JP3896749B2 - Method for producing radioactive waste solidified body and solidified body produced by the method - Google Patents

Method for producing radioactive waste solidified body and solidified body produced by the method Download PDF

Info

Publication number
JP3896749B2
JP3896749B2 JP2000002537A JP2000002537A JP3896749B2 JP 3896749 B2 JP3896749 B2 JP 3896749B2 JP 2000002537 A JP2000002537 A JP 2000002537A JP 2000002537 A JP2000002537 A JP 2000002537A JP 3896749 B2 JP3896749 B2 JP 3896749B2
Authority
JP
Japan
Prior art keywords
metal
container
solidified
mold
solidified body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000002537A
Other languages
Japanese (ja)
Other versions
JP2001194496A (en
Inventor
宏和 田中
賢次 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000002537A priority Critical patent/JP3896749B2/en
Publication of JP2001194496A publication Critical patent/JP2001194496A/en
Application granted granted Critical
Publication of JP3896749B2 publication Critical patent/JP3896749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低レベルの放射性金属廃棄物を処分するための固化体を製造する方法及びその方法により製造された固化体に関するものである。
【0002】
【従来の技術】
近年の原子力発電の進展に伴い、発電所の運転や解体に伴って発生する放射性廃棄物の量は増大する傾向にある。これら放射性廃棄物の処分に関しては、放射性廃棄物の周囲への影響が最小となる形態に廃棄物を固形化し、かつできた固形固化体が化学的、機械的に安定していて、長期の貯蔵によっても環境汚染の原因にならないことが必要である。
このような観点から、放射性廃棄物の固化体の製造方法として従来、廃棄物を内部容器内に金属により固化する工程と、その内部容器を貯蔵容器内で金属中に封入する工程とを含む放射性廃棄物の処理方法が提案されている(特開昭56−10296)。この処理方法では、貯蔵容器内に適量の溶融金属を入れておき、しかる後に内部容器を投入してからその溶融金属を冷却固化させるか、或いは適量の溶融金属が入れられた貯蔵容器に内部容器を投入した後、溶融金属を後から更に流し込んで冷却固化させて廃棄物を金属で被包することにより、その廃棄物を化学的、機械的に安定にさせるようになっている。
【0003】
【発明が解決しようとする課題】
しかし、上述した放射性廃棄物の処理方法では、内部容器内に廃棄物を一旦金属により固化し、その内部容器を更に貯蔵容器内の金属中に封入することから、2つの容器を必要とするとともに、廃棄物の処分手続きが比較的煩雑となる問題点がある。
また、内部容器を金属中に封入する手段が、貯蔵容器内に適量の溶融金属を入れた後に内部容器を投入して、その溶融金属又はその溶融金属及び後に追加された溶融金属を冷却固化させるため、溶融金属が固化する過程で内部容器が移動すると、その内部容器が貯蔵容器の中央部に維持されない場合が生じ得る。その一方で、溶融金属が冷却されて固化した固化金属と貯蔵容器との密着性は、溶融金属と貯蔵容器が溶着されることにより生じるため、溶融金属が固化する過程の収縮に起因する力又は固化した後に加わる外力がその溶着力より勝る場合には、貯蔵容器と固化金属の間に隙間が生じる不具合がある。
従って、内部容器が貯蔵容器に接触していない状態で溶融金属が冷却固化しても、上記隙間が音響的な不連続部となって超音波探傷検査(非破壊検査)を行うことができない問題点があった。また内部容器が移動することにより、その内部容器が貯蔵容器に接触した状態で溶融金属が冷却固化すると、上記貯蔵容器と固化金属の間に生じた隙間から廃棄物の一部が表出して周辺環境を汚染するおそれもある。更に固化金属が貯蔵容器により覆われているため、固化金属表面の目視検査や染色探傷検査を行うことができない問題点もある。
【0004】
本発明の目的は、複数の容器を用いずに単一のコンテナを用いて、このコンテナを被包用金属の中央に確実に位置させることができる、放射性廃棄物の固化体の製造方法を提供することにある。
本発明の別の目的は、固化した被包用金属とコンテナとの間に隙間を生じさせず、これにより超音波探傷検査のみならず、固化した被包用金属表面の目視検査及び染色探傷検査を行うことができる、放射性廃棄物の固化体の製造方法及びその方法で製造された固化体を提供することにある。
本発明の更に別の目的は、固化した被包用金属と支持脚又は吊り棒との間に隙間を生じさせず、これにより放射性廃棄物の密封性を向上することができる、放射性廃棄物の固化体の製造方法及びその方法で製造された固化体を提供することにある。
【0005】
【課題を解決するための手段】
請求項1に係る発明は、図1〜図3に示すように、金属製の支持脚14又は吊り棒を有し溶融状態の被包用金属16が通過可能に構成された金属製のコンテナ13に放射性廃棄物12を収容する工程と、上部に開口部17cを有する鋳型17に支持脚14又は吊り棒により鋳型17内壁から所定の間隔をあけてコンテナ13を収容する工程と、鋳型17にコンテナ13及び支持脚14又は吊り棒より融点の低い上記溶融状態の被包用金属16を充填して冷却固化させることにより固化体11を形成する工程と、固化体11を鋳型17から取出す工程とを含む放射性廃棄物の固化体の製造方法である。
この請求項1に記載された放射性廃棄物の固化体の製造方法では、放射性廃棄物12をコンテナ13に収容し、このコンテナ13の位置がずれないようにする、即ち放射線源となる放射性廃棄物12を固化体11の中心部に固定するとともに、コンテナ13の内部及びその全周面に被包用金属16が充填されるので、固化体11の表面から放射される放射線を一定以下に抑えることができる。また固化した被包用金属16とコンテナ13との間に隙間が生じないので、固化体11の超音波探傷検査を行うことができるとともに、固化した被包用金属16表面の目視検査及び染色探傷検査を行うことができる。
【0006】
請求項2に係る発明は、請求項1に係る発明であって、更に図1に示すように、放射性廃棄物12が被包用金属16の融点より高い融点を有する金属又は被包用金属の融点と同一の融点を有する金属であることを特徴とする。
この請求項2に記載された放射性廃棄物の固化体の製造方法では、放射性廃棄物12が被包用金属16の融点より高い融点を有する金属であれば、溶融状態の被包用金属16を鋳型17に注入したときに、廃棄物12が溶融することはない。また廃棄物が被包用金属の融点と同一の融点を有する金属であっても、溶融状態の被包用金属を鋳型に注入したときに、被包用金属が急激に温度低下して廃棄物の融点に達する前に被包用金属が凝固するので、廃棄物が溶融することはない。
【0007】
請求項3に係る発明は、請求項1又は2に係る発明であって、更に図1に示すように、コンテナ13及び支持脚14又は吊り棒が炭素鋼により形成され、被包用金属16が鋳鉄又はステンレス鋼であることを特徴とする。
この請求項3に記載された放射性廃棄物の固化体の製造方法では、被包用金属16の融点がコンテナ13及び支持脚14又は吊り棒の融点より低いので、溶融状態の被包用金属16を鋳型17に注入したときに、コンテナ13等が溶融せず、コンテナ13の位置がずれることはない。
【0008】
請求項4に係る発明は、請求項1又は2に係る発明であって、更に図7及び図8に示すように、コンテナ13が炭素鋼により形成され、支持脚54又は吊り棒が外周面を鋳鉄製の被覆層54bにて被覆した炭素鋼製の柱状体54aにより形成され、更に被包用金属16が鋳鉄であることを特徴とする。
この請求項4に記載された放射性廃棄物の固化体の製造方法では、溶融状態の被包用金属16と接触する支持脚54又は吊り棒の被覆層54bが被包用金属16と同一材料の鋳鉄で形成されているため、なじみが良く、被包用金属16が固化したときに境界面に隙間を生じ難い。この結果、放射性廃棄物12の密封性を向上することができる。また支持脚54又は吊り棒の中心部が被包用金属16より融点の高い炭素鋼製の柱状体54aにより形成されているため、コンテナ13の位置がずれることはない。
【0009】
請求項5に係る発明は、図7及び図8に示すように、上記請求項1ないし4いずれかに係る方法で製造された固化体である。
この請求項5に記載された固化体では、上述のように放射線源となる放射性廃棄物12が固化体51の中心部に固定されるので、固化体51の表面から放射される放射線を一定以下に抑えることができ、また固化した被包用金属16とコンテナ13との間に隙間が生じないので、固化体51の超音波探傷検査を行うことができるとともに、固化した被包用金属16表面の目視検査及び染色探傷検査を行うことができる。更に被包用金属16と支持脚54又は吊り棒との間に隙間が生じないので、放射性廃棄物12の密封性を向上することができる。
【0010】
【発明の実施の形態】
次に本発明の第1の実施の形態を図面に基づいて説明する。
図1〜図3に示すように、本発明の固化体11は低レベルの放射性廃棄物12と、この放射性廃棄物12を収容する金属製のコンテナ13と、このコンテナ13の底面に取付けられた金属製の支持脚14と、溶融状態でコンテナ13内に充填されかつコンテナ13を被包する被包用金属16とを備える。コンテナ13は溶融状態の被包用金属16が通過可能に構成される。即ちコンテナ13として、複数の孔が形成されたいわゆるパンチングメタルにより作られたものや、格子籠や編み籠等で代表されるようないわゆる籠状のものが用いられる。この実施の形態では、金属製の棒材を矩形枠に所定の間隔をあけて平行に溶接した6枚の板を用意し、これらの板の周縁を互いに溶接することにより立方体状の箱を作りコンテナ13とした。このコンテナ13は廃棄物12を収容可能である限り必ずしも蓋板を必要としないが、この実施の形態では上板13aを開閉可能に取付けて蓋板とした例を示す。
【0011】
また支持脚14はこの実施の形態ではコンテナ13の底面にそれぞれ固着された4本の金属製の円柱体である。これらの支持脚14によりコンテナ13は後述する鋳型17の底壁17b上面から所定の間隔をあけて上方に位置するように構成される。上記コンテナ13及び支持脚14は融点が約1500℃の炭素鋼により作られることが好ましく、被包用金属16は上記コンテナ13及び支持脚14の融点より低い約1150℃の融点を有する鋳鉄を溶融させて用いることが好ましい。炭素鋼としては炭素含有量が0.03〜0.85重量%、好ましく0.03〜0.3重量%の例えばSS400,SS330,SS490等が用いられ、鋳鉄としては炭素当量が2.0〜4.5重量%、好ましくは3.5〜4.3重量%の例えばねずみ鋳鉄,球状黒鉛鋳鉄等が用いられる。更にこの実施の形態における廃棄物12は原子力発電所の運転に伴って発生する放射性の金属廃棄物であり、鋳鉄の融点より高い融点を有するステンレス鋼,炭素鋼,合金鋼等の金属により形成される。
【0012】
このように構成された固化体11を製造するための装置は冷却ベース18と、このベース18に載せられかつコンテナ13を収容可能な鋳型17とを備える。冷却ベース18は高い熱伝導率を有する金属により形成され、その内部には冷却水が流通する流路18aが形成される。鋳型17は側壁17a及び底壁17bからなり、上部に開口部17cを有する。また鋳型17は被包用金属16の融点より高い融点を有する炭素鋼(上記コンテナ13と同様の材料、例えばSS400,SS330,SS490等)により、コンテナ13より一回り大きく形成される。
【0013】
このように構成された固化体11を製造する方法を説明する。
先ずコンテナ13の上板13aを開いて放射性廃棄物12を収容した後に、上板13aを閉じる。次いでこのコンテナ13を鋳型17に収容する(図1)。このときコンテナ13を鋳型17の中央に置く、即ちコンテナ13を鋳型17の側壁17a内面から所定の間隔をあけて置く。またコンテナ13は支持脚14を介して鋳型17の底壁17bに載るため、コンテナ13の底面も鋳型17の底壁17b上面から所定の間隔があけられる。次に冷却ベース18の流路18aに冷却水を流通させた状態で、鋳型17の開口部17cから溶融状態の被包用金属16を注入して鋳型17の内部に被包用金属16を充填する(図2)。被包用金属16は融点が約1150℃の鋳鉄を溶融させたものであり、図示しない溶融炉で予め溶融した後に、取鍋(とりべ)19に入れられ、この取鍋19から鋳型17に充填される。
【0014】
上記溶融状態の被包用金属16はコンテナ13内に進入してコンテナ13内に充填されるとともに、鋳型17とコンテナ13との間にも充填され、流路18aを通過する冷却水により下端から上方に向って次第に冷却固化する。被包用金属16が冷却固化すると、コンテナ13に収容された廃棄物12は冷却固化した被包用金属16により被包される(図3)。この場合、被包用金属16は廃棄物12,鋳型17,コンテナ13及び支持脚14の融点より低い融点を有する鋳鉄で構成されているので、被包用金属16が充填されても上記廃棄物12やコンテナ13等が溶融して廃棄物12がコンテナ13から出ることはなく、廃棄物12をコンテナ13の略中央部に維持させた状態で確実に被包することができる。更に鋳型17に充填された被包用金属16は冷却固化する際に収縮し、固化体11の外面と鋳型17の側壁17a内面との間に隙間が生じるため、鋳型17を開口部17cが下を向くように回転させることにより、固化体11をスムーズに鋳型17から取出すことができ、また鋳型17を繰返し使用することができる。
【0015】
なお、この実施の形態では、鋳型を炭素鋼で形成したが、鋳型を鋳物砂により形成してもよい。この場合、鋳型に注入された被包用金属が固化した後に鋳型(砂型)を崩せば、容易に固化体を取出すことができる。
また、この実施の形態では、鋳型を冷却水が流通する流路を有する冷却ベース上に置いて被包用金属を冷却固化したが、冷却水が流通する流路を鋳型の底壁内部に設けて冷却したり、或いはこれらを用いずに大気により冷却(空冷)してもよい。
【0016】
このように製造された固化体11では、放射線源となる放射性廃棄物12を固化体11の中心部に固定するとともに、コンテナ13の内部及びその全周面に被包用金属17が充填されるので、固化体11の表面から放射される放射線を一定以下に抑えることができる。また固化した被包用金属16とコンテナ13との間に隙間が生じないので、固化体11の超音波探傷検査を行うことができるとともに、固化した被包用金属16表面の目視検査及び染色探傷検査を行うことができる。
【0017】
なお、コンテナ及び支持脚を炭素鋼(融点:約1500℃)により作り、被包用金属を上記コンテナ及び支持脚の融点より低い約1390℃の融点を有するステンレス鋼を溶融させて用いてもよい。この場合、廃棄物は被包用金属の融点と同一の融点を有する金属、即ちステンレス鋼である。被包用金属(溶融ステンレス鋼)と廃棄物(固体ステンレス鋼)の融点は同一であるけれども、容器に充填される被包用金属は急激に温度低下し短時間で凝固する。一方、被包される廃棄物は100℃前後(予熱温度)という低温から温度上昇するため、その温度上昇に時間が掛り、融点に達する前に被包用金属が凝固する。この結果、被包用金属が充填されても、上記廃棄物やコンテナ等が溶融して廃棄物がコンテナから出ることはなく、廃棄物をコンテナの略中央部に維持させた状態で確実に被包することができる。
【0018】
図4〜図6は本発明の第2の実施の形態を示す。図4〜図6において図1〜図3と同一符号は同一部品を示す。
この実施の形態では、第1の実施の形態の支持脚に替えて金属製の吊り棒34が用いられる。吊り棒34の下端はコンテナ13の上板13aに固着され、上端は昇降機(図示せず)に取付けられて、コンテナ13を吊下げた状態で昇降可能に構成される。また吊り棒34は融点が約1500℃の炭素鋼により作られることが好ましく、炭素鋼としては炭素含有量が0.03〜0.85重量%、好ましく0.03〜0.3重量%の例えばSS400,SS330,SS490等が用いられる。上記以外は第1の実施の形態と同一に構成される。
【0019】
このように構成された固化体31を製造する方法を説明する。
先ず第1の実施の形態と同様に、コンテナ13の上板13aを開いて放射性廃棄物12を収容した後に、上板13aを閉じる。次いで上板13aに固着された吊り棒34を昇降機に取付け、この昇降機を駆動してコンテナ13を鋳型17の内部に収容する(図4)。このときコンテナ13を鋳型17の中央に置く、即ちコンテナ13を鋳型17の側壁17a内面及び底壁17b内面からそれぞれ所定の間隔をあけた状態で停止させる。次に第1の実施の形態と同様に、溶融状態の被包用金属16を鋳型17に注入して冷却固化し(図5)、固化体31を作製する(図6)。更に昇降機を駆動して吊上げ棒34を引上げ、固化体31を上昇させて鋳型17から離脱させた後、固化体31から突出する吊り棒34を切断する。この結果、鋳型17を開口部17cが下方に向くように回転させる必要がないので、固化体31の鋳型17からの取出しが容易になる。
【0020】
なお、コンテナ及び吊上げ棒を炭素鋼(融点:約1500℃)により作り、被包用金属を上記コンテナ及び吊上げ棒の融点より低い約1390℃の融点を有するステンレス鋼を溶融させて用いてもよい。この場合、廃棄物は被包用金属の融点と同一の融点を有する金属、即ちステンレス鋼である。被包用金属(溶融ステンレス鋼)と廃棄物(固体ステンレス鋼)の融点は同一であるけれども、容器に充填される被包用金属は急激に温度低下し短時間で凝固する。一方、被包される廃棄物は100℃前後(予熱温度)という低温から温度上昇するため、その温度上昇に時間が掛り、融点に達する前に被包用金属が凝固する。この結果、被包用金属が充填されても、上記廃棄物やコンテナ等が溶融して廃棄物がコンテナから出ることはなく、廃棄物をコンテナの略中央部に維持させた状態で確実に被包することができる。
【0021】
図7〜図10は本発明の第3の実施の形態を示す。図7及び図9において図1及び図3と同一符号は同一部品を示す。
この実施の形態では、支持脚54が外周面を鋳鉄製の被覆層54bにて被覆した炭素鋼製の柱状体54aにより形成される(図8及び図10)。柱状体54aは融点が約1500℃で炭素含有量が0.03〜0.85重量%、好ましく0.03〜0.3重量%の例えばSS400,SS330,SS490等により形成され、被覆層54bは上記柱状体54aの融点より低い約1150℃の融点を有し炭素当量が2.0〜4.5重量%、好ましくは3.5〜4.3重量%の例えばねずみ鋳鉄,球状黒鉛鋳鉄等により形成される。また支持脚54は長尺の棒材を溶融状態の鋳鉄に浸漬して冷却固化することにより、上記長尺棒材の外周面に鋳鉄製の被覆層54bを形成し、次いでこの被覆層54bを有する長尺棒材を所定の長さに切断することにより作製される。上記以外は第1の実施の形態と同一に構成される。
このように構成された固化体51は第1の実施の形態と同様にして製造される。製造工程において、溶融状態の被包用金属16を鋳型17に注入するときに、この被包用金属16と接触する支持脚54aの被覆層54bが被包用金属16と同一材料の鋳鉄で形成されているため、なじみが良く、被包用金属16が固化したときに境界面に隙間を生じ難い。この結果、放射性廃棄物12の密封性を向上することができる。また支持脚54の中心部が被包用金属16より融点の高い炭素鋼製の柱状体54aにより形成されているため、コンテナ13の位置が固化体51の中心からずれることはない。
【0022】
図11〜図14は本発明の第4の実施の形態を示す。図11及び図13において図1及び図3と同一符号は同一部品を示す。
この実施の形態では、第3の実施の形態の支持脚に替えて吊り棒74が用いられる。この吊り棒74は第3の実施の形態の支持脚と同様に、外周面を鋳鉄製の被覆層74bにて被覆した炭素鋼製の柱状体74aにより形成され(図12及び図14)、かつ第3の実施の形態の支持脚と同様に作製される。上記以外は第2の実施の形態と同一に構成される。
このように構成された固化体71は第2の実施の形態と同様にして製造される。製造工程において、溶融状態の被包用金属16を鋳型17に注入するときに、この被包用金属16と接触する吊り棒74の被覆層74bが被包用金属16と同一材料の鋳鉄で形成されているため、なじみが良く、被包用金属16が固化したときに境界面に隙間を生じ難い。この結果、放射性廃棄物12の密封性を向上することができる。また吊り棒74の中心部が被包用金属16より融点の高い炭素鋼製の柱状体74aにより形成されているため、コンテナ13の位置が固化体71の中心からずれることはない。
【0023】
【実施例】
次に本発明の実施例を詳細に説明する。
<実施例1>
図1〜図3に示すように、模擬廃棄物12(放射能で汚染されていない廃棄物)として直径,肉厚及び長さがそれぞれ34mm,6.4mm及び150mmのステンレスパイプ(融点:約1390℃)を用いた。またコンテナ13は、先ず直径8mmのSS400製の棒材を一辺200mmの正方形状の枠に所定の間隔をあけて平行に溶接した6枚の板を用意し、次にこれらの板の周縁を互いに溶接することにより、一辺が200mmの立方体状に形成した。なお、上板13aは開閉可能に構成した。このコンテナ13の底面には直径及び高さがそれぞれ8mm及び50mmの4本の支持脚14を溶接した。鋳型17は4枚のSS400製の側壁17aを、1枚のSS400製の底壁17b上に正方形状に組んで互いに溶接することにより作製した。側壁17aの幅,高さ及び厚さはそれぞれ400mm,400mm及び120mmであり、底壁17bの縦,横及び厚さはそれぞれ800mm,800mm及び120mmであり、この鋳型17の内側の縦,横及び高さはそれぞれ280mm×280mm×400mmであった。更に被包用金属16としては温度が1300℃の溶融状態のねずみ鋳鉄(炭素当量:4.3重量%)を用いた。
【0024】
次に固化体11を下記のようにして製造した。先ずコンテナ13の上板13aを開いて上記模擬廃棄物12を収容した後に上板13aを閉じ、このコンテナ13を鋳型17にこの鋳型17内の中央に位置するように収容した(図1)。次に取鍋19に入れられた溶融状態の被包用金属16を鋳型17に注入して鋳型17の内部に被包用金属16を充填した(図2)。上記溶融状態の被包用金属16はコンテナ13内に進入してコンテナ13内に充填されるとともに、鋳型17とコンテナ13との間にも充填され、空冷により冷却固化された(図3)。更に鋳型17を開口部17cが下を向くように回転させて固化体11を鋳型17から取出した。この固化体11を実施例1とした。この固化体11を縦横に切断して模擬廃棄物12やコンテナ13等の状態を調べたところ、上記廃棄物12やコンテナ13等が溶融した様子はなく、廃棄物12はコンテナ13の略中央部に位置しており、またコンテナ13と固化した被包用金属16との間に隙間は生じていなかった。
【0025】
<実施例2>
図7〜図10に示すように、支持脚54は先ず直径8mmのSS400製の長尺棒材を溶融状態のねずみ鋳鉄(炭素当量:0.16重量%)に浸漬して冷却固化することにより、長尺棒材の外周面に鋳鉄製の被覆層54bを形成し、次いでこの被覆層54bを有する長尺棒材を長さ50mmに切断することにより作製した。また鋳型17は厚さ50mmのSS400製の板材を用いて蓋無しの箱状に形成した。この鋳型17の外側の縦,横及び高さはそれぞれ400mm,400mm及び400mmであり、内側の縦,横及び高さはそれぞれ300mm,300mm及び350mmであった。上記以外は実施例1と同一に構成し、実施例1と同様にして固化体51を作製し、この固化体51を実施例2とした。この固化体51を縦横に切断して支持脚54及びその周囲を調べたところ、支持脚54と固化した被包用金属16との境界面に隙間は生じていなかった。
【0026】
【発明の効果】
以上述べたように、本発明によれば、金属製の支持脚又は吊り棒を有し溶融状態の被包用金属が通過可能に構成された金属製のコンテナに放射性廃棄物を収容し、上部に開口部を有する鋳型に支持脚等により鋳型内壁から所定の間隔をあけてコンテナを収容し、鋳型にコンテナ及び支持脚等より融点の低い上記溶融状態の被包用金属を充填して冷却固化させることにより固化体を形成し、更に固化体を鋳型から取出したので、放射線源となる放射性廃棄物を固化体の中心部に固定できるとともに、コンテナの内部及びその全周面に被包用金属を充填できる。この結果、固化体の表面から放射される放射線を一定以下に抑えることができる。また固化した被包用金属とコンテナとの間に隙間が生じないので、固化体の超音波探傷検査を行うことができるとともに、固化した被包用金属表面の目視検査及び染色探傷検査を行うことができる。
【0027】
また放射性廃棄物が被包用金属の融点より高い融点を有する金属であれば、溶融状態の被包用金属を鋳型に注入したときに、廃棄物が溶融することはなく、廃棄物が被包用金属の融点と同一の融点を有する金属であっても、溶融状態の被包用金属を鋳型に注入したときに、被包用金属が急激に温度低下して廃棄物の融点に達する前に被包用金属が凝固するので、廃棄物が溶融することはない。
またコンテナ及び支持脚又は吊り棒を炭素鋼により形成し、被包用金属が鋳鉄又はステンレス鋼であれば、被包用金属の融点がコンテナ及び支持脚又は吊り棒の融点より低いので、溶融状態の被包用金属を鋳型に注入したときに、コンテナ等が溶融せず、コンテナの位置がずれることはない。
【0028】
またコンテナを炭素鋼により形成し、支持脚又は吊り棒を鋳鉄製の被覆層にて被覆した炭素鋼製の柱状体により形成し、更に被包用金属が鋳鉄であれば、溶融状態の被包用金属と接触する支持脚又は吊り棒の被覆層が被包用金属と同一材料の鋳鉄で形成されているため、なじみが良く境界面に隙間を生じ難い。この結果、放射性廃棄物の密封性を向上することができる。また支持脚又は吊り棒の中心部が被包用金属より融点の高い炭素鋼製の柱状体により形成されているため、コンテナの位置がずれることはない。
また上記方法で製造された固化体は上述のように、放射線源となる放射性廃棄物が固化体の中心部に固定されるので、固化体の表面から放射される放射線を一定以下に抑えることができ、また固化した被包用金属とコンテナとの間に隙間が生じないので、固化体の超音波探傷検査を行うことができるとともに、固化した被包用金属表面の目視検査及び染色探傷検査を行うことができる。更に被包用金属と支持脚又は吊り棒との間に隙間が生じないので、放射性廃棄物の密封性を向上することができる。
【図面の簡単な説明】
【図1】本発明第1実施形態のコンテナに放射性廃棄物を収容し、更にこのコンテナを鋳型に収容した状態を示す縦断面図。
【図2】その鋳型に溶融状態の被包用金属を流込んでいる状態を示す図1に対応する断面図。
【図3】放射性廃棄物が冷却固化した被包用金属で被包されて固化体が形成された状態を示す図1に対応する断面図。
【図4】本発明第2実施形態を示す図1に対応する断面図。
【図5】その鋳型に溶融状態の被包用金属を流込んでいる状態を示す図4に対応する断面図。
【図6】放射性廃棄物が冷却固化した被包用金属で被包されて固化体が形成された状態を示す図4に対応する断面図。
【図7】本発明第3実施形態を示す図1に対応する断面図。
【図8】図7のA部拡大断面図。
【図9】放射性廃棄物が冷却固化した被包用金属で被包されて固化体が形成された状態を示す図7に対応する断面図。
【図10】図9のB部拡大断面図。
【図11】本発明第4実施形態を示す図1に対応する断面図。
【図12】図11のC部拡大断面図。
【図13】放射性廃棄物が冷却固化した被包用金属で被包されて固化体が形成された状態を示す図11に対応する断面図。
【図14】図13のD部拡大断面図。
【符号の説明】
11,31,51,71 固化体
12 廃棄物
13 コンテナ
14,54 支持脚
16 被包用金属
17 鋳型
17c 開口部
34,74 吊り棒
54a,74a 柱状体
54b,74b 被覆層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a solidified body for disposal of low-level radioactive metal waste and a solidified body produced by the method.
[0002]
[Prior art]
With the progress of nuclear power generation in recent years, the amount of radioactive waste generated during the operation and dismantling of power plants tends to increase. With regard to the disposal of these radioactive wastes, solidify the wastes in a form that minimizes the impact on the surroundings of the radioactive wastes, and the solidified solids are chemically and mechanically stable and stored for a long time. It is necessary not to cause environmental pollution.
From this point of view, as a method for producing a solidified product of radioactive waste, a radioactive material including a step of solidifying waste with metal in an inner container and a step of enclosing the inner container in metal within a storage container A waste disposal method has been proposed (Japanese Patent Laid-Open No. 56-10296). In this processing method, an appropriate amount of molten metal is put in a storage container, and then the inner container is introduced and then the molten metal is cooled and solidified, or the internal container is put in a storage container containing an appropriate amount of molten metal. Then, the molten metal is further poured later to be cooled and solidified, and the waste is encapsulated with the metal, so that the waste is chemically and mechanically stabilized.
[0003]
[Problems to be solved by the invention]
However, the above-described radioactive waste treatment method requires two containers because the waste is once solidified with metal in the inner container and the inner container is further sealed in the metal in the storage container. There is a problem that the disposal procedure of waste is relatively complicated.
In addition, the means for enclosing the inner container in the metal puts the inner container after putting an appropriate amount of the molten metal in the storage container, and cools and solidifies the molten metal or the molten metal and the molten metal added later. Therefore, when the inner container moves in the process of solidifying the molten metal, the inner container may not be maintained at the central portion of the storage container. On the other hand, since the adhesion between the solidified metal cooled and solidified by the molten metal and the storage container is caused by welding the molten metal and the storage container, the force resulting from the shrinkage of the process of solidifying the molten metal or When the external force applied after solidification is greater than the welding force, there is a problem that a gap is generated between the storage container and the solidified metal.
Therefore, even if the molten metal is cooled and solidified in a state where the inner container is not in contact with the storage container, the gap becomes an acoustic discontinuity, and an ultrasonic flaw inspection (nondestructive inspection) cannot be performed. There was a point. In addition, if the molten metal cools and solidifies in a state where the inner container is in contact with the storage container due to the movement of the inner container, a part of the waste appears from the gap formed between the storage container and the solidified metal, and the surrounding area. There is also a risk of polluting the environment. Further, since the solidified metal is covered with the storage container, there is a problem that visual inspection and dyeing flaw inspection cannot be performed on the surface of the solidified metal.
[0004]
An object of the present invention is to provide a method for producing a solidified body of radioactive waste, which can use a single container without using a plurality of containers and can reliably position the container in the center of the metal to be encapsulated. There is to do.
Another object of the present invention is not to create a gap between the solidified encapsulating metal and the container, thereby enabling not only ultrasonic inspection but also visual inspection and dyeing inspection of the solidified encapsulating metal surface. It is providing the manufacturing method of the solidified body of a radioactive waste which can be performed, and the solidified body manufactured by the method.
Still another object of the present invention is to provide a radioactive waste that does not cause a gap between the solidified encapsulating metal and the support leg or the suspension rod, thereby improving the sealing performance of the radioactive waste. It is providing the manufacturing method of a solidified body, and the solidified body manufactured by the method.
[0005]
[Means for Solving the Problems]
As shown in FIGS. 1 to 3, the invention according to claim 1 is a metal container 13 having a metal support leg 14 or a suspension rod and configured to allow a molten encapsulating metal 16 to pass therethrough. A step of accommodating the radioactive waste 12 in the container, a step of accommodating the container 13 at a predetermined distance from the inner wall of the mold 17 by the support leg 14 or the suspension rod in the mold 17 having the opening 17c in the upper part, and the container in the mold 17 13 and the step of forming the solidified body 11 by filling the molten encapsulating metal 16 having a melting point lower than that of the support leg 14 or the suspension rod and solidifying by cooling, and the step of taking out the solidified body 11 from the mold 17. It is a manufacturing method of the solidified substance of the radioactive waste containing.
In the method for producing a solidified body of radioactive waste according to claim 1, the radioactive waste 12 is accommodated in a container 13 so that the position of the container 13 is not shifted, that is, the radioactive waste serving as a radiation source. 12 is fixed to the central portion of the solidified body 11, and the metal for encapsulation 16 is filled in the inside of the container 13 and the entire peripheral surface thereof, so that the radiation emitted from the surface of the solidified body 11 is suppressed to a certain level or less. Can do. Further, since there is no gap between the solidified encapsulating metal 16 and the container 13, it is possible to perform an ultrasonic flaw detection inspection of the solidified body 11, and a visual inspection and a flaw detection of the solidified encapsulating metal 16 surface. Inspection can be performed.
[0006]
The invention according to claim 2 is the invention according to claim 1, and further, as shown in FIG. 1, the radioactive waste 12 has a melting point higher than the melting point of the encapsulating metal 16 or the encapsulating metal. It is a metal having the same melting point as the melting point.
In the method for producing a solidified radioactive waste according to claim 2, if the radioactive waste 12 is a metal having a melting point higher than the melting point of the encapsulating metal 16, the encapsulating metal 16 in a molten state is used. The waste 12 does not melt when injected into the mold 17. Even if the waste is a metal having the same melting point as that of the encapsulating metal, when the molten encapsulating metal is poured into the mold, the encapsulating metal is rapidly reduced in temperature and discarded. Since the encapsulating metal solidifies before reaching the melting point, the waste does not melt.
[0007]
The invention according to claim 3 is the invention according to claim 1 or 2, and further, as shown in FIG. 1, the container 13 and the support leg 14 or the suspension rod are made of carbon steel, and the encapsulating metal 16 is It is cast iron or stainless steel.
In the method for producing a solidified radioactive waste according to claim 3, the melting point of the encapsulating metal 16 is lower than the melting points of the container 13 and the support legs 14 or the suspension rods. Is injected into the mold 17, the container 13 or the like does not melt and the position of the container 13 does not shift.
[0008]
The invention according to claim 4 is the invention according to claim 1 or 2, and further, as shown in FIGS. 7 and 8, the container 13 is formed of carbon steel, and the support leg 54 or the suspension bar has an outer peripheral surface. It is formed by a carbon steel columnar body 54a covered with a coating layer 54b made of cast iron, and the encapsulating metal 16 is cast iron.
In the method for producing a solidified radioactive waste according to claim 4, the supporting leg 54 or the covering layer 54 b of the suspension rod that contacts the molten encapsulating metal 16 is made of the same material as the encapsulating metal 16. Since it is made of cast iron, it is well-familiar, and when the encapsulating metal 16 is solidified, it is difficult to form a gap on the boundary surface. As a result, the sealing property of the radioactive waste 12 can be improved. Further, since the center portion of the support leg 54 or the suspension bar is formed by the columnar body 54a made of carbon steel having a melting point higher than that of the encapsulating metal 16, the position of the container 13 is not shifted.
[0009]
The invention according to claim 5 is a solidified body produced by the method according to any one of claims 1 to 4 as shown in FIGS.
In the solidified body described in claim 5, since the radioactive waste 12 serving as the radiation source is fixed to the central portion of the solidified body 51 as described above, the radiation emitted from the surface of the solidified body 51 is below a certain level. In addition, since there is no gap between the solidified encapsulating metal 16 and the container 13, the ultrasonic inspection of the solidified body 51 can be performed and the surface of the solidified encapsulating metal 16 Visual inspection and dyeing inspection can be performed. Furthermore, since no gap is generated between the encapsulating metal 16 and the support leg 54 or the suspension rod, the sealing performance of the radioactive waste 12 can be improved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, a first embodiment of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 to 3, the solidified body 11 of the present invention is attached to a low-level radioactive waste 12, a metal container 13 for storing the radioactive waste 12, and a bottom surface of the container 13. A metal support leg 14 and an encapsulating metal 16 filled in the container 13 in a molten state and encapsulating the container 13 are provided. The container 13 is configured to allow the encapsulating metal 16 in a molten state to pass therethrough. That is, as the container 13, a so-called punching metal having a plurality of holes formed, or a so-called bowl-shaped one represented by a lattice basket, a braid, or the like is used. In this embodiment, six plates are prepared by welding metal bars to a rectangular frame in parallel with a predetermined interval, and the peripheral edges of these plates are welded together to form a cubic box. Container 13 was obtained. Although the container 13 does not necessarily require a cover plate as long as it can accommodate the waste 12, this embodiment shows an example in which the upper plate 13a is attached so as to be openable and closable.
[0011]
In this embodiment, the support legs 14 are four metal cylinders fixed to the bottom surface of the container 13. By these support legs 14, the container 13 is configured to be positioned above the upper surface of the bottom wall 17 b of the mold 17 described later with a predetermined distance. The container 13 and the support legs 14 are preferably made of carbon steel having a melting point of about 1500 ° C., and the encapsulating metal 16 melts cast iron having a melting point of about 1150 ° C. lower than the melting points of the container 13 and the support legs 14. It is preferable to use them. As the carbon steel, for example, SS400, SS330, SS490, etc. having a carbon content of 0.03 to 0.85% by weight, preferably 0.03 to 0.3% by weight, and the carbon equivalent of 2.0 to For example, gray cast iron, spheroidal graphite cast iron or the like of 4.5% by weight, preferably 3.5 to 4.3% by weight is used. Further, the waste 12 in this embodiment is a radioactive metal waste generated during the operation of a nuclear power plant, and is formed of a metal such as stainless steel, carbon steel, alloy steel having a melting point higher than that of cast iron. The
[0012]
The apparatus for producing the solidified body 11 configured as described above includes a cooling base 18 and a mold 17 placed on the base 18 and capable of accommodating the container 13. The cooling base 18 is formed of a metal having a high thermal conductivity, and a flow path 18a through which cooling water flows is formed therein. The mold 17 includes a side wall 17a and a bottom wall 17b, and has an opening 17c at the top. The mold 17 is formed to be slightly larger than the container 13 by carbon steel having a melting point higher than the melting point of the encapsulating metal 16 (the same material as the container 13 such as SS400, SS330, SS490, etc.).
[0013]
A method for manufacturing the solidified body 11 configured as described above will be described.
First, after opening the upper plate 13a of the container 13 to accommodate the radioactive waste 12, the upper plate 13a is closed. Next, the container 13 is accommodated in a mold 17 (FIG. 1). At this time, the container 13 is placed at the center of the mold 17, that is, the container 13 is placed at a predetermined interval from the inner surface of the side wall 17 a of the mold 17. Further, since the container 13 is placed on the bottom wall 17b of the mold 17 via the support legs 14, the bottom surface of the container 13 is also spaced apart from the upper surface of the bottom wall 17b of the mold 17. Next, in a state where the cooling water is circulated through the flow path 18 a of the cooling base 18, the molten encapsulating metal 16 is injected from the opening 17 c of the mold 17 to fill the interior of the mold 17 with the encapsulating metal 16. (FIG. 2). The encapsulating metal 16 is obtained by melting cast iron having a melting point of about 1150 ° C., and is previously melted in a melting furnace (not shown), and then placed in a ladle 19. Filled.
[0014]
The molten metal 16 to be encapsulated enters the container 13 and is filled in the container 13, and is also filled between the mold 17 and the container 13, and is cooled from the lower end by cooling water passing through the flow path 18a. It gradually cools and solidifies upward. When the encapsulating metal 16 is cooled and solidified, the waste 12 accommodated in the container 13 is encapsulated by the cooled and solidified metal 16 (FIG. 3). In this case, since the encapsulating metal 16 is made of cast iron having a melting point lower than that of the waste 12, the mold 17, the container 13, and the support leg 14, the above-described waste even if the encapsulating metal 16 is filled. 12 and the container 13 are not melted and the waste 12 does not come out of the container 13, and the waste 12 can be reliably encapsulated in a state where the waste 12 is maintained at the substantially central portion of the container 13. Further, the encapsulating metal 16 filled in the mold 17 contracts when cooled and solidified, and a gap is formed between the outer surface of the solidified body 11 and the inner surface of the side wall 17a of the mold 17, so that the opening 17c is located below the mold 17. The solidified body 11 can be smoothly taken out from the mold 17 and can be repeatedly used.
[0015]
In this embodiment, the mold is formed of carbon steel, but the mold may be formed of foundry sand. In this case, the solidified body can be easily taken out by breaking the mold (sand mold) after the encapsulating metal injected into the mold is solidified.
In this embodiment, the mold is placed on a cooling base having a flow path through which cooling water flows, and the encapsulating metal is cooled and solidified. However, a flow path through which cooling water flows is provided inside the bottom wall of the mold. Or may be cooled by the atmosphere (air cooling) without using them.
[0016]
In the solidified body 11 manufactured in this way, the radioactive waste 12 serving as a radiation source is fixed to the central portion of the solidified body 11, and the encapsulating metal 17 is filled into the inside of the container 13 and the entire peripheral surface thereof. Therefore, the radiation radiated from the surface of the solidified body 11 can be suppressed to a certain level or less. Further, since there is no gap between the solidified encapsulating metal 16 and the container 13, it is possible to perform an ultrasonic flaw detection inspection of the solidified body 11, and a visual inspection and a flaw detection of the solidified encapsulating metal 16 surface. Inspection can be performed.
[0017]
The container and the support leg may be made of carbon steel (melting point: about 1500 ° C.), and the encapsulating metal may be used by melting stainless steel having a melting point of about 1390 ° C. lower than the melting point of the container and the support leg. . In this case, the waste is a metal having the same melting point as that of the encapsulating metal, that is, stainless steel. Although the melting point of the encapsulating metal (molten stainless steel) and the waste (solid stainless steel) are the same, the encapsulating metal filled in the container rapidly decreases in temperature and solidifies in a short time. On the other hand, since the waste to be encapsulated rises in temperature from a low temperature of about 100 ° C. (preheating temperature), the temperature rise takes time, and the encapsulating metal solidifies before reaching the melting point. As a result, even when the encapsulating metal is filled, the waste or container is not melted and the waste does not come out of the container. Can be wrapped.
[0018]
4 to 6 show a second embodiment of the present invention. 4 to 6, the same reference numerals as those in FIGS. 1 to 3 denote the same components.
In this embodiment, a metal suspension bar 34 is used in place of the support leg of the first embodiment. The lower end of the suspension bar 34 is fixed to the upper plate 13a of the container 13, and the upper end is attached to an elevator (not shown) so that the container 13 can be lifted and lowered. The suspension bar 34 is preferably made of carbon steel having a melting point of about 1500 ° C., and the carbon steel has a carbon content of 0.03 to 0.85% by weight, preferably 0.03 to 0.3% by weight, for example. SS400, SS330, SS490, etc. are used. The configuration other than the above is the same as that of the first embodiment.
[0019]
A method for manufacturing the solidified body 31 configured as described above will be described.
First, similarly to the first embodiment, after the upper plate 13a of the container 13 is opened to accommodate the radioactive waste 12, the upper plate 13a is closed. Next, the suspension bar 34 fixed to the upper plate 13a is attached to the elevator, and the elevator 13 is driven to accommodate the container 13 in the mold 17 (FIG. 4). At this time, the container 13 is placed at the center of the mold 17, that is, the container 13 is stopped in a state of being spaced apart from the inner surface of the side wall 17 a and the inner surface of the bottom wall 17 b of the mold 17. Next, as in the first embodiment, the encapsulated metal 16 in a molten state is poured into the mold 17 and cooled and solidified (FIG. 5), thereby producing a solidified body 31 (FIG. 6). Further, the elevator is driven to pull up the lifting rod 34 to raise the solidified body 31 and remove it from the mold 17, and then the hanging rod 34 protruding from the solidified body 31 is cut. As a result, it is not necessary to rotate the mold 17 so that the opening 17c faces downward, so that the solidified body 31 can be easily taken out from the mold 17.
[0020]
The container and the lifting rod may be made of carbon steel (melting point: about 1500 ° C.), and the encapsulating metal may be used by melting stainless steel having a melting point of about 1390 ° C. lower than the melting point of the container and the lifting rod. . In this case, the waste is a metal having the same melting point as that of the encapsulating metal, that is, stainless steel. Although the melting point of the encapsulating metal (molten stainless steel) and the waste (solid stainless steel) are the same, the encapsulating metal filled in the container rapidly decreases in temperature and solidifies in a short time. On the other hand, since the waste to be encapsulated rises in temperature from a low temperature of about 100 ° C. (preheating temperature), the temperature rise takes time, and the encapsulating metal solidifies before reaching the melting point. As a result, even when the encapsulating metal is filled, the waste or container is not melted and the waste does not come out of the container. Can be wrapped.
[0021]
7 to 10 show a third embodiment of the present invention. 7 and 9, the same reference numerals as those in FIGS. 1 and 3 denote the same components.
In this embodiment, the support leg 54 is formed of a columnar body 54a made of carbon steel whose outer peripheral surface is covered with a coating layer 54b made of cast iron (FIGS. 8 and 10). The columnar body 54a is formed of, for example, SS400, SS330, SS490 or the like having a melting point of about 1500 ° C. and a carbon content of 0.03 to 0.85% by weight, preferably 0.03 to 0.3% by weight. For example, gray cast iron or spheroidal graphite cast iron having a melting point of about 1150 ° C. lower than the melting point of the columnar body 54a and a carbon equivalent of 2.0 to 4.5% by weight, preferably 3.5 to 4.3% by weight. It is formed. Further, the support leg 54 is formed by immersing a long bar in molten cast iron and solidifying by cooling, thereby forming a cast iron coating layer 54b on the outer peripheral surface of the long bar, and then applying the coating layer 54b to the support leg 54b. It is produced by cutting a long bar material having a predetermined length. The configuration other than the above is the same as that of the first embodiment.
The solidified body 51 thus configured is manufactured in the same manner as in the first embodiment. In the manufacturing process, when the molten encapsulating metal 16 is poured into the mold 17, the covering layer 54 b of the support leg 54 a in contact with the encapsulating metal 16 is formed of cast iron made of the same material as the encapsulating metal 16. Therefore, the familiarity is good, and when the encapsulating metal 16 is solidified, it is difficult to form a gap on the boundary surface. As a result, the sealing property of the radioactive waste 12 can be improved. Further, since the center portion of the support leg 54 is formed by the columnar body 54 a made of carbon steel having a melting point higher than that of the encapsulating metal 16, the position of the container 13 does not deviate from the center of the solidified body 51.
[0022]
11 to 14 show a fourth embodiment of the present invention. 11 and 13, the same reference numerals as those in FIGS. 1 and 3 denote the same components.
In this embodiment, a hanging rod 74 is used in place of the support leg of the third embodiment. This suspension rod 74 is formed of a carbon steel columnar body 74a whose outer peripheral surface is coated with a cast iron coating layer 74b (FIGS. 12 and 14), like the support legs of the third embodiment, and It is produced in the same manner as the support leg of the third embodiment. The configuration other than the above is the same as that of the second embodiment.
The solidified body 71 configured as described above is manufactured in the same manner as in the second embodiment. In the manufacturing process, when the molten encapsulating metal 16 is poured into the mold 17, the covering layer 74 b of the suspension rod 74 that comes into contact with the encapsulating metal 16 is formed of cast iron made of the same material as the encapsulating metal 16. Therefore, the familiarity is good, and when the encapsulating metal 16 is solidified, it is difficult to form a gap on the boundary surface. As a result, the sealing property of the radioactive waste 12 can be improved. Further, since the central portion of the suspension rod 74 is formed by the carbon steel columnar body 74 a having a melting point higher than that of the encapsulating metal 16, the position of the container 13 does not deviate from the center of the solidified body 71.
[0023]
【Example】
Next, embodiments of the present invention will be described in detail.
<Example 1>
As shown in FIG. 1 to FIG. 3, stainless steel pipes (melting point: about 1390) having diameters, wall thicknesses and lengths of 34 mm, 6.4 mm and 150 mm, respectively, as simulated waste 12 (waste not contaminated with radioactivity). ° C) was used. In addition, the container 13 first prepares six plates in which a bar made of SS400 having a diameter of 8 mm is welded in parallel to a square frame having a side of 200 mm at a predetermined interval, and then the peripheral edges of these plates are mutually connected. By welding, it was formed in a cube shape having a side of 200 mm. The upper plate 13a is configured to be openable and closable. Four support legs 14 having a diameter and a height of 8 mm and 50 mm, respectively, were welded to the bottom surface of the container 13. The mold 17 was fabricated by assembling four SS400 side walls 17a on a single SS400 bottom wall 17b in a square shape and welding them together. The width, height, and thickness of the side wall 17a are 400 mm, 400 mm, and 120 mm, respectively, and the vertical, horizontal, and thickness of the bottom wall 17b are 800 mm, 800 mm, and 120 mm, respectively. Each height was 280 mm × 280 mm × 400 mm. Further, as the encapsulating metal 16, gray cast iron (carbon equivalent: 4.3% by weight) in a molten state having a temperature of 1300 ° C. was used.
[0024]
Next, the solidified body 11 was produced as follows. First, the upper plate 13a of the container 13 was opened to accommodate the simulated waste 12, and then the upper plate 13a was closed, and the container 13 was accommodated in the mold 17 so as to be positioned in the center of the mold 17 (FIG. 1). Next, molten metal 16 encapsulated in ladle 19 was poured into mold 17 and filled with metal 16 for encapsulation (FIG. 2). The molten metal 16 to be encapsulated enters the container 13 and is filled in the container 13, and is also filled between the mold 17 and the container 13, and is cooled and solidified by air cooling (FIG. 3). Further, the mold 17 was rotated so that the opening 17c faced downward, and the solidified body 11 was taken out from the mold 17. This solidified body 11 was taken as Example 1. When this solidified body 11 was cut in length and breadth and the states of the simulated waste 12 and the container 13 were examined, there was no appearance that the waste 12 and the container 13 were melted, and the waste 12 was in the substantially central portion of the container 13. In addition, there was no gap between the container 13 and the solidified metal 16 for encapsulation.
[0025]
<Example 2>
As shown in FIGS. 7 to 10, the support leg 54 is formed by first immersing a long bar made of SS400 having a diameter of 8 mm in molten cast iron (carbon equivalent: 0.16 wt%) and cooling and solidifying. A covering layer 54b made of cast iron was formed on the outer peripheral surface of the long bar, and then the long bar having the covering layer 54b was cut to a length of 50 mm. Moreover, the casting_mold | template 17 was formed in the box shape without a lid | cover using the board | plate material made from SS400 of thickness 50mm. The outside length, width, and height of the mold 17 were 400 mm, 400 mm, and 400 mm, respectively, and the inside length, width, and height were 300 mm, 300 mm, and 350 mm, respectively. Except for the above, the configuration was the same as in Example 1. A solidified body 51 was produced in the same manner as in Example 1. This solidified body 51 was referred to as Example 2. When this solidified body 51 was cut vertically and horizontally and the support legs 54 and the periphery thereof were examined, there was no gap at the boundary surface between the support legs 54 and the solidified metal 16 for encapsulation.
[0026]
【The invention's effect】
As described above, according to the present invention, radioactive waste is accommodated in a metal container that has a metal support leg or a suspension bar and is configured to allow a molten encapsulated metal to pass through. A container having an opening in a mold is accommodated at a predetermined distance from the inner wall of the mold by a support leg or the like, and the mold is filled with the above-mentioned molten metal to be encapsulated having a melting point lower than that of the container and the support leg. Since the solidified body was formed and the solidified body was taken out from the mold, the radioactive waste as the radiation source can be fixed to the central portion of the solidified body, and the encapsulating metal can be placed inside and around the entire circumference of the container. Can be filled. As a result, the radiation radiated from the surface of the solidified body can be suppressed to a certain level or less. In addition, since there is no gap between the solidified encapsulating metal and the container, ultrasonic inspection of the solidified body can be performed, and visual inspection and dyeing inspection of the solidified encapsulating metal surface should be performed. Can do.
[0027]
Further, if the radioactive waste is a metal having a melting point higher than that of the encapsulating metal, when the molten encapsulating metal is poured into the mold, the waste does not melt and the waste is encapsulated. Even if the metal has the same melting point as the melting point of the working metal, when the molten encapsulating metal is poured into the mold, the temperature of the encapsulating metal suddenly drops to the melting point of the waste. Since the encapsulating metal solidifies, the waste does not melt.
In addition, if the container and the support leg or suspension rod are made of carbon steel and the encapsulating metal is cast iron or stainless steel, the melting point of the encapsulating metal is lower than the melting point of the container and the support leg or suspension rod. When the encapsulating metal is poured into the mold, the container or the like is not melted and the position of the container is not shifted.
[0028]
Further, if the container is made of carbon steel, the support leg or the suspension bar is made of a carbon steel columnar body covered with a coating layer made of cast iron, and the encapsulating metal is cast iron, Since the covering layer of the supporting leg or the suspension rod that comes into contact with the working metal is formed of cast iron made of the same material as the encapsulating metal, the familiarity is good and it is difficult to form a gap on the boundary surface. As a result, the sealing property of radioactive waste can be improved. Further, since the center portion of the support leg or the suspension rod is formed of a carbon steel columnar body having a melting point higher than that of the encapsulating metal, the position of the container does not shift.
Moreover, since the radioactive waste used as a radiation source is fixed to the center part of a solidified body as above-mentioned, the solidified body manufactured by the said method can suppress the radiation radiated | emitted from the surface of a solidified body below fixed level. In addition, since there is no gap between the solidified encapsulating metal and the container, it is possible to perform an ultrasonic flaw detection of the solidified body, and to perform a visual inspection and a dye flaw inspection on the solidified encapsulating metal surface. It can be carried out. Furthermore, since no gap is generated between the encapsulating metal and the support leg or the suspension rod, the sealing performance of the radioactive waste can be improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a state in which radioactive waste is stored in a container according to a first embodiment of the present invention, and this container is further stored in a mold.
FIG. 2 is a cross-sectional view corresponding to FIG. 1 showing a state in which a molten metal for encapsulation is poured into the mold.
3 is a cross-sectional view corresponding to FIG. 1 showing a state in which a solidified body is formed by encapsulating radioactive waste with encapsulating metal cooled and solidified.
FIG. 4 is a cross-sectional view corresponding to FIG. 1 showing a second embodiment of the present invention.
FIG. 5 is a cross-sectional view corresponding to FIG. 4 showing a state in which a molten metal for encapsulation is poured into the mold.
6 is a cross-sectional view corresponding to FIG. 4 showing a state where radioactive waste is encapsulated with a metal for encapsulation that has been cooled and solidified to form a solidified body.
FIG. 7 is a cross-sectional view corresponding to FIG. 1, showing a third embodiment of the present invention.
8 is an enlarged cross-sectional view of a part A in FIG.
9 is a cross-sectional view corresponding to FIG. 7 showing a state in which a radioactive waste is encapsulated with a cooling and solidifying metal to form a solidified body.
10 is an enlarged cross-sectional view of a portion B in FIG.
FIG. 11 is a cross-sectional view corresponding to FIG. 1 showing a fourth embodiment of the present invention.
12 is an enlarged cross-sectional view of a portion C in FIG.
13 is a cross-sectional view corresponding to FIG. 11 showing a state where radioactive waste is encapsulated with a metal for encapsulation that has been cooled and solidified to form a solidified body.
14 is an enlarged cross-sectional view of a D part in FIG. 13;
[Explanation of symbols]
11, 31, 51, 71 Solidified body
12 Waste
13 containers
14,54 support legs
16 Metal for encapsulation
17 Mold
17c opening
34,74 Hanging rod
54a, 74a Columnar body
54b, 74b coating layer

