weight of titanium oxide with respect to 100 parts by weight of a resin component of ~ 99% by weight;
1 to 20 parts by weight of carbon black is blended with 100 parts by weight of the resin component of 50 to 90% by weight of the aliphatic aromatic polyester resin (A) and 10 to 50% by weight of the aliphatic polyester resin (B). A black surface layer comprising a biodegradable resin composition,
An intermediate layer composed of a biodegradable resin composition of 50 to 90% by weight of the aliphatic aromatic polyester resin (A) and 10 to 50% by weight of the aliphatic polyester resin (B), and the thickness of the intermediate layer Is a three-layer biodegradable multifilm characterized in that the thickness is 30 to 70% of the total film thickness.
インフレーション成形機によってフィルム化したことを特徴とする請求項1記載の三層生分解性マルチフィルム。The three-layer biodegradable multifilm according to claim 1, which is formed into a film by an inflation molding machine.
JP2001399120A 2001-12-28 2001-12-28 Three-layer biodegradable multifilm Expired - Lifetime JP3897237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001399120A JP3897237B2 (en) 2001-12-28 2001-12-28 Three-layer biodegradable multifilm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001399120A JP3897237B2 (en) 2001-12-28 2001-12-28 Three-layer biodegradable multifilm

Publications (2)

Publication Number Publication Date
JP2003191418A JP2003191418A (en) 2003-07-08
JP3897237B2 true JP3897237B2 (en) 2007-03-22

Family

ID=27604279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001399120A Expired - Lifetime JP3897237B2 (en) 2001-12-28 2001-12-28 Three-layer biodegradable multifilm

Country Status (1)

Country Link
JP (1) JP3897237B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002165A (en) * 2003-06-10 2005-01-06 Daicel Chem Ind Ltd Biodegradable resin composition, agricultural mulching film and method for inhibiting biodegradability
JP2005089537A (en) * 2003-09-12 2005-04-07 Daicel Chem Ind Ltd Biodegradable resin composition, mulch film for agriculture, shaped article, and method for suppressing degradation in soil
IL160876A0 (en) * 2004-03-15 2004-08-31 Polyon Barkai Ind 1993 Ltd Insulation structures
JP4766019B2 (en) * 2007-09-20 2011-09-07 三菱化学株式会社 Agricultural multi-film
WO2011096882A1 (en) 2010-02-05 2011-08-11 Ab Ludvig Svensson Greenhouse screen
JP6001638B2 (en) * 2012-03-01 2016-10-05 丸善石油化学株式会社 Multi film
TWI762915B (en) * 2020-04-28 2022-05-01 南亞塑膠工業股份有限公司 Polyester film with laminated structure and method for manufacturing the same

Also Published As

Publication number Publication date
JP2003191418A (en) 2003-07-08

Similar Documents

Publication Publication Date Title
KR100875104B1 (en) The composition of pla resin and the packing paper using it
JP4824579B2 (en) High transparency film with improved thermal properties
US8604123B1 (en) Biodegradable polymer composition with calcium carbonate and methods and products using same
US20120196950A1 (en) Biodegradable polymer composition with calcium carbonate and methods and products using same
US8222320B2 (en) High heat resistant polymer compositions having poly(lactic acid)
JP2004518808A (en) Ternary mixtures of biodegradable polyesters and products made therefrom
WO2011162046A1 (en) Polylactic acid film
JP2013147609A (en) Resin composition, molded body, film, and bag
JP3897237B2 (en) Three-layer biodegradable multifilm
US20230151206A1 (en) Soil Biodegradable Blown Film Bag Formulation
JP6056368B2 (en) the film
JP2002047402A (en) Biodegradable multi film for agriculture
KR20180042004A (en) Biodegradable resin compound and method of manufacturing thereof
JP4318551B2 (en) Biodegradable agricultural multi-film
JPH06263954A (en) Composition and laminate
KR102257140B1 (en) Biodegradable resin composition, molded article comprising the same, and method for manufacturing the molded article
JPWO2005095499A1 (en) Transparent biodegradable resin stretched film and resin product with improved gas barrier properties
JP4247971B2 (en) Biodegradable agricultural coating
JP2005139395A (en) Mulching film
JP4426408B2 (en) Biodegradable agricultural coating
JP2003284478A (en) Biodegradable film for fumigating to exterminate pine weevil, etc.
JP5957908B2 (en) Biodegradable film
JP3710726B2 (en) Biodegradable film
JP2012031329A (en) Biodegradable resin composition and molded article obtained by molding the composition
JP2005179578A (en) Biodegradable resin composition and molded article thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3897237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term