JP3890458B2 - Sulfur trioxide absorption removal method in sulfur dioxide production - Google Patents

Sulfur trioxide absorption removal method in sulfur dioxide production Download PDF

Info

Publication number
JP3890458B2
JP3890458B2 JP01829199A JP1829199A JP3890458B2 JP 3890458 B2 JP3890458 B2 JP 3890458B2 JP 01829199 A JP01829199 A JP 01829199A JP 1829199 A JP1829199 A JP 1829199A JP 3890458 B2 JP3890458 B2 JP 3890458B2
Authority
JP
Japan
Prior art keywords
packed bed
temperature
sulfuric acid
gas
absorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01829199A
Other languages
Japanese (ja)
Other versions
JP2000219504A (en
Inventor
陽一 横山
洋三 中村
健 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP01829199A priority Critical patent/JP3890458B2/en
Publication of JP2000219504A publication Critical patent/JP2000219504A/en
Application granted granted Critical
Publication of JP3890458B2 publication Critical patent/JP3890458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gas Separation By Absorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二酸化硫黄(SO)製造における三酸化硫黄(SO )吸収除去方法に関する。
【0002】
本発明は、たとえば、シクロヘキサンからの直接酸化法によるカプロラクタム製造過程の副原料である温度45℃以下のSO濃度30mg/Nm以下の精製SOガス(亜硫酸ガス)の製造に適用できる。
【0003】
【従来の技術】
精製SOガスを製造する場合、不純物であるSOを完全に除去するとともに後工程で要求される温度まで冷却する必要がある。
【0004】
従来の技術では、図2に示すように、硫黄燃焼炉(21)で発生した高温のSOとSOの混合ガスは、廃熱ボイラ(22)、蒸気過熱器(30)およびエコノマイザ(23)で熱回収された後、1段充填層式スクラバー(24)に入る。同スクラバー(24)には硫酸槽(27)内の硫酸が循環ポンプ(28)によって冷却器(29)を経て循環されており、この硫酸にSOが吸収・除去される。残ったSOシェル&チューブ式のガス・ガス熱交換器(25)で冷却空気により所定温度まで温度降下されて精製SOガスとされる。
【0005】
この構成のSO製造装置では、ガス・ガス熱交換器(25)に冷却用空気を供給するための空気ブロワー(26)が必要である上に、同熱交換器(25)に空気ブロワー(26)をつなぐダクトが余分に必要であり、さらには空気ブロワー(26)の駆動モーター用にかなりの電力が必要である。しかも、上記のように余分な機器が必要なことから運転面およびメンテナンス面で管理費および維持費が高く付くという問題がある。
【0006】
【発明が解決しようとする課題】
本発明の目的は、機器の数を減らしシンプルな設備にすることにより運転面およびメンテナンス面で管理費および維持費の節減を図ることができる二酸化硫黄製造における三酸 化硫黄吸収除去方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、精製SOガス温度を必要な温度まで冷却する充填層運転温度と、SO吸収除去に最適な充填層運転条件とを1つの塔内において設定し、SO吸収除去を最適条件で行うと同時にガスの冷却をSO吸収除去塔で行うものである。
【0008】
すなわち、本発明による二酸化硫黄製造における三酸化硫黄吸収除去方法は、硫黄燃焼炉から来るSOとSOの混合ガスを充填層式スクラバーに導いて、循環する硫酸に接触させ、SOを硫酸に吸収除去させてSO を得るに当たり、同スクラバーを、主にSOガス冷却のための上段充填層(4a)と、主にSO除去のための下段充填層(4b)から構成して、上段充填層(4a)には30℃〜40℃の温度で低温硫酸を、下段充填層(4b)には70℃〜90℃の温度で高温硫酸を、それぞれ循環させ、上段充填層(4a)へ供給された低温の硫酸は、同充填層(4a)を流下し、SO ガスとの熱交換によって若干温度上昇をきたした後、下段充填層(4b)へ入り、ここへ供給された高温硫酸と合流して下段充填層(4b)を流下し、主に下段充填層(4b)において、同層を流下する硫酸と混合ガスとが接触することにより混合ガス中のSO が硫酸に吸収除去され、この硫酸は塔底から流出し、下段充填層(4b)を流下する硫酸の温度は下段充填層(4b)上部においては上段充填層(4a)から流下してくる低温硫酸との合流混合により比較的低温であるが、高温の混合ガスとの熱交換、およびSO 吸収により徐々に上昇し、下段充填層(4b)下部においてはSO 吸収除去に適した温度となり、次いで、SO 吸収・除去後に残ったSO は上段充填層(4a)において低温の硫酸と接触することにより要求される温度まで冷却され、精製SO ガスとされることを特徴とする。
【0009】
上記構成のSO吸収除去方法において、下段充填層に硫酸を70℃〜90℃の温度で循環させ、上段充填層に硫酸を30℃〜40℃の温度で循環させるものである。硫酸は好ましくは98%〜98.5%の濃度のものである。
【0010】
【発明の実施の形態】
本発明の実施例を図1に基いて詳しく説明する。
【0011】
液化した硫黄は燃焼炉(1)で燃焼されて、10%〜18%の高濃度SOガスが発生する。このガスはその濃度に対応して1000℃〜1400℃の高温のSOとSOの混合ガスであり、SOの酸化により副生したSOを3%程度含有する。この混合ガスは、廃熱ボイラ(2)、蒸気過熱器(10)およびエコノマイザ(3)で熱回収された後、160℃〜250℃の温度で2段充填層式スクラバー(4)に入る。
【0012】
2段充填層式スクラバー(4)は、竪型円筒充填塔であり、主にSOガス冷却のための上段充填層(4a)と、主にSO除去のための下段充填層(4b)から構成されている。スクラバー(4)の材質はステンレス、特殊合金、耐酸レンガライニング等である。スクラバー(4)の上段充填層(4a)には、硫酸槽(7)内の98%〜98.5%の硫酸が循環ポンプ(8)によって冷却器(9)を経て冷却された後、低温すなわち30℃〜40℃で循環されており、下段充填層(4b)には硫酸槽(7)内の硫酸が循環ポンプ(8)によって冷却器(9)を経ないで高温すなわち70℃〜90℃の温度で循環されている。
【0013】
上段充填層(4a)へ供給された低温の硫酸は、同充填層(4a)を流下し、SOガスとの熱交換によって若干温度上昇をきたした後、下段充填層(4b)へ入り、ここへ供給された高温硫酸と合流して下段充填層(4b)を流下する。主に下段充填層(4b)において、同層を流下する硫酸と混合ガスとが接触することにより混合ガス中のSOが硫酸に吸収除去される。この硫酸は塔底の液排出口ノズルから流出し硫酸槽(7)へ戻される。下段充填層(4b)を流下する硫酸の温度は下段充填層(4b)上部においては上段充填層(4a)から流下してくる低温硫酸との合流混合により比較的低温であるが、高温の混合ガスとの熱交換、およびSO吸収により徐々に上昇し下段充填層(4b)下部においてはSO吸収除去に適した温度となる。
【0014】
次いで、SO吸収・除去後に残ったSOは上段充填層(4a)において低温の硫酸と接触することにより要求される温度まで冷却され、精製SOガスとされる。
【0015】
実操作例
本発明によるSO製造におけるSO吸収除去方法を実際に以下の設計条件で実施し、保証運転期間中にその性能が要求を充分満たすことを確認した。
【0016】
(1)入口ガス条件
ガス量 : 28121 (Nm/hr)
ガス成分
SO : 13.9 (%)
SO : 0.4 (%)
: 6.5 (%)
: 79.2 (%)
ガス温度 : 180 (℃)
ガス圧力 : 0.36 (Kg/cmG)
(2)出口ガス条件
ガス量 : 28000 (Nm/hr)
ガス成分
SO : 14.0 (%)
SO (%)
: 6.5 (%)
: 79.5 (%)
ガス温度 : 45 (℃)
ガス圧力 : 0.28 (Kg/cmG)
(3)2段充填層式SOガススクラバー
塔径 : 2600 (mm)
塔高さ : 14600 (mm)
上段充填高さ : 1100 (mm)
下段充填高さ : 2900 (mm)
デミスター : キャンドル型6本
【0017】
【発明の効果】
本発明によれば、精製SOガス温度を必要な温度まで冷却する充填層運転温度と、SO吸収除去に最適な充填層運転条件とを1つの塔内において設定し、SO吸収除去を最適条件で行うと同時にガスの冷却をSO吸収除去塔で行うので、機器の数を減らしシンプルな設備にすることにより運転面およびメンテナンス面で管理費および維持費の節減を図ることができる。
【0018】
すなわち、電力等の用役にかかる費用を低減することによって全体の設備維持費の低減を図ることができる。運転および機器の維持管理の低減をはかり運転員およびメンテナンス要員の負担を低減することができる。シェル&チューブのガス・ガス熱交換器およびガス・ガス熱交換器に冷却用空気を供給するための空気ブロワーが不要になり、機器をつなぐガスダクトも短くて済むようになり全体の設備費を低減することができ、空気ブロワーに必要であった電力も不要になり用役費用を低減することができる。設備用の敷地面積が狭くなりプラント全体の機器配置にも余裕ができる。
【図面の簡単な説明】
【図1】 本発明の実施例を示すフローシートである。
【図2】 従来技術を示すフローシートである。
【符号の説明】
1:燃焼炉
2:廃熱ボイラ
3:エコノマイザ
4:2段充填層式スクラバー
4a:上段充填層
4b:下段充填層
7:硫酸槽
8:循環ポンプ
9:冷却器
10:蒸気過熱器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to sulfur trioxide (SO 3) absorption removal process in the sulfur dioxide (SO 2) production.
[0002]
The present invention can be applied to, for example, production of purified SO 2 gas (sulfurous acid gas) having a temperature of 45 ° C. or lower and an SO 3 concentration of 30 mg / Nm 3 or lower, which is a secondary raw material in the caprolactam production process by a direct oxidation method from cyclohexane.
[0003]
[Prior art]
When producing purified SO 2 gas, it is necessary to completely remove SO 3 as an impurity and to cool to a temperature required in a subsequent process.
[0004]
In the prior art, as shown in FIG. 2, the mixed gas of high-temperature SO 2 and SO 3 generated in the sulfur combustion furnace (21) is used as a waste heat boiler (22), a steam superheater (30), and an economizer (23 ), And then enters a one-stage packed bed scrubber (24). In the scrubber (24), sulfuric acid in the sulfuric acid tank (27) is circulated through a cooler (29) by a circulation pump (28), and SO 3 is absorbed and removed by this sulfuric acid. The remaining SO 2 is cooled to a predetermined temperature by cooling air in a shell-and-tube type gas / gas heat exchanger (25) to be purified SO 2 gas.
[0005]
In the SO 2 manufacturing apparatus having this configuration, an air blower (26) for supplying cooling air to the gas / gas heat exchanger (25) is required, and an air blower (25) is connected to the heat exchanger (25). 26) extra ducts are required, as well as considerable power for the drive motor of the air blower (26). In addition, since extra equipment is required as described above, there is a problem that the management and maintenance costs are high in terms of operation and maintenance.
[0006]
[Problems to be solved by the invention]
An object of the present invention provides a three sulfur dioxide absorption method for removing the sulfur dioxide production can be achieved savings in management and maintenance costs in operation plane and maintenance plane by simple equipment reduces the number of devices There is.
[0007]
[Means for Solving the Problems]
The present invention includes a packed bed operating temperature for cooling the purified SO 2 gas temperature to the temperature required to set the optimum filling layer operating conditions SO 3 absorbed and removed within one column, the optimum condition SO 3 absorber removed At the same time, the gas is cooled in the SO 3 absorption removal tower.
[0008]
That is, in the method for absorbing and removing sulfur trioxide in the production of sulfur dioxide according to the present invention, a mixed gas of SO 2 and SO 3 coming from a sulfur combustion furnace is guided to a packed bed type scrubber and brought into contact with circulating sulfuric acid, and SO 3 is Upon obtaining the sO 2 is absorbed removal sulfate, the same scrubber, mainly the upper filling layer for the sO 2 gas and cooling (4a), mainly composed of the lower packed bed for sO 3 removal (4b) In the upper packed bed (4a) , low-temperature sulfuric acid is circulated at a temperature of 30 ° C. to 40 ° C., and in the lower packed bed (4b) , high-temperature sulfuric acid is circulated at a temperature of 70 ° C. to 90 ° C. The low-temperature sulfuric acid supplied to 4a) flows down the packed bed (4a), slightly rises in temperature by heat exchange with the SO 2 gas, enters the lower packed bed (4b), and is supplied here. The lower packed bed ( b) flows down, mainly the lower packed bed in (4b), SO 3 in the mixed gas by the sulfuric acid flowing down the same layer as the mixed gas contacts is absorbed removed from sulfuric acid, the sulfuric acid bottoms The temperature of sulfuric acid flowing out and flowing down the lower packed bed (4b) is relatively low in the upper part of the lower packed bed (4b) due to the combined mixing with the low-temperature sulfuric acid flowing down from the upper packed bed (4a), The temperature gradually rises due to heat exchange with the high-temperature mixed gas and SO 3 absorption , and reaches a temperature suitable for SO 3 absorption removal at the lower part of the lower packed bed (4b) , and then the SO 2 remaining after SO 3 absorption and removal Is cooled to the required temperature by contacting with low-temperature sulfuric acid in the upper packed bed (4a), and is made into purified SO 2 gas .
[0009]
In SO 3 absorbed removal method of the above-described configuration, cycled at a temperature of 70 ° C. to 90 ° C. The sulfuric acid in the lower packed bed is intended to circulate at a temperature of 30 ° C. to 40 ° C. The sulfuric acid in the upper packed bed. The sulfuric acid is preferably in a concentration of 98% to 98.5%.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described in detail with reference to FIG.
[0011]
The liquefied sulfur is burned in the combustion furnace (1) to generate 10% to 18% high concentration SO 2 gas. This gas is a mixed gas of SO 2 and SO 3 at a high temperature of 1000 ° C. to 1400 ° C. corresponding to the concentration, and contains about 3% of SO 3 by-produced by oxidation of SO 2 . This mixed gas is heat-recovered by the waste heat boiler (2), the steam superheater (10), and the economizer (3), and then enters the two-stage packed bed scrubber (4) at a temperature of 160 ° C to 250 ° C.
[0012]
The two-stage packed bed type scrubber (4) is a vertical cylindrical packed tower, and is mainly an upper packed bed (4a) for cooling SO 2 gas and a lower packed bed (4b) mainly for removing SO 3. It is composed of The material of the scrubber (4) is stainless steel, special alloy, acid-resistant brick lining or the like. In the upper packed bed (4a) of the scrubber (4), 98% to 98.5% sulfuric acid in the sulfuric acid tank (7) is cooled by the circulation pump (8) via the cooler (9), and then the low temperature that being circulated at 30 ° C. to 40 ° C., high temperature i.e. 70 ° C. to 90 without passing through the cooler (9) is in the lower packed bed (4b) is sulfuric acid in the sulfuric acid bath (7) by the circulation pump (8) Circulated at a temperature of ℃.
[0013]
The low-temperature sulfuric acid supplied to the upper packed bed (4a) flows down the packed bed (4a), slightly rises in temperature by heat exchange with the SO 2 gas, and then enters the lower packed bed (4b). It joins with the hot sulfuric acid supplied here and flows down the lower packed bed (4b). Mainly in the lower packed bed (4b), the sulfuric acid flowing down the same layer and the mixed gas come into contact with each other, so that SO 3 in the mixed gas is absorbed and removed by sulfuric acid. The sulfuric acid flows out from the liquid discharge nozzle at the bottom of the column and is returned to the sulfuric acid tank (7). The temperature of the sulfuric acid flowing down the lower packed bed (4b) is relatively low at the upper part of the lower packed bed (4b) due to merging and mixing with the low-temperature sulfuric acid flowing down from the upper packed bed (4a). The temperature gradually rises due to heat exchange with the gas and SO 3 absorption, and at the lower part of the lower packed bed (4b), the temperature becomes suitable for SO 3 absorption removal.
[0014]
Next, the SO 2 remaining after SO 3 absorption / removal is cooled to a temperature required by contacting with low-temperature sulfuric acid in the upper packed bed (4a) to be purified SO 2 gas.
[0015]
Actual Operation Example The SO 3 absorption and removal method in the SO 2 production according to the present invention was actually carried out under the following design conditions, and it was confirmed that the performance sufficiently satisfied the requirements during the guaranteed operation period.
[0016]
(1) Inlet gas conditions Gas amount: 28121 (Nm 3 / hr)
Gas component
SO 2 : 13.9 (%)
SO 3 : 0.4 (%)
O 2 : 6.5 (%)
N 2 : 79.2 (%)
Gas temperature: 180 (° C)
Gas pressure: 0.36 (Kg / cm 2 G)
(2) Outlet gas conditions Gas amount: 28000 (Nm 3 / hr)
Gas component
SO 2 : 14.0 (%)
SO 3 : 0 (%)
O 2 : 6.5 (%)
N 2 : 79.5 (%)
Gas temperature: 45 (℃)
Gas pressure: 0.28 (Kg / cm 2 G)
(3) Two-stage packed bed type SO 3 gas scrubber Tower diameter: 2600 (mm)
Tower height: 14600 (mm)
Upper stage filling height: 1100 (mm)
Lower filling height: 2900 (mm)
Demister: 6 candle type 【0017】
【The invention's effect】
According to the present invention, a filling layer operating temperature for cooling the purified SO 2 gas temperature to the temperature required, and the optimum filling layer operating conditions SO 3 absorbed and removed and set within one column, the SO 3 absorber removed Since the gas is cooled in the SO 3 absorption and removal tower at the same time as the optimum conditions, management costs and maintenance costs can be reduced in terms of operation and maintenance by reducing the number of equipment and making the equipment simple.
[0018]
That is, it is possible to reduce the overall equipment maintenance cost by reducing the cost for utility such as electric power. By reducing the operation and maintenance of equipment, the burden on operators and maintenance personnel can be reduced. Eliminates the need for an air blower for supplying cooling air to the gas and gas heat exchanger of the shell and tube and the gas and gas heat exchanger, and the gas duct connecting the equipment can be shortened, reducing the overall equipment cost. The electric power required for the air blower is not necessary, and the utility cost can be reduced. The site area for facilities is narrowed, and there is room for equipment placement throughout the plant.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing an embodiment of the present invention.
FIG. 2 is a flow sheet showing a conventional technique.
[Explanation of symbols]
1: Combustion furnace 2: Waste heat boiler 3: Economizer 4: Two-stage packed bed type scrubber 4a: Upper packed bed 4b: Lower packed bed 7: Sulfuric acid tank 8: Circulation pump 9: Cooler 10: Steam superheater

Claims (1)

硫黄燃焼炉から来るSOとSOの混合ガスを充填層式スクラバーに導いて、循環する硫酸に接触させ、SOを硫酸に吸収除去させてSO を得るに当たり、同スクラバーを、主にSOガス冷却のための上段充填層(4a)と、主にSO除去のための下段充填層(4b)から構成して、上段充填層(4a)には30℃〜40℃の温度で低温硫酸を、下段充填層(4b)には70℃〜90℃の温度で高温硫酸を、それぞれ循環させ、上段充填層(4a)へ供給された低温の硫酸は、同充填層(4a)を流下し、SO ガスとの熱交換によって若干温度上昇をきたした後、下段充填層(4b)へ入り、ここへ供給された高温硫酸と合流して下段充填層(4b)を流下し、主に下段充填層(4b)において、同層を流下する硫酸と混合ガスとが接触することにより混合ガス中のSO が硫酸に吸収除去され、この硫酸は塔底から流出し、下段充填層(4b)を流下する硫酸の温度は下段充填層(4b)上部においては上段充填層(4a)から流下してくる低温硫酸との合流混合により比較的低温であるが、高温の混合ガスとの熱交換、およびSO 吸収により徐々に上昇し、下段充填層(4b)下部においてはSO 吸収除去に適した温度となり、次いで、SO 吸収・除去後に残ったSO は上段充填層(4a)において低温の硫酸と接触することにより要求される温度まで冷却され、精製SO ガスとされることを特徴とする、二酸化硫黄製造における三酸化硫黄吸収除去方法。A mixed gas of SO 2 and SO 3 coming from the sulfur burner led to the packed bed type scrubber, circulating in contact with the sulfuric acid, the SO 3 in obtaining the SO 2 is absorbed removal sulfate, the same scrubber, the main Are composed of an upper packed bed (4a) for SO 2 gas cooling and a lower packed bed (4b) mainly for SO 3 removal, and the upper packed bed (4a) has a temperature of 30 ° C. to 40 ° C. in low temperature sulfuric acid, hot sulfuric acid at a temperature of 70 ° C. to 90 ° C. the lower packed bed (4b), is circulated respectively, sulfuric cold supplied to the upper filling layer (4a) is, the fill layer (4a) , And after a slight temperature increase due to heat exchange with SO 2 gas, it enters the lower packed bed (4b), merges with the hot sulfuric acid supplied thereto, and flows down the lower packed bed (4b), Mainly mixed with sulfuric acid flowing down in the lower packed bed (4b) SO 3 in the mixed gas by contacting the gas are absorbed and removed in sulfuric acid, in the sulfuric acid flows from the bottom, the lower packed bed temperature of the sulfuric acid flowing down the lower filling layer (4b) (4b) top Is relatively low due to the combined mixing with the low-temperature sulfuric acid flowing down from the upper packed bed (4a), but gradually rises due to heat exchange with the high-temperature mixed gas and SO 3 absorption , and the lower packed bed (4b ) becomes a temperature suitable for the SO 3 absorbed and removed in the lower part, then, SO 2 remaining after SO 3 absorbed and removed is cooled to a temperature required by contacting the upper packed bed (4a) and low-temperature sulfuric acid, A method for absorbing and removing sulfur trioxide in sulfur dioxide production, characterized in that the SO 2 gas is purified .
JP01829199A 1999-01-27 1999-01-27 Sulfur trioxide absorption removal method in sulfur dioxide production Expired - Fee Related JP3890458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01829199A JP3890458B2 (en) 1999-01-27 1999-01-27 Sulfur trioxide absorption removal method in sulfur dioxide production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01829199A JP3890458B2 (en) 1999-01-27 1999-01-27 Sulfur trioxide absorption removal method in sulfur dioxide production

Publications (2)

Publication Number Publication Date
JP2000219504A JP2000219504A (en) 2000-08-08
JP3890458B2 true JP3890458B2 (en) 2007-03-07

Family

ID=11967522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01829199A Expired - Fee Related JP3890458B2 (en) 1999-01-27 1999-01-27 Sulfur trioxide absorption removal method in sulfur dioxide production

Country Status (1)

Country Link
JP (1) JP3890458B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5612979B2 (en) * 2010-09-22 2014-10-22 住友精化株式会社 Method and apparatus for purifying sulfur dioxide gas
WO2012130375A1 (en) * 2011-03-28 2012-10-04 Haldor Topsøe A/S Process for the reduction of nitrogen oxides and sulphur oxides in the exhaust gas from internal combustion engine.
KR101391410B1 (en) 2012-09-28 2014-09-01 주식회사 코아 에프앤티 Refinery system for bio gas comtaining malodorous substance and siloxane gas
CN116675184B (en) * 2023-07-28 2023-11-14 潍坊春源化工有限公司 Process and equipment for circularly producing sulfur trioxide

Also Published As

Publication number Publication date
JP2000219504A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
CN101530727B (en) Desulfurization process containing H<2>S acidic gas
US6209624B1 (en) Gas-to-gas heat exchangers for use in sulphuric acid plants
US6279514B1 (en) Method of recovering heat in sulfuric acid production plant
CN107954403B (en) Resource-saving waste acid treatment process and device
WO2016119224A1 (en) Isothermal and low temperature shift converter and shift conversion process thereof
US20240359129A1 (en) Apparatus and method for absorbing, capturing, and desorbing carbon dioxide using solid amines
CN107892280A (en) A kind of high concentration SO2The method of metallurgical off-gas acid-making
CN105129746B (en) A kind of method of clean manufacturing food additives sulfuric acid
US2104858A (en) Manufacture of sulphuric acid
CN103159187A (en) Shutdown technique of cleaner production of sulfur recovery and tail gas treatment device
JP3890458B2 (en) Sulfur trioxide absorption removal method in sulfur dioxide production
CN206437872U (en) Hot nitrogen blows sulphur system
KR20130126508A (en) Integrated gas cooling system for electric arc furnace
CN111689477B (en) Wet process and apparatus for preparing sulfuric acid from acid gas with high hydrocarbon content
EP3060518B1 (en) Process for operating a sulfuric acid plant
CN105371669A (en) Power generating system and method by jointly recycling waste heat of glass melting kiln flue gas and annealing kiln waste gas
CN213060208U (en) Preheating system for uniformly heating sulfuric acid converter by using preheater
CA1253669A (en) Generation of sulphur trioxide from oleum
CN209309997U (en) A kind of low concentration sodium salt organic waste liquid burning furnace and incineration system
GB1589945A (en) Process for concentrating dilute phosphoric acid
CN212559465U (en) Wet process sulfuric acid producing apparatus with high hydrocarbon content acid gas
CN114534641B (en) Equipment for preparing sulfuric acid and preheating method of equipment for preparing sulfuric acid
CN205011383U (en) System for natural gas partial oxidation system synthetic gas waste heat recovery
CN107419048A (en) It is a kind of to use nuclear reaction system to produce the system and method for sponge iron technique heat supply
CN206580557U (en) A kind of processing equipment for carbon disulphide production Process Gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent or registration of utility model

Ref document number: 3890458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees