JP3896011B2 - Hypertonic liquid injection device - Google Patents

Hypertonic liquid injection device Download PDF

Info

Publication number
JP3896011B2
JP3896011B2 JP2002066381A JP2002066381A JP3896011B2 JP 3896011 B2 JP3896011 B2 JP 3896011B2 JP 2002066381 A JP2002066381 A JP 2002066381A JP 2002066381 A JP2002066381 A JP 2002066381A JP 3896011 B2 JP3896011 B2 JP 3896011B2
Authority
JP
Japan
Prior art keywords
hypertonic
dialysis
hypertonic solution
dialyzer
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002066381A
Other languages
Japanese (ja)
Other versions
JP2003260129A (en
Inventor
猛 柴田
Original Assignee
サイテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サイテック株式会社 filed Critical サイテック株式会社
Priority to JP2002066381A priority Critical patent/JP3896011B2/en
Publication of JP2003260129A publication Critical patent/JP2003260129A/en
Application granted granted Critical
Publication of JP3896011B2 publication Critical patent/JP3896011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、広くは医療機器に関するものであり、特に、透析装置を用いた血液透析時に、ナトリウムを主成分とする高張液を人体に間欠的に供給する高張液注入装置に関するものである。
【0002】
【従来の技術】
従来、腎不全患者の血液透析による治療中には、血液中からの窒素代謝産物(尿素窒素、クレアチン等)や、電解質および水分の除去によって、血液と細胞外液および細胞内液間でこれらの各物質の濃度差により浸透圧差が発生する。これに伴い患者によっては、頭痛、血圧低下、下肢つれ、および肩等の関節の痛みが出現し、苦痛を伴う血液透析治療を余儀なくされる場合があった。
【0003】
また、総ての患者において、透析中や透析後に疲労感が出現し、なかには治療翌日まで疲労感が持続して、社会生活に支障を来す場合もあった。これらの問題を軽減できる高ナトリウム透析法も知られている。ここで高ナトリウム透析法とは、通常の透析液のナトリウム濃度は人体の生理的濃度と同じく140mEq/L前後であるのに対して、ナトリウム注入装置で10%の食塩水(NaCl)を透析液中に継続的に注入し、透析液のナトリウム濃度を145〜150mEq/Lにする方法である。
【0004】
【発明が解決しようとする課題】
しかしながら、前述したような従来の高ナトリウム透析法を継続して実施すると、患者の血液中のナトリウム濃度が上昇し、相対的に前述した頭痛や血圧低下等の症状の改善効果が低下すると共に、口渇感や体重増加および高血圧等の新たな副作用が出現するという問題があるため、一部の患者に使用されているのみであり、広く普及するには至っていなかった。
【0005】
さらに、高ナトリウム透析法では、人体の生理ナトリウム濃度より高い透析液を使用するため、その濃度は患者ごとに許容される適正な水準に正確に制御する必要がある。ここで正確に制御するためには、透析液流量とナトリウム注入量が共に一定でなければならないが、実際には常に一定の流量を得ることは困難であった。そのため、従来のナトリウム注入装置には、高価な電導度センサを装備して、透析液のナトリウム濃度を監視する必要があり、装置が複雑で高価なものになり、コストが嵩むという問題もあった。
【0006】
本発明は、以上のような従来技術が有する問題点に着目してなされたもので、通常の透析治療に伴う頭痛や血圧低下等の症状を改善することができるばかりでなく、コストアップを招くことなく、高ナトリウム透析法の副作用である口渇感や体重増加および高血圧等の症状の出現をも解消することができる高張液注入装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
前述した目的を達成するための本発明の要旨とするところは、次の各項の発明に存する。
[1]血液中の老廃物を透析膜(22)により透析液中に濾過させる透析器(20)と、該透析器(20)の透析膜(22)内側である血液系と人体とを結ぶ血液回路(11)と、前記透析器(20)の透析膜(22)外側である透析液系に透析液を供給する透析液回路(12)とを有する透析装置(10)を用いた血液透析時に、ナトリウムを主成分とする高張液を人体に間欠的に供給する高張液注入装置(30)であって、
前記透析液回路(12)の途中に、前記高張液を注入する高張液注入路(31)を接続し、該高張液注入路(31)を介して前記高張液を、所定時間おきに所定量ずつ間欠的に注入する制御を行う注入制御手段(40)を有し、
前記高張液注入路(31)の先端側を、前記透析液回路(12)の往側(12a)に接続し、前記高張液を前記透析器(20)において血液系に移行させてから、前記血液回路(11)の静脈側(11b)より人体内に間接的に導入するように設定し、
前記透析液回路(12)の往側(12a)における前記高張液注入路(31)の接続箇所より上流側の途中と、同じく前記透析液回路(12)の戻側(12b)の途中とを連通するバイパス経路(13)と、該バイパス経路(13)を通じて前記透析器(20)を避ける透析回避状態と前記透析器(20)に連通する透析状態とに切り替え可能な切替手段(14)とを設け、
前記高張液の注入時に前記切替手段(14)を透析回避状態とし、前記高張液の注入後、前記透析液回路(12)の往側(12a)に注入された前記高張液を前記透析器(20)に移送させるために、いったん前記切替手段(14)を透析状態とした後、前記透析器(20)内で前記高張液が血液側に移行するまでの間、前記切替手段(14)を再び透析回避状態とし、前記透析器(20)内で前記高張液が血液側に移行してから、前記切替手段(14)を透析状態に戻すことを特徴とする高張液注入装置(30)。
【0008】
[2]前記高張液注入路(31)の基端側に、前記高張液を無菌状態で予め貯留した貯留手段(32)を設け、
前記高張液注入路(31)の途中に、前記貯留手段(32)にある前記高張液を強制的に前記高張液注入路(31)の先端側から送り出す高張液ポンプ(33)を設け、
前記注入制御手段(40)によって、前記高張液ポンプ(33)の稼動を自動的に制御することにより、前記高張液を所定時間おきに所定量ずつ間欠的に注入することを特徴とする[1]記載の高張液注入装置(30)。
【0009】
[3]前記注入制御手段(40)は、前記透析装置(10)による透析開始後に、一定時間おきに予め定めた合計回数分だけ、前記高張液ポンプ(33)を一時的に稼動させることを特徴とする[1]または[2]記載の高張液注入装置(30)。
【0010】
[4]前記注入制御手段(40)は、前記透析装置(10)による透析開始後に、予め定めた複数回の所定時間の経過時点で、その都度、前記高張液ポンプ(33)を一時的に稼動させることを特徴とする[1]または[2]記載の高張液注入装置(30)。
【0014】
]前記高張液注入路(31)の先端側に、除菌フィルターを介装させたことを特徴とする[1],[2],[3]または[4]記載の高張液注入装置(30)。
【0015】
次に本発明の作用を説明する。
本発明に係る高張液注入装置(30)によれば、透析装置(10)の血液回路(11)および透析液回路(12)の少なくとも何れか一方の途中に高張液注入路(31)を接続し、この高張液注入路(31)を介して透析中の人体に、注入制御手段(40)の制御によって、ナトリウムを主成分とする高張液を所定時間おきに所定量ずつ間欠的に注入する。注入制御手段(40)は、高張液を注入する時間のタイミングと1回当たりの注入量だけを簡易に制御できれば足りる。
【0016】
このように高張液を間欠的に注入することにより、透析に起因する血液と細胞外液および細胞内液間での浸透圧差が抑制されることで、頭痛や血圧低下等の本来の血液透析に伴う副作用を解消することができる。特に間欠的に注入することで、ナトリウムポンプの機能低下が防止され、血液中にナトリウムが過剰に蓄積されることがなく、従来の高ナトリウム透析法の弊害であった口渇感や体重増加および高血圧等の副作用も解消することができる。
【0017】
前記高張液注入路(31)の基端側に、高張液を無菌状態で予め貯留した貯留手段(32)を設けておけば、この貯留手段(32)より高張液を随時供給することができ、高張液注入路(31)の途中に高張液ポンプ(33)を設けることで、前記貯留手段(32)にある高張液を強制的に高張液注入路(31)の先端側から送り出すことが可能となる。
【0018】
ここで前記注入制御手段(40)により、前記高張液ポンプ(33)の稼動を自動的に制御することで、高張液を所定時間おきに所定量ずつ間欠的に注入することが可能となる。このように高張液注入装置(30)全体を、非常に簡易かつ容易に構成することができる。
【0019】
また、前記注入制御手段(40)による制御方法としては、透析装置(10)による透析開始後に、一定時間おきに予め定めた合計回数分だけ、前記高張液ポンプ(33)を一時的に稼動させるように設定すると良い。あるいはまた、透析開始後に予め定めた複数回の所定時間の経過時点で、その都度、前記高張液ポンプ(33)を一時的に稼動させるようにしても良い。何れの制御によっても、人体に注入する高張液の合計量を、従来の高ナトリウム透析法に比較して格段に低減することができる。
【0020】
また、高張液注入装置(30)のより具体的な構成として、前記高張液注入路(31)の先端側を、血液回路(11)の静脈側(11b)に接続し、高張液を血液回路(11)の静脈側(11b)より人体内に直接的に導入するように設定すれば、正確な量の高張液を所定時点で速やかに人体に注入することができ、また構成をよりいっそうと簡易化することができる。
【0021】
さらに具体的な構成として、前記高張液注入路(31)の先端側を、透析液回路(12)の往側(12a)に接続し、高張液を透析器(20)において血液系に移行させてから、血液回路(11)の静脈側(11b)より人体内に間接的に導入するように設定する。かかる構成によれば、万一不純物が高張液中に混入しても透析器(20)で血液中に入るおそれはなく、より安全性を高めることができる。
【0022】
ただし、このような構成によれば、注入した高張液が透析器(20)で血液系に移行することなく、透析液回路(12)内を単に循環する事態を防ぐため、次のように工夫する。すなわち、透析液回路(12)の往側(12a)における高張液注入路(31)の接続箇所より上流側の途中と透析液回路(12)の戻側(12b)の途中とを、バイパス経路(13)で連通し、該バイパス経路(13)を通じて透析器(20)を避ける透析回避状態と、透析器(20)に連通する透析状態とに切り替え可能な切替手段(14)を設ける。
【0023】
そして、高張液の注入時には、前記切替手段(14)を透析回避状態とし、高張液の注入後、透析液回路(12)の往側(12a)に注入された高張液を透析器(20)に移送させるために、いったん切替手段(14)を透析状態とした後、透析器(20)内で高張液が血液側に移行するまでの間、前記切替手段(14)を再び透析回避状態とし、透析器(20)内で高張液が血液側に移行してから、前記切替手段(14)を透析状態に戻す。かかる前記切替手段(14)の切り替え操作により、透析液回路(12)に注入された高張液を過不足なく、人体中へ間接的に導入することが可能となる。
【0024】
さらにまた、前記高張液注入路(31)の先端側に、除菌フィルターを介装させれば、透析装置(10)側へ注入する前段階で高張液の無菌化を容易に実現することができる。なお、本発明に係る高張液注入装置(30)は、予め透析装置(10)と一体化して構成しても良く、あるいは既存の透析装置(10)に後から追加できる構成としても良い。
【0025】
【発明の実施の形態】
以下、図面に基づき本発明を代表する各種実施の形態を説明する。
図1は本発明の第1実施の形態を示している。
本実施の形態に係る高張液注入装置30は、透析装置10を用いた血液透析時に、ナトリウムを主成分とする高張液を人体に間欠的に供給するための装置である。以下、本高張液注入装置30が、透析装置10と予め一体に設けられた場合を例に説明する。
【0026】
先ず最初に透析装置10について説明する。
図1に示すように、透析装置10は、ダイアライザーと称される透析器20と、該透析器20の血液系と人体とを結ぶ血液回路11と、前記透析器20の透析液系に透析液を供給する透析液回路12とを具備して成る。
【0027】
血液回路11は、人体動脈と透析器20とを結ぶ動脈路11aと、透析器20と人体静脈とを結ぶ静脈路11bとから成る。一方、透析液回路12は、透析器20に透析液を供給する往路12aと、透析器20から透析後の透析液を回収する戻路12bとから成る。なお、図示省略したが、動脈路11aの途中には、血液を強制循環させる血液ポンプ等が設けられ、戻路12bのバイパス経路13の接続箇所と透析液出口の途中には、透析液を強制循環させる透析液ポンプ等が設けられている。
【0028】
図2に示すように、透析器20は、円筒状の管本体21の内部に数多の中空糸型の透析膜22の束が封入され、管本体21内にて、透析膜22の内側を血液が流れ、透析膜22の外側を透析液が流れる構造となっている。すなわち、管本体21内は、透析膜22の内側が血液系で、透析膜22の外側が透析液系という2つの系に分かれている。
【0029】
管本体21の両端には、血液系に連通する血液流入口23Aと血液流出口23Bが開設されている。また、管本体21の両端側の側壁には、透析液系に連通する透析液流入口24Aと透析液流出口24Bが開設されている。なお、管本体21内にて血液と透析液の流れる方向は、透析効率の観点より互いに逆向きである向流となるよう設定されている。また、透析効率は透析膜22の種類や性能の違いにより多少変動がある。
【0030】
以上のような透析装置10に対して、本実施の形態に係る高張液注入装置30は、予め一体に組み合わされた形態に構成されている。かかる高張液注入装置30は、前記透析液回路12の途中に接続されて高張液を注入するための高張液注入路31と、該高張液注入路31を介して高張液を、所定時間おきに所定量ずつ間欠的に注入する制御を行う注入制御手段40とを有して成る。
【0031】
図1に示すように、前記高張液注入路31の先端側は、前記透析液回路12の往路12aに予め一体に接続されており、本実施の形態では、高張液を前記透析器20において血液系に移行させてから、前記血液回路11の静脈側11bより人体内に間接的に導入するように設定されている。
【0032】
高張液注入路31の基端側には、高張液を無菌状態で予め貯留した薬液シリンジから成る貯留手段32が設けられている。ここで高張液は、約20%のナトリウムを主成分とする浸透圧調整用の溶液であり、必要に応じてグルコース、グリセオール、マンニトール、尿素窒素等を含有させても良い。さらに、細胞の活性化を促すクエン酸ナトリウム等や、血液中の活性酸素を除去するビタミンC等も微量に添加すると良い。
【0033】
高張液注入路31の途中には、貯留手段32にある高張液を強制的に高張液注入路31の先端側から送り出すための高張液ポンプ33が設けられている。高張液ポンプ33は、往復ポンプやローラーポンプ等の既知の各種ポンプから構成されるものであるが、その駆動モータ(図示せず)の回転数を調整することで、送り出される高張液の流量を所望の値に制御できるようになっている。高張液ポンプ33は、信号線を介して注入制御手段40に接続されている。
【0034】
注入制御手段40は、前記高張液ポンプ33の稼動を自動的に制御することにより、高張液を所定時間おきに所定量ずつ間欠的に注入する動作を実行するものである。かかる注入制御手段40は、具体的には例えば、インターフェース、CPU、RAM、ROM等により構成されたマイクロコンピュータから成る。
【0035】
注入制御手段40によって、前記透析装置10による透析開始後に、一定時間おきに予め定めた合計回数分だけ、高張液ポンプ33を一時的に稼動させるように設定すると良い。あるいはまた透析開始後に、予め定めた複数回の所定時間の経過時点で、その都度、高張液ポンプ33を一時的に稼動させるように設定しても良い。かかる注入制御手段40のプログラム変更ないし所定の入力設定の操作により、高張液ポンプ33を様々な動作態様に制御することができる。なお、詳しい制御内容については後述する。
【0036】
また、前記透析液回路12の往路12aにおける高張液注入路31の接続箇所より上流側の途中と、同じく透析液回路12の戻路12bの途中とは、バイパス経路13によって連通するように接続されている。往路12aの途中には、三方電磁弁から成る切替手段14が設けられており、この切替手段14の第1接続口14aは往路12aの透析液入口側に接続され、第2接続口14bは透析器20へ通じる側の往路12aに接続され、第3接続口14cはバイパス経路13の一端に接続されている。
【0037】
切替手段14を切り替えることにより、透析液回路12中における透析液の流れを、バイパス経路13を通じて前記透析器20を避けて循環する透析回避状態と、バイパス経路13を通らず前記透析器20に連通し、透析器20を経由して循環する透析状態とに切り替わるようになっている。
【0038】
詳しく言えば、通常の透析状態では、切替手段14の第1接続口14aと第2接続口14bとが連通し、かつ第3接続口14cが閉止され、透析回避状態では、切替手段14の第1接続口14aと第3接続口14cとが連通し、かつ第2接続口14bが閉止された状態に設定される。
【0039】
切替手段14は、前記高張液ポンプ33と同様に信号線を介して注入制御手段40に接続されており、透析回避状態と透析状態との切り替えは注入制御手段40によって制御される。すなわち、注入制御手段40は、前記高張液ポンプ33の稼動を自動的に制御する他、切替手段14の切り替え操作も自動的に制御するように設定されている。
【0040】
具体的には、高張液の注入時に切替手段14を透析回避状態とし、高張液の注入後、透析液回路12の往路12aに注入された高張液を透析器20に移送させるために、いったん切替手段14を透析状態とした後、透析器20内で高張液が血液側に移行するまでの間、切替手段14を再び透析回避状態とし、透析器20内で高張液が血液側に移行してから、切替手段14を透析状態に戻すように制御される。なお、詳細については後述する。
【0041】
次に、第1実施の形態の作用を説明する。
図1において、血液透析装置10により血液透析が開始されると、血液回路11における動脈路11aの始端から人体の動脈より取り出された血液は、図示省略した血液ポンプの稼動により透析器20内の血液系に送り込まれる。そして、透析器20内の血液系から出た血液は、血液回路11の静脈路11bを通って人体の静脈へ戻される。
【0042】
一方、透析液回路12における往路12aの始端から供給される透析液は、透析器20内の透析液系に送り込まれる。このとき、往路12aの途中にある切替手段14は、透析液がバイパス経路13を通らず透析器20に連通する通常の透析状態に設定されている。そして、透析器20内の透析液系から出た透析液は、透析液回路12の戻路12bを通って、図示省略した透析液ポンプの駆動により外部へ排出される。透析器20内では、血液系を流れる血液中の老廃物が、透析膜22(図2)を介して接する透析液系を流れる透析液側に濾過される。
【0043】
このような血液透析時に、高張液注入装置30により、ナトリウムを主成分とする高張液が人体に間欠的に注入される。本実施の形態では、透析液回路12の往路12aに高張液注入路31が接続されており、この高張液注入路31を介して透析中の人体に、注入制御手段40の制御により、高張液が所定時間おきに所定量ずつ間欠的に注入されるようになっている。高張液は、透析器20において血液系に移行してから、血液回路11の静脈側11bより人体内に間接的に導入される。
【0044】
高張液注入路31の基端側に、高張液を無菌状態で予め貯留した貯留手段32があるので、この貯留手段32より高張液を随時供給することができる。また、高張液注入路31の途中には高張液ポンプ33があり、この高張液ポンプ33の稼動を注入制御手段40により制御することで、高張液を所定時間おきに所定量ずつ間欠的に注入することが可能となる。このように高張液注入装置30は、非常に簡易かつ容易に構成することができる。
【0045】
注入制御手段40による制御方法としては、例えば、図3(A)に示すように、透析装置10による透析開始後に、一定時間おきに予め定めた合計回数分だけ、高張液ポンプ33を一時的に稼動させるように設定すると良い。さらに具体的には、透析開始より15分経過後から透析終了前の1〜1.5時間前までの透析治療中に、30分〜1.5時間のうち予め選択した任意の時間間隔で合計3〜8回だけ、20%生理食塩水を主とする高張液を1回当たり5〜20mlだけ透析液回路12の往路12aに注入する。
【0046】
ここで1回当たりの注入に関しては、前記5〜20mlのうち予め設定された所定量を連続的に注入しても良いが、高張液ポンプ33の構造上、高張液を断続的に送り出すような場合には、図3(C)に示したように、所定量になるまで例えば1mlずつ断続的に注入するように設定してもかまわない。なお、具体的に高張液を注入する時間のタイミングと1回当たりの注入量は、注入制御手段40の設定によって任意の値に自由に調整することができる。
【0047】
また、注入制御手段40による別の制御方法として、例えば、図3(B)に示すように、透析装置10による透析開始後に、予め定めた複数回の所定時間の経過時点で、その都度、高張液ポンプ33を一時的に稼動させるようにしても良い。図3(A)または図3(B)に示す何れの制御方法によっても、人体に注入する高張液の合計量を、従来の高ナトリウム透析法に比較して格段に低減することができる。
【0048】
前記何れの制御方法の場合であっても、高張液は透析液回路12の往路12aへ注入され、透析器20で血液系に移行することで、血液回路11の静脈側11bから人体内に間接的に導入される。従って、透析液回路12に注入された総ての高張液が透析器20内に留まる状態が保たれるように、透析液回路12における流れを次のように制御する。
【0049】
すなわち、高張液の注入時には、前記切替手段14を通常の透析状態から一時的に透析回避状態に切り替える。すなわち、切替手段14の第1接続口14aと第3接続口14cとが連通し、かつ第2接続口14bが閉止されるから、透析液回路12の往路12aに供給される透析液は、透析器20に到達せずにバイパス経路13を経由して戻路12bより排出される流れとなる。
【0050】
かかる透析回避状態で、前記注入制御手段40の制御により高張液ポンプ33を稼動し、高張液注入路31から透析液回路12の往路12aに高張液を前記5〜20mlの範囲の所定量だけ注入する。高張液の注入後、透析器20まで高張液を移送させるために、いったん切替手段14を透析状態とした後、切替手段14を再び所定の移行時間に亘り透析回避状態とする。例えば、3〜5分程度の移行時間内で、透析器20では高張液中のナトリウム(17.1〜68.4mEq/L程度)が透析膜22を透過して血液系に移行する。
【0051】
透析器20内で総ての高張液が血液側に移行してから、切替手段14を通常の透析状態に戻して血液透析を再開する。このような切替手段14の切り替え操作も注入制御手段40により制御されるものであり、かかる制御により、透析液回路12に注入された高張液を過不足なく、人体中へ間接的に導入させることが可能となる。このように高張液は、血液回路11から直接人体に導入されるのではなく、透析液回路12および透析器20を経由して間接的に人体に導入されるので、万一不純物が高張液中に混入しても透析器20で血液中に入るおそれはなく、より安全性を高めることができる。
【0052】
以上のような高張液の注入を、前記注入制御手段40の制御により間欠的に繰り返し実施することにより、透析に起因する血液と細胞外液および細胞内液間での浸透圧差が抑制され、それにより、頭痛や血圧低下等の本来の血液透析に伴う副作用を解消することができる。特に間欠的に注入することにより、ナトリウムポンプの機能低下が防止され、血液中にナトリウムが過剰に蓄積されることがなく、従来の高ナトリウム透析法の弊害であった口渇感や体重増加および高血圧等の副作用も解消することができる。
【0053】
図4は、本発明の第2実施の形態を示している。
本実施の形態では、前記高張液注入路31の先端側を、前記血液回路11の静脈側11bに接続し、高張液を血液回路11の静脈側11bより人体内に直接的に導入するように設定したものである。なお、第1実施の形態と同種の部位には同一符号を付して重複した説明を省略する。
【0054】
本実施の形態でも、前記第1実施の形態と同様に、高張液注入路31の途中に設けられた高張液ポンプ33の稼動を、注入制御手段40で制御することにより、高張液を所定時間おきに所定量ずつ間欠的に注入する動作が実行される。特に本実施の形態では、高張液を血液回路11の静脈側11bより人体内に直接的に導入することで、正確な量の高張液を所定時点で速やかに人体に注入することができ、また前記切替手段14やその制御は不要となるので、全体の構成をよりいっそうと簡易化することができる。
【0055】
以上、本発明の実施の形態を図面によって説明してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。例えば、前記高張液注入路31の先端側に除菌フィルターを介装させても良い。
【0056】
ここで除菌フィルターとは、図示省略したが細菌やその生成毒素であるエンドトキシンを少なくとも除去可能なフィルター素材を有して成るものである。かかる除菌フィルターを介装することにより、透析装置10側へ注入する前段階で高張液の無菌化を容易に実現することができる。
【0057】
また、前記注入制御手段40はマイクロコンピュータで構成したが、特に前記第2実施の形態のように、前記高張液ポンプ33の他に制御すべき切替手段14が不要な場合には、注入制御手段40は、単に高張液を注入する時間のタイミングと1回当たりの注入量だけを簡易に制御できれば足りるため、電源のON/OFFを切り替え可能なタイマー等によって構成してもかまわない。なお、前記高張液注入装置30は、予め透析装置10と一体化して構成したが、もちろん高張液注入装置30は、既存の透析装置10に後から追加できるように構成してもかまわない。
【0058】
【発明の効果】
本発明に係る高張液注入装置によれば、透析装置の透析液回路の途中に高張液注入路を接続し、この高張液注入路を介して透析中の人体に、注入制御手段の制御によって、ナトリウムを主成分とする高張液を所定時間おきに所定量ずつ間欠的に注入することにより、透析に起因する血液と細胞外液および細胞内液間での浸透圧差が抑制されることで、頭痛や血圧低下等の本来の血液透析に伴う副作用を解消することができ、特に間欠的に注入することで、ナトリウムポンプの機能低下が防止され、血液中にナトリウムが過剰に蓄積されることがなく、従来の高ナトリウム透析法の弊害であった口渇感や体重増加および高血圧等の副作用も解消することができる。
【図面の簡単な説明】
【図1】本発明の第1実施の形態に係る高張液注入装置を概略的に示す説明図である。
【図2】本発明の第1実施の形態に係る高張液注入装置を構成する透析器を示す正面図である。
【図3】本発明の第1実施の形態に係る高張液注入装置における高張液の注入制御を説明するグラフである。
【図4】本発明の第2実施の形態に係る高張液注入装置を概略的に示す説明図である。
【符号の説明】
10…透析装置
11…血液回路
11a…動脈路
11b…静脈路
12…透析液回路
12a…往路
12b…戻路
13…バイパス経路
14…切替手段
14a…第1接続口
14b…第2接続口
14c…第3接続口
20…透析器
21…管本体
22…透析膜
30…高張液注入装置
31…高張液注入路
32…貯留手段
33…高張液ポンプ
40…注入制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates generally to medical devices, and more particularly to a hypertonic solution injection device that intermittently supplies a hypertonic solution mainly composed of sodium to a human body during hemodialysis using a dialysis device.
[0002]
[Prior art]
Traditionally, during hemodialysis treatment of patients with renal failure, nitrogen metabolites (urea nitrogen, creatine, etc.) from the blood, electrolytes, and water are removed to remove these between blood and extracellular and intracellular fluids. An osmotic pressure difference is generated due to a difference in concentration of each substance. Accompanying this, some patients developed headaches, decreased blood pressure, lower leg limbs, and pain in joints such as shoulders, and were forced to undergo painful hemodialysis treatment.
[0003]
Moreover, in all patients, a feeling of fatigue appeared during or after dialysis, and in some cases, the feeling of fatigue persisted until the next day of treatment, which hindered social life. High sodium dialysis methods that can alleviate these problems are also known. Here, the high sodium dialysis method means that the sodium concentration of a normal dialysate is around 140 mEq / L, similar to the physiological concentration of the human body, whereas 10% saline (NaCl) is dialyzed with a sodium infusion device. It is a method in which the sodium concentration of the dialysate is adjusted to 145 to 150 mEq / L.
[0004]
[Problems to be solved by the invention]
However, if the conventional high sodium dialysis method as described above is continuously performed, the sodium concentration in the patient's blood increases, and the effect of improving the symptoms such as headache and lowering blood pressure is relatively reduced. Due to the problem that new side effects such as dry mouth, weight gain and high blood pressure appear, it has been used only by some patients and has not been widely spread.
[0005]
Furthermore, in the high sodium dialysis method, since a dialysate higher than the physiological sodium concentration of the human body is used, it is necessary to accurately control the concentration to an appropriate level acceptable for each patient. Here, in order to control accurately, both the dialysate flow rate and the sodium injection amount must be constant, but in practice it was difficult to always obtain a constant flow rate. For this reason, the conventional sodium injection device is equipped with an expensive conductivity sensor, and it is necessary to monitor the sodium concentration of the dialysate, which makes the device complicated and expensive, increasing the cost. .
[0006]
The present invention has been made paying attention to the above-described problems of the prior art, and not only can improve symptoms such as headache and blood pressure reduction associated with normal dialysis treatment, but also increases costs. Therefore, it is an object of the present invention to provide a hypertonic solution injection device that can also eliminate the appearance of symptoms such as dry mouth, weight gain and hypertension, which are side effects of high sodium dialysis.
[0007]
[Means for Solving the Problems]
  The gist of the present invention for achieving the object described above resides in the inventions of the following items.
[1] A dialyzer (20) for filtering waste products in blood into a dialysate through a dialysis membrane (22), and a blood system inside the dialysis membrane (22) of the dialyzer (20) and a human body Hemodialysis using a dialyzer (10) having a blood circuit (11) and a dialysate circuit (12) for supplying dialysate to a dialysate system outside the dialyzer membrane (22) of the dialyzer (20). Sometimes a hypertonic solution injection device (30) that intermittently supplies a human body with a hypertonic solution mainly composed of sodium,
  Dialysate circuit (12)Is connected to a hypertonic liquid injection path (31) for injecting the hypertonic liquid, and the hypertonic liquid is intermittently injected by a predetermined amount every predetermined time via the hypertonic liquid injection path (31). Has injection control means (40)And
  The distal end side of the hypertonic solution injection path (31) is connected to the forward side (12a) of the dialysate circuit (12), and the hypertonic solution is transferred to the blood system in the dialyzer (20). Set to be indirectly introduced into the human body from the vein side (11b) of the blood circuit (11),
  The upstream side (12a) of the dialysate circuit (12) on the upstream side of the connected portion of the hypertonic solution injection path (31) and the return side (12b) of the dialysate circuit (12). A bypass path (13) that communicates, and a switching means (14) that can be switched between a dialysis avoidance state that avoids the dialyzer (20) and a dialysis state that communicates with the dialyzer (20) through the bypass path (13). Provided,
  The switching means (14) is placed in a dialysis avoidance state when the hypertonic solution is injected, and after the injection of the hypertonic solution, the hypertonic solution injected into the forward side (12a) of the dialysate circuit (12) is supplied to the dialyzer ( 20), after the switching means (14) is once in a dialysis state, the switching means (14) is kept until the hypertonic solution moves to the blood side in the dialyzer (20). The dialysis avoidance state is set again, and after the hypertonic solution moves to the blood side in the dialyzer (20), the switching means (14) is returned to the dialysis state.A hypertonic liquid injection device (30) characterized by the above.
[0008]
[2] On the proximal end side of the hypertonic solution injection path (31), a storage means (32) for storing the hypertonic solution in a sterile state in advance is provided,
In the middle of the hypertonic liquid injection path (31), a hypertonic liquid pump (33) for forcibly feeding the hypertonic liquid in the storage means (32) from the tip side of the hypertonic liquid injection path (31) is provided.
By automatically controlling the operation of the hypertonic solution pump (33) by the injection control means (40), the hypertonic solution is intermittently injected by a predetermined amount every predetermined time. [1 ] The hypertonic solution injecting device (30).
[0009]
[3] The injection control means (40) temporarily operates the hypertonic solution pump (33) for a predetermined total number of times at regular intervals after the start of dialysis by the dialyzer (10). The hypertonic solution injection device (30) according to [1] or [2], which is characterized in that it is characterized.
[0010]
[4] The injection control means (40) temporarily activates the hypertonic liquid pump (33) each time a predetermined time elapses a plurality of times after the start of dialysis by the dialyzer (10). The hypertonic solution injection device (30) according to [1] or [2], which is operated.
[0014]
[5[1], [2], [3], characterized in that a sterilization filter is interposed at the distal end side of the hypertonic solution injection path (31).Or [4]The hypertonic solution injection device (30) described.
[0015]
Next, the operation of the present invention will be described.
According to the hypertonic solution injection device (30) of the present invention, the hypertonic solution injection path (31) is connected to at least one of the blood circuit (11) and the dialysate circuit (12) of the dialyzer (10). Then, a hypertonic solution containing sodium as a main component is intermittently injected into the human body undergoing dialysis through the hypertonic solution injection path (31) by a predetermined amount every predetermined time by the control of the injection control means (40). . The injection control means (40) only needs to be able to easily control only the timing of the time of injecting the hypertonic solution and the injection amount per time.
[0016]
By injecting the hypertonic solution intermittently in this way, the osmotic pressure difference between the blood and the extracellular fluid and intracellular fluid caused by dialysis is suppressed, so that the original hemodialysis such as headache and blood pressure reduction can be achieved. The associated side effects can be resolved. In particular, intermittent injection prevents the sodium pump from deteriorating and does not cause excessive sodium accumulation in the blood, resulting in dry mouth, weight gain, and high blood pressure, which were the negative effects of conventional high sodium dialysis. Side effects such as these can also be eliminated.
[0017]
If a reservoir means (32) for preliminarily storing the hypertonic liquid in an aseptic state is provided on the proximal end side of the hypertonic liquid injection path (31), the hypertonic liquid can be supplied as needed from the reservoir means (32). By providing the hypertonic liquid pump (33) in the middle of the hypertonic liquid injection path (31), the hypertonic liquid in the storage means (32) can be forcibly sent out from the distal end side of the hypertonic liquid injection path (31). It becomes possible.
[0018]
Here, by automatically controlling the operation of the hypertonic liquid pump (33) by the injection control means (40), it becomes possible to inject the hypertonic liquid intermittently by a predetermined amount every predetermined time. In this way, the entire hypertonic solution injection device (30) can be configured very simply and easily.
[0019]
Further, as a control method by the injection control means (40), after the dialysis is started by the dialysis apparatus (10), the hypertonic liquid pump (33) is temporarily operated for a predetermined total number of times at regular intervals. It is good to set as follows. Alternatively, the hypertonic liquid pump (33) may be temporarily operated each time a predetermined time elapses a plurality of times after the start of dialysis. By any control, the total amount of the hypertonic solution to be injected into the human body can be significantly reduced as compared with the conventional high sodium dialysis method.
[0020]
As a more specific configuration of the hypertonic solution injection device (30), the distal end side of the hypertonic solution injection path (31) is connected to the vein side (11b) of the blood circuit (11), and the hypertonic solution is supplied to the blood circuit. If it is set so as to be directly introduced into the human body from the venous side (11b) of (11), an accurate amount of hypertonic solution can be quickly injected into the human body at a predetermined time point, and the configuration is further enhanced. It can be simplified.
[0021]
  furtherAs a specific configuration, the tip side of the hypertonic solution injection path (31) is connected to the forward side (12a) of the dialysate circuit (12), and the hypertonic solution is transferred to the blood system in the dialyzer (20). From the venous side (11b) of the blood circuit (11)Do. According to such a configuration, even if impurities are mixed in the hypertonic solution, there is no risk of entering the blood with the dialyzer (20), and safety can be further improved.
[0022]
  However, according to such a configuration, in order to prevent a situation in which the injected hypertonic solution simply circulates in the dialysate circuit (12) without being transferred to the blood system by the dialyzer (20), the following measures are taken.Do. That is, a bypass path is provided between the upstream side (12a) of the dialysate circuit (12) on the upstream side of the connecting portion of the hypertonic solution injection path (31) and the return side (12b) of the dialysate circuit (12). Switching means (14) is provided which can be switched between a dialysis avoidance state communicating with (13) and avoiding the dialyzer (20) through the bypass path (13) and a dialysis state communicating with the dialyzer (20).
[0023]
At the time of injecting the hypertonic solution, the switching means (14) is brought into a dialysis avoidance state, and after the injection of the hypertonic solution, the hypertonic solution injected into the forward side (12a) of the dialysate circuit (12) is dialyzed (20). After the switching means (14) is once in a dialysis state, the switching means (14) is again put into a dialysis avoidance state until the hypertonic solution moves to the blood side in the dialyzer (20). After the hypertonic solution moves to the blood side in the dialyzer (20), the switching means (14) is returned to the dialysis state. By the switching operation of the switching means (14), it is possible to indirectly introduce the hypertonic solution injected into the dialysate circuit (12) into the human body without excess or deficiency.
[0024]
Furthermore, if a sterilization filter is interposed at the distal end side of the hypertonic solution injection path (31), the sterilization of the hypertonic solution can be easily realized before the injection to the dialyzer (10) side. it can. In addition, the hypertonic solution injection device (30) according to the present invention may be configured to be integrated with the dialysis device (10) in advance, or may be configured to be added later to the existing dialysis device (10).
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, various embodiments representing the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of the present invention.
The hypertonic solution injection device 30 according to the present embodiment is a device for intermittently supplying a hypertonic solution mainly composed of sodium to the human body during hemodialysis using the dialyzer 10. Hereinafter, the case where the hypertonic solution injection device 30 is provided integrally with the dialysis device 10 will be described as an example.
[0026]
First, the dialysis apparatus 10 will be described.
As shown in FIG. 1, a dialyzer 10 includes a dialyzer 20 called a dialyzer, a blood circuit 11 that connects the blood system of the dialyzer 20 and the human body, and a dialysate to the dialysate system of the dialyzer 20. And a dialysate circuit 12 for supplying the liquid.
[0027]
The blood circuit 11 includes an arterial path 11a that connects the human artery and the dialyzer 20, and a venous path 11b that connects the dialyzer 20 and the human vein. On the other hand, the dialysate circuit 12 includes an outward path 12 a for supplying dialysate to the dialyzer 20 and a return path 12 b for recovering dialyzed dialysate from the dialyzer 20. Although not shown, a blood pump or the like for forcibly circulating blood is provided in the middle of the arterial passage 11a, and dialysate is forced in the middle of the connection place of the bypass passage 13 of the return passage 12b and the dialysate outlet. A circulating dialysate pump or the like is provided.
[0028]
As shown in FIG. 2, the dialyzer 20 includes a cylindrical tube body 21 in which a bundle of many hollow fiber type dialysis membranes 22 is enclosed. Blood flows and the dialysate flows outside the dialysis membrane 22. That is, the inside of the tube body 21 is divided into two systems, that is, the inside of the dialysis membrane 22 is a blood system and the outside of the dialysis membrane 22 is a dialysate system.
[0029]
A blood inlet 23A and a blood outlet 23B communicating with the blood system are provided at both ends of the tube body 21. In addition, a dialysate inlet 24A and a dialysate outlet 24B communicating with the dialysate system are provided on the side walls on both ends of the pipe body 21. In addition, the flow direction of blood and dialysate in the tube main body 21 is set to be counterflows that are opposite to each other from the viewpoint of dialysis efficiency. The dialysis efficiency varies somewhat depending on the type and performance of the dialysis membrane 22.
[0030]
With respect to the dialysis apparatus 10 as described above, the hypertonic solution injection device 30 according to the present embodiment is configured in advance in an integrally combined form. The hypertonic solution injection device 30 is connected to the dialysate circuit 12 in the middle of the hypertonic solution injection path 31 for injecting the hypertonic solution, and the hypertonic solution is supplied via the hypertonic solution injection path 31 every predetermined time. And injection control means 40 for performing control to intermittently inject a predetermined amount.
[0031]
As shown in FIG. 1, the distal end side of the hypertonic solution injection path 31 is connected in advance to the forward path 12 a of the dialysate circuit 12, and in this embodiment, the hypertonic solution is blood in the dialyzer 20. After being transferred to the system, it is set so as to be indirectly introduced into the human body from the vein side 11b of the blood circuit 11.
[0032]
On the proximal end side of the hypertonic solution injection path 31, a storage unit 32 is provided that includes a chemical syringe that stores the hypertonic solution in a sterile state in advance. Here, the hypertonic solution is a solution for adjusting the osmotic pressure mainly composed of about 20% sodium, and may contain glucose, glycerol, mannitol, urea nitrogen or the like as necessary. Furthermore, sodium citrate that promotes cell activation, vitamin C that removes active oxygen in the blood, and the like may be added in a trace amount.
[0033]
In the middle of the hypertonic liquid injection path 31, a hypertonic liquid pump 33 for forcibly sending the hypertonic liquid in the storage means 32 from the distal end side of the hypertonic liquid injection path 31 is provided. The hypertonic liquid pump 33 is composed of various known pumps such as a reciprocating pump and a roller pump. By adjusting the number of rotations of a drive motor (not shown), the flow of the hypertonic liquid to be sent out is adjusted. The desired value can be controlled. The hypertonic liquid pump 33 is connected to the injection control means 40 via a signal line.
[0034]
The injection control means 40 automatically controls the operation of the hypertonic solution pump 33 to execute an operation of intermittently injecting the hypertonic solution by a predetermined amount every predetermined time. The injection control means 40 is specifically composed of, for example, a microcomputer constituted by an interface, a CPU, a RAM, a ROM, and the like.
[0035]
The infusion control means 40 may be set so that the hypertonic liquid pump 33 is temporarily operated after a predetermined total number of times after the start of dialysis by the dialysis apparatus 10. Alternatively, after the start of dialysis, the hypertonic solution pump 33 may be set to be temporarily operated each time a predetermined number of predetermined times have elapsed. The hypertonic liquid pump 33 can be controlled in various operation modes by changing the program of the injection control means 40 or operating a predetermined input setting. Detailed control contents will be described later.
[0036]
Further, the middle of the dialysate circuit 12 on the upstream side of the connection place of the hypertonic solution injection path 31 and the middle of the return path 12b of the dialysate circuit 12 are connected by the bypass path 13. ing. A switching means 14 comprising a three-way solenoid valve is provided in the middle of the forward path 12a. The first connection port 14a of the switching means 14 is connected to the dialysate inlet side of the forward path 12a, and the second connection port 14b is dialyzed. The third connection port 14 c is connected to one end of the bypass path 13.
[0037]
By switching the switching means 14, the dialysate flow in the dialysate circuit 12 is communicated with the dialyzer 20 without passing through the bypass path 13 and the dialysis avoidance state in which the dialysate 20 circulates around the dialyzer 20 through the bypass path 13. The dialysis state is circulated via the dialyzer 20.
[0038]
More specifically, in the normal dialysis state, the first connection port 14a and the second connection port 14b of the switching unit 14 communicate with each other and the third connection port 14c is closed. In the dialysis avoidance state, the first connection port 14a and the second connection port 14b are closed. The first connection port 14a and the third connection port 14c communicate with each other and the second connection port 14b is closed.
[0039]
The switching means 14 is connected to the injection control means 40 via a signal line in the same manner as the hypertonic liquid pump 33, and switching between the dialysis avoidance state and the dialysis state is controlled by the injection control means 40. In other words, the injection control means 40 is set to automatically control the switching operation of the switching means 14 in addition to automatically controlling the operation of the hypertonic liquid pump 33.
[0040]
Specifically, when the hypertonic solution is injected, the switching means 14 is placed in a dialysis avoidance state, and after the injection of the hypertonic solution, the hypertonic solution injected into the forward path 12a of the dialysate circuit 12 is transferred to the dialyzer 20 once. After the means 14 is put into the dialysis state, the switching means 14 is again put into the dialysis avoidance state until the hypertonic solution moves to the blood side in the dialyzer 20, and the hypertonic solution moves to the blood side in the dialyzer 20. Therefore, the switching means 14 is controlled to return to the dialysis state. Details will be described later.
[0041]
Next, the operation of the first embodiment will be described.
In FIG. 1, when hemodialysis is started by the hemodialyzer 10, blood taken from the human artery from the beginning of the arterial passage 11 a in the blood circuit 11 is moved into the dialyzer 20 by the operation of a blood pump (not shown). It is sent to the blood system. Then, the blood discharged from the blood system in the dialyzer 20 is returned to the veins of the human body through the vein path 11b of the blood circuit 11.
[0042]
On the other hand, the dialysate supplied from the starting end of the forward path 12 a in the dialysate circuit 12 is sent to the dialysate system in the dialyzer 20. At this time, the switching means 14 in the middle of the forward path 12a is set to a normal dialysis state where the dialysate communicates with the dialyzer 20 without passing through the bypass path 13. Then, the dialysate discharged from the dialysate system in the dialyzer 20 passes through the return path 12b of the dialysate circuit 12 and is discharged to the outside by driving a dialysate pump (not shown). In the dialyzer 20, waste in the blood flowing through the blood system is filtered to the dialysate side flowing through the dialysate system in contact through the dialysis membrane 22 (FIG. 2).
[0043]
During such hemodialysis, a hypertonic solution mainly composed of sodium is intermittently injected into the human body by the hypertonic solution injection device 30. In the present embodiment, the hypertonic solution injection path 31 is connected to the forward path 12a of the dialysate circuit 12, and the hypertonic solution is controlled to the human body during dialysis via the hypertonic solution injection path 31 by the control of the injection control means 40. Are intermittently injected at a predetermined rate every predetermined time. The hypertonic solution is indirectly introduced into the human body from the venous side 11b of the blood circuit 11 after transferring to the blood system in the dialyzer 20.
[0044]
Since the storage means 32 that stores the hypertonic solution in a sterile state in advance is provided on the proximal end side of the hypertonic solution injection path 31, the hypertonic solution can be supplied from the storage device 32 as needed. There is a hypertonic liquid pump 33 in the middle of the hypertonic liquid injection path 31, and the operation of the hypertonic liquid pump 33 is controlled by the injection control means 40 so that the hypertonic liquid is intermittently injected at predetermined intervals every predetermined time. It becomes possible to do. Thus, the hypertonic solution injection device 30 can be configured very simply and easily.
[0045]
As a control method by the injection control means 40, for example, as shown in FIG. 3 (A), after the start of dialysis by the dialyzer 10, the hypertonic liquid pump 33 is temporarily turned on for a predetermined total number of times at regular intervals. It is good to set it to work. More specifically, during the dialysis treatment from 15 minutes after the start of dialysis to 1 to 1.5 hours before the end of dialysis, the total is calculated at an arbitrary time interval selected in advance from 30 minutes to 1.5 hours. Only 5 to 8 ml of hypertonic solution mainly composed of 20% physiological saline is injected into the forward path 12a of the dialysate circuit 12 3 to 8 times.
[0046]
Here, regarding the injection per time, a predetermined amount set in advance in the above 5 to 20 ml may be continuously injected. However, due to the structure of the hypertonic liquid pump 33, the hypertonic liquid is intermittently sent out. In such a case, as shown in FIG. 3C, it may be set such that, for example, 1 ml is intermittently injected until a predetermined amount is reached. Specifically, the timing of the time of injecting the hypertonic solution and the amount of injection per time can be freely adjusted to an arbitrary value by the setting of the injection control means 40.
[0047]
Further, as another control method by the injection control means 40, for example, as shown in FIG. 3 (B), after the start of dialysis by the dialyzer 10, a predetermined number of predetermined times have elapsed, and each time a hypertonic is performed. The liquid pump 33 may be temporarily operated. 3A or 3B, the total amount of hypertonic solution to be injected into the human body can be significantly reduced as compared with the conventional high sodium dialysis method.
[0048]
In any of the above control methods, the hypertonic solution is injected into the forward path 12a of the dialysate circuit 12 and transferred to the blood system by the dialyzer 20, so that it is indirectly transferred from the vein side 11b of the blood circuit 11 into the human body. Introduced. Therefore, the flow in the dialysate circuit 12 is controlled as follows so that all the hypertonic solutions injected into the dialysate circuit 12 remain in the dialyzer 20.
[0049]
That is, when the hypertonic solution is injected, the switching means 14 is temporarily switched from the normal dialysis state to the dialysis avoidance state. That is, since the first connection port 14a and the third connection port 14c of the switching means 14 communicate with each other and the second connection port 14b is closed, the dialysate supplied to the forward path 12a of the dialysate circuit 12 is dialyzed. The flow is discharged from the return path 12 b via the bypass path 13 without reaching the container 20.
[0050]
In such a dialysis avoidance state, the hypertonic solution pump 33 is operated under the control of the injection control means 40, and the hypertonic solution is injected from the hypertonic solution injection path 31 to the forward path 12a of the dialysate circuit 12 by a predetermined amount in the range of 5 to 20 ml. To do. After the injection of the hypertonic solution, in order to transfer the hypertonic solution to the dialyzer 20, the switching unit 14 is once put into a dialysis state, and then the switching unit 14 is again put into a dialysis avoidance state for a predetermined transition time. For example, within the transition time of about 3 to 5 minutes, in the dialyzer 20, sodium (about 17.1 to 68.4 mEq / L) in the hypertonic solution permeates the dialysis membrane 22 and moves to the blood system.
[0051]
After all the hypertonic solution in the dialyzer 20 has moved to the blood side, the switching means 14 is returned to the normal dialysis state and hemodialysis is resumed. Such a switching operation of the switching means 14 is also controlled by the injection control means 40, and by this control, the hypertonic solution injected into the dialysate circuit 12 is introduced indirectly into the human body without excess or deficiency. Is possible. In this way, the hypertonic solution is not directly introduced into the human body from the blood circuit 11, but is indirectly introduced into the human body via the dialysate circuit 12 and the dialyzer 20, so that impurities should be present in the hypertonic solution. Even if it is mixed in, there is no fear of entering the blood with the dialyzer 20, and safety can be further improved.
[0052]
By injecting the hypertonic solution as described above intermittently and repeatedly under the control of the injection control means 40, the difference in osmotic pressure between blood, extracellular fluid and intracellular fluid due to dialysis is suppressed. Thus, side effects associated with original hemodialysis such as headache and blood pressure reduction can be eliminated. In particular, intermittent injection prevents deterioration of sodium pump function, prevents excessive accumulation of sodium in the blood, and causes dry mouth, weight gain, and high blood pressure, which are the negative effects of conventional high sodium dialysis. Side effects such as these can also be eliminated.
[0053]
FIG. 4 shows a second embodiment of the present invention.
In the present embodiment, the distal end side of the hypertonic solution injection path 31 is connected to the venous side 11b of the blood circuit 11, and the hypertonic solution is directly introduced into the human body from the venous side 11b of the blood circuit 11. It is set. In addition, the same code | symbol is attached | subjected to the site | part of the same kind as 1st Embodiment, and the overlapping description is abbreviate | omitted.
[0054]
Also in the present embodiment, as in the first embodiment, the operation of the hypertonic liquid pump 33 provided in the middle of the hypertonic liquid injection path 31 is controlled by the injection control means 40, whereby the hypertonic liquid is allowed to flow for a predetermined time. Every other predetermined amount is intermittently injected. In particular, in the present embodiment, by introducing the hypertonic solution directly into the human body from the venous side 11b of the blood circuit 11, an accurate amount of the hypertonic solution can be quickly injected into the human body at a predetermined time point. Since the switching means 14 and its control are not required, the overall configuration can be further simplified.
[0055]
As described above, the embodiments of the present invention have been described with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the present invention can be modified or added without departing from the scope of the present invention. Included in the invention. For example, a sterilization filter may be interposed at the distal end side of the hypertonic solution injection path 31.
[0056]
Here, the sterilization filter has a filter material (not shown) that can remove at least bacteria and endotoxin, which is a toxin produced by the bacterium. By interposing such a sterilization filter, sterilization of the hypertonic solution can be easily realized at the stage before injection into the dialyzer 10 side.
[0057]
Further, the injection control means 40 is constituted by a microcomputer, but particularly when the switching means 14 to be controlled in addition to the hypertonic liquid pump 33 is unnecessary as in the second embodiment, the injection control means. No. 40 may be constituted by a timer or the like capable of switching ON / OFF of the power supply because it is sufficient to simply control only the timing of the time of injecting the hypertonic solution and the injection amount per time. The hypertonic solution injection device 30 is previously integrated with the dialysis device 10, but the hypertonic solution injection device 30 may of course be added to the existing dialysis device 10 later.
[0058]
【The invention's effect】
  According to the hypertonic solution injection device of the present invention, the dialysis deviceDialysate circuitA hypertonic solution injection path is connected midway through the hypertonic solution injection path, and a hypertonic solution containing sodium as a main component is intermittently supplied at predetermined intervals every predetermined time to the human body during dialysis via the control of the injection control means. By injecting into the blood, the osmotic pressure difference between blood and extracellular fluid and intracellular fluid caused by dialysis can be suppressed, thereby eliminating side effects associated with original hemodialysis such as headache and blood pressure reduction. In particular, intermittent injection prevents the sodium pump from degrading, prevents excessive accumulation of sodium in the blood, and is a negative effect of conventional high sodium dialysis methods. Side effects such as high blood pressure can also be eliminated.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing a hypertonic solution injection device according to a first embodiment of the present invention.
FIG. 2 is a front view showing a dialyzer constituting the hypertonic solution injection device according to the first embodiment of the present invention.
FIG. 3 is a graph for explaining hypertonic solution injection control in the hypertonic solution injection device according to the first embodiment of the present invention;
FIG. 4 is an explanatory view schematically showing a hypertonic solution injection device according to a second embodiment of the present invention.
[Explanation of symbols]
10 ... Dialyzer
11 ... Blood circuit
11a ... Arterial tract
11b ... Venous route
12 ... Dialysate circuit
12a ... Outbound
12b ... Return way
13 ... Bypass route
14 ... Switching means
14a ... 1st connection port
14b ... Second connection port
14c ... Third connection port
20 ... dialyzer
21 ... Pipe body
22 ... Dialysis membrane
30 ... Hypertonic liquid injection device
31 ... Hypertonic liquid injection path
32 ... Storage means
33 ... Hypertonic liquid pump
40. Injection control means

Claims (5)

血液中の老廃物を透析膜により透析液中に濾過させる透析器と、該透析器の透析膜内側である血液系と人体とを結ぶ血液回路と、前記透析器の透析膜外側である透析液系に透析液を供給する透析液回路とを有する透析装置を用いた血液透析時に、ナトリウムを主成分とする高張液を人体に間欠的に供給する高張液注入装置であって、
前記透析液回路の途中に、前記高張液を注入する高張液注入路を接続し、該高張液注入路を介して前記高張液を、所定時間おきに所定量ずつ間欠的に注入する制御を行う注入制御手段を有し、
前記高張液注入路の先端側を、前記透析液回路の往側に接続し、前記高張液を前記透析器において血液系に移行させてから、前記血液回路の静脈側より人体内に間接的に導入するように設定し、
前記透析液回路の往側における前記高張液注入路の接続箇所より上流側の途中と、同じく前記透析液回路の戻側の途中とを連通するバイパス経路と、該バイパス経路を通じて前記透析器を避ける透析回避状態と前記透析器に連通する透析状態とに切り替え可能な切替手段とを設け、
前記高張液の注入時に前記切替手段を透析回避状態とし、前記高張液の注入後、前記透析液回路の往側に注入された前記高張液を前記透析器に移送させるために、いったん前記切替手段を透析状態とした後、前記透析器内で前記高張液が血液側に移行するまでの間、前記切替手段を再び透析回避状態とし、前記透析器内で前記高張液が血液側に移行してから、前記切替手段を透析状態に戻すことを特徴とする高張液注入装置。
A dialyzer that filters waste products in blood into dialysate through a dialysis membrane, a blood circuit that connects the blood system inside the dialysis membrane of the dialyzer and the human body, and a dialysis solution outside the dialysis membrane of the dialyzer A hypertonic fluid injection device that intermittently supplies a hypertonic solution mainly composed of sodium to the human body during hemodialysis using a dialyzer having a dialysate circuit that supplies a dialysate to the system,
A hypertonic solution injection path for injecting the hypertonic solution is connected in the middle of the dialysate circuit , and the hypertonic solution is intermittently injected by a predetermined amount every predetermined time through the hypertonic solution injection path. have a injection control means,
The distal end side of the hypertonic solution injection path is connected to the forward side of the dialysate circuit, and after the hypertonic solution is transferred to the blood system in the dialyzer, indirectly from the vein side of the blood circuit into the human body. Set up to deploy,
A bypass path that communicates the middle of the upstream side of the connection point of the hypertonic fluid injection path on the outward side of the dialysate circuit and the middle of the return side of the dialysate circuit, and avoids the dialyzer through the bypass path A switching means capable of switching between a dialysis avoidance state and a dialysis state communicating with the dialyzer,
In order to transfer the hypertonic solution injected to the forward side of the dialysate circuit after the injection of the hypertonic solution into the dialysis avoidance state when the hypertonic solution is injected, The dialysis state is followed by the switching means again in the dialysis avoidance state until the hypertonic solution moves to the blood side in the dialyzer, and the hypertonic solution moves to the blood side in the dialyzer. The hypertonic solution injection device is characterized in that the switching means is returned to the dialysis state .
前記高張液注入路の基端側に、前記高張液を無菌状態で予め貯留した貯留手段を設け、
前記高張液注入路の途中に、前記貯留手段にある前記高張液を強制的に前記高張液注入路の先端側から送り出す高張液ポンプを設け、
前記注入制御手段によって、前記高張液ポンプの稼動を自動的に制御することにより、前記高張液を所定時間おきに所定量ずつ間欠的に注入することを特徴とする請求項1記載の高張液注入装置。
On the proximal end side of the hypertonic liquid injection path, a storage means for preliminarily storing the hypertonic liquid in a sterile state is provided,
In the middle of the hypertonic liquid injection path, a hypertonic liquid pump for forcibly sending the hypertonic liquid in the storage means from the tip side of the hypertonic liquid injection path is provided.
2. The hypertonic liquid injection according to claim 1, wherein the hypertonic liquid is intermittently injected by a predetermined amount every predetermined time by automatically controlling the operation of the hypertonic liquid pump by the injection control means. apparatus.
前記注入制御手段は、前記透析装置による透析開始後に、一定時間おきに予め定めた合計回数分だけ、前記高張液ポンプを一時的に稼動させることを特徴とする請求項1または2記載の高張液注入装置。  3. The hypertonic solution according to claim 1, wherein the injection control unit temporarily operates the hypertonic solution pump for a predetermined total number of times at regular intervals after the start of dialysis by the dialyzer. Injection device. 前記注入制御手段は、前記透析装置による透析開始後に、予め定めた複数回の所定時間の経過時点で、その都度、前記高張液ポンプを一時的に稼動させることを特徴とする請求項1または2記載の高張液注入装置。  The injection control means temporarily operates the hypertonic liquid pump each time a predetermined time elapses a plurality of times after the start of dialysis by the dialysis apparatus. The hypertonic solution injection device described. 前記高張液注入路の先端側に、除菌フィルターを介装させたことを特徴とする請求項1,2,3または4記載の高張液注入装置。The hypertonic solution injection device according to claim 1, 2, 3, or 4 , wherein a sterilization filter is interposed at a distal end side of the hypertonic solution injection path.
JP2002066381A 2002-03-12 2002-03-12 Hypertonic liquid injection device Expired - Fee Related JP3896011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002066381A JP3896011B2 (en) 2002-03-12 2002-03-12 Hypertonic liquid injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002066381A JP3896011B2 (en) 2002-03-12 2002-03-12 Hypertonic liquid injection device

Publications (2)

Publication Number Publication Date
JP2003260129A JP2003260129A (en) 2003-09-16
JP3896011B2 true JP3896011B2 (en) 2007-03-22

Family

ID=28671446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002066381A Expired - Fee Related JP3896011B2 (en) 2002-03-12 2002-03-12 Hypertonic liquid injection device

Country Status (1)

Country Link
JP (1) JP3896011B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014147793A (en) * 2014-03-17 2014-08-21 Nipro Corp Intermittent infusion method for prevention of lowering of blood, and blood purifying apparatus
WO2022113351A1 (en) * 2020-11-30 2022-06-02 ニプロ株式会社 Blood purification device and blood purification method
CN112618828A (en) * 2020-12-30 2021-04-09 江苏关怀医疗科技有限公司 Dialysis machine

Also Published As

Publication number Publication date
JP2003260129A (en) 2003-09-16

Similar Documents

Publication Publication Date Title
JP5007125B2 (en) Chemical treatment flow control system and method
US6132616A (en) Method for flushing and filling of an extracorporeal blood circulation system of a dialysis machine
JP3677045B2 (en) Apparatus for tidal vibration pulse peritoneal dialysis
JP3677046B2 (en) Apparatus for purified pulse peritoneal dialysis
JP4180797B2 (en) Device for peritoneal dialysis and method of using this device
US5902476A (en) Artificial kidney for frequent (daily) hemodialysis
JP4094946B2 (en) Method and apparatus for producing sterile infusion
JP2000107284A (en) Dialysis apparatus and washing priming method
JP2000107283A (en) Dialysis apparatus and washing priming method
JP2000107286A (en) Perfusion apparatus for peritoneal dialyzate and perfusion method
US20070007209A1 (en) Blood purification apparatus for elevating purification efficiency
JP4129726B2 (en) Peritoneal dialysis machine
USH1658H (en) Technique for automatically preparing a dialysis machine at a predetermined date and time
JP3896011B2 (en) Hypertonic liquid injection device
JP7317008B2 (en) Dialysis system with carbon dioxide generation and prime
JP7132093B2 (en) blood purifier
JP7396362B2 (en) blood purification device
US11890401B2 (en) Dialysis machines and methods of disinfecting a dialysis machine
JP7367425B2 (en) blood purification device
JP2024085570A (en) Blood Purification Device
JP2024085569A (en) Blood Purification Device
JPS5968A (en) Semi-continuous portable blood dialytic system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees