JP3894786B2 - Method for producing composite molded body - Google Patents
Method for producing composite molded body Download PDFInfo
- Publication number
- JP3894786B2 JP3894786B2 JP2001386550A JP2001386550A JP3894786B2 JP 3894786 B2 JP3894786 B2 JP 3894786B2 JP 2001386550 A JP2001386550 A JP 2001386550A JP 2001386550 A JP2001386550 A JP 2001386550A JP 3894786 B2 JP3894786 B2 JP 3894786B2
- Authority
- JP
- Japan
- Prior art keywords
- cement
- molded body
- foamable resin
- resin
- hollow portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Press-Shaping Or Shaping Using Conveyers (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
Description
【0001】
【技術分野】
本発明は,建築用外壁断熱パネル等に用いられる,セメント系押出成形体と発泡樹脂の複合成形体の製造方法に関する。
【0002】
【従来技術】
従来より,発泡樹脂をセメント系押出成形体の内部に挿入配置した複合成形体は,優れた断熱効果を有する建築材料などとして広く利用されている。
上記複合成形体の製造方法としては,セメント系押出成形体に設けられた中空部に,例えば発泡ウレタン樹脂をノズルより注入しながらノズルを引き出す注入発泡成形方法が広く利用されていた。
【0003】
【解決しようとする課題】
しかしながら,上記注入発泡成形方法においては,上記セメント系押出成形体の中空部の小口に発泡ウレタン樹脂注入用ノズルを挿入し,このノズルを上記中空部から引き出しながら該中空部にウレタン樹脂を注入する必要がある。また,セメント系押出成形体のパネルが長く4〜5mあるような場合,上記ウレタン樹脂を注入する作業だけのために,広い作業スペースを確保する必要がある。そのため,作業が非常に複雑で,大がかりな設備と人手が必要となる。それ故,上記複合成形体の製造コストが高くなるという問題があった。
【0004】
また,特開平10−217386号公報には,セメント押出機ダイスの背面より発泡樹脂成形体を挿入し,その周囲に,ダイス内にてセメント系押出成形体を被覆し一体的に複合成形する方法が開示されている。
この方法においては,セメント系押出成形体と発泡樹脂成形体とを,ダイス内にて一体的に成形している。
【0005】
しかし,この方法では,上記発泡樹脂成形体が,セメントを硬化させるための養生時の高温度にて熱収縮してしまう。そのため,オートクレーブによる高温養生の代わりに,低温養生を行う必要がある。ところが,この低温養生では,セメント系押出成形体の強度を高めるために長時間を必要とする。そのため,生産性が低く,また強度に優れた複合成形体を製造することが困難であるという問題があった。
【0006】
本発明はかかる従来の問題点に鑑みなされたもので,簡単な操作,低コスト,省エネルギーで,優れた断熱性及び強度を有する複合成形体を製造する方法を提供しようとするものである。
【0007】
【課題の解決手段】
本発明は,セメント系押出成形体に設けられた中空部に,発泡樹脂を充填してなる複合成形体を製造する方法であって,
上記セメント系押出成形体を押出成形する成形工程と,
上記セメント系押出成形体をオートクレーブにより養生する養生工程と,
養生されたセメント系押出成形体を冷却する冷却工程とを有し,
上記冷却工程においては,上記セメント系押出成形体が上記養生時の残熱を有している状態であって,上記セメント系押出成形体の温度が70〜130℃であるときに,該セメント系押出成形体の上記中空部に発泡性樹脂よりなる発泡性樹脂体を挿入し,該発泡性樹脂体を上記残熱により発泡させることを特徴とする複合成形体の製造方法にある(請求項1)。
【0008】
本発明においては,セメント系押出成形体を押出成形した後の養生工程における残熱を利用して,セメント系押出成形体の中空部に挿入した発泡性樹脂体を発泡させる。
また,上記発泡性樹脂体の発泡は,セメント系押出成形体の製造に通常必要な冷却工程において行う。
そのため,上記発泡性樹脂体の発泡のための余分な加熱工程及び加熱装置を設ける必要がなく,省エネルギー化を図ることができる。
また,上記発泡性樹脂体は,セメント系押出成形体の中空部内に挿入するのみで,その後は養生加熱後の残熱によって自然に発泡性樹脂体が中空体内で発泡する。
そのため,簡単,低コストにて,上記複合成形体を製造することができる。
【0009】
また,上記冷却工程においては,上記発泡性樹脂体が発泡し,熱伝導率の低い発泡樹脂が上記中空部内の壁面に密着する。そのため,断熱性に優れた複合成形体を製造することができる。
【0010】
さらに,本発明においては,上記養生工程後の冷却工程において,上記発泡性樹脂体の発泡を行っている。そのため,上記養生工程においては,セメント系押出成形体の養生を高い温度で行うことができる。それ故,強度に優れた複合成形体を製造することができる。
【0011】
したがって,本発明によれば,簡単な操作,低コスト,省エネルギーで,優れた断熱性及び強度を有する複合成形体を製造する方法を提供することができる。
【0012】
【発明の実施の形態】
本発明(請求項1)において,上記セメント系押出成形体としては,例えば,セメント,骨材,繊維添加剤などを水と混練し,押出成形により成形したものを用いる。
【0013】
また,上記養生工程は,セメント系押出成形体におけるセメントを硬化させるための加熱工程である。上記セメント系押出成形体の養生は,オートクレーブ内において,上記セメント系押出成形体を,高圧の過熱水蒸気等を用いて,140℃〜160℃に加熱することにより行う。
【0014】
また,上記発泡性樹脂体に用いる樹脂としては,発泡性の熱硬化性樹脂又は熱可塑性樹脂を用いることができる。
上記熱硬化性樹脂としては,例えば,ウレタン系樹脂,メラミン系樹脂,フェノール系樹脂,塩化ビニル系樹脂などがある。また,上記熱可塑性樹脂としては,例えば,ポリスチレン樹脂,ポリエチレン樹脂,ポリプロピレン樹脂などがある。
また,上記発泡性樹脂体に用いる樹脂には,発泡のために炭酸ガス,ブタン,ペンタン,代替フロン等の発泡剤を含有させておくことができる。
【0015】
また,本発明の複合成形体は,建築材料の他,土木材料等に用いることができる。
【0016】
次に,上記発泡性樹脂体は,上記中空部の内形状よりも小さい形状に成形してある樹脂成形体であるであることが好ましい(請求項2)。
この場合には,上記発泡性樹脂体が予め柱状体,丸棒状体,厚板状体などに成形してあるので,上記発泡性樹脂体を中空部に簡単に挿入することができる。
【0017】
次に,上記発泡性樹脂体は,その表面に発泡性樹脂粒子又はその予備発泡粒子を付着させた粒子付発泡性樹脂体であることが好ましい(請求項3)。
この場合には,上記発泡性樹脂体自体の他に,上記発泡性樹脂粒子又はその予備発泡粒子の発泡力も利用して,上記発泡性樹脂体を中空部に密着させることができる。
【0018】
上記発泡性樹脂粒子としては,発泡剤として例えばブタン,ペンタン等の発泡ガスを2〜6wt%含有し,粒径0.4〜2.5mmφのものを用いることが好ましい。
上記発泡ガスの含有量が2wt%未満の場合には,上記発泡性樹脂粒子が充分に発泡できないおそれがある。一方,6wt%を超える場合には,上記発泡性樹脂粒子が過発泡し,収縮してしまうという問題がある。
また,上記粒径が0.4mmφ未満の場合には,多量の発泡性樹脂粒子を上記発泡性樹脂体に付着しなければならないという問題がある。一方,2.5mmφを超える場合には,上記中空部の壁面との間隔をより広くする必要があり,上記残熱量が不足して充分に発泡できないおそれがある。
【0019】
また,上記予備発泡粒子としては,例えば上記発泡ガスを2〜6wt%含有し,発泡倍率が3〜30倍であって,粒径が1〜5mmφのものを用いることが好ましい。
上記発泡ガスの含有量が2wt%未満の場合には,上記予備発泡粒子が充分に発泡できないおそれがある。一方,6wt%を超える場合には,上記予備発泡粒子が過発泡し,収縮してしまうという問題がある。
また,上記発泡倍率が3倍未満の場合には,上記予備発泡粒子を製造するのが困難になるという問題がある。一方,30倍を超える場合には,上記予備発泡粒子を充分に発泡できないおそれがある。
また,上記粒径が1mmφ未満の場合には,多量の予備発泡粒子を上記発泡性樹脂体に付着しなければならないという問題がある。一方,5mmφを超える場合には,上記中空部の壁面との間隔をより広くする必要があり,上記残熱量が不足して充分に発泡できないおそれがある。
【0020】
また,上記発泡性樹脂粒子又はその予備発泡粒子を発泡性樹脂体に付着させる方法としては,接着剤を介して接着する方法や,両面テープを介して接着する方法などがある。
上記接着剤としては,エポキシ樹脂系,酢酸ビニル樹脂系,アクリル樹脂系,SBR系,再生ゴム系などの水溶性型の接着剤を用いることができる。
【0021】
次に,上記発泡性樹脂体を上記中空部に挿入するときの上記セメント系押出成形体の温度は,70〜130℃であることが好ましい(請求項4)。
この場合には,上記発泡樹脂とセメント系押出成形体の密着性に優れた複合成形体を製造することができる。
【0022】
上記セメント系押出成形体の温度が70℃未満の場合には,上記発泡性樹脂体が,セメント系押出成形体の中空部内で充分に発泡できないおそれがある。
一方,130℃を超える場合には,上記発泡性樹脂体が一旦発泡した後,高温のために収縮したり,均一に発泡できず,発泡性樹脂体と上記中空部の壁面との間に空洞部分が発生するおそれがある。
【0023】
次に,上記粒子付発泡性樹脂体を上記中空部に挿入するときの上記セメント系押出成形体の温度は,100〜130℃であることが好ましい(請求項5)。
この場合には,上記発泡樹脂とセメント系押出成形体の密着性に優れた複合成形体を製造することができる。
【0024】
上記セメント系押出成形体の温度が100℃未満の場合には,上記粒子付発泡性樹脂体に付着した予備発泡粒子,又は樹脂粒子が充分に発泡しないおそれがある。
一方,130℃を超えると,上記粒子付発泡性樹脂体は,上記のように高温のために発泡後収縮したり,均一に発泡しないおそれがある。
【0025】
次に,上記発泡性樹脂体は,該発泡性樹脂体と上記中空部の壁面との間隔が,2〜8mmとなるようにセメント系押出成形体の中空体内に挿入することが好ましい(請求項6)。
上記間隔が2mm未満の場合には,上記発泡性樹脂体を中空部に挿入するときに,発泡性樹脂体と中空部の壁面との間隔が小さすぎて,挿入できないおそれがある。一方,8mmを超えると,上記発泡性樹脂体と中空部の壁面との間の間隔が大きすぎて,セメント系押出成形体の残熱が充分に伝わらず,発泡性樹脂体の発泡が不充分となり,上記発泡性樹脂体を中空部の壁面に密着させることができないおそれがある。
【0026】
次に,上記発泡性樹脂粒子は,ポリスチレンからなることが好ましい(請求項7)。
この場合には,成形性及びコスト面に優れるポリスチレンの性質をそのまま利用することができる。また,断熱性,軽量性,耐湿性等に優れるという効果がある。
【0027】
【実施例】
(実施例1)
本発明の実施例にかかる複合成形体の製造方法につき,図1〜図4を用いて説明する。
本例においては,図4に示すごとく,セメント系押出成形体1に設けられた中空部15に,発泡樹脂20を充填してなる複合成形体3を製造する。
本例の製造方法は,上記セメント系押出成形体1を押出成形する成形工程と,上記セメント系押出成形体1を養生する養生工程と,養生されたセメント系押出成形体1を冷却する冷却工程とを有する。そして,上記冷却工程においては,上記セメント系押出成形体1が上記養生時の残熱を有している状態で,上記中空部15に発泡性樹脂よりなる発泡性樹脂体2を挿入し(図1,図2),該発泡性樹脂体2を上記残熱により発泡させる(図3,図4)。
【0028】
以下,本例の複合成形体の製造方法につき詳細に説明する。
本例においては,まず,図1に示す形状の中空部15を有するセメント系押出成形体1を押出ダイスを用いて成形した。このセメント系押出成形体1は,セメント,繊維質材,骨材,有機質添加剤等の混合物を用いて成形した。
また,上記発泡性樹脂体2としては,三菱化学フォームプラスティック株式会社のポリスチレン発泡成形体(40倍発泡成形体,密度25kg/m3)を準備した。なお,上記発泡性樹脂体2の大きさは,上記中空部15の幅及び高さより小さくなるように成形した。
【0029】
次に,上記セメント系押出成形体1は,約140℃,6時間,型内にて一次水蒸気養生(オートクレーブ養生)を行った。その後,脱型して,約150℃,4時間,二次水蒸気養生(オートクレーブ養生)を行った。このようにして,セメント系押出成形体1の養生を行った(養生工程)。
【0030】
次いで,このセメント系押出成形体1をオートクレーブから常温の部屋に取り出して,そのまま常温に放置した(冷却工程)。このとき,図2,図3に示すごとく,上記セメント系押出成形体1の中空部15に上記発泡性樹脂体2を挿入した。
なお,上記発泡性樹脂体2は,上記大きさを有するので,図3に示すごとく,上記発泡性樹脂体2の上部と中空部15の天井壁151との間の間隔aは4mm,上記発泡性樹脂体2と中空部15の左右側壁152との間の間隔bは,それぞれ2mmであった。また,上記発泡性樹脂体2を,上記中空部15に挿入したときの上記セメント系押出成形体1の内部温度は,120℃であった。
【0031】
そして,このまま放置しておいたところ,図4に示すごとく,上記発泡性樹脂体2は,上記セメント系押出成形体1の養生時の残熱により,中空部15内において,約60分間で発泡して発泡樹脂20となった。
このようにして,セメント系押出成形体1の中空部15に発泡樹脂20を密着,充填してなる複合成形体3を得た。上記複合成形体3は,建築材料として充分な強度,断熱性を有していた。
【0032】
このように,本例によれば,簡単な操作,低コスト,省エネルギーで,優れた断熱性及び強度を有する複合成形体を製造することができる。
【0033】
(実施例2)
本例においては,図5に示すごとく,発泡性樹脂体として粒子付発泡性樹脂体25を用いて,実施例1と同様の複合成形体を製造した例を示す。
【0034】
まず,図5に示すごとく,発泡性樹脂体として,樹脂成形体251に発泡性樹脂粒子252を付着させた粒子付発泡性樹脂体25を準備した。
上記樹脂成形体251としては,実施例1と同じポリスチレン発泡成形体(40倍発泡成形体,密度25kg/m3)を用いた。また,上記発泡性樹脂粒子252としては,三菱化学フォームプラスティック株式会社のポリスチレン発泡粒子を用いた。
なお,上記発泡性樹脂粒子252は,粒径2〜4mmφで,アクリル樹脂系の水溶性接着剤により上記樹脂成形体251の表面に接着されている。
【0035】
そして,上記図2〜図4に示すごとく,上記粒子付発泡性樹脂体25を,実施例1と同様にして,セメント系押出成形体1の中空部15内に挿入した。これにより,粒子付発泡性樹脂体25の樹脂成形体251及びその表面に付着した発泡性樹脂粒子252は,上記残熱により発泡し,セメント系押出成形体1の中空部15内に密着充填された。
このとき,上記樹脂成形体251は約40倍に,上記発泡性樹脂粒子252は約20倍に発泡した。このようにして複合成形体3を製造した。
本例においても,実施例1と同様の効果を得ることができた。
【0036】
(実施例3)
本例においては,複合成形体の断熱性能を比較した。
まず,実施例1と同様にして,図4に示す複合成形体3を作製した。これを試料E1とした。
また,上記複合成形体の比較対象として,上記従来例に示した特開平10−217386号公報に開示された方法により,無機質材被覆発泡樹脂成形体を作製した。これを試料C1とした。
上記無機質材被覆発泡樹脂成形体9(試料C1)は,図6に示すごとく,発泡樹脂成形体91をセメント系無機質材92で被覆してなる。
さらに,中空部に何も挿入されていない上記セメント系押出成形体1(図1参照)を作製した。これを試料C2とした。
【0037】
上記試料E1,試料C1,試料C2の熱貫流率を比較するために,まず,上記試料E1,試料C1,試料C2の作製に用いたセメント系押出成形体及び発泡樹脂成形体(ポリスチレン)の熱伝導率を測定した。その結果,セメント系押出成形体の熱伝導率は,1.63W/mK,上記発泡樹脂成形体の熱伝導率は,0.035W/mKであった。
次に,上記熱伝導率の値から,試料E1,試料C1,試料C2の熱貫流率(W/m2K)を算出した。
その結果を表1に示す。
【0038】
【表1】
【0039】
表1より知られるごとく,本発明にかかる上記複合成形体(E1)の熱貫流率は,中空部に何も挿入されていないセメント系押出成形体(C2)の熱貫流率よりも非常に低く,上記無機質材被覆発泡樹脂成形体(C1)と同程度の低い値であった。
このことより,本発明に係る上記複合成形体は,優れた断熱性能を有していることがわかった。
【図面の簡単な説明】
【図1】実施例にかかる,セメント系押出成形体の斜視図。
【図2】実施例1にかかる,セメント系押出成形体の中空部に発泡性樹脂体を挿入する状態の説明図。
【図3】実施例1にかかる,セメント系押出成形体の中空部に発泡性樹脂体を挿入した状態の説明図。
【図4】実施例1にかかる,複合成形体を示す説明図。
【図5】実施例2にかかる,粒子付発泡性樹脂体を示す斜視図。
【図6】実施例3にかかる,無機質材被覆発泡樹脂成形体を示す断面図。
【符号の説明】
1...セメント系押出成形体,
15...中空部,
2...発泡性樹脂体,
25...粒子付発泡性樹脂体,
251...樹脂成形体,
252...発泡性樹脂粒子,
3...複合成形体,[0001]
【Technical field】
The present invention relates to a method for producing a composite molded body of a cement-based extruded molded body and a foamed resin, which is used for an outer wall heat insulating panel for buildings.
[0002]
[Prior art]
Conventionally, a composite molded body in which a foamed resin is inserted and disposed inside a cement-based extruded molded body has been widely used as a building material having an excellent heat insulating effect.
As a method for manufacturing the composite molded body, an injection foam molding method in which, for example, a urethane foam resin is injected from a nozzle into a hollow portion provided in a cement-based extruded molded body, a nozzle is drawn out.
[0003]
[Problems to be solved]
However, in the injection foam molding method, a foamed urethane resin injection nozzle is inserted into the small opening of the hollow portion of the cement-based extruded product, and the urethane resin is injected into the hollow portion while pulling out the nozzle from the hollow portion. There is a need. Moreover, when the cement-type extruded molded panel is long and has a length of 4 to 5 m, it is necessary to ensure a wide working space only for the work of injecting the urethane resin. For this reason, the work is very complicated and requires large-scale equipment and manpower. Therefore, there is a problem that the manufacturing cost of the composite molded body increases.
[0004]
Japanese Patent Application Laid-Open No. 10-217386 discloses a method in which a foamed resin molding is inserted from the back of a cement extruder die, and a cement-based extrusion molding is coated around the die in the die and integrally molded. Is disclosed.
In this method, a cement-based extruded molded body and a foamed resin molded body are integrally molded in a die.
[0005]
However, in this method, the foamed resin molded body is thermally shrunk at a high temperature during curing to harden the cement. Therefore, it is necessary to perform low temperature curing instead of high temperature curing by autoclave. However, this low-temperature curing requires a long time to increase the strength of the cement-based extruded product. Therefore, there has been a problem that it is difficult to produce a composite molded body having low productivity and excellent strength.
[0006]
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a method for producing a composite molded body having excellent heat insulating properties and strength with simple operation, low cost and energy saving.
[0007]
[Means for solving problems]
The present invention is a method for producing a composite molded body in which a hollow portion provided in a cement-based extruded molded body is filled with a foamed resin,
A molding process for extruding the cement-based extruded molded body,
Curing process for curing the above-mentioned cement-based extruded product with an autoclave;
A cooling process for cooling the cured cement-based extruded product,
In the cooling step, when the cement-based extruded product has a residual heat during the curing and the temperature of the cement-based extruded product is 70 to 130 ° C., A method for producing a composite molded body comprising inserting a foamable resin body made of a foamable resin into the hollow portion of the extruded molded body and foaming the foamable resin body by the residual heat (claim 1). ).
[0008]
In the present invention, the foamable resin body inserted into the hollow portion of the cement-based extruded product is foamed using residual heat in the curing process after the cement-based extruded product is extruded.
The foamable resin body is foamed in a cooling step usually required for producing a cement-based extruded product.
Therefore, it is not necessary to provide an extra heating step and heating device for foaming the foamable resin body , and energy saving can be achieved.
Further, the foamable resin body is only inserted into the hollow portion of the cement-based extruded molded body, and thereafter, the foamable resin body naturally foams in the hollow body due to the residual heat after curing heating.
Therefore, the composite molded body can be manufactured easily and at low cost.
[0009]
In the cooling step, the foamable resin body is foamed, and the foamed resin having low thermal conductivity is in close contact with the wall surface in the hollow portion. Therefore, it is possible to produce a composite molded body having excellent heat insulation.
[0010]
Furthermore, in the present invention, the foamable resin body is foamed in the cooling step after the curing step. Therefore, in the curing process, curing of the cement-based extruded product can be performed at a high temperature. Therefore, a composite molded body having excellent strength can be produced.
[0011]
Therefore, according to the present invention, it is possible to provide a method for producing a composite molded body having excellent heat insulating properties and strength with simple operation, low cost and energy saving.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention (Claim 1), as the cement-based extruded molded body, for example, a cement, aggregate, fiber additive or the like kneaded with water and molded by extrusion molding is used.
[0013]
Moreover, the said curing process is a heating process for hardening the cement in a cement-type extrusion molded object. Curing of the cement-based extruded product is performed by heating the cement-based extruded product to 140 ° C. to 160 ° C. using high-pressure superheated steam or the like in an autoclave.
[0014]
Moreover, as resin used for the said foamable resin body, a foamable thermosetting resin or a thermoplastic resin can be used.
Examples of the thermosetting resin include urethane resin, melamine resin, phenol resin, and vinyl chloride resin. Examples of the thermoplastic resin include polystyrene resin, polyethylene resin, and polypropylene resin.
Further, the resin used for the foamable resin body may contain a foaming agent such as carbon dioxide, butane, pentane, or alternative chlorofluorocarbon for foaming.
[0015]
Moreover, the composite molded body of the present invention can be used for civil engineering materials and the like in addition to building materials.
[0016]
Next, the foamable resin body is preferably a resin molded body molded into a shape smaller than the inner shape of the hollow portion (claim 2).
In this case, since the foamable resin body is previously formed into a columnar body, a round bar-like body, a thick plate-like body, etc., the foamable resin body can be easily inserted into the hollow portion.
[0017]
Next, it is preferable that the foamable resin body is a foamable resin body with particles in which foamable resin particles or pre-expanded particles are attached to the surface.
In this case, in addition to the foamable resin body itself, the foamable resin body or the pre-foamed particles can be used to bring the foamable resin body into close contact with the hollow portion.
[0018]
As the expandable resin particles, it is preferable to use a foaming agent containing 2 to 6 wt% of a foaming gas such as butane or pentane and having a particle diameter of 0.4 to 2.5 mmφ.
When the content of the foaming gas is less than 2 wt%, the foamable resin particles may not be sufficiently foamed. On the other hand, when it exceeds 6 wt%, there is a problem that the foamable resin particles are excessively foamed and contracted.
Further, when the particle size is less than 0.4 mmφ, there is a problem that a large amount of expandable resin particles must be attached to the expandable resin body. On the other hand, when it exceeds 2.5 mmφ, it is necessary to make the space between the hollow portion and the wall surface wider, and there is a possibility that the residual heat amount is insufficient and foaming cannot be performed sufficiently.
[0019]
Further, as the pre-expanded particles, it is preferable to use those having, for example, 2 to 6 wt% of the foam gas, a foam ratio of 3 to 30 times, and a particle diameter of 1 to 5 mmφ.
When the content of the foaming gas is less than 2 wt%, the pre-foamed particles may not be sufficiently foamed. On the other hand, when it exceeds 6 wt%, there is a problem that the pre-expanded particles are excessively expanded and contracted.
Further, when the expansion ratio is less than 3, there is a problem that it becomes difficult to produce the pre-expanded particles. On the other hand, when it exceeds 30 times, the pre-expanded particles may not be sufficiently expanded.
Further, when the particle size is less than 1 mmφ, there is a problem that a large amount of pre-expanded particles must adhere to the expandable resin body. On the other hand, when it exceeds 5 mmφ, it is necessary to make the space between the hollow portion and the wall surface wider, and there is a possibility that the residual heat amount is insufficient and foaming cannot be sufficiently performed.
[0020]
Moreover, as a method of adhering the expandable resin particles or the pre-expanded particles to the expandable resin body, there are a method of bonding via an adhesive, a method of bonding via a double-sided tape, and the like.
As the adhesive, water-soluble adhesives such as epoxy resin, vinyl acetate resin, acrylic resin, SBR, and recycled rubber can be used.
[0021]
Next, it is preferable that the temperature of the cement-based extruded body when the foamable resin body is inserted into the hollow portion is 70 to 130 ° C. (Claim 4).
In this case, a composite molded body having excellent adhesion between the foamed resin and the cement-based extruded molded body can be produced.
[0022]
When the temperature of the cement-based extruded product is less than 70 ° C., the foamable resin body may not be sufficiently foamed in the hollow portion of the cement-based extruded product.
On the other hand, when the temperature exceeds 130 ° C., the foamable resin body once foams and then shrinks due to high temperature or cannot be uniformly foamed, and there is a void between the foamable resin body and the wall surface of the hollow portion. Part may occur.
[0023]
Next, it is preferable that the temperature of the cement-based extrusion-molded body when the foamable resin body with particles is inserted into the hollow portion is 100 to 130 ° C. (Claim 5).
In this case, a composite molded body having excellent adhesion between the foamed resin and the cement-based extruded molded body can be produced.
[0024]
When the temperature of the cement-based extruded product is less than 100 ° C., the pre-expanded particles or resin particles attached to the expandable resin body with particles may not be sufficiently foamed.
On the other hand, when the temperature exceeds 130 ° C., the foamable resin body with particles may shrink after foaming due to high temperature as described above, or may not foam uniformly.
[0025]
Next, the foamable resin body is preferably inserted into the hollow body of the cement-based extruded body so that the space between the foamable resin body and the wall surface of the hollow portion is 2 to 8 mm. 6).
If the spacing is less than 2 mm, when the foamable resin body is inserted into the hollow portion, the spacing between the foamable resin body and the wall surface of the hollow portion may be too small to insert. On the other hand, if it exceeds 8 mm, the space between the foamable resin body and the wall surface of the hollow portion is too large, and the residual heat of the cement-based extruded product is not sufficiently transmitted, and foaming of the foamable resin body is insufficient. Therefore, there is a possibility that the foamable resin body cannot be adhered to the wall surface of the hollow portion.
[0026]
Next, the expandable resin particles are preferably made of polystyrene.
In this case, the properties of polystyrene excellent in moldability and cost can be used as they are. In addition, it has the effect of being excellent in heat insulation, light weight, moisture resistance and the like.
[0027]
【Example】
Example 1
The manufacturing method of the composite molded body concerning the Example of this invention is demonstrated using FIGS. 1-4.
In this example, as shown in FIG. 4, the composite molded body 3 is manufactured by filling the
The manufacturing method of the present example includes a molding process for extruding the cement-based
[0028]
Hereinafter, the manufacturing method of the composite molded body of this example will be described in detail.
In this example, first, a cement-based
Further, as the
[0029]
Next, the cement-based extruded molded
[0030]
Next, the cement-based
Since the
[0031]
Then, when left as it is, as shown in FIG. 4, the
In this way, a composite molded body 3 in which the foamed
[0032]
Thus, according to this example, it is possible to manufacture a composite molded body having excellent heat insulation and strength with simple operation, low cost, and energy saving.
[0033]
(Example 2)
In this example, as shown in FIG. 5, an example in which a composite molded body similar to that in Example 1 is manufactured using the foamable resin body with
[0034]
First, as shown in FIG. 5, a
As the
The
[0035]
Then, as shown in FIGS. 2 to 4, the foamable resin body with
At this time, the resin molded
Also in this example, the same effect as in Example 1 could be obtained.
[0036]
Example 3
In this example, the thermal insulation performance of the composite molded bodies was compared.
First, in the same manner as in Example 1, a composite molded body 3 shown in FIG. This was designated as Sample E1.
Further, as a comparative object of the composite molded body, an inorganic material-coated foamed resin molded body was produced by the method disclosed in Japanese Patent Laid-Open No. 10-217386 shown in the conventional example. This was designated as Sample C1.
The inorganic material-coated foamed resin molded body 9 (sample C1) is formed by coating a foamed resin molded
Furthermore, the cement-based extruded product 1 (see FIG. 1) in which nothing was inserted into the hollow portion was produced. This was designated as Sample C2.
[0037]
In order to compare the heat transmissivity of the sample E1, sample C1, and sample C2, first, the heat of the cement-based extrusion molded product and the foamed resin molded product (polystyrene) used for the preparation of the sample E1, sample C1, and sample C2. Conductivity was measured. As a result, the thermal conductivity of the cement-based extruded product was 1.63 W / mK, and the thermal conductivity of the foamed resin molded product was 0.035 W / mK.
Next, from the value of the thermal conductivity, the thermal transmissivity (W / m 2 K) of Sample E1, Sample C1, and Sample C2 was calculated.
The results are shown in Table 1.
[0038]
[Table 1]
[0039]
As is known from Table 1, the thermal flow rate of the composite molded body (E1) according to the present invention is much lower than the thermal flow rate of a cement-based extruded body (C2) in which nothing is inserted in the hollow portion. The value was as low as that of the inorganic material-coated foamed resin molding (C1).
From this, it was found that the composite molded body according to the present invention has excellent heat insulation performance.
[Brief description of the drawings]
FIG. 1 is a perspective view of a cement-based extruded product according to an example.
FIG. 2 is an explanatory view of a state in which a foamable resin body is inserted into a hollow portion of a cement-based extrusion molded body according to the first embodiment.
FIG. 3 is an explanatory view showing a state in which a foamable resin body is inserted into a hollow portion of a cement-based extruded molded body according to Example 1;
4 is an explanatory view showing a composite molded body according to Example 1. FIG.
5 is a perspective view showing a foamable resin body with particles according to Example 2. FIG.
6 is a cross-sectional view showing an inorganic material-coated foamed resin molded article according to Example 3. FIG.
[Explanation of symbols]
1. . . Cement-based extrusion molding,
15. . . Hollow part,
2. . . Foamable resin body,
25. . . Foamable resin body with particles,
251. . . Resin moldings,
252. . . Expandable resin particles,
3. . . Composite molded body,
Claims (6)
上記セメント系押出成形体を押出成形する成形工程と,
上記セメント系押出成形体をオートクレーブにより養生する養生工程と,
養生されたセメント系押出成形体を冷却する冷却工程とを有し,
上記冷却工程においては,上記セメント系押出成形体が上記養生時の残熱を有している状態であって,上記セメント系押出成形体の温度が70〜130℃であるときに,該セメント系押出成形体の上記中空部に発泡性樹脂よりなる発泡性樹脂体を挿入し,該発泡性樹脂体を上記残熱により発泡させることを特徴とする複合成形体の製造方法。A method for producing a composite molded body in which a hollow portion provided in a cement-based extruded molded body is filled with a foamed resin,
A molding process for extruding the cement-based extruded molded body,
A curing process for curing the above-mentioned cement-based extruded product with an autoclave;
A cooling process for cooling the cured cement-based extruded product,
In the cooling step, when the cement-based extruded product has a residual heat during the curing and the temperature of the cement-based extruded product is 70 to 130 ° C., A method for producing a composite molded body, wherein a foamable resin body made of a foamable resin is inserted into the hollow portion of the extruded molded body, and the foamable resin body is foamed by the residual heat.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001386550A JP3894786B2 (en) | 2001-12-19 | 2001-12-19 | Method for producing composite molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001386550A JP3894786B2 (en) | 2001-12-19 | 2001-12-19 | Method for producing composite molded body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003181867A JP2003181867A (en) | 2003-07-02 |
JP3894786B2 true JP3894786B2 (en) | 2007-03-22 |
Family
ID=27595678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001386550A Expired - Fee Related JP3894786B2 (en) | 2001-12-19 | 2001-12-19 | Method for producing composite molded body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3894786B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017131324A1 (en) * | 2016-01-27 | 2017-08-03 | (주)윈가람 | Internal heat insulation fitting method for construction frame, construction frame using method, and construction frame manufacturing device |
KR101645988B1 (en) * | 2016-01-27 | 2016-08-08 | (주)윈가람 | Method for fitting internal heat insulation into architectural frame and architectural frame thereby |
-
2001
- 2001-12-19 JP JP2001386550A patent/JP3894786B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003181867A (en) | 2003-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5807514A (en) | Manufacturing of foam-containing composites | |
KR101434338B1 (en) | Method of producing composite members having increased strength | |
EP2459630B1 (en) | Thermally insulating polymer foam and aerogel composite article | |
JP3894786B2 (en) | Method for producing composite molded body | |
KR101645988B1 (en) | Method for fitting internal heat insulation into architectural frame and architectural frame thereby | |
KR101757730B1 (en) | Construction exterior panel and manufacturing method of construction exterior panel using a high density polystyrene | |
DE19507110A1 (en) | Two layer insulating plastic tube mfr., for use in e.g. heating systems | |
KR101584133B1 (en) | Expanded articles using different types of expanded particles and process for producing the same | |
JP4370414B2 (en) | Resin panel | |
US4028448A (en) | Method of molding plastics material | |
JP3987444B2 (en) | Decorative interior and exterior materials made of styrene resin foam | |
JP2652732B2 (en) | Blow molding method | |
GB2298424A (en) | Composite foam building material | |
KR100556149B1 (en) | assemble piping materials and manufacturing method of the same | |
JP4278233B2 (en) | Extrusion molding method and extruded product of fiber-containing thermoplastic resin | |
JP2015533691A (en) | Thermal insulation phenolic foam | |
JP2749670B2 (en) | PROCESS FOR PRODUCING PIPE FORM COMPRISING HEAT-FOAMABLE RESIN COMPOSITION | |
JP3452385B2 (en) | Method for producing composite foam | |
KR101667267B1 (en) | Producing method of anticombustible adiabatic panel | |
JP2000000908A (en) | Plastic foamed composite | |
KR20120006959U (en) | The pipe sleeve | |
JP2001329092A (en) | Extruded sheet foam | |
JPS63158229A (en) | Manufacture of foam molded body | |
JPH08118375A (en) | Production of foamed composite having demarcations | |
JPS5935377Y2 (en) | Insulating building material forming jig |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040602 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040602 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060725 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061212 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101222 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111222 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131222 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |