JP3893629B2 - Heating furnace operation method - Google Patents

Heating furnace operation method Download PDF

Info

Publication number
JP3893629B2
JP3893629B2 JP19259295A JP19259295A JP3893629B2 JP 3893629 B2 JP3893629 B2 JP 3893629B2 JP 19259295 A JP19259295 A JP 19259295A JP 19259295 A JP19259295 A JP 19259295A JP 3893629 B2 JP3893629 B2 JP 3893629B2
Authority
JP
Japan
Prior art keywords
heating
furnace
strip
temperature
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19259295A
Other languages
Japanese (ja)
Other versions
JPH0920929A (en
Inventor
賢治 川手
光彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP19259295A priority Critical patent/JP3893629B2/en
Publication of JPH0920929A publication Critical patent/JPH0920929A/en
Application granted granted Critical
Publication of JP3893629B2 publication Critical patent/JP3893629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は連続式の加熱炉の操炉方法に関する。
【0002】
【従来の技術】
連続式の加熱炉において被処理材を加熱する場合、被処理材を加熱炉に連続的に通すと共に、被処理材が加熱炉内を搬送される間にそれに加熱用のガスを吹き付けて加熱している。この場合、上記加熱用ガスの温度は、被処理材に施す熱処理に応じてそれに適する温度に設定している。
【0003】
上記のような方法によれば被処理材を連続的に能率良く加熱できる。又被処理材の熱処理に応じてそれに適した温度の加熱用ガスで加熱するので、適正な加熱を施すことができる。例えば被処理材を単に焼鈍する場合には、加熱用ガスの温度と被処理材の所定の加熱温度との差(サーマルヘッドと呼ばれる)がやや大きくなるように加熱用ガスの温度を高く設定しておいて、被処理材の昇温を迅速に行わせて生産性を向上させたり、又、被処理材の部分焼鈍を行う場合は、上記サーマルヘッドが小さくなるように加熱用ガスの温度を設定することによって、被処理材を精度高く所定温度に加熱して硬度斑の無い良品質の製品の生産を可能にすることができる。
【0004】
ところで、被処理材に対する熱処理が終了し、次に別の被処理材に別の熱処理を行う場合には、次のように加熱炉の操作を行っている。即ち、先の被処理材が終了した後、上記加熱用ガスの温度を次の被処理材の加熱用の温度に変更する。その変更作業を行っている間、上記先の被処理材にはダミー材を接続してそれを加熱炉に通しておく。そして上記加熱用ガスの温度の変更が完了したならば、上記別の被処理材を上記ダミー材に接続して加熱炉に通し、それの加熱を行うようにしている。
【0005】
【発明が解決しようとする課題】
しかし上記加熱用ガスの温度を変更させるには長時間を要し、上記従来の方法ではその長時間の間、加熱炉としての操業が実質上休止状態となる為、炉の生産性が低下するという問題点があった。
【0006】
本願発明の加熱炉の操炉方法は上記従来技術の問題点(技術的課題)を解決する為に提供するものである。
第1の目的は、被処理材を加熱炉に連続的に通しながらそれを加熱することによって、被処理材を能率良く加熱できるようにすることである。
第2の目的は、別の被処理材に別の熱処理の為の加熱を施す場合、加熱用ガスの温度を変更させることによって、その熱処理に適した温度条件で加熱ができるようにすることである。
第3の目的は、一つの被処理材に対する加熱を行い、次に別の被処理材に別の温度の加熱用ガスによって加熱を行う場合、先の被処理材を加熱炉に通して加熱を行っている間に加熱用ガスの温度を次の被処理材の加熱用の温度に変更してしまうことにより、先の被処理材の加熱が終了したときには先の被処理材に連続させて次の被処理材を加熱炉に通してその加熱を行うことが出来て、加熱炉を休止期間無く稼働させその生産性を向上させられるようにすることである。
第4の目的は、上記のように先の被処理材の加熱を行っている間に加熱用ガスの温度を次の被処理材の加熱用の温度に変更してしまうものであっても、先の被処理材に対しては適正な加熱を行うことが出来て、その被処理材の品質を保持できるようにすることである。
本願発明の他の目的は、先の被処理材である先行のストリップと次の被処理材である後続のストリップとの接続部が加熱炉内を通過するに伴って加熱用ガスの吹き出し量を制御する場合、その制御可能幅が広くて制御を容易に行い得るようにすることである。
他の目的及び利点は図面及びそれに関連した以下の説明により容易に明らかになるであろう。
【0007】
【課題を解決するための手段】
本願発明における加熱炉の操炉方法は、
異なる熱処理条件の複数のストリップを縦続状に接続して、加熱炉に順に連続的に通し、
加熱炉内においては、夫々のストリップに対して相互に炉温を異ならせ、かつ、その異なる炉温のガスを夫々加熱用ガスとして吹き付けることにより夫々のストリップを夫々浮揚させながら加熱する操炉方法において、
上記炉温を、先行のストリップの加熱用の温度にした状態において、先行のストリップをそれに所定の加熱を与える為の搬送速度で通し、
次に先行のストリップが加熱炉内通過中において、先行のストリップが終端近くなったならば、
上記加熱炉内の加熱用ガスの吹き出し量を最大に変更し、
且つ上記搬送速度をその最大の吹き出し量の加熱用ガスでもって先行のストリップに所定の加熱を与える為の速度に変更することと、
上記炉温を後続のストリップの加熱用の炉温に向けて変更し、
さらに上記搬送速度を該変更中の炉温の加熱用ガスでもって先行のストリップに所定の加熱を与える為の速度に変更することを行い、
さらに先行のストリップと後続のストリップとの接続部を加熱炉内に通過させるに当たって、加熱炉内の加熱用ガスの吹き出し量を、上記最大の吹き出し量からストリップの浮揚に必要な最小限の吹き出し量の間で制御し、
次に加熱炉に後続のストリップを通す状態となった後は、炉温を後続のストリップの加熱用の温度にした状態で、搬送速度を後続のストリップに所定の加熱を与える為の速度に変更するものである。
【0008】
【作用】
縦続状に接続した被処理材を順に加熱炉に通してそれらを加熱する場合、加熱用ガスの温度を先行の被処理材の加熱用の温度にした状態において、先行の被処理材をそれに所定の加熱を与える為の搬送速度で通す。従って先行の被処理材に適正な加熱を行うことができる。先行の被処理材が終端近くになったならば該先行の被処理材の通過中において、上記加熱用ガスの温度を後続の被処理材の加熱用の温度に変更する。この場合、被処理材の搬送速度を該変更中の温度の加熱用ガスでもって先行の被処理材に所定の加熱を与える為の速度に変更する。従って加熱用ガスの温度変更にも拘わらず先行の被処理材には適正な加熱ができる。加熱炉に後続の被処理材を通す状態となった後は、搬送速度を後続の被処理材に所定の加熱を与える為の速度に変更するので、後続の被処理材にも適正な加熱ができる。
【0009】
【実施例】
以下本願の実施例を示す図面について説明する。図1において、Aは被処理材を連続的に熱処理する為の連続式熱処理炉を示し、例えば周知のように被処理材を連続的に加熱する為の加熱炉1と加熱された被処理材を連続的に冷却する為の冷却室2とから構成している。加熱炉1は符号3〜9で示す要素から構成してある。即ち、3は炉体、4は被処理材の入口、5は出口、6は被処理材の加熱及び浮揚の為にそれに加熱用ガスを吹き付けるようにした吹き付け手段を示し、被処理材に向けて加熱用ガスを吹き出してその加熱及び浮揚状態での保持を行う為の上下のプレナムチャンバー7と、炉体3内の加熱用ガスを上記吹き出しの為に上下のプレナムチャンバー7に送り込む為のファン8とから構成したものを例示する。上記上側のプレナムチャンバーの下面と下側のプレナムチャンバーの上面には夫々多数の加熱用ガスの吹き出し口が設けてある。上記吹き付け手段6は被処理材に対する加熱用ガスの吹き付け量を可変に構成している。例えばプレナムチャンバー7からの加熱用ガスの吹き出し速度を可変にすることによって吹き付け量が可変となるようにしている。しかし吹き付け速度を一定のまま、プレナムチャンバー7から被処理材に向けての加熱用ガスの吹き出し量そのものを可変にしても良い。前者の具体的手段としては、例えばファン8の回転数を可変に構成し、それを増大或いは減少させてプレナムチャンバー7からの加熱用ガスの吹き出し速度を増大或いは減少させる。或いは、ファン8からプレナムチャンバー7に至る加熱ガスの量をその途中に設けるダンパーによって変化させる。後者の具体的手段としては、プレナムチャンバー7における被処理材との対向面において夫々被処理材に向けて加熱用ガスを吹き出すために設けてある多数の吹き出し口の内、加熱用ガスの吹き出しを行うものの数を変化させる。尚前者の手段と後者の手段とはそれらを任意に組み合わせて行うようにしても良い。上記加熱炉1は被処理材の通過方向(図の左右方向)に複数のゾーンに分けられていて(図では簡単の為に二つのゾーンZ1,Z2に分けた例を示す)、上記吹き付け手段6は各々のゾーン毎に設けられており、ゾーン毎に個別に上記吹き付け量を変更出来るようにしてある。次に9は炉体3内の加熱用ガスを加熱する為の加熱手段で、発熱量が可変のものであり、例えばバーナーを示すが、ラジアントチューブ、電熱線等を用いても良い。
【0010】
上記冷却室2も同様に周知の構成であり、11はケーシング、12は冷却用ガスの吹き付け手段の存在を示し、13は被処理材に冷却用ガスを吹き付けてその冷却及び浮揚状態での保持を行うための上下のプレナムチャンバーを示す。上記出口5は冷却室2に対しては入口となっている。尚図示はしないが上記熱処理炉Aは加熱炉1及び冷却室2に順に挿通される被処理材の搬送の為の駆動を行う駆動手段を備えており、該駆動手段は被処理材の搬送速度を可変に構成してある。M1,M2は夫々被処理材として示すストリップで、順に上記熱処理炉Aに通すために縦続状に接続してあり、先に炉Aに通すM1を先行のストリップ、その後に続けて炉Aに通すM2を後続のストリップと呼ぶ。Jは前者の終端と後者の始端との接続部(板継部と呼ばれる)を示す。これらのストリップは例えばアルミ、銅、ステンレスなどの金属ストリップで、厚みは0.3mm〜4mm、幅は数百mm〜2千mmなど様々である。
【0011】
上記構成の熱処理炉AにおけるストリップM1の熱処理(例えば部分焼鈍)は次の通りである。炉体3内の加熱用ガスを上記ストリップM1の加熱用の温度(例えば500℃)に設定する。その状態においてストリップM1を炉Aに通す。即ち加熱炉1に対して、その入口4から炉体3内に導入し、炉体3内を搬送し、出口5を通して冷却室2に至らせ、冷却室2内を搬送する。この際のストリップM1の搬送速度は上記加熱用の温度にてストリップM1に所定の加熱を与える為の搬送速度である。上記のようにストリップM1が搬送される状態において、加熱炉1においてはプレナムチャンバー7から吹出される加熱用ガスがストリップM1に吹き付けられ、ストリップM1を浮揚させながらそれの加熱が行われる。上記状態でストリップM1が加熱炉1内を移動することにより、ストリップM1は所定の温度(例えば400℃)まで昇温する。次に冷却室2においてはプレナムチャンバー13から吹出される冷却用ガスによってストリップM1を浮揚させながらそれの冷却が行われる。このようにしてストリップM1の部分焼鈍が連続的に行われる。
【0012】
次に上記ストリップM1に別のストリップM2を縦続状に接続して、それらのストリップM1,M2に夫々異なる熱処理(例えばストリップM1には上記部分焼鈍、ストリップM2には完全焼鈍)を施す為に、加熱炉1においてそれらのストリップM1,M2を相互に異なる温度の加熱用ガスで加熱する場合の操作を説明する。先ずストリップM1の加熱の為の炉温(加熱炉1内の加熱用ガスの温度。例えば前記500℃)に比べてストリップM2の加熱の為の炉温(例えば650℃)が高い場合を図2に基づいて説明する。
【0013】
期間21においては先行ストリップM1を通常の条件下で加熱する。即ち通常の如く先行ストリップM1の加熱に適合する条件の搬送速度22、炉温23、及びプレナムチャンバーからの加熱用ガスの吹き出し速度24の状態で先行ストリップM1を加熱炉1に通しその加熱を行う。次に先行ストリップM1が終端近くになったならばダミーレス制御の為の準備制御25を行う。即ち加熱用ガスの吹き出し量を最大にする。例えば本例では符号26で示す如く加熱用ガスの吹き出し速度を最大速度(100%の吹き出し速度)27まで上昇させる。それに伴い、ストリップの搬送速度をその最大の吹き付け量の加熱用ガスでもって先行のストリップM1に所定の加熱を与える為の速度に変更する。即ちそのように吹き出し速度を上昇させても加熱炉1内を通過中のストリップM1には所定の熱量の加熱が行われるよう、符号28で示す如く搬送速度を上記最大の吹き出し速度27に対応する速度29まで上昇させる。
【0014】
次に上記準備制御の完了後ダミーレス制御、即ち、炉温の変更時もストリップの熱処理操業を継続して行う制御31を行う。その制御は、先ず符号32で示す如く炉温を後続ストリップM2の加熱の為の温度33(例えば650℃)まで上昇させる。そしてその変更に伴い、上記搬送速度を該変更中の温度の加熱用ガスでもって先行のストリップM1に所定の加熱を与える為の速度に変更する。即ち上記炉温の上昇過程及び上昇後においては、そのように炉温を上昇させてもストリップM1が加熱炉1内を通過中に所定の熱量の加熱が行われるよう、搬送速度を各炉温に応じた速度に設定及び上昇制御34し、上記温度33に対応する速度35まで上昇させる。尚上記搬送速度は、ストリップの厚みや幅などの材料条件と、加熱炉1における輻射や噴流による対流などの熱伝達条件から、ストリップにそれが設定温度にまで加熱される熱量が与えられるように、例えば演算によって求める。
【0015】
次に上記のような操作の後、板継部Jが加熱炉1の入口4にさしかかり、加熱炉1内を通過し出口5から退出する過程においては、周知の板継部制御37を行う(吹き出し速度の変更38及びそれに伴う搬送速度の変更39)。
【0016】
その後炉体3の全長に対して後続のストリップM2を通す状態となった期間40においては、搬送速度を後続ストリップM2に所定の加熱を与える為の速度41に変更し、又加熱用ガスの吹き出し速度も同様の速度43に変更し、それらの搬送速度41、吹き出し速度43、及び新たな炉温42(前記変更された炉温33に等しい)の下で後続のストリップM2の加熱を行う。
【0017】
以上のような操作により、先行ストリップM1に対してはそれの熱処理(例えば部分焼鈍)に適合した炉温(例えば500℃)でもって適正な温度(例えば400℃)までの加熱を行うことができ、また後続ストリップM2に対してもそれの熱処理(例えば完全焼鈍)に適合した炉温(例えば650℃)でもって適正な温度(例えば530℃)までの加熱を行うことができる。
【0018】
なお上記符号26,28で示した操作と、符号32,34で示した操作とは、符号32,34の操作を先に行い、符号26,28の操作を後から行っても良い。
【0019】
次にストリップM1の加熱の際の炉温に比べてストリップM2の加熱の際の炉温が低い場合を図3に基づいて説明する。この場合の操作は上記図2の場合の操作と一部を除いて同様であって説明が重複するので、同様の部分については上記図2と同じ符号を付して重複する説明を省略し、相違部分のみについて説明を行う。即ちダミーレス制御31の期間においては、符号45で示す如く炉温を後続ストリップM2の加熱に適する温度33まで下降させる。そしてその下降過程においては、そのように炉温を下降させてもストリップM1が加熱炉1内を通過中に与えられる熱量が変化せぬよう、搬送速度を各炉温に応じた搬送速度に設定及び下降制御46し、上記温度33に対応する速度35まで下降させる。
【0020】
次に上記板継部制御を説明する。先ず先行ストリップM1の板厚が薄く後続ストリップM2の板厚が厚い場合を図4に基づき説明する。板継部Jが加熱炉1の導入口4に近付いたならば、搬送速度を上記速度35から符号51で示すように上記速度41に下降させる。その下降に伴い、吹き出し速度を上記最大速度27から、符号52で示すように、上記速度41において先行ストリップM1に所定の熱量を与えることのできる速度53に下降させる。この場合、吹き出し速度53の制御可能な範囲は、上記最大速度27から、ストリップM2の安定浮揚を可能にできる下限の速度までの全域がその範囲となるので、速度53の設定が容易である。次に上記状態において板継部JがゾーンZ1とゾーンZ2との境界54を通り過ぎたならば、ゾーンZ1における吹き出し速度を符号55で示すように上記吹き出し速度43に上昇させる。そして板継部Jが出口5を通り過ぎたならば、ゾーンZ2における吹き出し速度も符号56で示すように上記吹き出し速度43に上昇させる。
【0021】
次に先行ストリップM1の板厚が厚く後続ストリップM2の板厚が薄い場合を図5に基づき説明する。板継部Jが加熱炉1の導入口4に近付いたならば、ゾーンZ1における吹き出し速度を、上記最大速度27から符号52で示すように上記速度35において後続ストリップM2に所定の熱量を与えることの出来る速度53に下降させる。次に上記状態において板継部JがゾーンZ1とゾーンZ2との境界54に近付いたならば、符号52’で示す如くゾーンZ2における吹き出し速度をゾーンZ1と同様に速度53に下降させる。一方、搬送速度は、板継部Jが加熱炉1内を通過している間は上記速度35のままで搬送を行い、板継部Jが導出口5を通り過ぎたならば符号57で示すように上記速度41に上昇させる。そして吹き出し速度も符号56で示すように上記吹き出し速度43に上昇させる。
【0022】
次に上記ストリップは三つ以上を縦続状に接続して順に熱処理を行っても良い。この場合、本件明細書中においては、加熱炉1に対して先頭のストリップを通すときにはそのストリップを先行のストリップと呼び、それに続く2番目のストリップを後続のストリップと呼ぶ。又加熱炉1に対して2番目のストリップを通すときにはそのストリップを先行のストリップと呼び、それに続く3番目のストリップを後続のストリップと呼ぶ。以降も同様の考えで、加熱炉1に挿通するストリップを先行のストリップ、その後に引き続いて加熱炉1に通す順番のストリップを後続のストリップと呼ぶ。
【0023】
次に、上記実施例では被処理材へのガスの吹き付け手段としてプレナムチャンバー式のものを例示したが、該手段は静圧パッドと動圧ノズルによるものであってもよい。又、連続式熱処理炉としてフローティング炉を例示したが、カテナリー炉その他の連続式炉であっても良い。更に、被処理材は帯材に限らず線材であっても良い。
【0024】
【発明の効果】
以上のように本願発明は、請求項1の構成によって前記第1から第4の目的を達成して、次の効果がある。即ち、
被処理材M1を加熱する場合、加熱炉1に被処理材M1を連続的に通しながらそれを加熱するから、被処理材M1を能率良く加熱できる効果がある。
又別の被処理材M2に別の熱処理の為の加熱を施す場合には、加熱用ガスの温度を変更させることによって、それの熱処理に適した温度条件で加熱ができる効果がある。
更に、一つの被処理材M1に対する加熱を行い、次に別の被処理材M2に別の温度の加熱用ガスによって加熱を行う場合、本願発明においては先の被処理材M1を加熱炉1に通してその加熱を行っているときに加熱用ガスの温度を次の被処理材M2の加熱用の温度に変更してしまうので、先の被処理材M1の加熱が終了したときにはその被処理材M1に連続させて次の被処理材M2を加熱炉1に通してその加熱を行うことが出来、加熱炉を休止期間を差し挟むことなく稼働させることが出来てその生産性を向上させ得る利点がある。
しかも上記のように先の被処理材M1の加熱を行っている間に加熱用ガスの温度を次の被処理材M2の加熱用の温度に変更してしまうものであっても、その温度の変更の時には、被処理材M1の搬送速度をそれに所定の加熱を与える為の速度に変更させるので、先の被処理材M1に対しては適正な加熱を行うことが出来て、その被処理材の品質を保持できる効果がある。
更に本願発明は請求項2の構成によって、前記第1から第4の目的の他に前記他の目的も達成して次の効果がある。即ち、
上記先行のストリップM1の通過中においてストリップに対する加熱用ガスの吹き出し量を予め最大にしておくので、先行のストリップM1と後続のストリップM2との接続部Jを加熱炉1内に通過させるに当たって加熱用ガスの吹き出し量を制御する場合には、ストリップの浮揚に必要な最小限から上記最大までの間の全域が制御可能幅となり、従って適正な制御を容易に行うことが出来る効果がある。
【図面の簡単な説明】
【図1】連続式熱処理炉の一部を略示する図。
【図2】加熱用ガスの温度を上昇させる場合の操作を説明する図。
【図3】加熱用ガスの温度を下降させる場合の操作を説明する図。
【図4】先行ストリップに比べ後続ストリップが厚い場合の板継部制御を説明する図。
【図5】先行ストリップに比べ後続ストリップが薄い場合の板継部制御を説明する図。
【符号の説明】
1 加熱炉
6 吹き付け手段
M1 先行ストリップ
M2 後続ストリップ
[0001]
[Industrial application fields]
The present invention relates to a method for operating a continuous heating furnace.
[0002]
[Prior art]
When heating a material to be processed in a continuous heating furnace, the material to be processed is continuously passed through the heating furnace and heated by blowing a gas for heating while the material to be processed is transported in the heating furnace. ing. In this case, the temperature of the heating gas is set to a temperature suitable for the heat treatment applied to the material to be processed.
[0003]
According to the above method, the material to be treated can be continuously and efficiently heated. Moreover, since it heats with the heating gas of the temperature suitable according to the heat processing of a to-be-processed material, appropriate heating can be performed. For example, when the material to be treated is simply annealed, the temperature of the gas for heating is set high so that the difference between the temperature of the gas for heating and the predetermined heating temperature of the material to be treated (called a thermal head) is slightly larger. In this case, when the temperature of the material to be treated is raised quickly to improve productivity, or when the material to be treated is partially annealed, the temperature of the heating gas is set so that the thermal head becomes small. By setting, the material to be treated can be heated to a predetermined temperature with high accuracy to enable production of a good quality product free from hardness spots.
[0004]
By the way, when the heat treatment on the material to be treated is completed and another heat treatment is performed on another material to be treated next, the heating furnace is operated as follows. That is, after the previous material to be processed is finished, the temperature of the heating gas is changed to the temperature for heating the next material to be processed. While the change work is being performed, a dummy material is connected to the above-mentioned material to be processed and passed through a heating furnace. When the change of the temperature of the heating gas is completed, the other material to be treated is connected to the dummy material and passed through a heating furnace to heat it.
[0005]
[Problems to be solved by the invention]
However, it takes a long time to change the temperature of the heating gas. In the conventional method, since the operation as the heating furnace is substantially suspended for the long time, the productivity of the furnace is lowered. There was a problem.
[0006]
The furnace operating method of the present invention is provided in order to solve the above-mentioned problems (technical problems) of the prior art.
The first purpose is to heat the material to be treated efficiently by heating the material while passing it continuously through a heating furnace.
The second purpose is to change the temperature of the heating gas when heating another material to be treated for another heat treatment, thereby enabling heating at a temperature condition suitable for the heat treatment. is there.
The third purpose is to heat one material to be treated, and then to heat another material to be treated with a gas for heating at another temperature, passing the material to be treated through a heating furnace. By changing the temperature of the heating gas to the temperature for heating the next material to be processed while the process is being performed, when the heating of the previous material to be processed is completed, The material to be treated can be passed through a heating furnace to be heated, and the heating furnace can be operated without any downtime to improve its productivity.
The fourth object is to change the temperature of the heating gas to the temperature for heating the next material to be processed while heating the material to be processed as described above. Appropriate heating can be performed on the material to be processed, and the quality of the material to be processed can be maintained.
Another object of the present invention is to reduce the amount of blowing out the heating gas as the connecting portion between the preceding strip, which is the previous material to be processed, and the subsequent strip, which is the next material, passes through the heating furnace. In the case of control, the controllable width is wide so that the control can be easily performed.
Other objects and advantages will be readily apparent from the drawings and the following description associated therewith.
[0007]
[Means for Solving the Problems]
The operation method of the heating furnace in the present invention is as follows:
A plurality of strips with different heat treatment conditions are connected in cascade and passed sequentially through a heating furnace,
In the heating furnace, a furnace operation method in which each strip is heated while the respective strips are floated by making the furnace temperatures different from each other and blowing the gas of the different furnace temperatures as the heating gas. In
In the state where the furnace temperature is set to a temperature for heating the preceding strip, the preceding strip is passed at a conveying speed for applying predetermined heating thereto,
Next, if the preceding strip is near the end while the preceding strip is passing through the furnace,
The amount out blowing of heating gas in the heating furnace was changed to a maximum,
And to and change the speed for providing a predetermined heating preceding strip with the conveying speed at its maximum blown out of the heating gas,
Change the furnace temperature toward the furnace temperature for heating the subsequent strip,
Further, the transfer speed is changed to a speed for applying predetermined heating to the preceding strip with the heating gas at the furnace temperature being changed,
Further, when passing the connecting portion between the preceding strip and the succeeding strip into the heating furnace, the amount of blowing gas for heating in the heating furnace is changed from the above-mentioned maximum blowing amount to the minimum blowing amount necessary for levitation of the strip. Control between
Next, after the succeeding strip is put into the heating furnace, the transport speed is changed to a speed for applying the predetermined heating to the succeeding strip while the furnace temperature is set to a temperature for heating the succeeding strip. To do.
[0008]
[Action]
When processing materials connected in cascade are sequentially passed through a heating furnace to heat them, in a state where the temperature of the heating gas is set to the temperature for heating the previous processing material, the previous processing material is set to the predetermined temperature. It passes at the conveyance speed to give the heating. Accordingly, it is possible to appropriately heat the preceding material to be processed. If the preceding material to be processed is near the end, the temperature of the heating gas is changed to the temperature for heating the subsequent material to be processed while the preceding material to be processed passes. In this case, the conveying speed of the material to be processed is changed to a speed for applying predetermined heating to the preceding material to be processed with the heating gas at the temperature being changed. Accordingly, the preceding material to be processed can be appropriately heated regardless of the temperature change of the heating gas. After the succeeding material to be passed through the heating furnace, the transport speed is changed to a speed for applying predetermined heating to the succeeding material, so that the subsequent material is also heated appropriately. it can.
[0009]
【Example】
Hereinafter, drawings showing examples of the present application will be described. In FIG. 1, A indicates a continuous heat treatment furnace for continuously heat-treating a material to be treated, for example, a heating furnace 1 for continuously heating a material to be treated and a heated material to be treated as is well known. And a cooling chamber 2 for continuously cooling. The heating furnace 1 is composed of elements indicated by reference numerals 3 to 9. That is, 3 is a furnace body, 4 is an inlet of a material to be processed, 5 is an outlet, 6 is a spraying means for spraying a heating gas to heat and float the material to be processed. The upper and lower plenum chambers 7 for blowing out the heating gas and holding it in the heated and floating state, and the fans for feeding the heating gas in the furnace body 3 into the upper and lower plenum chambers 7 for blowing out 8 is an example. Numerous heating gas outlets are provided on the lower surface of the upper plenum chamber and the upper surface of the lower plenum chamber, respectively. The spraying means 6 is configured to vary the amount of heating gas sprayed onto the material to be treated. For example, the spraying amount can be varied by varying the blowing speed of the heating gas from the plenum chamber 7. However, the blowing amount of the heating gas from the plenum chamber 7 toward the material to be processed may be varied with the blowing speed kept constant. As a specific means of the former, for example, the rotation speed of the fan 8 is configured to be variable, and this is increased or decreased to increase or decrease the blowing speed of the heating gas from the plenum chamber 7. Alternatively, the amount of heated gas from the fan 8 to the plenum chamber 7 is changed by a damper provided in the middle thereof. As the specific means of the latter, the heating gas is blown out of a large number of blowing ports provided for blowing the heating gas toward the material to be treated on the surface facing the material to be treated in the plenum chamber 7. Change the number of things to do. Note that the former means and the latter means may be performed by arbitrarily combining them. The heating furnace 1 is divided into a plurality of zones in the passing direction of the material to be treated (left and right direction in the figure) (the figure shows an example divided into two zones Z1 and Z2 for simplicity), and the spraying means 6 is provided for each zone, and the spraying amount can be individually changed for each zone. Next, 9 is a heating means for heating the heating gas in the furnace body 3, and the calorific value is variable. For example, a burner is shown, but a radiant tube, a heating wire or the like may be used.
[0010]
Similarly, the cooling chamber 2 has a well-known configuration, 11 is a casing, 12 is the presence of a cooling gas spraying means, and 13 is a cooling gas sprayed on the material to be treated and kept in its cooled and floating state. The upper and lower plenum chambers for performing are shown. The outlet 5 serves as an inlet for the cooling chamber 2. Although not shown, the heat treatment furnace A includes a driving means for driving the material to be processed, which is inserted through the heating furnace 1 and the cooling chamber 2 in order, and the driving means is a conveying speed of the material to be processed. Is configured to be variable. M1 and M2 are strips shown as materials to be treated, which are connected in cascade to pass through the heat treatment furnace A in order, and M1 passed through the furnace A first passes through the preceding strip, and then passes through the furnace A. M2 is called the subsequent strip. J indicates a connection portion (called a plate joint) between the former end and the latter start. These strips are, for example, metal strips such as aluminum, copper, and stainless steel, and have various thicknesses of 0.3 mm to 4 mm and widths of several hundred mm to 2,000 mm.
[0011]
The heat treatment (for example, partial annealing) of the strip M1 in the heat treatment furnace A configured as described above is as follows. The heating gas in the furnace body 3 is set to a temperature for heating the strip M1 (for example, 500 ° C.). In that state, the strip M1 is passed through the furnace A. That is, the heating furnace 1 is introduced into the furnace body 3 through the inlet 4, transported through the furnace body 3, reaches the cooling chamber 2 through the outlet 5, and is transported through the cooling chamber 2. The transport speed of the strip M1 at this time is a transport speed for applying a predetermined heating to the strip M1 at the heating temperature. In the state where the strip M1 is conveyed as described above, the heating gas blown from the plenum chamber 7 is blown to the strip M1 in the heating furnace 1, and the strip M1 is heated while being floated. When the strip M1 moves in the heating furnace 1 in the above state, the temperature of the strip M1 is raised to a predetermined temperature (for example, 400 ° C.). Next, in the cooling chamber 2, the strip M1 is cooled by the cooling gas blown out from the plenum chamber 13, and the cooling is performed. In this way, the partial annealing of the strip M1 is continuously performed.
[0012]
Next, another strip M2 is connected to the strip M1 in cascade, and the strips M1 and M2 are subjected to different heat treatments (for example, the partial annealing for the strip M1 and the complete annealing for the strip M2). An operation in the case where the strips M1 and M2 are heated with heating gases having different temperatures in the heating furnace 1 will be described. First, FIG. 2 shows a case where the furnace temperature for heating the strip M2 (for example, 650 ° C.) is higher than the furnace temperature for heating the strip M1 (temperature of the heating gas in the heating furnace 1; for example, 500 ° C.). Based on
[0013]
In period 21, the preceding strip M1 is heated under normal conditions. That is, the preceding strip M1 is passed through the heating furnace 1 and heated in a state where the conveying speed 22, the furnace temperature 23, and the heating gas blow-out speed 24 from the plenum chamber satisfy the conditions suitable for heating the preceding strip M1 as usual. . Next, when the preceding strip M1 is near the end, preparation control 25 for dummyless control is performed. That is, the blowing amount of the heating gas is maximized. For example, in this example, the heating gas blowing speed is increased to the maximum speed (100% blowing speed) 27 as indicated by reference numeral 26. Along with this, the transport speed of the strip is changed to a speed for applying a predetermined heating to the preceding strip M1 with the heating gas of the maximum spray amount. That is, even if the blowing speed is increased, the conveying speed corresponds to the maximum blowing speed 27 as indicated by reference numeral 28 so that the strip M1 passing through the heating furnace 1 is heated with a predetermined amount of heat. Increase to speed 29.
[0014]
Next, after the preparation control is completed, dummyless control, that is, control 31 for continuously performing the heat treatment operation of the strip even when the furnace temperature is changed is performed. The control first increases the furnace temperature to a temperature 33 (for example, 650 ° C.) for heating the subsequent strip M2, as indicated by reference numeral 32. Along with the change, the conveyance speed is changed to a speed for applying predetermined heating to the preceding strip M1 with the heating gas at the temperature being changed. That is, in the process of raising and after raising the furnace temperature, the conveying speed is set to each furnace temperature so that heating of a predetermined amount of heat is performed while the strip M1 passes through the heating furnace 1 even if the furnace temperature is raised. The speed is set and increased according to the control 34, and the speed is increased to the speed 35 corresponding to the temperature 33. Note that the conveying speed is such that the amount of heat by which the strip is heated to the set temperature is given from the material conditions such as the thickness and width of the strip and the heat transfer conditions such as convection by radiation and jet flow in the heating furnace 1. For example, by calculation.
[0015]
Next, after the operation as described above, the plate joint portion J reaches the inlet 4 of the heating furnace 1, passes through the heating furnace 1, and exits from the outlet 5. The change of the blowing speed 38 and the accompanying change of the conveying speed 39).
[0016]
Thereafter, in a period 40 in which the subsequent strip M2 is passed through the entire length of the furnace body 3, the conveying speed is changed to a speed 41 for applying predetermined heating to the subsequent strip M2, and the heating gas is blown out. The speed is changed to the same speed 43, and the subsequent strip M2 is heated under the transport speed 41, the blow-out speed 43, and the new furnace temperature 42 (equal to the changed furnace temperature 33).
[0017]
By the above operation, the preceding strip M1 can be heated to an appropriate temperature (for example, 400 ° C.) with a furnace temperature (for example, 500 ° C.) suitable for its heat treatment (for example, partial annealing). In addition, the subsequent strip M2 can be heated to an appropriate temperature (for example, 530 ° C.) with a furnace temperature (for example, 650 ° C.) suitable for the heat treatment (for example, complete annealing).
[0018]
It should be noted that the operations indicated by reference numerals 26 and 28 and the operations indicated by reference numerals 32 and 34 may be performed with the operations of reference numerals 32 and 34 first and the operations of reference numerals 26 and 28 later.
[0019]
Next, a case where the furnace temperature at the time of heating the strip M2 is lower than the furnace temperature at the time of heating the strip M1 will be described with reference to FIG. The operation in this case is the same as the operation in the case of FIG. 2 except for a part thereof, and the description is duplicated. Therefore, the same part is denoted by the same reference numeral as in FIG. Only the differences will be described. That is, in the period of the dummyless control 31, the furnace temperature is lowered to a temperature 33 suitable for heating the subsequent strip M2, as indicated by reference numeral 45. In the descending process, the transport speed is set to a transport speed corresponding to each furnace temperature so that the amount of heat given while the strip M1 passes through the heating furnace 1 does not change even if the furnace temperature is lowered. Then, the lowering control 46 is performed to lower the speed 35 corresponding to the temperature 33.
[0020]
Next, the plate joint control will be described. First, the case where the plate thickness of the preceding strip M1 is thin and the plate thickness of the subsequent strip M2 is thick will be described with reference to FIG. When the plate joint J approaches the inlet 4 of the heating furnace 1, the conveying speed is lowered from the speed 35 to the speed 41 as indicated by reference numeral 51. Along with the lowering, the blowing speed is lowered from the maximum speed 27 to the speed 53 at which the predetermined amount of heat can be given to the preceding strip M1 at the speed 41 as indicated by reference numeral 52. In this case, the controllable range of the blowing speed 53 is the entire range from the maximum speed 27 to the lower limit speed at which the stable floating of the strip M2 can be performed, so that the setting of the speed 53 is easy. Next, in the above state, if the plate joint J passes the boundary 54 between the zone Z1 and the zone Z2, the blowing speed in the zone Z1 is increased to the blowing speed 43 as indicated by reference numeral 55. If the plate joint J passes the outlet 5, the blowing speed in the zone Z2 is also increased to the blowing speed 43 as indicated by reference numeral 56.
[0021]
Next, a case where the plate thickness of the preceding strip M1 is thick and the plate thickness of the subsequent strip M2 is thin will be described with reference to FIG. If the plate joint J approaches the inlet 4 of the heating furnace 1, the blowing speed in the zone Z1 is given a predetermined amount of heat to the subsequent strip M2 at the speed 35 as shown by the reference numeral 52 from the maximum speed 27. Decrease to speed 53. Next, if the plate joint J approaches the boundary 54 between the zone Z1 and the zone Z2 in the above state, the blowing speed in the zone Z2 is lowered to the speed 53 as in the zone Z1, as indicated by reference numeral 52 '. On the other hand, as for the conveyance speed, as long as the plate joint portion J passes through the heating furnace 1, the conveyance is performed at the speed 35 described above. The speed is increased to 41. The blowing speed is also increased to the blowing speed 43 as indicated by reference numeral 56.
[0022]
Next, three or more strips may be connected in cascade to perform heat treatment in order. In this case, in the present specification, when the leading strip is passed through the heating furnace 1, the strip is referred to as the preceding strip, and the second strip subsequent thereto is referred to as the succeeding strip. When the second strip is passed through the heating furnace 1, the strip is referred to as the preceding strip, and the third strip subsequent thereto is referred to as the subsequent strip. In the same way, the strip inserted into the heating furnace 1 is referred to as the preceding strip, and the subsequent strips subsequently passed through the heating furnace 1 are referred to as the subsequent strip.
[0023]
Next, in the above embodiment, the plenum chamber type is exemplified as the means for blowing the gas to the material to be processed. However, the means may be constituted by a static pressure pad and a dynamic pressure nozzle. Moreover, although the floating furnace is exemplified as the continuous heat treatment furnace, a catenary furnace or other continuous furnace may be used. Furthermore, the material to be treated is not limited to the strip material, but may be a wire material.
[0024]
【The invention's effect】
As described above, the present invention achieves the first to fourth objects with the configuration of claim 1 and has the following effects. That is,
When the material to be processed M1 is heated, the material to be processed M1 is heated while being continuously passed through the heating furnace 1, so that the material to be processed M1 can be efficiently heated.
Further, when heating for another heat treatment is performed on another material to be treated M2, there is an effect that the heating gas can be heated at a temperature condition suitable for the heat treatment by changing the temperature of the heating gas.
Further, when heating is performed on one material to be processed M1, and then another material to be processed M2 is heated with a heating gas at another temperature, in the present invention, the material to be processed M1 is placed in the heating furnace 1 in the present invention. Since the temperature of the heating gas is changed to the temperature for heating the next material to be processed M2 when the heating is performed through the material, when the heating of the previous material to be processed M1 is finished, the material to be processed The next material M2 can be passed through the heating furnace 1 in succession to M1 and heated, and the heating furnace can be operated without any pauses and the productivity can be improved. There is.
Moreover, even if the temperature of the heating gas is changed to the temperature for heating the next processed material M2 while the previous processed material M1 is heated as described above, At the time of change, since the conveying speed of the material to be processed M1 is changed to a speed for applying predetermined heating thereto, the previous material to be processed M1 can be appropriately heated, and the material to be processed The effect that can maintain the quality of.
Further, according to the second aspect of the present invention, in addition to the first to fourth objects, the other objects are achieved and the following effects are obtained. That is,
During the passage of the preceding strip M1, the amount of heating gas blown to the strip is maximized in advance, so that the connecting portion J between the preceding strip M1 and the succeeding strip M2 passes through the heating furnace 1 for heating. In the case of controlling the amount of gas blown out, the entire range from the minimum necessary for the levitation of the strip to the maximum is the controllable width, and therefore, there is an effect that appropriate control can be easily performed.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a part of a continuous heat treatment furnace.
FIG. 2 is a diagram for explaining an operation for raising the temperature of a heating gas.
FIG. 3 is a diagram for explaining an operation when lowering the temperature of a heating gas.
FIG. 4 is a diagram for explaining plate joint control when the succeeding strip is thicker than the preceding strip.
FIG. 5 is a diagram for explaining plate joint control when the succeeding strip is thinner than the preceding strip.
[Explanation of symbols]
1 Heating furnace 6 Spraying means
M1 leading strip
M2 trailing strip

Claims (1)

異なる熱処理条件の複数のストリップを縦続状に接続して、加熱炉に順に連続的に通し、
加熱炉内においては、夫々のストリップに対して相互に炉温を異ならせ、かつ、その異なる炉温のガスを夫々加熱用ガスとして吹き付けることにより夫々のストリップを夫々浮揚させながら加熱する操炉方法において、
上記炉温を、先行のストリップの加熱用の温度にした状態において、先行のストリップをそれに所定の加熱を与える為の搬送速度で通し、
次に先行のストリップが加熱炉内通過中において、先行のストリップが終端近くなったならば、
上記加熱炉内の加熱用ガスの吹き出し量を最大に変更し、
且つ上記搬送速度をその最大の吹き出し量の加熱用ガスでもって先行のストリップに所定の加熱を与える為の速度に変更することと、
上記炉温を後続のストリップの加熱用の炉温に向けて変更し、
さらに上記搬送速度を該変更中の炉温の加熱用ガスでもって先行のストリップに所定の加熱を与える為の速度に変更することを行い、
さらに先行のストリップと後続のストリップとの接続部を加熱炉内に通過させるに当たって、加熱炉内の加熱用ガスの吹き出し量を、上記最大の吹き出し量からストリップの浮揚に必要な最小限の吹き出し量の間で制御し、
次に加熱炉に後続のストリップを通す状態となった後は、炉温を後続のストリップの加熱用の温度にした状態で、搬送速度を後続のストリップに所定の加熱を与える為の速度に変更すること
を特徴とする加熱炉の操炉方法。
A plurality of strips with different heat treatment conditions are connected in cascade and passed sequentially through a heating furnace,
In the heating furnace, a furnace operation method in which each strip is heated while the respective strips are floated by making the furnace temperatures different from each other and blowing the gas of the different furnace temperatures as the heating gas. In
In the state where the furnace temperature is set to a temperature for heating the preceding strip, the preceding strip is passed at a conveying speed for applying predetermined heating thereto,
Next, if the preceding strip is near the end while the preceding strip is passing through the furnace,
The amount out blowing of heating gas in the heating furnace was changed to a maximum,
And to and change the speed for providing a predetermined heating preceding strip with the conveying speed at its maximum blown out of the heating gas,
Change the furnace temperature toward the furnace temperature for heating the subsequent strip,
Further, the transfer speed is changed to a speed for applying predetermined heating to the preceding strip with the heating gas at the furnace temperature being changed,
Further, when passing the connecting portion between the preceding strip and the succeeding strip into the heating furnace, the amount of blowing gas for heating in the heating furnace is changed from the above-mentioned maximum blowing amount to the minimum blowing amount necessary for levitation of the strip. Control between
Next, after the succeeding strip is put into the heating furnace, the transport speed is changed to a speed for applying the predetermined heating to the succeeding strip while the furnace temperature is set to a temperature for heating the succeeding strip. A method for operating a heating furnace, characterized in that:
JP19259295A 1995-07-04 1995-07-04 Heating furnace operation method Expired - Lifetime JP3893629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19259295A JP3893629B2 (en) 1995-07-04 1995-07-04 Heating furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19259295A JP3893629B2 (en) 1995-07-04 1995-07-04 Heating furnace operation method

Publications (2)

Publication Number Publication Date
JPH0920929A JPH0920929A (en) 1997-01-21
JP3893629B2 true JP3893629B2 (en) 2007-03-14

Family

ID=16293845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19259295A Expired - Lifetime JP3893629B2 (en) 1995-07-04 1995-07-04 Heating furnace operation method

Country Status (1)

Country Link
JP (1) JP3893629B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213624A (en) * 2004-01-30 2005-08-11 Jfe Steel Kk Continuous heat treatment method of metal strip

Also Published As

Publication number Publication date
JPH0920929A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
US3332761A (en) Method of annealing sheets of glass on a decreasing temperature gas support
JP2014522911A (en) Method for heating a molded part for subsequent press hardening and a continuous furnace for partially heating a molded part preheated to a predetermined temperature
US1808152A (en) Continuous annealing apparatus
JP2771330B2 (en) How to heat treat metal products
JP3893629B2 (en) Heating furnace operation method
EP0110652B1 (en) Apparatus and methods for rolling and treating steel rod
US3223506A (en) Method and apparatus for vertically supporting and heat treating a glass sheet
US2673080A (en) Strip heating
US4546957A (en) Apparatus for combined hot rolling and treating steel rod
US4249928A (en) Gas hearth bed with grooved exit portion
JP2003328039A (en) Continuous annealing process for steel plate
JP3866929B2 (en) Continuous firing furnace
US2268609A (en) Glassware lehr
JPS6141725A (en) Method for controlling hearth roll temperature of continuous annealing furnace
KR900006693B1 (en) Continous annealing method and apparatus for cold rolled steel strips
JPH06154806A (en) Flying thickness changing rolling method for hot rolled strip
JPH0920930A (en) Heating method
JPH08225858A (en) Heat treatment of metallic strip
JPS5943981B2 (en) Roll temperature control method for continuous annealing furnace
JPH0319284B2 (en)
JPS5826415B2 (en) Plate temperature control method
JPH0563527B2 (en)
JPH02153023A (en) Roll cooling method for steel strip
JPH05279752A (en) Method for continuously annealing strip and apparatus therefor
JPH0211729A (en) Continuous heat treating method for metal strip

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060620

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

EXPY Cancellation because of completion of term