Claims (5)

金属製の支持脚(14,54)又は吊り棒(34,74)を有し溶融状態の被包用金属(16)が通過可能に構成された金属製のコンテナ(13)に放射性廃棄物(12)を収容する工程と、
上部に開口部(17c)を有する鋳型(17)に前記支持脚(14,54)又は吊り棒(34,74)により前記鋳型(17)内壁から所定の間隔をあけて前記コンテナ(13)を収容する工程と、
前記鋳型(17)に前記コンテナ(13)及び支持脚(14,54)又は吊り棒(34,74)より融点の低い溶融状態の前記被包用金属(16)を充填して冷却固化させることにより固化体(11,31,51,71)を形成する工程と、
前記固化体(11,31,51,71)を前記鋳型(17)から取出す工程と
を含む放射性廃棄物の固化体の製造方法。
Radioactive waste (13) in a metal container (13) that has metal support legs (14, 54) or suspension rods (34, 74) and is configured to allow molten encapsulated metal (16) to pass through. 12) accommodating,
The container (13) is spaced from the inner wall of the mold (17) by the support legs (14, 54) or the suspension rods (34, 74) on the mold (17) having an opening (17c) at the top. A housing process;
Filling the mold (17) with the encapsulating metal (16) having a melting point lower than that of the container (13) and the support legs (14, 54) or the suspension rods (34, 74), and solidifying by cooling. Forming a solidified body (11, 31, 51, 71) by:
A method for producing a solidified body of radioactive waste, comprising the step of taking out the solidified body (11, 31, 51, 71) from the mold (17).
放射性廃棄物(12)が被包用金属(16)の融点より高い融点を有する金属又は被包用金属の融点と同一の融点を有する金属である請求項1記載の放射性廃棄物の固化体の製造方法。The solidified radioactive waste according to claim 1, wherein the radioactive waste (12) is a metal having a melting point higher than that of the encapsulating metal (16) or a metal having the same melting point as that of the encapsulating metal. Production method. コンテナ(13)及び支持脚(14)又は吊り棒(34)が炭素鋼により形成され、被包用金属(16)が鋳鉄又はステンレス鋼である請求項1又は2記載の放射性廃棄物の固化体の製造方法。Solidified body of radioactive waste according to claim 1 or 2, wherein the container (13) and the support leg (14) or the suspension rod (34) are made of carbon steel, and the encapsulating metal (16) is cast iron or stainless steel. Manufacturing method. コンテナ(13)が炭素鋼により形成され、支持脚(54)又は吊り棒(74)が外周面を鋳鉄製の被覆層(54b,74b)にて被覆した炭素鋼製の柱状体(54a,74a)により形成され、更に被包用金属(16)が鋳鉄である請求項1又は2記載の放射性廃棄物の固化体の製造方法。The carbon steel columnar body (54a, 74a) in which the container (13) is formed of carbon steel and the support legs (54) or the suspension rods (74) are coated on the outer peripheral surface with a coating layer (54b, 74b) made of cast iron. The method for producing a solidified radioactive waste according to claim 1 or 2, wherein the encapsulating metal (16) is cast iron. 請求項1ないし4いずれかに係る方法で製造された固化体。A solidified body produced by the method according to claim 1.
JP2000002537A 2000-01-11 2000-01-11 Method for producing radioactive waste solidified body and solidified body produced by the method Expired - Fee Related JP3896749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000002537A JP3896749B2 (en) 2000-01-11 2000-01-11 Method for producing radioactive waste solidified body and solidified body produced by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000002537A JP3896749B2 (en) 2000-01-11 2000-01-11 Method for producing radioactive waste solidified body and solidified body produced by the method

Publications (2)

Publication Number Publication Date
JP2001194496A JP2001194496A (en) 2001-07-19
JP3896749B2 true JP3896749B2 (en) 2007-03-22

Family

ID=18531633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000002537A Expired - Fee Related JP3896749B2 (en) 2000-01-11 2000-01-11 Method for producing radioactive waste solidified body and solidified body produced by the method

Country Status (1)

Country Link
JP (1) JP3896749B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365237B2 (en) * 2002-09-26 2008-04-29 Clean Technologies International Corporation Liquid metal reactor and method for treating materials in a liquid metal reactor
JP7143029B2 (en) * 2018-10-05 2022-09-28 Jfeエンジニアリング株式会社 Manufacturing method of clearance metal

Also Published As

Publication number Publication date
JP2001194496A (en) 2001-07-19

Similar Documents

Publication Publication Date Title
CA1239010A (en) Metal casting
JPS5825859A (en) Method and apparatus for producing hollow thick walled casting
JPS6216399B2 (en)
JP3896749B2 (en) Method for producing radioactive waste solidified body and solidified body produced by the method
JP2013163195A (en) Sand mold casting device with atmosphere open type gate riser, sand mold casting method using the same, and method for manufacturing the same
US3872915A (en) Vacuum sealed molding apparatus
FR2702301A1 (en) Arrangement for the protection of a nuclear reactor in the event of a core meltdown.
KR20040066128A (en) Container device for the storage of hazardous materials and a method of making it
JP2001194495A (en) Production method for waste body
CN201058880Y (en) Steel ingot annealing hood
JPH0829597A (en) Containing method of radioactive contaminant and container therefor
BRPI0615461A2 (en) process for casting molded parts
EP1103983B1 (en) Method for transporting, stacking and storing radioactive material, shielding shells for radioactive material and process for the production of this shell
CA2275165A1 (en) Mold for molten metal and method of producing ingots
GB2109984A (en) Disposing of radioactive materials
JPS60230098A (en) Method of overhauling pressure vessel for nuclear reactor
JPH0147757B2 (en)
JPS58148071A (en) Method and device for casting of welding rod
JPS58100960A (en) Argon substituting method for mold
JP4395670B2 (en) Hazardous material treatment equipment
JPH0310814A (en) Mold and its manufacture
JP2933951B2 (en) Handling of used core components of fast reactors
JP2023026000A (en) Top-poured ingot mold
US9101975B2 (en) Aerospace sand casting support
RU2174720C2 (en) Method of reusing lithium hydride radiation shielding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees