JP3896803B2 - Preload application method and preload application device for double row rolling bearing device - Google Patents

Preload application method and preload application device for double row rolling bearing device Download PDF

Info

Publication number
JP3896803B2
JP3896803B2 JP2001128702A JP2001128702A JP3896803B2 JP 3896803 B2 JP3896803 B2 JP 3896803B2 JP 2001128702 A JP2001128702 A JP 2001128702A JP 2001128702 A JP2001128702 A JP 2001128702A JP 3896803 B2 JP3896803 B2 JP 3896803B2
Authority
JP
Japan
Prior art keywords
bearing device
rolling bearing
double row
preload
row rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001128702A
Other languages
Japanese (ja)
Other versions
JP2002323041A (en
JP2002323041A5 (en
Inventor
耕一 川上
孝 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2001128702A priority Critical patent/JP3896803B2/en
Publication of JP2002323041A publication Critical patent/JP2002323041A/en
Publication of JP2002323041A5 publication Critical patent/JP2002323041A5/ja
Application granted granted Critical
Publication of JP3896803B2 publication Critical patent/JP3896803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction

Description

【0001】
【発明の属する技術分野】
この発明に係る複列転がり軸受装置の予圧付与方法及び予圧付与装置は、例えばフレキシブルディスクドライブ装置(FDD)、ハードディスクドライブ装置(HDD)、光ディスク記憶装置、レーザビームプリンタ(LBP)、テープストリーマ、ビデオテープレコーダ(VTR)等に組み込むスピンドルモータやIC(集積回路)の冷却ファン駆動用モータ、或はHDDのスイングアームの基端部等、各種精密回転部分に組み込んでこの回転部分を支承する、複列玉軸受装置等の複列転がり軸受装置の予圧付与に伴う回転抵抗(ロストルク)を適正範囲に納める為に利用する。
【0002】
【従来の技術】
図5〜6は、上述した様な各種精密回転部分に組み込んでこの回転部分を支承する、複列玉軸受装置の1例として、特開平6−221326号公報に記載されたものを示している。この公報に記載された複列玉軸受装置1は、互いに同心に配置した、内側部材を構成する軸2と外側部材を構成する外筒3とを、1対の玉軸受4、4により、回転自在に組み合わせて成る。これら各玉軸受4、4はそれぞれ、外周面に深溝型の内輪軌道5を形成した、内側部材を構成する軌道部材である内輪6と、内周面に深溝型の外輪軌道7を形成した、外側部材を構成する外輪8と、上記内輪軌道5と上記外輪軌道7との間に保持器9により保持した状態で転動自在に設けた、それぞれが転動体である複数個の玉10、10とから成る。そして、これら各玉軸受4、4を構成する各外輪8、8を、それぞれ上記外筒3の内周面に内嵌固定すると共に、上記各内輪6、6を、それぞれ上記軸2の外周面に外嵌固定している。
【0003】
又、上述の様に構成する複列玉軸受装置1を使用する際には、この複列玉軸受装置1に必要な剛性と回転精度とを確保する為に、上記各内輪6、6を互いに近づけ合う方向に押圧する事で、上記各玉10、10に所定の予圧を付与する。図示の例の場合、これら各玉10、10への予圧の付与作業は、次の様にして行なう。先ず、上記軸2の一端(図5の左端)部保持具11に保持すると共に、上記外筒3の外周面に糸12の一端側部分を巻き付けて固定する。そして、上記保持具11により上記軸2を回転させ、この軸2と共に回転しようとする上記外筒3の回転抵抗(ロストルク)を、上記糸12の他端に取り付けた荷重センサ13により測定する。更に、この様にしてロストルクを測定しつつ、押し込み腕14により一方(図5の右方)の内輪6の端面を押圧する事で、この一方の内輪6を他方(図5の左方)の内輪6に向け移動させる。そして、上記ロストルクが予め設定した設定値にほぼ一致した状態で、上記押し込み腕14を停止し、上記一方の内輪6の移動作業を終了する。
【0004】
上述の様な複列玉軸受装置1のロストルクと予圧量との間に一定の関係がある事は従来から知られている。従って、所定の予圧付与を行なうべき複列玉軸受装置1と同じ構成を有し、且つ適正な予圧を付与された複列玉軸受装置のロストルクを予め測定しておけば、上述の様に一方の内輪6の移動作業を終了した状態で、上記各玉10、10に適正な予圧を付与できる。尚、上記各内輪6、6は上記軸2に対し、接着固定、或は十分な嵌合強度(予圧付与の反力でずれ動かない強度)を持った締り嵌めにより固定する。上記各内輪6、6を上記軸2に対し接着固定する場合には、接着剤が固化するまで、上記押し込み腕14により上記一方の内輪6を、上記適正な予圧に相当する荷重で押圧し続ける。
【0005】
複列玉軸受装置に所望の予圧を付与する為に、この複列玉軸受装置の共振周波数を利用する事に関しても、前記特開平6−221326号公報等に記載されて従来から知られており、更に実際に工業的に実施されている。即ち、複列玉軸受装置等の複列転がり軸受装置の予圧と共振周波数との間には密接な関係がある事が知られている。そこで、所望の予圧を付与された複列転がり軸受装置の共振周波数を予め測定して基準周波数を求めておく。そして、新たに別の複列転がり軸受装置に予圧付与を行なう際に、当該複列転がり軸受装置の共振周波数を測定しつつ内輪を軸方向に移動させ、この共振周波数が上記基準周波数に一致した状態でこの内輪の軸方向移動を停止すれば、上記別の複列転がり軸受装置に所望の予圧付与を行なえる。
【0006】
【発明が解決しようとする課題】
上述の特開平6−221326号公報に記載された複列玉軸受装置の予圧付与方法及び予圧付与装置の場合には、次の様な改良すべき点がある。
先ず、図6に示す様にロストルクを測定する方法の場合には、予圧付与を行なう複列玉軸受装置1毎に、この複列玉軸受装置1を構成する外筒3の外周面に糸12の一端側部分を巻き付ける必要がある。ところが、HDD等に組み込む上記複列玉軸受装置1は小さい為、上述の様に外筒3の外周面に糸12の一端側部分を巻き付ける作業は面倒である。この為、所望の予圧付与作業を容易に行なう事ができず、特に、多数の複列玉軸受装置1の予圧付与を行なう場合に、この予圧付与作業の能率化を図る事が難しい。
【0007】
又、上述した様な従来の予圧付与方法及び予圧付与装置の場合には、内側部材である軸2及び内輪6、6を回転させる為、この軸2を保持する保持具11、並びに、一方の内輪6を押圧する為の押し込み腕14も、上記軸2及び内輪6、6と共に回転させる必要がある。この為、これら保持具11及び押し込み腕14を含んで構成する装置の構造が複雑になる。
【0008】
これに対して、複列転がり軸受装置の共振周波数を測定してこの複列転がり軸受装置の予圧を求める方法の場合には、予圧付与作業を容易に行なえて予圧を付与した複列転がり軸受装置の製造作業の能率化を図れる反面、予圧付与の精度がロストルク測定に基づくものに比べて劣る。特に、近年、情報機器や音響機器の回転支持部に組み込む様な小型の複列転がり軸受ユニットには、予圧の値そのものよりも、予圧付与に伴うロストルクの大きさを適正範囲内に納める事が求められている。この様な場合、上記複列転がり軸受ユニットの予圧付与時に、上記ロストルクを直接測定する事が好ましい。
本発明の複列転がり軸受装置の予圧付与方法及び予圧付与装置は、上述の様な事情に鑑みて発明したものである。
【0009】
【課題を解決するための手段】
本発明の複列転がり軸受装置の予圧付与方法及び予圧付与装置により所望の予圧付与を行なう、複列玉軸受装置等の複列転がり軸受装置は、例えば前述の図5〜6に示した複列玉軸受装置1等の複列転がり軸受装置と同様、内側部材と、この内側部材の外周面に互いに間隔をあけて設けた1対の内輪軌道と、この内側部材の周囲にこの内側部材と同心に配置した外側部材と、この外側部材の内周面で上記各内輪軌道と対向する位置に設けた1対の外輪軌道と、これら各外輪軌道と上記各内輪軌道との間にそれぞれ複数個ずつ転動自在に設けた転動体とを備える。そして、上記内側部材を構成する為その外周面に上記内輪軌道を形成した軌道部材を、この内輪軌道と他の内輪軌道との間隔を狭くすべく軸方向に関して移動させる事により、上記各転動体に予圧を付与する様に構成している。
【0010】
この様な複列転がり軸受装置を構成する上記各転動体に所望の予圧を付与する際に、請求項1に記載した予圧付与方法では、この所望の予圧に見合う上記複列転がり軸受装置のロストルクに見合う駆動トルクを上記外側部材に、非接触状態で、継続して連続的に付与する。そして、この駆動トルクに基づいてこの外側部材を回転させつつ上記軌道部材を軸方向に関して移動させ、上記ロストルクと上記駆動トルクとが均衡して上記外側部材の回転が停止した状態で上記軌道部材の軸方向に関する移動作業を終了(停止)する。
【0011】
又、請求項2に記載した予圧付与方法では、所望の予圧に見合う上記複列転がり軸受装置のロストルクを上回る所定の駆動トルクを上記外側部材に、非接触状態で、継続して連続的に付与する。そして、この駆動トルクに基づいてこの外側部材を回転させつつ上記軌道部材を軸方向に関して移動させ、この外側部材の回転速度が上記所望の予圧に見合うロストルクに対応する回転速度である、上記駆動トルクからこのロストルクを減じたトルク差に対応する回転速度になった状態で、上記軌道部材の軸方向に関する移動作業を終了(停止)する。
【0012】
この場合に好ましくは、請求項3に記載した様に、上記複列転がり軸受装置を加振すると共にこの複列転がり軸受装置外側部材の振動を検出しつつ軌道部材を軸方向に移動させる。そして、この外側部材の共振周波数のピークが出現した後、上記軌道部材を軸方向に移動させる速度を遅くする。尚、上記共振周波数を測定する間は、上記駆動手段による上記外側部材の回転駆動は必ずしも行なう必要はない。この外側部材が回転している状態でも上記共振周波数の測定を行なえるのであれば、この外側部材を回転させつつこの共振周波数の測定を行なう。これに対して、この外側部材が回転している状態では上記共振周波数の測定を行ないにくいのであれば、共振周波数の測定を行なっている間は、この外側部材は停止したままの状態とする。但し、上記複列転がり軸受装置のロストルクを上記所望の予圧に見合う値にすべく、上記外側部材の回転状態を監視する段階では、この外側部材に対して駆動トルクを非接触状態で継続して連続的に付与する事により、この外側部材を回転させつつ上記軌道部材を軸方向に関して移動させる。
【0013】
又、請求項4に記載した複列転がり軸受装置の予圧付与装置は、内側部材を静止状態のまま保持する為の保持手段と、軌道部材を軸方向に関して移動させるべく、この軌道部材に軸方向に関する力を付与する軸力付与手段と、外側部材を非接触状態のまま、継続して連続的に回転駆動する駆動手段と、この外側部材の回転状態を観察する為の回転監視装置とを備える。そして、この回転監視装置により観察される上記外側部材の回転状態に基づいて、上記軸力付与手段により上記外側部材を軸方向に移動させる作業を停止する。
そして、好ましくは、請求項5に記載した様に、内側部材及び軌道部材を介して複列転がり軸受装置を加振する加振手段と、この加振手段による加振に基づく外側部材の振動を検出する振動センサと、この振動センサの検出信号により上記複列転がり軸受装置の共振周波数を求める演算器とを備える。そして、上記加振手段により上記複列転がり軸受装置を加振すると共にこの複列転がり軸受装置の外側部材の振動を検出しつつ軌道部材を軸方向に移動させ、この外側部材の共振周波数のピークが出現した後、上記軌道部材を軸方向に移動させる速度を遅くする。
又、上記駆動手段としては、請求項6に記載した様に、外側部材の外周面に対し圧力流体を、この外側部材の直径方向に対し傾斜した方向に吹き付けるノズル、或は請求項7に記載した様に、導電材製の外側部材の周囲に緩く外嵌される電磁誘導コイルを使用する。
【0014】
【作用】
上述の様に構成する本発明の複列転がり軸受装置の予圧付与方法及び予圧付与装置によれば、予圧の値そのものではなく、予圧付与に伴うロストルクの大きさ(に対応する回転速度の低下)を測定するので、複列転がり軸受装置の予圧付与に伴うロストルクを適正範囲内に正確に納める作業を容易に行なえる。
又、請求項3及び請求項5に記載した様に、共振周波数測定による予圧測定と併用すれば、初期段階で軌道部材の移動を迅速に行なって、所望のロストルクを得る為の予圧付与作業の能率化を図る事ができる。
【0015】
【発明の実施の形態】
図1〜2は、請求項1、3〜6に対応する、本発明の実施の形態の第1例を示している。本発明の複列転がり軸受装置の予圧付与方法及び予圧付与装置により予圧を付与する複列転がり軸受装置の1種である複列玉軸受装置1aは、互いに同心に配置した、内側部材を構成する内筒15と外側部材を構成する外筒3とを、1対の玉軸受4、4により、回転自在に組み合わせて成る。これら各玉軸受4、4はそれぞれ、外周面に深溝型の内輪軌道5を形成した、内側部材を構成する軌道部材である内輪6と、内周面に深溝型の外輪軌道7を形成した、外側部材を構成する外輪8と、上記内輪軌道5と上記外輪軌道7との間に保持器9により保持した状態で転動自在に設けた、それぞれが転動体である複数個の玉10、10とから成る。そして、これら各玉軸受4、4を構成する各外輪8、8を、それぞれ上記外筒3の内周面に内嵌固定すると共に、上記各内輪6、6を、それぞれ上記内筒15の外周面に外嵌固定している。尚、本発明を実施する場合に、内側部材の外周面に形成する1対の内輪軌道5、5のうちの一方の内輪軌道5のみを内輪6の外周面に形成し、他方の内輪軌道5を上記内筒15の外周面に直接形成する事もできる。又、1対の外輪軌道7、7に関しては、何れも外筒3の内周面に直接形成する事もできる。更に、本発明は、予圧を付与する複列転がり軸受装置であれば、複列玉軸受装置に限らず、複列円すいころ軸受ユニットで実施する事もできる。
【0016】
予圧付与を行なうべき上記複列玉軸受装置1aを構成する内側部材である、中空円筒状の内筒15は、保持手段である保持具11aにより、静止状態のまま保持している。又、この内筒15に外嵌した、それぞれが内側部材を構成する軌道部材である、1対の内輪6、6のうちの一方(図1の上方)の内輪6の上端面に、軸力付与手段である押し込み腕14aの先端面を突き当てている。そして、この押し込み腕14aにより上記一方の内輪6の上端面を押圧し、この一方の内輪6を他方(図1の下方)の内輪6に向け移動させる事で、上記複列玉軸受装置1aを構成する複数個の玉10、10に予圧を付与自在としている。
【0017】
上記保持具11aは図示を省略した支持台の上面に、荷重センサ16と、加振手段である圧電素子17aとを介して、鉛直方向に支持している。これに対して、上記押し込み腕14aは送り装置のヘッド18の下面に、やはり加振手段である圧電素子17bを介して、上記保持具11aと同心に支持している。これら1対の圧電素子17a、17bは同じ仕様のものを使用し、互いの位相を180度異ならせている。従って、一方の圧電素子17a(又は17b)が上記複列玉軸受装置1aを所定のストローク分押す場合には、他方の圧電素子17b(又は17a)がこのストローク分引っ込む。従って、アキシアル方向の振動が予圧を増大させる力として作用する事はない。この様な1対の圧電素子17a、17bは、通電に伴って上記複列玉軸受装置1aを上下方向に細かく往復変位させる(加振する)。この様にして加振される複列玉軸受装置1aの共振周波数を測定自在とすべく、前記外筒3の上端面には、振動センサ19の測定子20の先端部を当接させている。この振動センサ19の検出信号は、図示しない演算器に送り、この演算器によって、上記複列玉軸受装置1aの共振周波数を算出自在としている。
【0018】
又、上記複列玉軸受装置1aを構成する外側部材である外筒3の外周面の近傍には、駆動手段を構成するノズル21を配置している。このノズル21は、図2に示す様に、上記外筒3の直径方向に対し傾斜した方向に配置されており、この外筒3の外周面に対し圧縮空気等の圧力流体を、この外筒3の直径方向に対し傾斜した方向(直径方向と接線方向との中間の方向)に吹き付ける。そして、上記圧力流体の動圧に基づいて上記外筒3に、回転方向の駆動トルクを付与する。本例の場合、この様に圧力流体の吹き付けに基づいて上記外筒3に付与する駆動トルクを、上記複列玉軸受装置1aに適正な予圧を付与した状態での、この複列玉軸受装置1aのロストルクに一致させている。尚、上記駆動トルクの大きさは、上記ノズル21の傾斜角度やこのノズル21から吹き出す圧力流体の流速、流量を変える事により調節自在である。
【0019】
上記複列玉軸受装置1aのロストルクを所定値以下に抑えつつ、この複列玉軸受装置1aを構成する前記各玉10、10に予圧を付与する場合には、上記ノズル21から圧力流体を吹き出して、上記外筒3を回転させる。そして、上記1対の圧電素子17a、17bにより上記複列玉軸受装置1aを加振しつつ、前記押し込み腕14aにより前記一方の内輪6を他方の内輪6に向け移動させる。この移動の速度は、予圧付与作業の初期段階では比較的速くする。この移動が進むと、上記複列玉軸受装置1aを構成する複数個の玉10、10の転動面と内輪軌道5、5及び外輪軌道7、7とが接触し始める。この結果、共振周波数のピークが出現(表出)するので、このピークが出現したならば、、上記押し込み腕14aの移動速度を遅くする。この状態では、上記外筒3は、未だ上記ノズル21から吹き出す圧力流体により回転した状態のままである。
【0020】
そして、上記押し込み腕14aにより上記一方の内輪6を他方の内輪6に向けゆっくりと移動させつつ、CCDカメラと画像処理装置とを組み込んだ回転監視装置により上記外筒3の回転状態を観察する。そして、この外筒3の回転が停止した状態で、上記押し込み腕14aによる上記一方の内輪6の押し込み作業を終了する。上記ノズル21から吹き出す圧力流体による駆動トルクは、前述した様に所望のロストルクと一致しているので、上記一方の内輪6をゆっくりと移動させつつ、上記外筒3の回転が停止した瞬間にこの移動を停止すれば、上記複列玉軸受装置1aのロストルクを上記所望値に設定できる。
【0021】
尚、本発明を実施する場合に、前記振動センサ19の測定子20と上記外筒3の端面との当接部の滑り摩擦は僅少であるから、この値を無視しても、上記ロストルクの値を実用上問題ない程度に設定できる。むしろ、上記滑り摩擦の値を僅少に抑える代わりにこの値を無視する事が、適正なロストルク設定を行なう面から適切な場合もある。即ち、上記駆動トルクと上記所望のロストルクとを一致させ、上記外筒3の回転が停止した瞬間に(時間的遅れを全く生じる事なく)上記一方の内輪6の移動を停止したと仮定すれば、実際に設定されるロストルクは上記滑り摩擦の値に対応する分だけ小さくなる。但し、上記外筒3の回転が停止した瞬間から上記一方の内輪6の移動を停止するまでの間の時間的遅れを完全に0にする事は不可能である為、上述の様に滑り摩擦の値を僅少に抑える代わりにこの値を無視する事で、上記時間的遅れ分を補償できる。更には、上記外筒3の振動を、レーザドップラ式等の非接触式の振動計により測定自在とする代わりに、上記駆動トルクを上記ロストルクよりも少し(上記時間的遅れに対応する分だけ)小さくする事もできる。
【0022】
次に、図3〜4は、請求項1、3、4、5、7に対応する、本発明の実施の形態の第2例を示している。本例の場合には、複列玉軸受装置1aを構成する外筒3を非接触状態で回転駆動する駆動手段として、電磁誘導コイル22を使用している。上記複列玉軸受装置1aへの予圧付与作業を行なう際には、この電磁誘導コイル22を、ステンレス鋼等の導電製の材料により造られた上記外筒3に緩く(ラジアル隙間を介在させた状態で)外嵌する。そして、上記電磁誘導コイル22に設定電圧を印加して回転磁界を付与する事により上記外筒3を所定の(上記複列玉軸受装置1aに設定すべきロストルクに一致する)駆動トルクで回転駆動しつつ、押し込み腕14aにより一方の内輪6を押圧する、予圧付与作業を行なう。駆動手段がノズル21(図1〜2)から電磁誘導コイル22に変わった以外の構成及び作用は、上述した第1例の場合と同様であるから、同等部分には同一符号を付して重複する説明を省略する。
【0023】
尚、以上の説明は、上記複列玉軸受装置1aに所定の予圧付与が行なわれ、この複列玉軸受装置1aのロストルクがこの所定の予圧に見合うものになった場合に、上記外筒3の停止を検出して、上記一方の内輪6の移動を終了する場合に就いて説明した。これに対して、請求項2に記載した様に、上記駆動トルクを上記ロストルクよりも少し大きくし、予圧付与に基づくロストルク上昇により上記外筒3の回転速度が低下した事を検出して、上記一方の内輪6の移動を終了させる事もできる。即ち、この場合には、所望の予圧に見合う上記複列玉軸受装置1aのロストルクを上回る所定の駆動トルクを外側部材である上記外筒3に、非接触状態で付与する事により、この外筒3を回転させつつ軌道部材である上記一方の内輪6を軸方向に関して移動させる。そして、上記外筒3の回転速度が上記所望の予圧に見合うロストルクに対応する回転速度、即ち、上記駆動トルクからこのロストルクを減じたトルク差に対応する回転速度になった状態で、上記一方の内輪6の軸方向に関する移動作業を終了する。この様に、ロストルクによる上記外筒3の回転速度の低下を検出する事により、この外筒3の停止を検出する場合に比べて、回転状態検出のレンジを大きくできて、上記複列玉軸受装置1aのロストルクの管理をより厳密に行なえる。
【0024】
【発明の効果】
本発明の複列転がり軸受装置の予圧付与方法及び予圧付与装置は、以上に述べた様に構成され作用する為、予圧付与作業を容易にしかもロストルクを正確に規制した状態で行なえる。この結果、多数の複列転がり軸受装置の予圧付与を行なう場合に、この予圧付与作業の能率化を図れる。又、内側部材を保持する保持手段と軌道部材に軸方向の力を付与する軸力付与手段との構造を、それぞれ簡単にできて、設備費の低減も図れる。
【図面の簡単な説明】
【図1】本発明の実施の形態の第1例を、一部を切断した状態で示す側面図。
【図2】一部を省略して示す、図1の上方から見た図。
【図3】本発明の実施の形態の第2例を、一部を切断した状態で示す側面図。
【図4】一部を省略して示す、図3の上方から見た図。
【図5】従来技術の1例を示す半部断面図。
【図6】図5の側方から見た図。
【符号の説明】
1、1a 複列玉軸受装置
2 軸
3 外筒
4 玉軸受
5 内輪軌道
6 内輪
7 外輪軌道
8 外輪
9 保持器
10 玉
11、11a 保持具
12 糸
13 荷重センサ
14、14a 押し込み腕
15 内筒
16 荷重センサ
17a、17b 圧電素子
18 ヘッド
19 振動センサ
20 測定子
21 ノズル
22 電磁誘導コイル
[0001]
BACKGROUND OF THE INVENTION
A preload applying method and a preload applying device for a double row rolling bearing device according to the present invention include, for example, a flexible disk drive device (FDD), a hard disk drive device (HDD), an optical disk storage device, a laser beam printer (LBP), a tape streamer, and a video. A spindle motor incorporated in a tape recorder (VTR) or the like, a motor for driving a cooling fan of an IC (integrated circuit), or a base end of a swing arm of an HDD, etc. It is used to keep the rotational resistance (loss torque) associated with preloading of double row rolling bearing devices such as row ball bearing devices within an appropriate range.
[0002]
[Prior art]
FIGS. 5-6 show what was described in Unexamined-Japanese-Patent No. 6-221326 as an example of the double row ball bearing apparatus incorporated in various precision rotation parts as mentioned above, and supporting this rotation part. . The double-row ball bearing device 1 described in this publication rotates a shaft 2 constituting an inner member and an outer cylinder 3 constituting an outer member arranged concentrically with each other by a pair of ball bearings 4 and 4. Combining freely. Each of these ball bearings 4, 4 has an inner ring 6 that is a race member constituting an inner member, and a deep groove type outer ring raceway 7 is formed on the inner peripheral surface. A plurality of balls 10, 10 each provided as a rolling element are provided between the outer ring 8 constituting the outer member and the inner ring raceway 5 and the outer ring raceway 7 so as to be able to roll while being held by a cage 9. It consists of. The outer rings 8 and 8 constituting the ball bearings 4 and 4 are fitted and fixed to the inner peripheral surface of the outer cylinder 3, respectively, and the inner rings 6 and 6 are respectively fixed to the outer peripheral surface of the shaft 2. The outer fitting is fixed.
[0003]
When the double row ball bearing device 1 configured as described above is used, the inner rings 6 and 6 are connected to each other in order to ensure the rigidity and rotational accuracy required for the double row ball bearing device 1. By pressing in the approaching direction, a predetermined preload is applied to the balls 10 and 10. In the case of the illustrated example, the preloading operation to each of the balls 10 and 10 is performed as follows. First, one end (the left end in FIG. 5) of the shaft 2 is held by the holder 11, and one end side portion of the thread 12 is wound around and fixed to the outer peripheral surface of the outer cylinder 3. Then, the shaft 2 is rotated by the holder 11, and the rotational resistance (loss torque) of the outer cylinder 3 that is going to rotate with the shaft 2 is measured by a load sensor 13 attached to the other end of the thread 12. Further, while measuring the loss torque in this way, the end surface of one inner ring 6 (on the right side in FIG. 5) is pressed by the pushing arm 14 so that the inner ring 6 on the other side (on the left side in FIG. 5) is pressed. Move toward the inner ring 6. Then, in a state where the loss torque substantially coincides with a preset set value, the pushing arm 14 is stopped, and the movement work of the one inner ring 6 is finished.
[0004]
It has been conventionally known that there is a certain relationship between the loss torque and the preload amount of the double row ball bearing device 1 as described above. Therefore, if the loss torque of the double row ball bearing device having the same configuration as that of the double row ball bearing device 1 to which the predetermined preload is to be applied and the appropriate preload is applied is measured in advance, one side as described above. An appropriate preload can be applied to each of the balls 10 and 10 in a state where the movement work of the inner ring 6 is completed. Each of the inner rings 6 and 6 is fixed to the shaft 2 by adhesive fixing or an interference fit having a sufficient fitting strength (a strength that does not move due to a reaction force applied with a preload). When the inner rings 6 and 6 are bonded and fixed to the shaft 2, the one inner ring 6 is continuously pressed by the pushing arm 14 with a load corresponding to the appropriate preload until the adhesive is solidified. .
[0005]
The use of the resonance frequency of this double-row ball bearing device in order to give a desired preload to the double-row ball bearing device has also been known in the past as described in JP-A-6-221326. Furthermore, it is actually implemented industrially. That is, it is known that there is a close relationship between the preload and the resonance frequency of a double row rolling bearing device such as a double row ball bearing device. Therefore, the reference frequency is obtained by measuring in advance the resonance frequency of the double row rolling bearing device to which a desired preload is applied. When applying a preload to another double-row rolling bearing device, the inner ring is moved in the axial direction while measuring the resonance frequency of the double-row rolling bearing device, and the resonance frequency matches the reference frequency. If the axial movement of the inner ring is stopped in this state, a desired preload can be applied to the other double row rolling bearing device.
[0006]
[Problems to be solved by the invention]
In the case of the preload applying method and the preload applying device for the double row ball bearing device described in the above-mentioned Japanese Patent Application Laid-Open No. Hei 6-221326, there are the following points to be improved.
First, in the case of the method of measuring the loss torque as shown in FIG. 6, for each double row ball bearing device 1 to which preload is applied, a thread 12 is formed on the outer peripheral surface of the outer cylinder 3 constituting the double row ball bearing device 1. It is necessary to wind the one end side part of. However, since the double-row ball bearing device 1 incorporated in the HDD or the like is small, the operation of winding the one end portion of the thread 12 around the outer peripheral surface of the outer cylinder 3 as described above is troublesome. For this reason, it is difficult to easily perform a desired preload application work, and it is difficult to increase the efficiency of the preload application work, particularly when a large number of double row ball bearing devices 1 are preloaded.
[0007]
Further, in the case of the conventional preload applying method and preload applying apparatus as described above, in order to rotate the shaft 2 and the inner rings 6, 6 which are inner members, the holder 11 for holding the shaft 2, The pushing arm 14 for pressing the inner ring 6 also needs to be rotated together with the shaft 2 and the inner rings 6 and 6. This complicates the structure of the device that includes the holder 11 and the push-in arm 14.
[0008]
On the other hand, in the case of the method for obtaining the preload of the double row rolling bearing device by measuring the resonance frequency of the double row rolling bearing device, the double row rolling bearing device in which the preload is easily applied and the preload is applied. However, the accuracy of preloading is inferior to that based on loss torque measurement. In particular, in recent years, small double-row rolling bearing units such as those incorporated in the rotation support parts of information equipment and audio equipment can contain the amount of loss torque accompanying preload within the appropriate range rather than the preload value itself. It has been demanded. In such a case, it is preferable to directly measure the loss torque when preload is applied to the double row rolling bearing unit.
The preload applying method and the preload applying device for the double row rolling bearing device of the present invention are invented in view of the above-described circumstances.
[0009]
[Means for Solving the Problems]
The double-row rolling bearing device such as a double-row ball bearing device that applies a desired preload by the preload applying method and the preload applying device of the double-row rolling bearing device of the present invention is, for example, the double-row shown in FIGS. Similar to the double-row rolling bearing device such as the ball bearing device 1 or the like, the inner member, a pair of inner ring raceways provided on the outer peripheral surface of the inner member and spaced apart from each other, and the inner member are concentric around the inner member. A plurality of outer members disposed between the outer ring raceway and the inner ring raceways, and a pair of outer ring raceways provided at positions facing the inner raceways on the inner peripheral surface of the outer member. A rolling element provided so as to freely roll. Then, the rolling members having the inner ring raceway formed on the outer peripheral surface thereof to constitute the inner member are moved in the axial direction so as to narrow the interval between the inner ring raceway and the other inner ring raceway, thereby each rolling element. It is configured to give a preload to.
[0010]
When applying a desired preload to each of the rolling elements constituting such a double row rolling bearing device, in the preload applying method according to claim 1, the loss torque of the double row rolling bearing device suitable for the desired preload. Is continuously applied to the outer member in a non-contact state. The track member is moved in the axial direction while rotating the outer member based on the drive torque, and the loss torque and the drive torque are balanced and the rotation of the outer member is stopped. End (stop) the moving work in the axial direction.
[0011]
Further, in the preload applying method according to claim 2, a predetermined driving torque exceeding the loss torque of the double row rolling bearing device corresponding to a desired preload is continuously applied to the outer member in a non-contact state. To do. Then, the driving member is moved in the axial direction while rotating the outer member based on the driving torque, and the driving torque is a rotating speed corresponding to a loss torque corresponding to the desired preload. The moving work in the axial direction of the track member is terminated (stopped) at a rotational speed corresponding to the torque difference obtained by reducing the loss torque .
[0012]
In this case, preferably, as described in claim 3, the double row rolling bearing device is vibrated and the race member is moved in the axial direction while detecting the vibration of the outer member of the double row rolling bearing device . Then, after the peak of the resonance frequency of the outer member appears, the speed of moving the track member in the axial direction is reduced. During the measurement of the resonance frequency, it is not always necessary to rotate the outer member by the driving means. If the resonance frequency can be measured even when the outer member is rotating, the resonance frequency is measured while rotating the outer member. On the other hand, if it is difficult to measure the resonance frequency while the outer member is rotating, the outer member remains stopped while the resonance frequency is being measured. However, in order to set the loss torque of the double row rolling bearing device to a value commensurate with the desired preload, at the stage of monitoring the rotation state of the outer member, the driving torque is continuously applied to the outer member in a non-contact state. By applying continuously, the track member is moved in the axial direction while rotating the outer member.
[0013]
According to a fourth aspect of the present invention, there is provided a preload applying device for a double row rolling bearing device in which the inner member is held in a stationary state, and the track member is moved in the axial direction to move the track member in the axial direction. An axial force applying means for applying a force, a driving means for continuously rotating and driving the outer member in a non-contact state, and a rotation monitoring device for observing the rotating state of the outer member. . And based on the rotation state of the said outer member observed by this rotation monitoring apparatus, the operation | work which moves the said outer member to an axial direction by the said axial force provision means is stopped.
Preferably, as described in claim 5, vibration means for vibrating the double row rolling bearing device via the inner member and the race member, and vibration of the outer member based on the vibration by the vibration means are provided. A vibration sensor to detect, and an arithmetic unit for obtaining a resonance frequency of the double row rolling bearing device by a detection signal of the vibration sensor. Then, the double row rolling bearing device is vibrated by the vibration means, and the race member is moved in the axial direction while detecting the vibration of the outer member of the double row rolling bearing device, and the resonance frequency peak of the outer member is detected. After appearing, the speed of moving the track member in the axial direction is reduced.
Further, as the driving means, as described in claim 6, a nozzle that blows pressure fluid on the outer peripheral surface of the outer member in a direction inclined with respect to the diameter direction of the outer member, or in claim 7. As described above, an electromagnetic induction coil that is loosely fitted around the outer member made of a conductive material is used.
[0014]
[Action]
According to the preload application method and the preload application device of the double row rolling bearing device of the present invention configured as described above, the magnitude of the loss torque associated with the application of the preload, not the value of the preload itself (corresponding decrease in rotational speed) Therefore, it is possible to easily carry out the work of accurately placing the loss torque accompanying the preload application of the double row rolling bearing device within an appropriate range.
Further, as described in claim 3 and claim 5, when used together with the preload measurement by the resonance frequency measurement, the preload application work for obtaining the desired loss torque by quickly moving the track member in the initial stage is performed. Efficiency can be improved.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show a first example of an embodiment of the present invention corresponding to claims 1 and 3 to 6. A double-row ball bearing device 1a, which is a kind of double-row rolling bearing device in which preload is applied by the preload applying method and preload applying device of the double-row rolling bearing device of the present invention, constitutes inner members arranged concentrically with each other. The inner cylinder 15 and the outer cylinder 3 constituting the outer member are combined in a freely rotatable manner by a pair of ball bearings 4 and 4. Each of these ball bearings 4, 4 has an inner ring 6 that is a race member constituting an inner member, and a deep groove type outer ring raceway 7 is formed on the inner peripheral surface. A plurality of balls 10, 10 each provided as a rolling element are provided between the outer ring 8 constituting the outer member and the inner ring raceway 5 and the outer ring raceway 7 so as to be able to roll while being held by a cage 9. It consists of. The outer rings 8 and 8 constituting the ball bearings 4 and 4 are fitted and fixed to the inner peripheral surface of the outer cylinder 3, respectively, and the inner rings 6 and 6 are respectively connected to the outer periphery of the inner cylinder 15. It is fixed on the surface. When the present invention is carried out, only one inner ring raceway 5 of the pair of inner ring raceways 5, 5 formed on the outer peripheral face of the inner member is formed on the outer peripheral face of the inner ring 6, and the other inner ring raceway 5. Can also be formed directly on the outer peripheral surface of the inner cylinder 15. Further, the pair of outer ring raceways 7 and 7 can be directly formed on the inner peripheral surface of the outer cylinder 3. Furthermore, the present invention is not limited to the double-row ball bearing device as long as it is a double-row rolling bearing device that applies preload, and can also be implemented by a double-row tapered roller bearing unit.
[0016]
The hollow cylindrical inner cylinder 15 which is an inner member constituting the double row ball bearing device 1a to which the preload is applied is held in a stationary state by a holder 11a which is a holding means. Further, an axial force is applied to the upper end surface of one inner ring 6 (upper side in FIG. 1) of the pair of inner rings 6 and 6, each of which is a track member that constitutes an inner member, and is fitted on the inner cylinder 15. The front end surface of the push-in arm 14a, which is an applying means, is abutted. Then, the upper arm surface of the one inner ring 6 is pressed by the pushing arm 14a, and the one inner ring 6 is moved toward the other inner ring 6 (downward in FIG. 1), whereby the double row ball bearing device 1a is moved. A preload can be freely applied to a plurality of balls 10 and 10 constituting the same.
[0017]
The holder 11a is supported in the vertical direction on the upper surface of a support base (not shown) via a load sensor 16 and a piezoelectric element 17a serving as a vibration means. On the other hand, the pushing arm 14a is supported on the lower surface of the head 18 of the feeding device concentrically with the holding tool 11a via a piezoelectric element 17b which is also a vibration means. The pair of piezoelectric elements 17a and 17b are of the same specification, and are mutually different in phase by 180 degrees. Therefore, when one piezoelectric element 17a (or 17b) pushes the double row ball bearing device 1a for a predetermined stroke, the other piezoelectric element 17b (or 17a) retracts by this stroke. Therefore, the vibration in the axial direction does not act as a force that increases the preload. Such a pair of piezoelectric elements 17a, 17b finely reciprocates (vibrates) the double-row ball bearing device 1a in the vertical direction with energization. In order to make it possible to measure the resonance frequency of the double-row ball bearing device 1a that is vibrated in this way, the tip of the probe 20 of the vibration sensor 19 is brought into contact with the upper end surface of the outer cylinder 3. . The detection signal of the vibration sensor 19 is sent to a calculator (not shown), and the calculator can freely calculate the resonance frequency of the double row ball bearing device 1a.
[0018]
Further, a nozzle 21 constituting a driving means is disposed in the vicinity of the outer peripheral surface of the outer cylinder 3 which is an outer member constituting the double row ball bearing device 1a. As shown in FIG. 2, the nozzle 21 is disposed in a direction inclined with respect to the diameter direction of the outer cylinder 3, and pressure fluid such as compressed air is supplied to the outer peripheral surface of the outer cylinder 3. 3 is sprayed in a direction inclined with respect to the diameter direction of 3 (an intermediate direction between the diameter direction and the tangential direction). And the driving torque of a rotation direction is provided to the said outer cylinder 3 based on the dynamic pressure of the said pressure fluid. In the case of this example, the double-row ball bearing device in a state where the drive torque to be applied to the outer cylinder 3 based on the spraying of the pressure fluid is applied to the double-row ball bearing device 1a. It is made to correspond to the loss torque of 1a. The magnitude of the driving torque can be adjusted by changing the inclination angle of the nozzle 21 and the flow rate and flow rate of the pressure fluid blown from the nozzle 21.
[0019]
When preload is applied to each of the balls 10 and 10 constituting the double row ball bearing device 1a while suppressing the loss torque of the double row ball bearing device 1a to a predetermined value or less, a pressure fluid is blown out from the nozzle 21. Then, the outer cylinder 3 is rotated. The one inner ring 6 is moved toward the other inner ring 6 by the pushing arm 14a while the double row ball bearing device 1a is vibrated by the pair of piezoelectric elements 17a and 17b. The speed of this movement is relatively high in the initial stage of the preload application operation. As this movement proceeds, the rolling surfaces of the plurality of balls 10 and 10 constituting the double-row ball bearing device 1a come into contact with the inner ring raceways 5 and 5 and the outer ring raceways 7 and 7. As a result, a peak of the resonance frequency appears (appears). If this peak appears, the moving speed of the pushing arm 14a is slowed down. In this state, the outer cylinder 3 is still rotated by the pressure fluid blown from the nozzle 21.
[0020]
Then, while the one inner ring 6 is slowly moved toward the other inner ring 6 by the pushing arm 14a, the rotation state of the outer cylinder 3 is observed by a rotation monitoring device incorporating a CCD camera and an image processing device. Then, with the rotation of the outer cylinder 3 stopped, the pushing operation of the one inner ring 6 by the pushing arm 14a is finished. As described above, the driving torque generated by the pressure fluid blown from the nozzle 21 matches the desired loss torque, so that the rotation of the outer cylinder 3 stops at the moment when the one inner ring 6 is moved slowly. If the movement is stopped, the loss torque of the double row ball bearing device 1a can be set to the desired value.
[0021]
When the present invention is carried out, the sliding friction of the contact portion between the probe 20 of the vibration sensor 19 and the end surface of the outer cylinder 3 is very small. The value can be set to such a level that there is no practical problem. Rather, it may be appropriate from the aspect of setting an appropriate loss torque to ignore this value instead of suppressing the value of the sliding friction slightly. That is, assuming that the driving torque and the desired loss torque are matched, and that the movement of the one inner ring 6 is stopped at the moment when the rotation of the outer cylinder 3 stops (without any time delay). The actually set loss torque is reduced by an amount corresponding to the sliding friction value. However, since it is impossible to completely eliminate the time delay from the moment when the rotation of the outer cylinder 3 stops until the movement of the one inner ring 6 stops, the sliding friction as described above. By ignoring this value instead of keeping the value slightly, the time delay can be compensated. Furthermore, instead of making the vibration of the outer cylinder 3 freely measurable by a non-contact type vibrometer such as a laser Doppler type, the driving torque is slightly smaller than the loss torque (by an amount corresponding to the time delay). It can be made smaller.
[0022]
Next, FIGS. 3 to 4 show a second example of the embodiment of the invention corresponding to claims 1, 3, 4, 5 and 7. In the case of this example, the electromagnetic induction coil 22 is used as drive means for rotationally driving the outer cylinder 3 constituting the double row ball bearing device 1a in a non-contact state. When performing the preload application operation to the double row ball bearing device 1a, the electromagnetic induction coil 22 is loosely placed on the outer cylinder 3 made of a conductive material such as stainless steel (with a radial gap interposed). Fits in). Then, by applying a set voltage to the electromagnetic induction coil 22 and applying a rotating magnetic field, the outer cylinder 3 is rotated with a predetermined driving torque (corresponding to a loss torque to be set in the double row ball bearing device 1a). Meanwhile, a preload application operation is performed in which one inner ring 6 is pressed by the pushing arm 14a. Since the configuration and operation except that the driving means is changed from the nozzle 21 (FIGS. 1 and 2) to the electromagnetic induction coil 22 are the same as in the case of the first example described above, the same parts are denoted by the same reference numerals and overlapped. Description to be omitted is omitted.
[0023]
In the above description, when a predetermined preload is applied to the double row ball bearing device 1a, and the loss torque of the double row ball bearing device 1a matches the predetermined preload, the outer cylinder 3 The case where the stop of the first inner ring 6 is detected and the movement of the one inner ring 6 is terminated has been described. On the other hand, as described in claim 2, the driving torque is made slightly larger than the loss torque, and it is detected that the rotational speed of the outer cylinder 3 is reduced due to an increase in loss torque based on preload application, The movement of one inner ring 6 can also be terminated. That is, in this case, by applying a predetermined driving torque exceeding the loss torque of the double-row ball bearing device 1a that matches a desired preload to the outer cylinder 3 that is an outer member in a non-contact state, the outer cylinder The one inner ring 6 that is a track member is moved in the axial direction while rotating 3. Then, in the state where the rotational speed of the outer cylinder 3 has reached the rotational speed corresponding to the loss torque corresponding to the desired preload, that is, the rotational speed corresponding to the torque difference obtained by subtracting the loss torque from the drive torque , The movement work regarding the axial direction of the inner ring 6 is completed. In this way, by detecting a decrease in the rotational speed of the outer cylinder 3 due to loss torque, the rotational state detection range can be increased compared to the case where the stop of the outer cylinder 3 is detected. The loss torque of the device 1a can be managed more strictly.
[0024]
【The invention's effect】
Since the preload applying method and the preload applying device for the double row rolling bearing device according to the present invention are configured and act as described above, the preload applying operation can be performed easily and the loss torque is accurately regulated. As a result, when preload is applied to a large number of double row rolling bearing devices, the efficiency of the preload application work can be improved. Also, the structure of the holding means for holding the inner member and the axial force applying means for applying the axial force to the track member can be simplified, and the equipment cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a side view showing a first example of an embodiment of the present invention with a part thereof cut away.
FIG. 2 is a view from above of FIG.
FIG. 3 is a side view showing a second example of the embodiment of the invention with a part thereof cut away;
4 is a view from above of FIG. 3, with a part omitted.
FIG. 5 is a half sectional view showing an example of the prior art.
6 is a view from the side of FIG. 5;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 1a Double row ball bearing apparatus 2 Shaft 3 Outer cylinder 4 Ball bearing 5 Inner ring raceway 6 Inner ring 7 Outer ring raceway 8 Outer ring 9 Cage 10 Ball 11, 11a Holder 12 Thread 13 Load sensor 14, 14a Push arm 15 Inner cylinder 16 Load sensors 17a and 17b Piezoelectric element 18 Head 19 Vibration sensor 20 Measuring element 21 Nozzle 22 Electromagnetic induction coil

Claims (7)

内側部材と、この内側部材の外周面に互いに間隔をあけて設けた1対の内輪軌道と、この内側部材の周囲にこの内側部材と同心に配置した外側部材と、この外側部材の内周面で上記各内輪軌道と対向する位置に設けた1対の外輪軌道と、これら各外輪軌道と上記各内輪軌道との間にそれぞれ複数個ずつ転動自在に設けた転動体とを備えた複列転がり軸受装置に関し、上記内側部材を構成する為その外周面に内輪軌道を形成した軌道部材を、この内輪軌道と他の内輪軌道との間隔を狭くする方向に軸方向に関して移動させる事により、上記各転動体に所望の予圧を付与する際に、この所望の予圧に見合う上記複列転がり軸受装置のロストルクに相当する駆動トルクを上記外側部材に、非接触状態で、継続して連続的に付与する事により、この外側部材を回転させつつ上記軌道部材を軸方向に関して移動させ、上記ロストルクと上記駆動トルクとが均衡して上記外側部材の回転が停止した状態で上記軌道部材の軸方向に関する移動作業を終了する、複列転がり軸受装置の予圧付与方法。An inner member, a pair of inner ring raceways spaced apart from each other on the outer peripheral surface of the inner member, an outer member disposed concentrically with the inner member around the inner member, and an inner peripheral surface of the outer member And a pair of outer ring raceways provided at positions facing each of the inner ring raceways, and a plurality of rolling elements provided in a freely rotatable manner between each of the outer ring raceways and the respective inner ring raceways. With respect to the rolling bearing device, the above-described inner member is formed by moving the race member having an inner ring raceway on the outer peripheral surface thereof in the axial direction in a direction in which the interval between the inner ring raceway and the other inner ring raceway is reduced. When a desired preload is applied to each rolling element, a driving torque corresponding to the loss torque of the double row rolling bearing device corresponding to the desired preload is continuously applied to the outer member in a non-contact state. By doing this outside While rotating the member to move the raceway member in the axial direction, and terminates the mobile work in the axial direction of the raceway member in a state where the rotation of the outer member and the torque loss and the drive torque is balanced stops, double A preloading method for a row rolling bearing device. 内側部材と、この内側部材の外周面に互いに間隔をあけて設けた1対の内輪軌道と、この内側部材の周囲にこの内側部材と同心に配置した外側部材と、この外側部材の内周面で上記各内輪軌道と対向する位置に設けた1対の外輪軌道と、これら各外輪軌道と上記各内輪軌道との間にそれぞれ複数個ずつ転動自在に設けた転動体とを備えた複列転がり軸受装置に関し、上記内側部材を構成する為その外周面に内輪軌道を形成した軌道部材を、この内輪軌道と他の内輪軌道との間隔を狭くする方向に軸方向に関して移動させる事により、上記各転動体に所望の予圧を付与する際に、この所望の予圧に見合う上記複列転がり軸受装置のロストルクを上回る所定の駆動トルクを上記外側部材に、非接触状態で、継続して連続的に付与する事により、この外側部材を回転させつつ上記軌道部材を軸方向に関して移動させ、この外側部材の回転速度が上記所望の予圧に見合うロストルクに対応する回転速度である、上記駆動トルクからこのロストルクを減じたトルク差に対応する回転速度になった状態で上記軌道部材の軸方向に関する移動作業を終了する、複列転がり軸受装置の予圧付与方法。An inner member, a pair of inner ring raceways spaced apart from each other on the outer peripheral surface of the inner member, an outer member disposed concentrically with the inner member around the inner member, and an inner peripheral surface of the outer member And a pair of outer ring raceways provided at positions facing each of the inner ring raceways, and a plurality of rolling elements provided in a freely rotatable manner between each of the outer ring raceways and the respective inner ring raceways. With respect to the rolling bearing device, the above-described inner member is formed by moving the race member having an inner ring raceway on the outer peripheral surface thereof in the axial direction in a direction in which the interval between the inner ring raceway and the other inner ring raceway is reduced. When a desired preload is applied to each rolling element, a predetermined driving torque exceeding the loss torque of the double row rolling bearing device that matches the desired preload is continuously and continuously applied to the outer member in a non-contact state. By giving While rotating the outer member to move the raceway member in the axial direction, the rotational speed of the outer member is a rotational speed corresponding to the loss torque commensurate with the desired preload, the torque difference obtained by subtracting the loss torque from the driving torque A preload application method for a double row rolling bearing device, wherein the moving operation in the axial direction of the raceway member is terminated in a state where the corresponding rotational speed is reached. 複列転がり軸受装置を加振すると共にこの複列転がり軸受装置外側部材の振動を検出しつつ軌道部材を軸方向に移動させ、この外側部材の共振周波数のピークが出現した後、上記軌道部材を軸方向に移動させる速度を遅くする、請求項1〜2の何れかに記載した複列転がり軸受装置の予圧付与方法。After the double row rolling bearing device is vibrated and the race member is moved in the axial direction while detecting the vibration of the outer member of the double row rolling bearing device , the peak of the resonance frequency of the outer member appears. The method for applying a preload to a double row rolling bearing device according to any one of claims 1 to 2, wherein a speed at which the shaft is moved in the axial direction is reduced. 請求項1〜3の何れかに記載した複列転がり軸受装置の予圧付与方法を実施する為の予圧付与装置であって、内側部材を静止状態のまま保持する為の保持手段と、軌道部材を軸方向に関して移動させるべく、この軌道部材に軸方向に関する力を付与する軸力付与手段と、外側部材を非接触状態のまま、継続して連続的に回転駆動する駆動手段と、この外側部材の回転状態を観察する為の回転監視装置とを備え、この回転監視装置により観察される上記外側部材の回転状態に基づいて、上記軸力付与手段により上記外側部材を軸方向に移動させる作業を停止する複列転がり軸受装置の予圧付与装置。A preload application device for carrying out the preload application method for a double row rolling bearing device according to any one of claims 1 to 3, comprising a holding means for holding the inner member in a stationary state, and a race member. In order to move in the axial direction, an axial force applying means for applying an axial force to the track member, a driving means for continuously rotating and driving the outer member in a non-contact state, and an outer member A rotation monitoring device for observing the rotation state, and based on the rotation state of the outer member observed by the rotation monitoring device, the operation of moving the outer member in the axial direction by the axial force applying means is stopped. A preload applying device for a double row rolling bearing device. 内側部材及び軌道部材を介して複列転がり軸受装置を加振する加振手段と、この加振手段による加振に基づく外側部材の振動を検出する振動センサと、この振動センサの検出信号により上記複列転がり軸受装置の共振周波数を求める演算器とを備え、上記加振手段により上記複列転がり軸受装置を加振すると共にこの複列転がり軸受装置の外側部材の振動を検出しつつ軌道部材を軸方向に移動させ、この外側部材の共振周波数のピークが出現した後、上記軌道部材を軸方向に移動させる速度を遅くする、請求項4に記載した複列転がり軸受装置の予圧付与装置。The vibration means for vibrating the double row rolling bearing device via the inner member and the race member, the vibration sensor for detecting the vibration of the outer member based on the vibration by the vibration means, and the detection signal of the vibration sensor And a computing unit for obtaining a resonance frequency of the double row rolling bearing device, wherein the double row rolling bearing device is vibrated by the vibration means and the race member is detected while detecting the vibration of the outer member of the double row rolling bearing device. The preload imparting device for a double row rolling bearing device according to claim 4, wherein after moving in the axial direction and the peak of the resonance frequency of the outer member appears, the speed at which the race member is moved in the axial direction is reduced . 駆動手段が、外側部材の外周面に対し圧力流体を、この外側部材の直径方向に対し傾斜した方向に吹き付けるノズルである、請求項4又は請求項5に記載した複列転がり軸受装置の予圧付与装置。  The preloading of the double row rolling bearing device according to claim 4 or 5, wherein the driving means is a nozzle that blows the pressure fluid to the outer peripheral surface of the outer member in a direction inclined with respect to the diameter direction of the outer member. apparatus. 駆動手段が、導電材製の外側部材の周囲に緩く外嵌される電磁誘導コイルである、請求項4又は請求項5に記載した複列転がり軸受装置の予圧付与装置。  The preload applying device for a double row rolling bearing device according to claim 4 or 5, wherein the driving means is an electromagnetic induction coil that is loosely fitted around the outer member made of a conductive material.
JP2001128702A 2001-04-26 2001-04-26 Preload application method and preload application device for double row rolling bearing device Expired - Fee Related JP3896803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001128702A JP3896803B2 (en) 2001-04-26 2001-04-26 Preload application method and preload application device for double row rolling bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001128702A JP3896803B2 (en) 2001-04-26 2001-04-26 Preload application method and preload application device for double row rolling bearing device

Publications (3)

Publication Number Publication Date
JP2002323041A JP2002323041A (en) 2002-11-08
JP2002323041A5 JP2002323041A5 (en) 2005-06-02
JP3896803B2 true JP3896803B2 (en) 2007-03-22

Family

ID=18977361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001128702A Expired - Fee Related JP3896803B2 (en) 2001-04-26 2001-04-26 Preload application method and preload application device for double row rolling bearing device

Country Status (1)

Country Link
JP (1) JP3896803B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101943216B (en) * 2010-09-20 2012-02-22 宁波惠联自动化设备有限公司 Ferrule charging device of bearing assembly instrument
CN102943818B (en) * 2012-10-30 2017-06-27 无锡双益精密机械有限公司 The match structure of bearing
CN113685434B (en) * 2021-08-24 2023-04-07 洛阳轴承研究所有限公司 Control method and measuring instrument for pretightening force of counter bearing

Also Published As

Publication number Publication date
JP2002323041A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
JP4009801B2 (en) Preload measuring device for rolling bearings
JP2882105B2 (en) Method and apparatus for measuring the preload of a rolling bearing
US6446339B2 (en) Preloading method for preload-adjustable rolling bearing
JP2913913B2 (en) Method and apparatus for measuring the contact angle of a rolling bearing
JPH06221326A (en) Pre-loaded rolling bearing device and its manufacture
JP3428264B2 (en) Rotational accuracy measuring device for rolling bearings
JP3896803B2 (en) Preload application method and preload application device for double row rolling bearing device
JP2007093544A (en) Method and device for measuring vibration of axial direction of rolling bearing
JP3452010B2 (en) Rotation accuracy measuring device for rolling bearings
JP3254825B2 (en) Manufacturing method of rolling bearing device to which preload is applied
JP2002323041A5 (en)
JP2002317819A (en) Preload applying device for double row rolling bearing device
JP3736250B2 (en) Method and apparatus for measuring radial resonance frequency of rolling bearing unit
JP2003329512A (en) Apparatus and method for measurement of natural oscillation frequency of roller bearing
JP5857500B2 (en) Hard disk drive swing arm bearing
JP3938901B2 (en) NRRO measuring device
JP2004320990A (en) Method and apparatus for measuring motor
JP2002317818A (en) Preload applying method and preload applying device for double row rolling bearing device
JP2001304253A (en) Pre-load setting method for roller bearing device
JP2003156058A (en) Bearing ring adhering and fixing method and bearing preload granting device
JP2003074548A (en) Preloading method of rolling bearing unit
JP2004205315A (en) Motion evaluating method for bearing structure
JP2004108406A (en) Method and device for measuring rotational accuracy of rolling bearing
JP2002350289A (en) Vibration measurement device for bearing
JP2001194223A5 (en) Method and apparatus for measuring radial resonance frequency of rolling bearing unit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061211

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees